Caterpillars in Erdős-Hajnal

Anita Liebenau ${ }^{1}$
School of Mathematical Sciences, Monash University VIC 3800, Australia
Marcin Pilipczuk ${ }^{2}$
Institute of Informatics, University of Warsaw, Poland
Paul Seymour ${ }^{3}$ and Sophie Spirkl Princeton University, Princeton, NJ 08544, USA
October 18, 2017; revised October 28, 2017

[^0]
Abstract

Let T be a tree such that all its vertices of degree more than two lie on one path; that is, T is a caterpillar subdivision. We prove that there exists $\epsilon>0$ such that for every graph G with $|V(G)| \geq 2$ not containing T as an induced subgraph, either some vertex has at least $\epsilon|V(G)|$ neighbours, or there are two disjoint sets of vertices A, B, both of cardinality at least $\epsilon|V(G)|$, where there is no edge joining A and B.

A consequence is: for every caterpillar subdivision T, there exists $c>0$ such that for every graph G containing neither of T and its complement as an induced subgraph, G has a clique or stable set with at least $|V(G)|^{c}$ vertices. This extends a theorem of Bousquet, Lagoutte and Thomassé [1], who proved it when T is a path, and a recent theorem of Choromanski, Falik, Liebenau, Patel and Pilipczuk [2], who proved the same when T is a "hook".

1 Introduction

The Erdős-Hajnal conjecture $[5,6]$ asserts:
1.1 Conjecture: For every graph H, there exists $c>0$ such that every H-free graph G satisfies

$$
\max (\omega(G), \alpha(G)) \geq|V(G)|^{c}
$$

(All graphs in this paper are finite and have no loops or parallel edges. A graph G is H-free if no induced subgraph of G is isomorphic to H; and $\omega(G), \alpha(G)$ denote the cardinalities of the largest cliques and stable sets in G respectively, and $\omega(G)$ is called the clique number of G.) This conjecture has been investigated heavily, and nevertheless has been proved only for very restricted graphs H (see [3] for a survey, and see [8] for progress on the conjecture in a geometric setting). In particular it has not yet been proved when H is a five-vertex path.

On the other hand, a recent theorem of Bousquet, Lagoutte and Thomassé [1] asserts the following $(\bar{H}$ denotes the complement of a graph H):
1.2 For every path H, there exists $c>0$ such that every graph G that is both H-free and \bar{H}-free satisfies $\max (\omega(G), \alpha(G)) \geq|V(G)|^{c}$.

Let us say H is a hook if H is a tree obtained from a path by adding a vertex adjacent to the third vertex of the path. Two of us, with Choromanski, Falik, and Patel [2], extended 1.2, proving:
1.3 For every hook H, there exists $c>0$ such that every graph G that is both H-free and \bar{H}-free satisfies $\max (\omega(G), \alpha(G)) \geq|V(G)|^{c}$.

The main step of the proof of 1.2 is the following:
1.4 For every path H, there exists $\epsilon>0$ such that for every H-free graph G with $|V(G)| \geq 2$, either some vertex has at least $\epsilon|V(G)|$ neighbours, or there are two anticomplete sets of vertices A, B, both of cardinality at least $\epsilon|V(G)|$.
(Two sets $A, B \subseteq V(G)$ are complete to each other if $A \cap B=\emptyset$ and every vertex in A is adjacent to every vertex in B; and anticomplete to each other if they are complete to each other in \bar{G}.)

It is natural to ask, which other graphs H have the property of 1.4 ? Let us say a graph H has the sparse strong EH-property if there exists $\epsilon>0$ such that for every H-free graph G with $|V(G)| \geq 2$, either some vertex has at least $\epsilon|V(G)|$ neighbours, or there are two anticomplete sets of vertices A, B, both of cardinality at least $\epsilon|V(G)|$. Which graphs have the sparse strong EH-property?

And here is a related question: let us say a graph has the symmetric strong EH-property if there exists $\epsilon>0$ such that for every graph G that is both H-free and \bar{H}-free, with $|V(G)| \geq 2$, there are two disjoint sets of vertices, both of cardinality at least $\epsilon|V(G)|$, and either complete or anticomplete to each other. Which graphs have the symmetric strong EH-property?

It follows from a theorem of Rödl [12] (and see [7] for a version with much better constants) that every graph with the sparse property has the symmetric property; and Erdős's construction [4] of a graph with large girth and large chromatic number also shows that every graph with the sparse property is a forest, and every graph with the symmetric property is either a forest or the complement of one. (We omit all these proofs, which are easy; see [2] for more details.) We conjecture the converses, that is:

1.5 Conjectures:

- A graph H has the sparse strong EH-property if and only if H is a forest.
- A graph H has the symmetric strong EH-property if and only if one of H, \bar{H} is a forest.

The first implies the second, because of the theorem of Rödl [12]. These two conjectures are reminiscent of the Gyárfás-Sumner conjecture, which we discuss later.

A graph H is a caterpillar if H is a tree and some path of H contains all vertices with degree at least two; and a caterpillar subdivision if H is a tree and some path of H contains all vertices with degree at least three. (Thus a graph is a caterpillar subdivision if and only if it can be obtained from a caterpillar by subdividing edges.) We will prove:

1.6 Every caterpillar subdivision has the sparse strong EH-property.

1.6 implies the next result, which generalizes 1.2 and 1.3. (This theorem was proved independently by the first two authors and by the last two, but since the proofs were virtually identical we have combined the two papers into one. The original paper by the first two authors is available [11].) If $X \subseteq V(G), G[X]$ denotes the subgraph of G induced on X.
1.7 Let H, J be caterpillar subdivisions. Then there exists $c>0$ such that for every graph G, if G is both H-free and \bar{J}-free, then $\max (\omega(G), \alpha(G)) \geq|V(G)|^{c}$.

Proof of 1.7, assuming 1.6. There is a caterpillar subdivision such that both H, J are induced subgraphs of it, and so, by replacing H, J by this graph, we may assume that $H=J$. Let ϵ satisfy 1.6 ; so $0 \leq \epsilon \leq 1$. By a theorem of Rödl [12],
(1) There exists $\delta>0$ such that for every H-free graph G, there is a subset $X \subseteq V(G)$ with $|X| \geq \delta|V(G)|$ such that one of $G[X], \bar{G}[X]$ has at most $\epsilon|X|^{2} / 4$ edges.

Choose c such that $2(\epsilon \delta / 2)^{2 c}=1$. A graph is perfect if chromatic number equals clique number for all its induced subgraphs. For a graph G, let $\pi(G)$ denote the maximum cardinality of a subset X such that $G[X]$ is perfect; we will prove by induction on $\mid V(G \mid$ that if G is both H-free and \bar{H}-free, then $\pi(G) \geq|V(G)|^{2 c}$ (and consequently the theorem will follow, since $\left.\alpha(G) \omega(G) \geq \pi(G)\right)$. If $|V(G)| \leq 1$ the result is trivial, and if $2 \leq|V(G)| \leq 2 / \delta$ then $\pi(G) \geq 2 \geq|V(G)|^{2 c}$ as required, since $(2 / \delta)^{2 c} \leq(2 /(\epsilon \delta))^{2 c}=2$. Thus we may assume that $|V(G)|>2 / \delta$. By (1) there is a subset $X \subseteq V(G)$ with $|X| \geq \delta|V(G)|$ such that one of $G[X], \bar{G}[X]$ has at most $\epsilon|X|^{2} / 4$ edges; and by replacing G by its complement if necessary, we may assume that $G[X]$ has at most $\epsilon|X|^{2} / 4$ edges. Choose distinct $v_{1}, \ldots, v_{k} \in X$, maximal such that for $1 \leq i \leq k, v_{i}$ has at least $\epsilon|X| / 2$ neighbours in $X \backslash\left\{v_{1}, \ldots, v_{i}\right\}$. Let $Y=X \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. It follows that $k \leq|X| / 2$, and every vertex in Y has fewer than $\epsilon|X| / 2$ neighbours in Y, from the maximality of k. Thus $|Y| \geq|X| / 2 \geq \delta|V(G)| / 2$, and $G[Y]$ has maximum degree less than $\epsilon|X| / 2 \leq \epsilon|Y|$. Since $|V(G)|>2 / \delta$, it follows that $|X|>2$ and so $|Y|>1$. By 1.6 applied to $G[Y]$, there are two anticomplete sets of vertices A, B, both of cardinality at least $\epsilon|Y|$. From the inductive hypothesis $\pi(G[A]) \geq|A|^{2 c}$ and $\pi(G[B]) \geq|B|^{2 c}$, and so

$$
\pi(G) \geq|A|^{2 c}+|B|^{2 c} \geq 2(\epsilon|Y|)^{2 c} \geq 2(\epsilon \delta|V(G)| / 2)^{2 c}=|V(G)|^{2 c} .
$$

This proves 1.7.

Let G be a graph and for every subset $X \subseteq V(G)$ let $\mu(X)$ be a real number, satisfying:

- $\mu(\emptyset)=0$ and $\mu(V(G))=1$, and $\mu(X) \leq \mu(Y)$ for all X, Y with $X \subseteq Y$; and
- $\mu(X \cup Y) \leq \mu(X)+\mu(Y)$ for all disjoint sets X, Y.

We call such a function μ a measure on G. For instance, we could take $\mu(X)=|X| /|V(G)|$, or $\mu(X)=\chi(G[X]) / \chi(G)$, where χ denotes chromatic number. We denote by $N(v)$ the set of neighbours of v. The result 1.6 can be extended to graphs with measures, in the following way:
1.8 For every caterpillar subdivision H, there exists $\epsilon>0$ such that for every H-free graph G, and measure μ on G, either

- $\mu(\{v\}) \geq \epsilon$ for some vertex v; or
- $\mu(N(v)) \geq \epsilon$ for some vertex v; or
- there are two anticomplete sets of vertices A, B, where $\mu(A), \mu(B) \geq \epsilon$.

We prove this in the next section. It implies 1.6 , setting $\mu(X)=|X| /|V(G)|$. To see this, observe that if only the first outcome holds, and $\mu(\{v\}) \geq \epsilon$ for some v, then v has no neighbours (or else the second outcome would hold), and $\mu(V(G) \backslash\{v\})<\epsilon$ (or else the third outcome would hold); and so $\mu(v)>1-\epsilon$. Adding, $2 \mu(v)>\epsilon+(1-\epsilon)=1$, and so $\mu(v)>1 / 2$, and hence $|V(G)|=1$.

But 1.8 also has an interesting application to the Gyárfás-Sumner conjecture [9, 13], which states that for every tree T and every integer $k \geq 0$, there exists $f(T, k)$ such that every T-free graph with clique number at most k has chromatic number at most $f(T, k)$. This has not been proved in general, and not even for caterpillars; and not even for trees with exactly two vertices of degree more than two (such a tree is a simple kind of caterpillar subdivision). But by induction on k, one could assume that for every vertex v, the chromatic number of the subgraph induced on $N(v)$ is bounded; and so the following consequence of 1.8 might be of interest.
1.9 Let T be a caterpillar subdivision, and $k \geq 0$ an integer. Let ϵ satisfy 1.8. Suppose that every T-free graph with clique number $<k$ has chromatic number at most $c \geq 1$. Then in every T-free graph with clique number at most k and chromatic number more than c / ϵ, there are two anticomplete sets of vertices A, B, where $\chi(G[A]), \chi(G[B]) \geq \epsilon \chi(G)$.

Proof. Let G be a T-free graph with $\omega(G) \leq k$. Define $\mu(X)=\chi(G[X]) / \chi(G)$, for each $X \subseteq V(G)$. Thus one of the three outcomes of 1.8 holds. The first implies that $\chi(G) \leq 1 / \epsilon$, and the second implies that $\chi(G) \leq c / \epsilon$, in both cases a contradiction. So the third holds. This proves 1.9.

Incidentally, perhaps one can unify the Gyárfás-Sumner conjecture and 1.5 , in the natural way (using measures).

2 The main proof

In this section we prove 1.8 , but before the details of the proof, let us sketch the idea. If X, Y are disjoint subsets of $V(G)$, we say that X covers Y if every vertex in Y has a neighbour in X. First let T be a caterpillar, rather than a caterpillar subdivision, and suppose that G is a T-free graph with a measure that does not satisfy the theorem. We choose some large number (depending on T) of disjoint subsets of $V(G)$, each with large measure (let us call them "blocks"). It follows from the falsity of the third bullet of 1.8 that for every two blocks, most of the vertices in one will have neighbours in the other, so we are well-equipped with edges between blocks. Choose a block B_{1}, and let us grow a subset X of it, one vertex at a time, until there is some other block, say B_{2}, that is at least half covered by X. We cannot use B_{1} as a block any more, and we discard it, retaining only the set X. Also we discard from B_{2} the part of B_{2} that is not covered by X, and for every other block B_{3} say, discard from B_{3} the part that is covered by X. We now have many disjoint blocks (one fewer than before), all still with large measure (about half what it was before), together with one more set X that covers one of our blocks and has no edges to the others. Now pick another block (which could be B_{2}) and do it again, growing a subset of it until it covers half of a different block, and so on. We can construct more complicated patterns of covering, by judiciously choosing which block to grow within next. This will enable us to find a copy of the caterpillar T, with all its vertices in different blocks.

In the case when T is a caterpillar subdivision, we were not able to prove that there is a copy of T with all its vertices in different blocks. But T can be obtained from some caterpillar T^{\prime} by subdividing some of its leaf edges (not subdividing the spine of T^{\prime}). We find a copy of T^{\prime} with all its vertices in different blocks, and grow each leaf of T^{\prime} to an appropriately long path within the block that contained the leaf, by using "spires", a variant of the proof of Gyárfás [10] showing the χ-boundedness of the graphs not containing a fixed path.

Let us turn to the details. Throughout the remainder of this section, T is a caterpillar subdivision, $\epsilon>0$ is some real number that will be specified later (depending on T but not on G, μ), and G is a T-free graph with a measure μ, satisfying:
(1) $\mu(\{v\})<\epsilon$ for every vertex v;
(2) $\mu(N(v))<\epsilon$ for every vertex v; and
(3) there do not exist two subsets A, B of $V(G)$, anticomplete, with $\mu(A), \mu(B) \geq \epsilon$.

We will show that, if ϵ is sufficiently small, then this is impossible, which will prove 1.8 . We refer to the three statements above as the "axioms".
2.1 Let $X \subseteq V(G)$. If $\mu(X) \geq 3 \epsilon$ then $\mu\left(X^{\prime}\right)>\mu(X)-\epsilon$ for the vertex set X^{\prime} of some component of $G[X]$.

Proof. Let the vertex sets of the components of $G[X]$ be X_{1}, \ldots, X_{k} say. Choose $i \geq 1$ minimal such that $\mu\left(X_{1} \cup \cdots \cup X_{i}\right) \geq \epsilon$. Then from axiom (3), $\mu\left(X_{i+1} \cup \cdots \cup X_{n}\right)<\epsilon$; and from the minimality of $i, \mu\left(X_{1} \cup \cdots \cup X_{i-1}\right)<\epsilon$. But

$$
\mu\left(X_{1} \cup \cdots \cup X_{i-1}\right)+\mu\left(X_{i}\right)+\mu\left(X_{i+1} \cup \cdots \cup X_{n}\right) \geq \mu(X) \geq 3 \epsilon
$$

and so $\mu\left(X_{i}\right) \geq \epsilon$. From axiom (3), the union of all other components has measure less than ϵ, and so $\mu\left(X_{i}\right)>\mu(X)-\epsilon$. This proves 2.1.

We observe that since the union of all components of $G[X]$ different from X^{\prime} has measure less than ϵ, the set X^{\prime} in 2.1 is unique, and we call it the big piece of X.
2.2 Let $X \subseteq Y \subseteq V(G)$. If $\mu(X) \geq 3 \epsilon$ then the big piece of X is a subset of the big piece of Y.

Proof. The big piece of X has measure at least ϵ, and is a subset of the vertex set of some component of $G[Y]$; and therefore is a subset of the big piece of Y. This proves 2.2 .

Choose an integer $\tau \geq 3$, such that

- there is a path of T with at most τ vertices containing all vertices of T of degree more than two;
- T has maximum degree at most τ; and
- every path of T in which every internal vertex has degree two in T has at most τ vertices.

If $X \subseteq V(G)$, a spire in X is a sequence $\left(x_{1}, \ldots, x_{\tau}, Z\right)$, where

- x_{1}, \ldots, x_{τ} are the vertices in order of an induced τ-vertex path of $G[X]$;
- $Z \subseteq X \backslash\left\{x_{1}, \ldots, x_{\tau-1}\right\}$, and $x_{\tau} \in Z$;
- $x_{1}, \ldots, x_{\tau-1}$ have no neighbours in $Z \backslash\left\{x_{\tau}\right\}$; and
- $G[Z]$ is connected.
2.3 Let $X \subseteq V(G)$ with $\mu(X) \geq(\tau+2) \epsilon$; then there is a spire $\left(x_{1}, \ldots, x_{\tau}, Z\right)$ in X where $\mu(Z) \geq$ $\mu(X)-\tau \epsilon$.

Proof. Let Z_{1} be the big piece of X, and choose $x_{1} \in Z_{1}$. Let Z_{2} be the big piece of $X \backslash N\left(x_{1}\right)$. Since $\mu\left(X \backslash N\left(x_{1}\right)\right) \geq 3 \epsilon$, from axiom (2) and since $\tau \geq 3,2.2$ implies that $Z_{2} \subseteq Z_{1}$. Now x_{1} is a one-vertex component of $G\left[X \backslash N\left(x_{1}\right)\right]$, and therefore not its big piece, by axiom (1); and since $Z_{2} \subseteq Z_{1}$, some neighbour x_{2} of x_{1} has a neighbour in Z_{2}.

Inductively, suppose that $2 \leq i<\tau$, and we have defined x_{1}, \ldots, x_{i} and Z_{i}, where

- x_{1}, \ldots, x_{i} are the vertices in order of an induced i-vertex path of $G[X]$;
- Z_{i} is the big piece of $X \backslash \bigcup_{1 \leq h \leq i-1} N\left(x_{h}\right)$; and
- x_{i} has a neighbour in Z_{i}.

Let $Y_{i+1}=X \backslash \bigcup_{1 \leq h \leq i} N\left(x_{h}\right)$. Axiom (2) implies that $\mu\left(Y_{i+1}\right) \geq \mu(X)-i \epsilon \geq 3 \epsilon$. Let Z_{i+1} be the big piece of Y_{i+1}. By $\overline{2} .2, Z_{i+1} \subseteq Z_{i}$, and so some neighbour x_{i+1} of x_{i} has a neighbour in Z_{i+1}. This completes the inductive definition.

Then $\left(x_{1}, \ldots, x_{\tau}, Z_{\tau} \cup\left\{x_{\tau}\right\}\right)$ is a spire in X, and $\mu\left(Z_{\tau}\right) \geq \mu(X)-\tau \epsilon$, by axiom (2) and 2.1. This proves 2.3.

Let H be a caterpillar, and choose a vertex v which is an end of some path P of H that contains all vertices with degree at least two; and call v the head of the caterpillar. The spine is the minimal path of H with one end v that contains all vertices of degree at least two. The pair (H, v) is thus a rooted tree rather than a tree, but we will normally speak of it as a tree and let the head be implicit.

A caterpillar is a chrysalis if

- its spine has at most $\tau+1$ vertices;
- every vertex of the spine different from the head has degree exactly τ; and
- the head has degree at most $\tau-1$, and the head has degree one if the spine has $\tau+1$ vertices.

The chrysalis with most vertices therefore has $\tau^{2}-\tau+2$ vertices, and is unique; let us call it the butterfly. It is the only chrysalis in which the spine has $\tau+1$ vertices.

Now let N be a disjoint union of chrysalises H_{1}, \ldots, H_{k}; we call N a nursery. We define

$$
\phi(N)=\sum_{1 \leq i \leq k} 2^{\left|V\left(H_{i}\right)\right|}
$$

If N, M are nurseries, we say that M is an improvement of N if M has fewer components than N and $\phi(M) \geq \phi(N)$.

Returning to the T-free graph G with measure μ, we need to define what it is for a nursery N to be "realizable" in G. Let us direct all the edges of N towards the heads; thus, for every edge $u v$ of N, if v is on the path between u and the head of the component of N containing u, we direct the edge $u v$ from u to v. A vertex v of N is a leaf if it has indegree zero and outdegree one in N; that is, if and only if it does not belong to the spine of its component. Let $0 \leq \kappa \leq 1$, and for each vertex $v \in V(N)$, let $X_{v} \subseteq V(G)$, satisfying the following conditions:

- the sets $X_{v}(v \in V(N))$ are pairwise disjoint;
- for each leaf v of N there is a spire $\left(x_{v}^{1}, \ldots, x_{v}^{\tau}, Z_{v}\right)$ in X_{v}, and $X_{v}=\left\{x_{v}^{1}, \ldots, x_{v}^{\tau}\right\} \cup Z_{v}$;
- for all distinct $u, v \in V(N)$, if v is a leaf then $\left\{x_{v}^{1}, \ldots, x_{v}^{\tau}\right\}$ is anticomplete to X_{u};
- for all distinct $u, v \in V(N)$, if there is an edge of G between X_{u}, X_{v} then either u, v are adjacent in N or both u, v are heads of components of N;
- for every directed edge $u \rightarrow v$ of N, X_{u} covers X_{v};
- for each $v \in V(N)$, if v is the head of a component of N then $\mu\left(X_{v}\right) \geq \kappa$.

If such a function $X_{v}(v \in V(N))$ exists we call it a κ-realization of N in G, and say N is κ-realizable in G. We need:
2.4 Let $0 \leq \kappa, \kappa^{\prime} \leq 1$, with $\kappa \geq 2 \kappa^{\prime}+(\tau+2) \epsilon$. Let N be a nursery with at least two components, and in which no component is the butterfly. If N is κ-realizable in G, there is an improvement N^{\prime} of N that is κ^{\prime}-realizable in G.

Proof. Let the components of N be H_{1}, \ldots, H_{k}, where $\left|V\left(H_{1}\right)\right| \leq \cdots \leq\left|V\left(H_{k}\right)\right|$, and for $1 \leq i \leq k$ let h_{i} be the head of H_{i}. Let $X_{v}(v \in V(N))$ be a κ-realization of N in G. If there exists $i \in\{1, \ldots, k\}$ such that h_{i} has degree $\tau-1$, choose such a value of i, maximum; and otherwise, let $i=1$. By 2.3, since $\mu\left(X_{h_{i}}\right) \geq \kappa \geq(\tau+2) \epsilon$, there is a spire $\left(x_{1}, \ldots, x_{\tau}, Z\right)$ say in $X_{h_{i}}$ where $\mu(Z) \geq \mu\left(X_{h_{i}}\right)-\tau \epsilon \geq \epsilon$.

For each $j \in\{1, \ldots, k\}$ with $j \neq i$, let $Y_{h_{j}} \subseteq X_{h_{j}}$ be the set of vertices in $X_{h_{j}}$ with no neighbour in $\left\{x_{1}, \ldots, x_{\tau}\right\}$. Thus

$$
\mu\left(Y_{h_{j}}\right) \geq \mu\left(X_{h_{j}}\right)-\tau \epsilon \geq \kappa-\tau \epsilon \geq 2\left(\kappa^{\prime}+\epsilon\right)
$$

from axiom (2). Since $G[Z]$ is connected and $x_{\tau} \in Z$, we can number the vertices of Z as z_{1}, \ldots, z_{n} say, such that $z_{1}=x_{\tau}$ and $G\left[\left\{z_{1}, \ldots, z_{m}\right\}\right]$ is connected for $1 \leq m \leq n$. Since $k \geq 2$, there exists $j \neq i$ with $1 \leq j \leq k$; but $\mu\left(Y_{h_{j}}\right) \geq 2\left(\kappa^{\prime}+\epsilon\right)$, and by axiom (3), the set of vertices in $Y_{h_{j}}$ with no neighbour in Z has measure less than ϵ. Consequently we may choose m with $1 \leq m \leq n$, minimum such that for some $j \in\{1, \ldots, n\} \backslash\{i\}$, the set of vertices in $Y_{h_{j}}$ with no neighbour in $\left\{z_{1}, \ldots, z_{m}\right\}$ has measure less than $\kappa^{\prime}+\epsilon$. Since no vertex in $Y_{h_{j}}$ is adjacent to z_{1}, it follows that $m \geq 2$.

- If $j<i$, it follows that the degree of h_{i} in N is exactly $\tau-1$. Let N^{\prime} be the graph obtained from N by adding the edge $h_{i} h_{j}$, and deleting all vertices in $V\left(H_{j}\right) \backslash\left\{h_{j}\right\}$. Let H_{i}^{\prime} be the component of N^{\prime} that contains the edge $h_{i} h_{j}$, and let us assign its head to be h_{j}. Thus H_{i}^{\prime} is a chrysalis, and so N^{\prime} is a nursery. Since N^{\prime} has $k-1$ components and $\left|V\left(H_{i}\right)\right| \geq\left|V\left(H_{j}\right)\right|$ (because $i>j$) it follows that $\phi\left(N^{\prime}\right) \geq \phi(N)$, and N^{\prime} is an improvement of N.
- If $j>i$, it follows that the degree of h_{j} in N is at most $\tau-2$. Let N^{\prime} be the graph obtained from N by adding the edge $h_{i} h_{j}$, and deleting all vertices in $V\left(H_{i}\right) \backslash\left\{h_{i}\right\}$. Let H_{j}^{\prime} be the component of N^{\prime} that contains the edge $h_{i} h_{j}$, and let us assign its head to be h_{j}. Thus H_{j}^{\prime} is a chrysalis, and again N^{\prime} is an improvement of N.

For each $v \in V\left(N^{\prime}\right)$ define X_{v}^{\prime} as follows:

- if $v \neq\left\{h_{1}, \ldots, h_{k}\right\}$ let $X_{v}^{\prime}=X_{v}$;
- let $X_{h_{i}}^{\prime}=\left\{z_{1}, \ldots, z_{m}\right\} \cup\left\{x_{1}, \ldots, x_{\tau}\right\} ;$
- let $X_{h_{j}}^{\prime}$ be the set of vertices in $Y_{h_{j}}$ with a neighbour in $\left\{z_{1}, \ldots, z_{m}\right\}$;
- for $1 \leq \ell \leq k$ with $\ell \neq i, j$, let $X_{h_{\ell}}^{\prime}$ be the set of vertices in $Y_{h_{\ell}}$ with no neighbour in $\left\{z_{1}, \ldots, z_{m}\right\}$.

We see that $X_{h_{i}}^{\prime}$ covers $X_{h_{j}}^{\prime}$, and has no edges to $X_{h_{\ell}}^{\prime}$ for $1 \leq \ell \leq k$ with $\ell \neq i, j$. Moreover, $\mu\left(X_{h_{j}}^{\prime}\right) \geq \kappa^{\prime}$. Let $1 \leq \ell \leq k$ with $\ell \neq i, j$; then, since $m \geq 2$ and from the choice of m, the measure of the set of vertices in $Y_{h_{\ell}}$ with no neighbour in $\left\{z_{1}, \ldots, z_{m-1}\right\}$ is at least $\kappa^{\prime}+\epsilon$. Hence $\mu\left(X_{h_{\ell}}^{\prime}\right) \geq \kappa^{\prime}$. It follows that the function $X_{v}^{\prime}\left(v \in V\left(N^{\prime}\right)\right)$ is a κ^{\prime}-realization of N^{\prime} in G. This proves 2.4.

2.5 The butterfly is not κ-realizable in G for $\kappa>0$.

Proof. Suppose that $X_{v}(v \in V(N))$ is a κ-realization in G of the butterfly N. Now N is connected, and since $|V(N)|=\tau^{2}-\tau+2$, the spine of N has exactly $\tau+1$ vertices and they all have degree τ except the head which has degree one. Let the spine of N have vertices $v_{0}, v_{1}, \ldots, v_{\tau}$ in order, where v_{0} is the head of N. Since $\mu\left(X_{v_{0}}\right) \geq \kappa>0$, it follows that $X_{v_{0}} \neq \emptyset$; choose $p_{v_{0}} \in X_{v_{0}}$. For $1 \leq i \leq \tau$,
choose $p_{v_{i}} \in X_{v_{i}}$ adjacent to $p_{v_{i-1}}$; this is possible since $X_{v_{i}}$ covers $X_{v_{i-1}}$. Now let u be a leaf of N, with neighbour v say. From the definition of a realization, there is a spire $\left(x_{u}^{1}, \ldots, x_{u}^{\tau}, Z_{u}\right)$ in X_{u}, and $X_{u}=\left\{x_{u}^{1}, \ldots, x_{u}^{\tau}\right\} \cup Z_{u}$. Since p_{v} has a neighbour in X_{u}, and $G\left[Z_{u}\right]$ is connected and contains x_{u}^{τ}, and none of $x_{u}^{1}, \ldots, x_{u}^{\tau-1}$ have neighbours in $Z_{u} \backslash\left\{x_{u}^{\tau}\right\}$, there is an induced path P_{u} with τ vertices, with one end p_{v} and with all other vertices in X_{u}. Let H be the induced subgraph of G consisting of the union of all these paths P_{u} (over all leaves u of N) and the path induced on $\left\{p_{v_{0}}, \ldots, p_{v_{\tau}}\right\}$; then T is isomorphic to an induced subgraph of H, contradicting that G is T-free. This proves 2.5.

Now we can prove the main theorem 1.8 , which we restate.
2.6 For every caterpillar subdivision T, there exists $\epsilon>0$ such that for every T-free graph G, and measure μ on G, either

- $\mu(\{v\}) \geq \epsilon$ for some vertex v; or
- $\mu(N(v)) \geq \epsilon$ for some vertex v; or
- there are two anticomplete sets of vertices A, B, where $\mu(A), \mu(B) \geq \epsilon$.

Proof. Define τ as before, and let $p=2^{\tau^{2}}$. Define ϵ such that $\epsilon^{-1}=p 2^{p}(\tau+3)$. We will show that ϵ satisfies the theorem. Suppose not, and choose a T-free graph G, and measure μ on G not satisfying the theorem (and therefore satisfying the axioms). For $0 \leq i \leq p$ define $\kappa_{i}=2^{-i} p^{-1}-(\tau+2) \epsilon$. Thus $0 \leq \kappa_{i} \leq 1$ for each i. Moreover, $\kappa_{p}=\epsilon$, and for $1 \leq i \leq p$,

$$
\kappa_{i-1}=2 \kappa_{i}+(\tau+2) \epsilon
$$

Choose $X_{1}, \ldots, X_{P} \subseteq V(G)$, pairwise disjoint, with $\kappa_{0} \leq \mu\left(X_{i}\right)<\kappa_{0}+\epsilon$ for $1 \leq i \leq P$, with P maximum. We claim that $P \geq p$; for suppose not. Then the union of X_{1}, \ldots, X_{P} has measure at $\operatorname{most}(p-1)\left(\kappa_{0}+\epsilon\right)$, and since $(p-1)\left(\kappa_{0}+\epsilon\right) \leq 1-\kappa_{0}$, there exists a set of measure at least κ_{0} disjoint from this union. Choose such a set, X_{P+1} say, minimal; then from the minimality of X_{P+1}, and since $\mu(\{v\})<\epsilon$ for each vertex v, it follows that $\mu\left(X_{P+1}\right)<\kappa_{0}+\epsilon$, contrary to the maximality of P. This proves that $P \geq p$.

Let N_{0} be the nursery with p components, each an isolated vertex. It follows that N_{0} is $\kappa_{0^{-}}$ realizable in G and $\phi\left(N_{0}\right)=2 p$. Choose a sequence N_{1}, \ldots, N_{q} of nurseries, such that for $1 \leq i \leq q$, N_{i} is an improvement of N_{i-1}, and N_{i} is κ_{i}-realizable in G, with q maximum. It follows that $\phi\left(N_{i}\right) \geq \phi\left(N_{i-1}\right)$ for $1 \leq i \leq q$, from the definition of an improvement, and so $\phi\left(N_{q}\right) \geq 2 p$, and in particular, N_{q} is nonnull. But N_{i} has at most $p-i$ components for $0 \leq i \leq q$, and so $q \leq p-1$. Thus κ_{q+1} is defined. By 2.5 no component of N_{q} is the butterfly, and so N_{q} has at most one component by 2.4 , and therefore has at most $\tau^{2}-\tau+1$ vertices. But $\phi\left(N_{q}\right) \geq 2 p$, which is impossible.

Thus there is no such pair G, μ. This proves 2.6.

References

[1] N. Bousquet, A. Lagoutte, and S. Thomassé, The Erdôs-Hajnal conjecture for paths and antipaths, J. Combinatorial Theory, Ser. B, 113 (2015), 261-264.
[2] K. Choromanski, D. Falik, A. Liebenau, V. Patel, M. Pilipczuk, "Excluding hooks and their complements", arXiv:1508.00634.
[3] M. Chudnovsky, "The Erdős-Hajnal conjecture - a survey", J. Graph Theory 75 (2014), 178-190.
[4] P. Erdős, "Graph theory and probability", Canadian J. Math. 11 (1959), 34-38.
[5] P. Erdős and A. Hajnal, "On spanned subgraphs of graphs", Graphentheorie und Ihre Anwendungen (Oberhof, 1977), www.renyi.hu/~p_erdos/1977-19.pdf.
[6] P. Erdős and A. Hajnal, "Ramsey-type theorems", Discrete Applied Mathematics 25 (1989), 37-52.
[7] J. Fox and B. Sudakov, "Induced Ramsey-type theorems", Advances in Math. 219 (2008), 17711800.
[8] J. Fox, B. Sudakov and A. Suk, "Erdős-Hajnal conjecture for graphs with bounded VCdimension", arXiv:1710.03745.
[9] A. Gyárfás, "On Ramsey covering-numbers", Coll. Math. Soc. János Bolyai, in Infinite and Finite Sets, North Holland/American Elsevier, New York (1975), 10.
[10] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[11] A. Liebenau and M. Pilipczuk, "The Erdős-Hajnal conjecture for caterpillars and their complements", arXiv:1710.08701.
[12] V. Rödl, "On universality of graphs with uniformly distributed edges", Discrete Math. 59 (1986), 125-134.
[13] D.P. Sumner, "Subtrees of a graph and chromatic number", in The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576.

[^0]: ${ }^{1}$ Research supported by a DECRA Fellowship from the Australian Research Council. The author would like to thank for its hospitality the Institute of Informatics, University of Warsaw, where this work was carried out.
 ${ }^{2}$ The research of Marcin Pilipczuk is a part of projects that have received funding from the European Research Council (ERC) under the European UnionâĂŹs Horizon 2020 research and innovation programme under grant agreement No 714704.
 ${ }^{3}$ Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

