Induced subgraphs of graphs with large chromatic number. XIII. New brooms

Alex $\mathrm{Scott}{ }^{1}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544, USA

October 24, 2016; revised March 28, 2019

[^0]
Abstract

Gyárfás [3] and Sumner [10] independently conjectured that for every tree T, the class of graphs not containing T as an induced subgraph is χ-bounded, that is, the chromatic numbers of graphs in this class are bounded above by a function of their clique numbers. This remains open for general trees T, but has been proved for some particular trees. For $k \geq 1$, let us say a broom of length k is a tree obtained from a k-edge path with ends a, b by adding some number of leaves adjacent to b, and we call a its handle. A tree obtained from brooms of lengths k_{1}, \ldots, k_{n} by identifying their handles is a $\left(k_{1}, \ldots, k_{n}\right)$-multibroom. Kierstead and Penrice [5] proved that every $(1, \ldots, 1)$ multibroom T satisfies the Gyárfás-Sumner conjecture, and Kierstead and Zhu [7] proved the same for ($2, \ldots, 2$)-multibrooms.

In this paper give a common generalization; we prove that every $(1, \ldots, 1,2, \ldots, 2)$-multibroom satisfies the Gyárfás-Sumner conjecture .

1 Introduction

For a graph G, let $\chi(G)$ denote the chromatic number of G, and let $\omega(G)$ denote its clique number, that is, the number of vertices in its largest clique. We say a graph G contains H if some induced subgraph of G is isomorphic to H, and otherwise G is H-free.

The Gyárfás-Sumner conjecture $[3,10]$ asserts that:
1.1 Conjecture: For every forest T and every integer κ, there exists c such that $\chi(G) \leq c$ for every T-free graph G with $\omega(G) \leq \kappa$.

There has been surprisingly little progress on this conjecture. It is easy to see that if the conjecture holds for every component of a forest then it holds for the forest (the first component must be present; delete it and all vertices with a neighbour in it and repeat with the next component), and so it suffices to prove the conjecture when T is a tree. Gyárfás [3] proved the conjecture when T is a path, and Scott [9] proved it when T is a subdivision of a star; and recently, with Maria Chudnovsky, we [1] proved it for trees obtained from a subdivided star by adding one more vertex with one neighbour, and for trees obtained from a star and a subdivided star by adding a path between their centres. But the results that concern us most here are theorems of Gyárfás, Szemerédi and Tuza [4], Kierstead and Penrice [5], and Kierstead and Zhu [7], which are the only other results so far on the Gyárfás-Sumner conjecture, and which we explain next.

For $k \geq 1$, let us say a broom of length k is a tree obtained from a k-edge path with ends a, b by adding some number of leaves adjacent to b, and we call a its handle. A tree obtained from n brooms of lengths k_{1}, \ldots, k_{n} respectively by identifying their handles is called a (k_{1}, \ldots, k_{n})multibroom. Gyárfás, Szemerédi and Tuza (in the triangle-free case) and then Kierstead and Penrice (in the general case) proved that ($1, \ldots, 1$)-multibrooms satisfy the Gyárfás-Sumner conjecture, and Kierstead and Zhu proved that $(2, \ldots, 2)$-multibrooms satisfy it. In this paper we prove a common generalization of these results: every $(1, \ldots, 1,2, \ldots, 2)$-multibroom satisfies the Gyárfás-Sumner conjecture.

Figure 1: A (1, 1, 2, 2)-multibroom
Let us state this more precisely. A (k, δ)-broom means a broom of length k with δ leaves different from its handle (thus, it is obtained by adding δ leaves adjacent to one end of a k-edge path). For $\delta \geq 1$, let $T(\delta)$ be the tree formed from the disjoint union of $\delta(1, \delta)$-brooms and $\delta(2, \delta)$-brooms by identifying their handles. We will prove that
1.2 For all $\delta \geq 0$ and all $\kappa \geq 0$ there exists c such that every $T(\delta)$-free graph with $\omega(G) \leq \kappa$ has chromatic number at most c.

The proof method is by combining ideas of $[5,7]$ with some new twists.

2 Inductions

There are various inductions that will give us some assistance. We can use induction on κ, and on δ (in fact with a little work we can more-or-less assume that the result holds for every tree obtained from $T(\delta)$ by deleting a leaf), and there is a third induction, core maximization, that we explain later. Next we explain these inductions in more detail.

First and easiest, by induction on κ, we may assume that there exists τ such that $\chi(G) \leq \tau$ for every $T(\delta)$-free graph with clique number less than κ. In particular, this tells us that if G is $T(\delta)$-free with clique number at most κ, then for every vertex, the subgraph induced on its neighbours has chromatic number at most τ (since this subgraph has clique number less than κ). Consequently we can use 2.1 below, taking $T=T(\delta)$.

If v is a vertex of a graph G, and $k \geq 1, N^{k}(v)$ or $N_{G}^{k}(v)$ denotes the set of vertices of G with distance exactly k from v, and $N^{k}[v]$ denotes the set with distance at most k from v. If G is a nonnull graph and $k \geq 1$, we define $\chi^{k}(G)$ to be the maximum of $\chi\left(N^{k}[v]\right)$ taken over all vertices v of G. (For the null graph G we define $\chi^{k}(G)=0$.)

The following can be obtained through by repeated application of theorem 3.2 of [1] (a similar theorem for $(2, \ldots, 2)$-multibrooms is proved in [7]):
2.1 Let T be a tree formed by identifying the handles of some set of brooms (of arbitrary lengths). For all $\kappa, \tau \geq 0$ there exists c with the following property. Let G be a T-free graph, with $\omega(G) \leq \kappa$, such that for every vertex, the subgraph induced on its neighbours has chromatic number at most τ. Then $\chi^{2}(G) \leq c$.

Next, let us explore induction on the size of $T(\delta)$. That will allow us to exploit "matchingcovered" sets. Let $X \subseteq V(G)$. We say that X is matching-covered in G if for each $x \in X$ there exists $y \in V(G) \backslash X$ adjacent to x and to no other vertex in X.

We would like to be able to assume that the result holds for all trees obtained from $T(\delta)$ by deleting a leaf; but only deleting one leaf, from one of its brooms, and so the smaller tree is not equal to $T\left(\delta^{\prime}\right)$ for $\delta^{\prime}<\delta$, and so induction on δ is not fine enough. We could change the statement of the theorem, and prove it not only for $T(\delta)$, but for any tree that is a subtree of $T(\delta)$; but that would make things notationally more complicated later. There is another way to do it that is more convenient.

Let us say that G is (δ, κ)-good if G is $T(\delta)$-free and $\omega(G) \leq \kappa$. An ideal of graphs is a class \mathcal{C} of graphs such that every induced subgraph of a member of \mathcal{C} also belongs to \mathcal{C}. If $X \subseteq V(G)$, we write $\chi(X)$ for $\chi(G[X])$ when there is no ambiguity. Let us say the chromatic number of a nonnull ideal of graphs is the maximum of the chromatic number of its members, if this exists, and otherwise we say the ideal has unbounded chromatic number.
2.2 Let $\delta, \kappa \geq 1$. If \mathcal{C} is an ideal of (δ, κ)-good graphs with unbounded chromatic number, then there exist a subideal \mathcal{C}^{\prime} of \mathcal{C} with unbounded chromatic number, and a number c such that every matching-covered set in every member of \mathcal{C}^{\prime} has chromatic number at most c.

Proof. Let R be a maximal subtree of $T(\delta)$ such that there exists c such that every R-free graph in \mathcal{C} with clique number at most κ has chromatic number at most c, and choose some such number c. By hypothesis there are members of \mathcal{C} with arbitrarily large chromatic number, so $R \neq T(\delta)$. Hence there is a subtree S of $T(\delta)$ with a leaf v such that $S \backslash v=R$. Let u be the neighbour of v in S. Let
\mathcal{C}^{\prime} be the subideal of all S-free graphs in \mathcal{C}. From the maximality of R, there are graphs in \mathcal{C}^{\prime} with arbitrarily large chromatic number.

Let $G \in \mathcal{C}^{\prime}$, and let X be matching-covered in G. Suppose that there is an induced subgraph of $G[X]$ isomorphic to R, and to simplify notation we assume it equals R. Choose $y \in V(G) \backslash X$ adjacent to u and to no other vertex in X; then $G[V(R) \cup\{y\}]$ is isomorphic to S, a contradiction. Thus $G[X]$ does not contain R. Since $G[X] \in \mathcal{C}^{\prime}$, the choice of c implies that $\chi(X) \leq c$. This proves 2.2.

There is a third, very helpful, induction we can use, but it is more complicated. For integers $a, b \geq 1$, let us say an (a, b)-core in a graph G is a subset $Y \subseteq V(G)$ of cardinality $a b$, that admits a partition $\left\{A_{1}, \ldots, A_{b}\right\}$ such that

- A_{1}, \ldots, A_{b} each have cardinality a;
- A_{1}, \ldots, A_{b} are all stable sets of G; and
- for $1 \leq i<j \leq b$, every vertex in A_{i} is adjacent to every vertex in A_{j}.
(An (a, b)-core is therefore a complete multipartite induced subgraph of specified size.) This partition is unique, since $a \geq 1$, and we speak of A_{1}, \ldots, A_{b} as the parts of Y. Thus, if there is an (a, b)-core in G then $b \leq \omega(G)$. Let \mathbb{N} denote the set of nonnegative integers.
2.3 Let $\delta, \kappa \geq 1$. If \mathcal{C} is an ideal of (δ, κ)-good graphs with unbounded chromatic number, then there exist a subideal \mathcal{C}^{\prime} of \mathcal{C} with unbounded chromatic number, and integers $\alpha \geq 1$ and $\beta \geq 2$, and a non-decreasing function $\theta: \mathbb{N} \rightarrow \mathbb{N}$, with the following properties:
- for all $\zeta \geq 1$, every graph in \mathcal{C} with chromatic number more than $\theta(\zeta)$ admits a (ζ, β)-core; and
- no graph in \mathcal{C}^{\prime} admits an $(\alpha, \beta+1)$-core.

Proof. For integers $\zeta \geq 1$ and $\beta \geq 2$, let us say (ζ, β) is unavoidable if there exists c such that every graph in \mathcal{C} with chromatic number more than c admits a (ζ, β)-core. V. Rödl (see [6]) proved that for all integers $\zeta \geq 1,(\zeta, 2)$ is unavoidable. On the other hand, by hypothesis there are graphs in \mathcal{C} with arbitrarily large chromatic number, and they do not admit $(1, \kappa+1)$-cores (because they have clique number at most κ), and so $(1, \kappa+1)$ is not unavoidable. Choose β with $2 \leq \beta \leq \kappa+1$ maximum such that for all $\zeta \geq 1,(\zeta, \beta)$ is unavoidable, and it follows that $\beta \leq \kappa$. Since (ζ, β) is unavoidable for all $\zeta \geq 1$, there is a function $\theta: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $\zeta \geq 1$, every graph in \mathcal{C} with chromatic number more than $\theta(\zeta)$ admits a (ζ, β)-core, and we can choose θ to be non-decreasing, so the first bullet holds.

From the maximality of β, there exists $\alpha \geq 1$ such that there are graphs in \mathcal{C} with arbitrarily large chromatic number that do not admit an $(\alpha, \beta+1)$-core. Let \mathcal{C}^{\prime} be the ideal of graphs in \mathcal{C} that do not admit an $(\alpha, \beta+1)$-core; then the second bullet holds. This proves 2.3.

We combine these results in the following.
2.4 Let $\delta \geq 1$. Suppose that for some value of $\kappa \geq 1$ there are (δ, κ)-good graphs with arbitrarily large chromatic number. Then there exist $\tau \geq 0, \alpha \geq 1, \beta, \kappa \geq 2$, a non-decreasing function $\theta: \mathbb{N} \rightarrow \mathbb{N}$, and an ideal \mathcal{C} of graphs with unbounded chromatic number, such that for every $G \in \mathcal{C}$:

- G is $T(\delta)$-free;
- $\omega(G) \leq \kappa$;
- $\chi^{2}(G) \leq \tau ;$
- every matching-covered set in G has chromatic number at most τ;
- for all $\zeta \geq 1$, and every induced subgraph G^{\prime} of G, if $\chi\left(G^{\prime}\right)>\theta(\zeta)$ then G^{\prime} admits a (ζ, β)-core;
- G does not admit an $(\alpha, \beta+1)$-core.

Proof. Choose κ minimum such that there are (δ, κ)-good graphs with arbitrarily large chromatic number. Thus $\kappa \geq 2$. Choose τ_{1} such that every $(\delta, \kappa-1)$-good graph has chromatic number at most τ_{1}. By 2.1 there exists τ_{2} such that $\chi^{2}(G) \leq \tau_{2}$ for every (δ, κ)-good graph. By 2.2 there exist τ_{3} and an ideal \mathcal{C}_{1} of (δ, κ)-good graphs with unbounded chromatic number, such that every matching-covered set in G has chromatic number at most τ_{3}. By 2.3 , there exist a subideal \mathcal{C} of \mathcal{C}_{1} with unbounded chromatic number, and α, β satisfying the last two bullets. Let $\tau=\max \left(\tau_{1}, \tau_{2}, \tau_{3}\right)$; then all six bullets are satisfied. This proves 2.4.

In view of 2.4 , in order to prove 1.2 it suffices to show the following:
2.5 For all $\tau \geq 0$, and $\alpha, \delta \geq 1$, and $\beta \geq 2$, and for every non-decreasing function $\theta: \mathbb{N} \rightarrow \mathbb{N}$, there exists c such that if G satisfies
(i) G is $T(\delta)$-free;
(ii) $\chi^{2}(G) \leq \tau$;
(iii) every matching-covered set in G has chromatic number at most τ;
(iv) for all $\zeta \geq 1$, and every induced subgraph G^{\prime} of G, if $\chi\left(G^{\prime}\right)>\theta(\zeta)$ then G^{\prime} admits a (ζ, β)-core;
(v) G does not admit an $(\alpha, \beta+1)$-core
then $\chi(G) \leq c$.
We could have added another constant κ and another condition that $\omega(G) \leq \kappa$, but it turns out not to be needed any more (a bound on $\omega(G)$ is implied by the second condition).

The five statements (i)-(v) of 2.5 are important for the rest of the paper, and we refer to them simply as (i)-(v). Henceforth, we fix $\tau \geq 0$, and $\alpha, \delta \geq 1$, and $\beta \geq 2$, and some non-decreasing function $\theta: \mathbb{N} \rightarrow \mathbb{N}$, for the remainder of the paper, and shall investigate the properties of a graph satisfying (i)-(v).

Let Y be a (ζ, β)-core in G. A vertex $v \in V(G) \backslash Y$ is dense to Y if v has at least α neighbours in each part of Y. We observe:
2.6 Let G satisfy $(\mathrm{i})-(\mathrm{v})$, and let Y be $a(\zeta, \beta)$-core in G. Then there are at most $\alpha \tau 2^{\beta \zeta}$ vertices in G that are dense to Y.

Proof. Let A_{1}, \ldots, A_{β} be the parts of Y, and let $X_{i} \subseteq A_{i}$ with $\left|X_{i}\right|=\alpha$, for $1 \leq i \leq \beta$. The set N of vertices adjacent to all vertices in $X_{1} \cup \cdots \cup X_{\beta}$ has chromatic number at most τ by (ii), and includes no stable set of cardinality α, since G does not admit an ($\alpha, \beta+1$)-core by (v). Consequently $|N| \leq \alpha \tau$. Since there are only at most $2^{\beta \zeta}$ choices for X_{1}, \ldots, X_{β}, and every vertex that is dense to Y belongs to the set N corresponding to some choice of X_{1}, \ldots, X_{β}, it follows that there are at most $\alpha \tau 2^{\beta \zeta}$ vertices that are dense to Y. This proves 2.6.

3 Templates

We will use an extension of the template method of Kierstead-Penrice and Kierstead-Zhu, which was used in different (and not easily compatible) ways in those papers. Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$ be integers, and let G satisfy (i)-(v). If Y is a (ζ, β)-core in G, we say that a vertex $v \in V(G)$ is η-mixed on Y if

- v is not dense to Y; and
- v has at least η neighbours in some part of Y.

Thus every vertex in Y is η-mixed on Y. A (ζ, η)-template in G is a pair (Y, H), where Y is a (ζ, β)-core in G, and H is a set of vertices of G with $Y \subseteq H$ such that every vertex in H is η-mixed on Y. (Note that there may be vertices in $V(G) \backslash H$ that are η-mixed on Y.)

A (ζ, η)-template sequence in G is a sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ of (ζ, η)-templates, such that

- for $1 \leq i<j \leq n, H_{i} \cap H_{j}=\emptyset$;
- for $1 \leq i<j \leq n$, there is no edge between H_{i} and Y_{j}; and
- for $1 \leq i<j \leq n$, no vertex in H_{j} is η-mixed on Y_{i}.

Later, we will denote $H_{i} \backslash Y_{i}$ by Z_{i} (see figure 2).

Figure 2: Two terms of a (ζ, η)-template sequence, with $j>i$. Wiggles indicate possible edges.

A (ζ, η)-template array \mathcal{T} in G consists of a (ζ, η)-template sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ together with a set $U(\mathcal{T}) \subseteq V(G)$, such that for every vertex $v \in U(\mathcal{T})$,

- v is not η-mixed on Y_{i} (and consequently $v \notin H_{i}$) for $1 \leq i \leq n$; and
- v has a neighbour in $H_{1} \cup \cdots \cup H_{n}$.

We call $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ the sequence of \mathcal{T}, and define $H(\mathcal{T})=H_{1} \cup \cdots \cup H_{n}$ and $V(\mathcal{T})=$ $H(\mathcal{T}) \cup U(\mathcal{T})$.
3.1 Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$ be integers, and let G satisfy (i)-(v). Then there is a (ζ, η) template array \mathcal{T} in G such that $V(G) \backslash V(\mathcal{T})$ has chromatic number at most $\theta(\zeta)$.

Proof. Let $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ be a (ζ, η)-template sequence with the property that for $1 \leq i \leq n$, H_{i} is the set of all vertices in G that are η-mixed on Y_{i}, and subject to this, with n maximal. Let $H=H_{1} \cup \cdots \cup H_{n}$, and let U be the set of vertices in $V(G) \backslash H$ with a neighbour in H. Let \mathcal{T} be the (ζ, η)-template array consisting of $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ together with $U(\mathcal{T})=U$. Let $W=V(G) \backslash V(\mathcal{T})$, and suppose that there is a (ζ, β)-core $Y_{n+1} \subseteq W$. Let H_{n+1} be the set of vertices in G that are η-mixed on Y_{n+1}. Then $\left(Y_{n+1}, H_{n+1}\right)$ is a (ζ, η)-template. Moreover, no vertex in H_{n+1} belongs to H, since no vertex in H has a neighbour in Y_{n+1}, and every vertex in H_{n+1} has a neighbour in Y_{n+1}. Consequently $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n+1)$ is a (ζ, η)-template sequence, contrary to the maximality of n. Thus there is no (ζ, β)-core in W. From (iv), $\chi(W) \leq \theta(\zeta)$. This proves 3.1.

By setting $\phi(x)=x+\theta(\zeta)$ for $x \geq 0$, we deduce from 3.1 that:
3.2 Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

We will use the following elementary fact many times in the remainder of the paper, and we leave its proof to the reader:
3.3 Let D be a digraph with maximum outdegree at most d. Then the graph underlying D has chromatic number at most $2 d+1$, and at most $d+1$ if D is acyclic (that is, has no directed cycle).

A (ζ, η)-template array \mathcal{T} with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ is partially 1-cleaned if

- for all distinct $i, j \in\{1, \ldots, n\}$, no vertex of H_{j} is dense to Y_{i}; and
- for all distinct $i, j \in\{1, \ldots, n\}$ and all $v \in U(\mathcal{T})$, if v is dense to Y_{i} then v has no neighbours in H_{j};
and 1-cleaned if
- for $1 \leq i \leq n$, no vertex in $V(\mathcal{T})$ is dense to Y_{i}.
3.4 Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies $(\mathrm{i})-(\mathrm{v})$ and $\chi(G)>\phi(c)$ then there is a partially 1-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let ψ satisfy 3.2 (with ϕ replaced by ψ). Let $t=\alpha \tau 2^{\beta \zeta}$, and define $\phi(x)=\psi((2 t+1) x)$ for all $x \in \mathbb{N}$; we claim that ϕ satisfies 3.4. Let $c \geq 0$, and let G satisfy (i) $-(\mathrm{v})$, with $\chi(G)>\phi(c)$. By 3.2, there is a (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>(2 t+1) c$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Choose a partition $U_{i}(1 \leq i \leq n)$ of $U(\mathcal{T})$, such that

- for $1 \leq i \leq n$, every vertex of U_{i} has a neighbour in H_{i}; and
- for all distinct $i, j \in\{1, \ldots, n\}$, if $v \in U_{i}$ is dense to Y_{i} and v has a neighbour in H_{j} then v is dense to Y_{j}.
(This can be arranged by assigning each vertex $v \in U(\mathcal{T})$ to some set U_{i} where v has a neighbour in H_{i} and is not dense to Y_{i} if possible, and otherwise assigning v to some set U_{i} where v has a neighbour in H_{i}.)

Let D be the digraph with vertex set $\{1, \ldots, n\}$ in which for $1 \leq i, j \leq n$ with $i \neq j$, if some vertex in $H_{j} \cup U_{j}$ is dense to Y_{i} then j is adjacent from i. By 2.6, D has maximum outdegree at most t, and so by 3.3 the graph underlying D is $(2 t+1)$-colourable. Consequently there is a partition $I_{1}, \ldots, I_{2 t+1}$ of $\{1, \ldots, n\}$ such that for $1 \leq s \leq 2 t+1$ and all distinct $i, j \in I_{s}$, no vertex of $H_{j} \cup U_{j}$ is dense to Y_{i}. Hence the subsequence of $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ consisting of the terms with $i \in I_{s}$, together with the set $\bigcup_{i \in I_{s}} U_{i}$, is a partially 1-cleaned (ζ, η)-template array, \mathcal{T}_{s} say. But every vertex of $V(\mathcal{T})$ belongs to $V\left(\mathcal{T}_{s}\right)$ for some s; and so there exists $s \in\{1, \ldots, 2 t+1\}$ such that

$$
\chi\left(V\left(\mathcal{T}_{s}\right)\right) \geq \chi(V(\mathcal{T})) /(2 t+1)>c
$$

This proves 3.4.
3.5 Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a 1 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let ψ satisfy 3.4 (with ϕ replaced by ψ). Let $t=\alpha \tau 2^{\beta \zeta}$, and define $\phi(x)=\psi(x+t \tau)$ for all $x \in \mathbb{N}$; we claim that ϕ satisfies 3.5. Let $c \geq 0$, and let G satisfy (i)-(v), with $\chi(G)>\phi(c)$. By 3.4, there is a partially 1-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c+t \tau$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$; and for $1 \leq i \leq n$ let X_{i} be the set of all vertices in $V(\mathcal{T})$ that are dense to Y_{i}. Hence $X_{i} \subseteq U(\mathcal{T})$, and for all distinct $i, j \in\{1, \ldots, n\}$, no vertex of X_{i} has a neighbour in H_{j}. Let $X=X_{1} \cup \cdots \cup X_{n}$. By $2.6\left|X_{i}\right| \leq t$ for each i. Hence we may partition X into t sets W_{1}, \ldots, W_{t} such that $\left|X_{i} \cap W_{j}\right| \leq 1$ for all i, j with $1 \leq i \leq n$ and $1 \leq j \leq t$. For $v \in W_{j}$, let $v \in X_{i}$; then v has a neighbour in Y_{i}, and has no neighbours in $Y_{i^{\prime}}$ for $i^{\prime} \neq i$; and so each set W_{j} is matching-covered in G. By (iii), $\chi\left(W_{j}\right) \leq \tau$ for each j, and so $\chi\left(W_{1} \cup \cdots \cup W_{t}\right) \leq t \tau$. This proves that $\chi(X) \leq t \tau$. Let \mathcal{T}^{\prime} be the (ζ, η)-template array in G with the same sequence as \mathcal{T} and with $U\left(\mathcal{T}^{\prime}\right)=U(\mathcal{T} \backslash X)$; then \mathcal{T}^{\prime} is 1-cleaned, and

$$
\chi\left(V\left(\mathcal{T}^{\prime}\right)\right) \geq \chi(V(\mathcal{T}))-t \tau>c
$$

This proves 3.5.

4 Edges between templates

4.1 Let $\eta \geq 1$ and $\zeta \geq \max (\eta+\delta, \alpha)$ be integers, and let G satisfy (i)-(v). Let \mathcal{T} be a 1 -cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. For each $v \in V(\mathcal{T})$, there are at most 2δ values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in Y_{i}.

Proof. Suppose there exists $I \subseteq\{1, \ldots, n\}$ with $|I|=2 \delta+1$ such that v has a neighbour in Y_{i} for each $i \in I$, and let i_{0} be the maximum element of I. Let $I^{\prime}=I \backslash\left\{i_{0}\right\}$. It follows that $v \notin H_{i}$ for all $i \in I^{\prime}$. This, together with the definition of template array, implies that for $i \in I^{\prime}, v$ is not η-mixed on Y_{i}. Moreover, v is not dense to Y_{i}, since the template array is 1-cleaned and $v \in V(\mathcal{T})$. It follows that v has at most $\eta-1$ neighbours in each part of Y_{i}. Let $i \in I^{\prime}$, and let the parts of Y_{i} be A_{1}, \ldots, A_{β}. Since v has a neighbour in Y_{i}, we may assume that v has a neighbour in A_{1}. Since v has at most $\eta-1$ neighbours in A_{2}, and $\left|A_{2}\right|=\zeta$, it follows that v has at least δ non-neighbours in A_{2}, and so there is a $(1, \delta)$-broom with handle v in $G\left[Y_{i} \cup\{v\}\right]$. But also, since v has at least δ non-neighbours in A_{1}, there is a $(2, \delta)$-broom with handle v in $G\left[Y_{i} \cup\{v\}\right]$. By selecting the $(1, \delta)$-broom with handle v in $G\left[Y_{i} \cup\{v\}\right]$ for δ values of $i \in I^{\prime}$, and selecting the $(2, \delta)$-broom for the remaining δ values of $i \in I^{\prime}$, and taking the union of all these brooms, we find that G contains $T(\delta)$, contrary to (i). This proves 4.1.

For the remainder of the paper, let us define $\gamma=(2 \delta \tau+1)(2 \delta+1)$.
4.2 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Let G satisfy (i)-(v), and let \mathcal{T} be a 1-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. For each $v \in V(\mathcal{T})$, there are fewer than γ values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in H_{i}.

Proof. Suppose then that G, \mathcal{T}, and $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ are as in the statement of 4.2 , and there are at least γ values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in H_{i}. By 4.1, there are at most 2δ values of i such that v has a neighbour in Y_{i}. Consequently there exists $I_{1} \subseteq\{1, \ldots, n\}$ with $\left|I_{1}\right|=2 \delta(2 \delta+1) \tau$ such that for each $i \in I_{1}, v$ has a neighbour in H_{i} and v has no neighbour in Y_{i}. For $i \in I_{1}$, let $u_{i} \in H_{i} \backslash Y_{i}$ be adjacent to v.

Let D be the digraph with vertex set I_{1} in which for distinct $i, j \in I_{1}, i$ is adjacent from j in D if u_{j} has a neighbour in Y_{i} (and consequently $i<j$). From 4.1, D has maximum outdegree at most 2δ and is acyclic, and so by 3.3 the graph underlying D has chromatic number at most $2 \delta+1$. Hence there exists $I_{2} \subseteq I_{1}$ with $\left|I_{2}\right|=\left|I_{1}\right| /(2 \delta+1)=2 \delta \tau$ such that for all distinct $i, j \in I_{2}, u_{j}$ has no neighbour in Y_{i}. Since $\chi\left(\left\{u_{i}: i \in I_{2}\right\} \leq \tau\right.$ by (ii), there exists $I_{3} \subseteq I_{2}$ with $\left|I_{3}\right|=2 \delta$ such that for all $i<j$ with $i, j \in I_{3}, u_{i}$ and u_{j} are nonadjacent. For each $i \in I_{3}$, since u_{i} is η-mixed on Y_{i}, and $\eta \geq \delta$, and v has no neighbour in Y_{i}, it follows that there is a $(1, \delta)$-broom in $G\left[\left\{v, u_{i}\right\} \cup Y_{i}\right]$ with handle v. Since u_{i} is η-mixed on Y_{i}, and has fewer than α neighbours in some part of Y_{i}, and $\zeta \geq \delta+\alpha$, it follows that there are two distinct parts A_{1}, A_{2} of Y_{i} such that u_{i} has a neighbour in A_{1} and has at least δ non-neighbours in A_{2}. Consequently there is a $(2, \delta)$-broom in $G\left[\left\{v, u_{i}\right\} \cup Y_{i}\right]$ with handle v. But then, choosing the $(1, \delta)$-broom for δ values of $i \in I_{3}$ and choosing the $(2, \delta)$-broom for the other δ values of $i \in I_{3}$, and taking their union, we find that G contains $T(\delta)$, contrary to (i). This proves 4.2.

A (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, is said to be slightly 2-cleaned if it is 1 -cleaned, and in addition

- for all distinct $i, j \in\{1, \ldots, n\}$, no vertex of Y_{i} has a neighbour in H_{j}.
4.3 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$, with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a slightly 2 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let $t=\zeta \beta \gamma$. Let ψ satisfy 3.5 (with ϕ replaced by ψ), and define $\phi(x)=\psi(t x)$ for $x \geq 0$. Now let $c \geq 0$, and let G satisfy (i)-(v), with $\chi(G)>\phi(c)$. By 3.5 there is a 1 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>t c$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Let D be the digraph with vertex set $\{1, \ldots, n\}$ in which for distinct i, j with $1 \leq i, j \leq n, j$ is adjacent from i if some vertex of Y_{i} has a neighbour in H_{j}. (Thus if j is adjacent from i then $j>i$, from the definition of a template sequence.) Since each Y_{i} has cardinality $\zeta \beta, 4.2$ implies that D has maximum outdegree less than $\zeta \beta \gamma=t$, and is acyclic, so by 3.3 the graph underlying D has chromatic number at most t. Consequently there is a partition I_{1}, \ldots, I_{t} of $\{1, \ldots, n\}$ such that for $1 \leq r \leq t$, if $i, j \in I_{r}$ are distinct then there are no edges between Y_{i} and H_{j}. For each $r \in\{1, \ldots, 2 s+1\}$, let \mathcal{T}_{r} be the (ζ, η)-template array with sequence the subsequence of $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ consisting of the terms with $i \in I_{r}$, and with $U\left(\mathcal{T}_{r}\right)$ the set of vertices in $U(\mathcal{T})$ with a neighbour in $\bigcup_{i \in I_{r}} H_{i}$. Thus each \mathcal{T}_{r} is slightly 2-cleaned; and since every vertex of $V(\mathcal{T})$ belongs to $V\left(\mathcal{T}_{r}\right)$ for some r, there exists $r \in\{1, \ldots, t\}$ such that $\chi\left(V\left(\mathcal{T}_{r}\right)\right) \geq \chi(V(\mathcal{T})) / t>c$. This proves 4.3.

A (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, is said to be moderately 2-cleaned if it is slightly 2 -cleaned, and in addition

- for all $i \in\{1, \ldots, n\}, H_{i} \backslash Y_{i}$ is stable.
4.4 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a moderately 2 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let ψ satisfy 4.3 (with ϕ replaced by ψ). Define $\phi(x)=\psi(2 \tau x)$ for $x \geq 0$; we claim that ϕ satisfies the statement of 4.4. For let $c \geq 0$, and let G satisfy (i)-(v) with $\chi(G)>\phi(c)$. By 4.3 there is a slightly $(2, d)$-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>2 \tau c$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. For $1 \leq i \leq n$, every vertex of H_{i} has a neighbour in Y_{i}, and so, if we choose two adjacent vertices in Y_{i}, every vertex in H_{i} has distance at most two from one of them. Consequently, by (ii) it follows that $\chi\left(H_{i}\right) \leq 2 \tau$. Take a partition $W_{1}, \ldots, W_{2 \tau}$ of $H_{1} \cup \cdots \cup H_{n}$ such that $H_{i} \cap W_{r}$ is stable for $1 \leq i \leq n$ and $1 \leq r \leq 2 \tau$. For $1 \leq r \leq 2 \tau$, let \mathcal{T}_{r} be the (ζ, η)-template with sequence $\left(Y_{i},\left(H_{i} \cap W_{r}\right) \cup Y_{i}\right)(1 \leq i \leq n)$, where $U\left(\mathcal{T}_{r}\right)$ is the set of vertices in $U(\mathcal{T})$ with a neighbour in W_{r}. Then each \mathcal{T}_{r} is moderately 2-cleaned. Since every vertex of $V(\mathcal{T})$ belongs to $V\left(\mathcal{T}_{r}\right)$ for some r, there exists $r \in\{1, \ldots, 2 \tau\}$ such that

$$
\chi\left(V\left(\mathcal{T}_{r}\right)\right) \geq \chi(V(\mathcal{T})) /(2 \tau)>c
$$

This proves 4.4.
4.5 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there exists an integer s with the following property. Let G satisfy (i)-(v), and let \mathcal{T} be a moderately 2-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. For $1 \leq j \leq n$, there are at most s values of $i \in\{1, \ldots, n\} \backslash\{j\}$ such that some vertex in H_{j} has at least δ neighbours in H_{i}.

Proof. Let $s_{1}=2 \delta(2(\delta+1) \gamma+1)$, and let $s=\zeta \beta s_{1}$. Now let $\eta, \zeta, G, \mathcal{T}$ and $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ be as in the statement of 4.5 , and suppose that for some $j \in\{1, \ldots, n\}$ and some subset $I \subseteq\{1, \ldots, n\} \backslash\{j\}$ with $|I|>s$, and every $i \in I$, there exists $u_{i} \in H_{j}$ with at least δ neighbours in H_{i}. Let $W_{i} \subseteq H_{i}$ with $\left|W_{i}\right|=\delta$ such that every vertex in W_{i} is adjacent to u_{i}. Thus each W_{i} is stable and disjoint from Y_{i}, because the template array is moderately 2 -cleaned. Since each u_{i} has a neighbour in Y_{j}, and $\left|Y_{j}\right|=\zeta \beta$, there exists $I_{1} \subseteq I$ with $\left|I_{1}\right|=s_{1}$ and a vertex $y \in Y_{j}$ adjacent to every $u_{i}\left(i \in I_{1}\right)$.

Let D be the digraph with vertex set I_{1} in which for distinct $i, i^{\prime} \in I_{1}, i^{\prime}$ is adjacent from i if some vertex in $\left\{u_{i}\right\} \cup W_{i}$ has a neighbour in $H_{i^{\prime}}$. (Thus if $u_{i}=u_{i^{\prime}}$ then we have $i \rightarrow i^{\prime}$ and $i^{\prime} \rightarrow i$.) By 4.2, D has maximum outdegree at most $(\delta+1) \gamma$, and so by 3.3 the graph underlying D has chromatic number at most $2(\delta+1) \gamma+1$. Hence there exists $I_{2} \subseteq I_{1}$ with $\left|I_{2}\right|=\left|I_{1}\right| /(2(\delta+1) \gamma+1)=2 \delta$ such that for all distinct $i, i^{\prime} \in I_{2}$, no vertex in $\left\{u_{i}\right\} \cup W_{i}$ has a neighbour in $H_{i^{\prime}}$ (and in particular the vertices $u_{i}\left(i \in I_{2}\right)$ are all distinct). The vertices $u_{i}\left(i \in I_{2}\right)$ are pairwise nonadjacent since they all belong to $H_{j} \backslash Y_{j}$, and the template array is moderately 2-cleaned.

Now for $i \in I_{2}, u_{i}$ has no neighbour in Y_{i}, because the template array is moderately 2-cleaned. Choose $w_{i} \in W_{i}$; then since w_{i} is η-mixed on Y_{i}, it has at least η neighbours in some part of Y_{i}, and so there is a stable subset of Y_{i} of cardinality η, all adjacent to w_{i}. These vertices are all nonadjacent to u_{i}, and so there is a $(2, \delta)$-broom in $G\left[\left\{y, u_{i}, w_{i}\right\} \cup Y_{i}\right]$ with handle y. There is also a $(1, \delta)$-broom in $G\left[\left\{y, u_{i}\right\} \cup W_{i}\right]$ with handle y. By choosing the $(1, \delta)$-broom for δ values of $i \in I_{2}$, and the $(2, \delta)$ broom for the other δ values of i, and taking their union, we find that G contains $T(\delta)$, contrary to (i). This proves 4.5.

For $d \geq 0$, let us say a moderately 2 -cleaned (ζ, η)-template array \mathcal{T} with sequence $\left(Y_{i}, H_{i}\right)(1 \leq$ $i \leq n)$ is partially $(2, d)$-cleaned if

- for all $i \in\{1, \ldots, n\}$, every vertex of H_{i} has at most d neighbours in $H(\mathcal{T}) \backslash H_{i}$,
and 2-cleaned if
- for all distinct $i, j \in\{1, \ldots, n\}$, no vertex of H_{i} has a neighbour in H_{j}.
4.6 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there exist $d \geq 0$ and a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$, with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a partially $(2, d)$-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let s be as in 4.5, and let $d=\gamma(\delta-1)$. Let ψ satisfy 4.4 (with ϕ replaced by ψ), and define $\phi(x)=\psi((2 s+1) x)$ for $x \geq 0$. Now let $c \geq 0$, and let G satisfy (i)-(v), with $\chi(G)>\phi(c)$. By 4.4 there is a moderately 2 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>(2 s+1) c$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Let D be the digraph with vertex set $\{1, \ldots, n\}$ in which for distinct i, j with $1 \leq i, j \leq n, i$ is adjacent from j if some vertex of H_{j} has at least δ neighbours in H_{i}. By 4.5, D has maximum outdegree at most s, and so by 3.3 the graph underlying D has chromatic number at most $2 s+1$. Consequently there is a partition $I_{1}, \ldots, I_{2 s+1}$ of $\{1, \ldots, n\}$ such
that for $1 \leq r \leq 2 s+1$, if $i, j \in I_{r}$ are distinct then each vertex of H_{j} has at most $\delta-1$ neighbours in H_{i}. By 4.2 it follows that for each $j \in I_{r}$, each vertex of H_{j} has at most $\gamma(\delta-1)=d$ neighbours in $\bigcup_{i \in I_{r}} H_{i} \backslash H_{j}$. For each $r \in\{1, \ldots, 2 s+1\}$, let \mathcal{T}_{r} be the (ζ, η)-template array with sequence the subsequence of $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ consisting of the terms with $i \in I_{r}$, and with $U\left(\mathcal{T}_{r}\right)$ the set of vertices in $U(\mathcal{T})$ with a neighbour in $\bigcup_{i \in I_{r}} H_{i}$. Thus each \mathcal{T}_{r} is partially ($2, d$)-cleaned; and since every vertex of $V(\mathcal{T})$ belongs to $V\left(\mathcal{T}_{r}\right)$ for some r, there exists $r \in\{1, \ldots, 2 s+1\}$ such that $\chi\left(V\left(\mathcal{T}_{r}\right)\right) \geq \chi(V(\mathcal{T})) /(2 s+1)>c$. This proves 4.6.
4.7 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a 2 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>c$.

Proof. Let d, ψ satisfy 4.6 (with ϕ replaced by ψ). Define $\phi(x)=\psi((d+1) x)$ for $x \geq 0$; we claim that ϕ satisfies the statement of 4.7. For let $c \geq 0$, and let G satisfy (i)-(v) with $\chi(G)>\phi(c)$. By 4.6 there is a partially $(2, d)$-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(V(\mathcal{T}))>(d+1) c$. Let its sequence be $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Since this template array is partially $(2, d)$-cleaned, the graph $G[H(\mathcal{T})]$ has maximum degree at most d, and so is $(d+1)$-colourable. Consequently there is a partition W_{1}, \ldots, W_{d+1} of $H_{1} \cup \cdots \cup H_{n}$ into $d+1$ stable sets. For $1 \leq j \leq d+1$, let \mathcal{T}_{j} be the (ζ, η)-template with sequence $\left(Y_{i},\left(H_{i} \cap W_{j}\right) \cup Y_{i}\right)(1 \leq i \leq n)$, where $U\left(\mathcal{T}_{j}\right)$ is the set of vertices in $U(\mathcal{T})$ with a neighbour in W_{j}. Then each \mathcal{T}_{j} is 2-cleaned (because it is moderately 2-cleaned and there are no edges between $H_{i} \cap W_{j}$ and $\left.H_{j} \cap W_{j}\right)$. Since every vertex of $V(\mathcal{T})$ belongs to $V\left(\mathcal{T}_{j}\right)$ for some j, there exists $j \in\{1, \ldots, t\}$ such that

$$
\chi\left(V\left(\mathcal{T}_{j}\right)\right) \geq \chi(V(\mathcal{T})) /(d+1)>c
$$

This proves 4.7.

5 Shadowing, and growing daisies

Let \mathcal{T} be a (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. A shadowing of \mathcal{T} is a sequence B_{1}, \ldots, B_{n} of pairwise disjoint subsets of $U(\mathcal{T})$, with union $U(\mathcal{T})$, such that for $1 \leq i \leq n$, every vertex in B_{i} has a neighbour in H_{i}. Every template array has a shadowing, and in general it has many. Let us say a shadowing B_{1}, \ldots, B_{n} has degree at most s if for every vertex $v \in U(\mathcal{T})$, there are at most s values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in B_{i}. If $X \subseteq U(\mathcal{T})$, we say the shadowing has degree at most s relative to X if for every vertex $v \in U(\mathcal{T})$, there are at most s values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in $B_{i} \cap X$.

Let B_{1}, \ldots, B_{n} be a shadowing of \mathcal{T}. A daisy (with respect to \mathcal{T} and the given shadowing) is an induced subgraph D of G isomorphic to the ($\delta+2$)-vertex star $K_{1, \delta+1}$, such that

- exactly one vertex u of D belongs to $H(\mathcal{T})$; let $u \in H_{i}$ say;
- u has degree one in D, and the neighbour v of u in D belongs to $U(\mathcal{T})$;
- there exists $j \neq i$ with $1 \leq j \leq n$ such that $V(D) \backslash\{u, v\} \subseteq B_{j}$; and
- there are no edges between $V(D) \backslash\{u, v\}$ and H_{i}.

We call u the root, v the eye, and the vertices in $V(D) \backslash\{u, v\}$ the petals of the daisy. We need the following, proved in [1], but we repeat the proof because it is short:
5.1 Let $d \geq 0$ be an integer, let G be a graph with chromatic number more than d, and let $X \subseteq V(G)$ be stable, such that $\chi(G \backslash X)<\chi(G)$. Then some vertex in X has at least d neighbours in $V(G) \backslash X$.

Proof. Let $\chi(G)=k+1$, and so $k \geq d$. Let $\phi: V(G) \backslash X \rightarrow\{1, \ldots, k\}$ be a k-colouring of $G \backslash X$. For each $x \in X$, if x has at most $d-1$ neighbours in $V(G) \backslash X$ then we may choose $\phi(x) \in\{1, \ldots, k\}$, different from $\phi(v)$ for each neighbour $v \in V(G) \backslash X$ of x; and this extends ϕ to a k-colouring of G, which is impossible. Thus for some $x \in X, x$ has at least d neighbours in $V(G) \backslash X$. This proves 5.1.

We deduce ${ }^{1}$
5.2 Let $s \geq 0$ be an integer, and let \mathcal{T} be a (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq$ $i \leq n)$. Let $X \subseteq U(\mathcal{T})$ with $\chi(X)>s \beta \delta \zeta \tau^{2}$, and let B_{1}, \ldots, B_{n} be a shadowing of degree at most s relative to X. Then there is a daisy in $G[H(\mathcal{T}) \cup X]$.

Proof. For $1 \leq i \leq n$, let W_{i} be the set of vertices in X that have a neighbour in H_{i} and have none in $H_{1} \cup \cdots \cup H_{i-1}$. Since every vertex in W_{i} has distance at most two from some vertex in Y_{i}, and $\left|Y_{i}\right|=\beta \zeta$, it follows that $\chi\left(W_{i}\right) \leq \beta \zeta \tau$ for each i. Consequently there is a partition $X_{1}, \ldots, X_{\beta \zeta \tau}$ of X such that $W_{i} \cap X_{j}$ is stable for $1 \leq i \leq n$ and $1 \leq j \leq \beta \zeta \tau$. We may assume that $\chi\left(X_{1}\right) \geq \chi(X) /(\beta \zeta \tau)>s \delta \tau$. Choose i minimum such that $\chi\left(X_{1} \backslash\left(W_{1} \cup \cdots \cup W_{i}\right)\right)<\chi\left(X_{1}\right)$, and let $H=G\left[X_{1} \backslash\left(W_{1} \cup \cdots W_{i-1}\right)\right]$. Then since $\chi\left(H \backslash\left(X_{1} \cap W_{i}\right)\right)<\chi(H)$, and $X_{1} \cap W_{i}$ is stable, and $\chi(H)>s \delta \tau, 5.1$ implies that some vertex $v \in W_{i}$ has a set P of at least $s \delta \tau$ neighbours in $W_{i+1} \cup \cdots \cup W_{n}$. Choose $u \in H_{i}$ adjacent to v. Since P is disjoint from $W_{1} \cup \cdots W_{i}$), there are no edges between P and H_{i}. By hypothesis there are at most s values of $j \in\{1, \ldots, n\}$ such that v has a neighbour in $B_{j} \cap X$, and so there exists $j \in\{1, \ldots, n\}$ such that $\left|P \cap B_{j}\right| \geq|P| / s \geq \delta \tau$. Since $\chi(P) \leq \tau$ (because the vertices in P are all adjacent to v), there is a stable subset $P^{\prime} \subseteq P \cap B_{j}$ with $\left|P^{\prime}\right| \geq \delta$. Now $j \neq i$ since no vertices in P have a neighbour in H_{i}; and so $G\left[\{u, v\} \cup P^{\prime}\right]$ is a daisy. This proves 5.2.

Let \mathcal{T} be a (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$; and let B_{1}, \ldots, B_{n} be a shadowing. A bunch of daisies is a set $\left\{D_{j}: j \in J\right\}$ of daisies where $J \subseteq\{1, \ldots, n\}$ and for each $j \in J, D_{j}$ has root u_{j}, eye v_{j} and set of petals P_{j}, with the following properties:

- $P_{j} \subseteq B_{j}$ for each $j \in J ;$
- there exists $i \in\{1, \ldots, n\} \backslash J$ such that $u_{j} \in H_{i}$ for each $j \in J$; and
- for all distinct $j, j^{\prime} \in J, P_{j} \cup\left\{v_{j}\right\}$ is disjoint from $P_{j^{\prime}} \cup\left\{v_{j^{\prime}}\right\}$, and there is no edge joining these two sets.

[^1](Thus, the roots may not all be distinct, and the root of one daisy may be adjacent to the eye of another.)

Figure 3: A bunch of daisies.
We deduce:
5.3 Let \mathcal{T} be a (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Let $t \geq 0$, and let $X \subseteq U(\mathcal{T})$ with

$$
\chi(X)>2 s t \zeta^{2} \delta(2(\delta+2) s+3) \beta^{2} \tau^{3} .
$$

Let B_{1}, \ldots, B_{n} be a shadowing of degree at most s relative to X. Then there is a bunch $\left\{D_{1}, \ldots, D_{t}\right\}$ of daisies, such that $V\left(D_{j}\right) \subseteq H(\mathcal{T}) \cup X$ for $1 \leq j \leq t$.

Proof. Let $m_{1}=t \beta \zeta \tau$, and $m=t \beta \zeta \tau(2(\delta+2) s+3)$. Let D be the digraph with vertex set $\{1, \ldots, n\}$ in which for distinct $i, j \in\{1, \ldots, n\}, j$ is adjacent from i if there is a daisy with root in H_{i}, eye in X and set of petals in $X \cap B_{j}$.
(1) There exists $i \in\{1, \ldots, n\}$ with outdegree in D at least m.

Suppose not; then by 3.3 the graph underlying D is $2 m$-colourable. Consequently there exists $I \subseteq\{1, \ldots, n\}$ with

$$
\chi\left(X^{\prime}\right) \geq \chi\left(\bigcup_{1 \leq i \leq n} B_{i} \cap X\right) /(2 m)>s \delta \beta \zeta \tau^{2}
$$

where $X^{\prime}=\bigcup_{i \in I} B_{i} \cap X$, such that for all distinct $i, j \in I$, there is no daisy with root in H_{i}, eye in X and set of petals in $X \cap B_{j}$. In particular, applying 5.2 to the (ζ, η)-template array \mathcal{T}^{\prime} with sequence $\left(Y_{i}, H_{i}\right)(i \in I)$ and $U\left(\mathcal{T}^{\prime}\right)=X^{\prime}$, it follows that $\chi\left(X^{\prime}\right) \leq s \beta \delta \zeta \tau^{2}$, a contradiction. This proves (1).

From (1), there exist $i \in\{1, \ldots, n\}$ and $J \subseteq\{1, \ldots, n\} \backslash\{i\}$, with $|J|=m$, such that for each $j \in J$ there is a daisy D_{j} with root $u_{j} \in H_{i}$, eye $v_{j} \in X$ and set of petals $P_{j} \subseteq B_{j} \cap X$. Now let D^{\prime} be the digraph with vertex set J in which for all distinct $j, j^{\prime} \in J, j$ is adjacent from j^{\prime} if
some vertex in D_{j} belongs to or has a neighbour in $P_{j^{\prime}}$. Then D^{\prime} has maximum outdegree at most $(\delta+2) s+1$, and so by 3.3 the graph underlying D^{\prime} is $2(\delta+2) s+3$-colourable. Hence there exists $J_{1} \subseteq J$ with $\left|J_{1}\right|=m /(2(\delta+2) s+3)=m_{1}$, such that for all distinct j, j^{\prime}, no vertex in D_{j} has a neighbour in $P_{j^{\prime}}$. In particular, the vertices $v_{j}\left(j \in J_{1}\right)$ are all distinct. By an argument used in the proof of $5.2,\left\{v_{j}: j \in J_{1}\right\}$ has chromatic number at most $\beta \zeta \tau$, and so there exists $J_{2} \subseteq J_{1}$ with $\left|J_{2}\right|=m_{1} /(\beta \zeta \tau)=t$ such that the vertices $v_{j}\left(j \in j_{2}\right)$ are pairwise nonadjacent. But then $\left\{D_{j}: j \in J_{2}\right\}$ is a bunch of daisies of cardinality t. This proves 5.3.

6 Privatization

Let A, B be disjoint subsets of $V(G)$; we say A covers B if every vertex in B has a neighbour in A. We claim:
6.1 Let $A, B \subseteq V(G)$ be disjoint, and let A cover B. Let $d \geq 0$ be an integer. Then there exist $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ (possibly $A^{\prime}=\emptyset$ and $\left.B^{\prime}=B\right)$ such that

- A^{\prime} covers $B \backslash B^{\prime}$;
- B^{\prime} is the union of d matching-covered sets;
- every vertex in B^{\prime} has at most one neighbour in A^{\prime}; and
- every vertex in A^{\prime} has exactly d neighbours in B^{\prime}.

Proof. We proceed by induction on d. The result is trivial for $d=0$, because we can set $A^{\prime}=A$ and $B^{\prime}=\emptyset$; so we assume that $d>0$ and the result holds for $d-1$. Hence there exist $A^{\prime} \subseteq A$ and $B^{\prime \prime} \subseteq B$ such that

- A^{\prime} covers $B \backslash B^{\prime \prime}$;
- $B^{\prime \prime}$ is the union of $d-1$ matching-covered sets;
- every vertex in $B^{\prime \prime}$ has at most one neighbour in A^{\prime}; and
- every vertex in A^{\prime} has exactly $d-1$ neighbours in $B^{\prime \prime}$.

Choose A^{\prime} minimal with this property. Consequently for each $u \in A^{\prime}$ there exists $v_{u} \in B \backslash B^{\prime \prime}$ such that u is the unique neighbour of v_{u} in A^{\prime}. (There may be more than one choice for v_{u}, but if so select one and call it v_{u}.) Let $X=\left\{v_{u}: u \in A^{\prime}\right\}$ and let $B^{\prime}=B^{\prime \prime} \cup X$. Then X is matching-covered, and every vertex in A^{\prime} has a unique neighbour in X and exactly $d-1$ in $B^{\prime \prime}$, and so exactly d in B^{\prime}. Consequently B^{\prime} satisfies the statement of 6.1. This proves 6.1.

Let \mathcal{T} be a 2-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. We recall that $H(\mathcal{T})$ denotes $\bigcup_{1 \leq i \leq n} H_{i}$; and let $Y(\mathcal{T})$ denote $\bigcup_{1 \leq i \leq n} Y_{i}$ and $Z(\mathcal{T})=H(\mathcal{T}) \backslash Y(\mathcal{T})$. A privatization for \mathcal{T} is a subset $\bar{\Pi} \subseteq U(\mathcal{T})$ such that

- Π is the union of $\delta \tau$ matching-covered sets;
- every vertex in Π has exactly one neighbour in $Z(\mathcal{T})$ and none in $Y(\mathcal{T})$; and
- every vertex in $Z(\mathcal{T})$ has exactly $\delta \tau$ neighbours in Π.

We deduce:
6.2 Let G satisfy (i)-(v), and let \mathcal{T} be a 2-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$. Then there is a 2-cleaned (ζ, η)-template array \mathcal{T}^{\prime}, with sequence $\left(Y_{i}, H_{i}^{\prime}\right)(1 \leq$ $i \leq n$) and a privatization Π for \mathcal{T}^{\prime}, such that

- $H_{i}^{\prime} \subseteq H_{i}$ for $1 \leq i \leq n$;
- $U\left(\mathcal{T}^{\prime}\right) \subseteq U(\mathcal{T}) ;$ and
- $\chi\left(U\left(\mathcal{T}^{\prime}\right) \backslash \Pi\right) \geq \chi(U(\mathcal{T}))-\delta \tau^{2}$.

Proof. We will obtain the desired \mathcal{T}^{\prime} by removing some elements of each H_{i} and also removing some elements of $U(\mathcal{T})$. We cannot remove from H_{i} any element of Y_{i}, but the only role of the elements of $H_{i} \backslash Y_{i}$ is to provide neighbours for the vertices in $U(\mathcal{T})$; so we can happily remove some of them if we also remove from $U(\mathcal{T})$ the vertices which no longer have neighbours in any of the (shrunken) sets H_{i}.

Let B be the set of vertices in $U(\mathcal{T})$ with no neighbour in $Y(\mathcal{T})$. By 6.1 , since $Z(\mathcal{T})$ covers B, there exist $A^{\prime} \subseteq Z(\mathcal{T})$ and $B^{\prime} \subseteq B$ such that

- A^{\prime} covers $B \backslash B^{\prime}$;
- B^{\prime} is the union of $\delta \tau$ matching-covered sets;
- every vertex in B^{\prime} has at most one neighbour in A^{\prime}; and
- every vertex in A^{\prime} has exactly $\delta \tau$ neighbours in B^{\prime}.

Let Π be the set of vertices in B^{\prime} that have a neighbour in A^{\prime}; for $1 \leq i \leq n$ let $H_{i}^{\prime}=\left(H_{i} \cap A^{\prime}\right) \cup Y_{i}$; and let \mathcal{T}^{\prime} be the template array with sequence $\left(Y_{i}, H_{i}^{\prime}\right)(1 \leq i \leq n)$ and $U\left(\mathcal{T}^{\prime}\right)=\left(U(\mathcal{T}) \backslash B^{\prime}\right) \cup \Pi$. Since $\chi\left(B^{\prime}\right) \leq \delta \tau^{2}$ by (iii), this proves 6.2.

The advantage of privatization is the following lemma, used when we have a shadowing of bounded degree.
6.3 Let $\eta \geq 1$ and $\zeta \geq \max (\eta, \alpha)$, and let $q, s \geq 0$. Let G satisfy (i)-(v), and let \mathcal{T} be a 2cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, that admits a privatization Π. Let B_{1}, \ldots, B_{n} be a shadowing of degree at most s relative to $U(\mathcal{T}) \backslash \Pi$. Let $1 \leq i \leq n$, and let $\left\{D_{j}: j \in J\right\}$ be a bunch of daisies, each with root in H_{i} and with $V\left(D_{j}\right) \cap \Pi=\emptyset$, with

$$
|J|=2 q \zeta \beta \tau\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right)+2 q \zeta \beta
$$

Then there exist $u \in H_{i} \cup B_{i}$ and $J^{\prime} \subseteq J$ with $\left|J^{\prime}\right|=q$, such that for each $j \in J^{\prime}$, u is adjacent to the eye of D_{j} and nonadjacent to the petals of D_{j}.

Proof. For each $j \in J$, let u_{j}, v_{j}, P_{j} be the root, eye, and set of petals of D_{j} respectively. Let D be the digraph with vertex set J in which for all distinct $j, j^{\prime} \in J, j^{\prime}$ is adjacent from j if u_{j} is adjacent to $v_{j^{\prime}}$. If some vertex of D has outdegree at least q we are done, so we assume not. Hence by 3.3 the graph underlying D has chromatic number at most $2 q$, and so there exists $J_{1} \subseteq J$ with $\left|J_{1}\right|=|J| /(2 q)$ such that u_{j} is nonadjacent to $v_{j^{\prime}}$ for all distinct $j, j^{\prime} \in J_{1}$. In particular, the vertices $u_{j}\left(j \in J_{1}\right)$ are all distinct.

Since $\left|Y_{i}\right|=\zeta \beta$, it follows that $u_{j} \notin Y_{i}$ for at least $\left|J_{1}\right|-\zeta \beta$ values of $j \in J_{1}$. Now each such u_{j} has a neighbour in Y_{i}, and so there exist $J_{2} \subseteq J_{1}$ with

$$
\left|J_{2}\right|=\left(\left|J_{1}\right|-\zeta \beta\right) /\left|Y_{i}\right|=\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right) \tau
$$

and a vertex $y \in Y_{i}$, such that $u_{j} \notin Y_{i}$ and y is adjacent to u_{j} for each $j \in J_{2}$. Since $\left\{u_{j}: j \in J_{2}\right\}$ is τ-colourable, there exists $J_{3} \subseteq J_{2}$ with

$$
\left|J_{3}\right|=\left|J_{2}\right| / \tau=(q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau
$$

such that the vertices $u_{j}\left(j \in J_{3}\right)$ are pairwise nonadjacent. Consequently for all distinct $j, j^{\prime} \in J_{3}$ the daisies $D_{j}, D_{j^{\prime}}$ are vertex-disjoint and no edge joins them.

For each $j \in J_{3}, u_{j} \in Z(\mathcal{T})$ and so u_{j} has $\delta \tau$ neighbours in Π. We claim that all these neighbours belong to B_{i}. Let $x \in \Pi$ be adjacent to u_{j}, and let $x \in B_{k}$ say. Then x has a neighbour in H_{k}, from the definition of B_{k}; but x has a unique neighbour in $H(\mathcal{T})$, since $x \in \Pi$, and this neighbour is u_{j}, and so $u_{j} \in H_{k}$. Since $u_{j} \in H_{i}$ it follows that $k=i$. Thus u_{j} has $\delta \tau$ neighbours in Π, and they all belong to B_{i}.

The set of vertices in $\Pi \cap B_{i}$ with distance two from y has chromatic number at most τ; fix some partition of this set into τ stable sets. Consequently, for each $j \in J_{3}$, there are δ neighbours of u_{j} that belong to the same stable set of the partition. Since $\left|J_{3}\right| \geq \delta \tau$, there exist $J_{4} \subseteq J_{3}$ with $\left|J_{4}\right|=\delta$ and a stable subset Π^{\prime} of $\Pi \cap B_{i}$, such that for each $j \in J_{4}, u_{j}$ has at least δ neighbours in Π^{\prime}. For each $j \in J_{4}$, choose $\Pi_{j} \subseteq \Pi^{\prime} \cap B_{i}$ with $\left|\Pi_{j}\right|=\delta$, such that every vertex in Π_{j} is adjacent to u_{j}. Thus $G\left[\left\{y, u_{j}\right\} \cup \Pi_{j}\right]$ is a $(1, \delta)$-broom with handle y, for each $j \in J_{4}$; and there are no edges between these brooms not incident with y.

Let $\{y\} \cup \bigcup_{j \in J_{4}} \Pi_{j}=Q$ say. Since the shadowing has degree at most s relative to $U(\mathcal{T}) \backslash \Pi$, each vertex in $Q \backslash\{y\}$ has a neighbour in P_{j} for at most s values of $j \in J_{3} \backslash J_{4}$, and y has no neighbours in P_{j} for $j \in J_{3} \backslash J_{4}$. Thus we may assume that each vertex $v \in Q$ has a neighbour in $P_{j} \cup\left\{v_{j}\right\}$ for at most $q+s$ values of $j \in J_{3} \backslash J_{4}$, since if there are q values of j such that v is adjacent to v_{j} and has no neighbour in P_{j}, we are done. Since $|Q|=\delta^{2}+1$, there are at most $(q+s)\left(\delta^{2}+1\right)$ values of $j \in J_{3} \backslash J_{4}$ such that some vertex in Q has a neighbour in P_{j}. Since $\left|J_{3}\right|-\left|J_{4}\right|-(q+s)\left(\delta^{2}+1\right) \geq \delta$, there exists $J_{5} \subseteq J_{3} \backslash J_{4}$ with $\left|J_{5}\right|=\delta$ such that for each $j \in J_{5}$, no vertex in Q has a neighbour in $P_{j} \cup\left\{v_{j}\right\}$. It follows that $G\left[\left\{y, u_{j}, v_{j}\right\} \cup P_{j}\right]$ is a $(2, \delta)$-broom with handle y for each $j \in J_{5}$. By taking the union of the $(1, \delta)$-brooms $G\left[\left\{y, u_{j}\right\} \cup \Pi_{j}\right]$ for each $j \in J_{4}$ and the $(2, \delta)$-brooms $\left.G\left\{y, u_{j}, v_{j}\right\} \cup P_{j}\right]$ for each $j \in J_{5}$, we find that G contains $T(\delta)$, a contradiction. This proves 6.3

7 Edges between $H(\mathcal{T})$ and $U(\mathcal{T})$.

Our next goal is to bound the number of neighbours each vertex of $U(\mathcal{T})$ has in $H(\mathcal{T})$.
7.1 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers; then there exists $\ell \geq 0$ with the following property. Let G satisfy (i)-(v), and let \mathcal{T} be a 2-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, that admits a privatization. Let X be the set of vertices in $U(\mathcal{T})$ that have at least $(\beta+1) \gamma \delta$ neighbours in $H(\mathcal{T})$. Then $\chi(X) \leq \ell$.

Proof. Let

$$
\begin{aligned}
s & =2(2 \gamma+1) \delta \tau+\gamma \\
q & =2 \delta(2 \gamma(\delta+1)+1)+\gamma \\
m & =2 q \zeta \beta \tau\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right)+2 q \zeta \beta, \text { and } \\
\ell & =2 s m \zeta^{2} \delta(2(\delta+2) s+3) \beta^{2} \tau^{3} .
\end{aligned}
$$

We claim that ℓ satisfies the statement of 7.1. Let $\mathcal{T},\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$ and X be as in the theorem. By 4.2, for each $v \in V(\mathcal{T})$, and hence for each $v \in X$, there are fewer than γ values of $i \in\{1, \ldots, n\}$ such that v has a neighbour in H_{i}. For each $v \in X$, since v has at least $(\beta+1) \gamma \delta$ neighbours in $H(\mathcal{T})$, it follows that there exists $i \in\{1, \ldots, n\}$ such that v has at least $(\beta+1) \delta$ neighbours in H_{i}. Choose a shadowing B_{1}, \ldots, B_{n} such that for $1 \leq i \leq n$, every vertex in $B_{i} \cap X$ has at least $(\beta+1) \delta$ neighbours in H_{i}.
(1) The shadowing B_{1}, \ldots, B_{n} has degree less than s relative to X.

Suppose not, and choose $y \in U(\mathcal{T})$ and $J \subseteq\{1, \ldots, n\}$ with $|J|=s$ such that for each $j \in J$ there exists $u_{j} \in X \cap B_{j}$ adjacent to y. Since y has a neighbour in H_{j} for at most γ values of j by 4.2, there exists $J_{1} \subseteq J$ with $\left|J_{1}\right|=|J|-\gamma$ such that y has no neighbour in H_{j} for each $j \in J_{1}$. Since the subgraph induced on $\left\{u_{j}: j \in J_{1}\right\}$ is τ-colourable, there exists $J_{2} \subseteq J_{1}$ with $\left|J_{2}\right|=\left|J_{1}\right| / \tau=2(2 \gamma+1) \delta$ such that the vertices $u_{j}\left(j \in J_{2}\right)$ are pairwise nonadjacent. Let D be the digraph with vertex set J_{2} in which for all distinct $j, j^{\prime} \in J_{2}, j^{\prime}$ is adjacent from j if u_{j} has a neighbour in $H_{j^{\prime}}$. Since D has maximum outdegree at most γ, by 3.3 the graph underlying D is $(2 \gamma+1)$-colourable, and so there exists $J_{3} \subseteq J_{2}$ with $\left|J_{3}\right|=\left|J_{2}\right| /(2 \gamma+1)=2 \delta$ such that for all distinct $j, j^{\prime} \in J_{3}, u_{j}$ has no neighbour in $H_{j^{\prime}}$. For each $j \in J_{3}$, since $u_{j} \in X, u_{j}$ has at least $\delta(\beta+1)$ neighbours in H_{j}; and since H_{j} is $(\beta+1)$-colourable, there is a stable set P_{j} of δ such neighbours. Thus $G\left[\left\{y, u_{j}\right\} \cup P_{j}\right]$ is a $(1, \delta)$-broom with handle y. Let v_{j} be a neighbour of u_{j} in H_{j}, choosing $v_{j} \in Y_{j}$ if possible. If $v_{j} \in Y_{j}$, let A be a part of Y_{j} not containing v_{j}; then since $u_{j} \in U(\mathcal{T}), u_{j}$ has at most $\eta-1$ neighbours in A, and since $\zeta \geq \eta-1+\delta$, there is a set $Q_{j} \subseteq A$ of δ vertices all nonadjacent to u_{j}. If $v_{j} \notin Y_{j}$, then u_{j} has no neighbour in Y_{j}, and since v_{j} is η-mixed on Y_{j} and $\eta \geq \delta$, it follows that v_{j} has a set Q_{j} of δ neighbours in some part of Y_{j}. In either case $G\left[\left\{y, u_{j}, v_{j}\right\} \cup Q_{j}\right]$ is a $(2, \delta)$ broom with handle y. By choosing the $(1, \delta)$-broom for δ values of $j \in J_{3}$, and the $(2, \delta)$-broom for the other δ values of $j \in J_{3}$, and taking their union, we find that G contains $T(\delta)$, a contradiction. This proves (1).
(2) There is no bunch of daisies $\left\{D_{j}: j \in J\right\}$ with $|J|=m$ such that $V\left(D_{j}\right) \subseteq X \cup H(\mathcal{T})$ for each $j \in J$.

Suppose such a bunch $\left\{D_{j}: j \in J\right\}$ exists. Let $i \in\{1, \ldots, n\}$ such that the root of D_{j} belongs to H_{i} for each $j \in J$. Let Π be a privatization. (Thus $\Pi \cap X=\emptyset$, since $(\beta+1) \gamma \delta \geq 2$.) By 6.3
applied to the (ζ, η)-template array \mathcal{T}^{\prime} with sequence $\left(Y_{j}, H_{j}\right)(1 \leq j \leq n)$ and $U\left(\mathcal{T}^{\prime}\right)=X \cup \Pi$, there exist $y \in H_{i} \cup B_{i}$ and $J_{1} \subseteq J$ with $\left|J_{1}\right|=q$, such that for each $j \in J_{1}, y$ is adjacent to the eye (u_{j} say) of D_{j} and has no neighbour in the set of petals (P_{j} say) of D_{j}. Thus $G\left[\left\{y, u_{j}\right\} \cup P_{j}\right]$ is a $(1, \delta)$-broom with handle y, for each $j \in J_{1}$. Since there are at most γ values of $j \in J_{1}$ such that y has a neighbour in H_{j}, there exists $J_{2} \subseteq J_{1}$ with $\left|J_{2}\right|=\left|J_{1}\right|-\gamma$ such that y has no neighbour in H_{j} for $j \in J_{2}$.

Let D be the digraph with vertex set J_{2} in which for all distinct $j, j^{\prime} \in J_{2}, j^{\prime}$ is adjacent from j if some vertex in $\left\{u_{j}\right\} \cup P_{j}$ has a neighbour in $H_{j^{\prime}}$. Since D has maximum outdegree at most $\gamma(\delta+1)$, by 3.3 the graph underlying D is $(2 \gamma(\delta+1)+1)$-colourable, and so there exists $J_{3} \subseteq J_{2}$ with $\left|J_{3}\right|=\left|J_{2}\right| /(2 \gamma(\delta+1)+1)=2 \delta$ such that for all distinct $j, j^{\prime} \in J_{3}$, no vertex in $\left\{u_{j}\right\} \cup P_{j}$ has a neighbour in $H_{j^{\prime}}$.

For each $j \in J_{3}$, choose a neighbour v_{j} of u_{j}, such that

- if u_{j} has a neighbour in Y_{j} then $v_{j} \in Y_{j}$;
- if u_{j} has no neighbour in Y_{j} and has a neighbour in H_{j} then $v_{j} \in H_{j}$;
- if u_{j} has no neighbour in H_{j} then $v_{j} \in P_{j}$.

We claim that in each case, y is nonadjacent to v_{j}, and there is a stable set $Q_{j} \subseteq H_{j}$ of neighbours of v_{j}, all nonadjacent to u_{j}, with $\left|Q_{j}\right|=\delta$. To see this, if $v_{j} \in H_{j}$ the proof is as in the proof of (1), so we assume that $v_{j} \in P_{j}$. This implies that u_{j} has no neighbours in H_{j}, and y is nonadjacent to v_{j}. Since $P_{j} \subseteq X, v_{j}$ has at least $\delta(\beta+1)$ neighbours in H_{j}, and since H_{j} is $(\beta+1)$-colourable, the claim follows. In particular, $G\left[\left\{y, u_{j}, v_{j}\right\} \cup Q_{j}\right]$ is a $(2, \delta)$-broom for each $j \in J_{3}$. By choosing the $(1, \delta)$-broom for δ values of $j \in J_{3}$, and the $(2, \delta)$-broom for the other δ values of $j \in J_{3}$, and taking their union, we find that G contains $T(\delta)$, a contradiction. This proves (2).

From (1), (2) and 5.3, it follows that $\chi(X) \leq \ell$. This proves 7.1.

The bound $(\beta+1) \gamma \delta$ will be very useful in the remainder of the proof, and for convenience let us define $\varepsilon=(\beta+1) \gamma \delta$, for the remainder of the paper. Let us say a 2 -cleaned (ζ, η)-template array \mathcal{T} in G is 3 -cleaned if every vertex in $U(\mathcal{T})$ has fewer than ε neighbours in $H(\mathcal{T})$. We deduce:
7.2 Let $\eta \geq \delta$ and $\zeta \geq \max (\eta, \alpha)+\delta$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ with the following property. For all $c \geq 0$, if G satisfies (i)-(v) and $\chi(G)>\phi(c)$ then there is a 3 -cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(U(\mathcal{T}))>c$.

Proof. Let ψ satisfy 4.7 (with ϕ replaced by ψ), and let ℓ be as in 7.1. For all $c \geq 0$ define $\phi(c)=\psi\left(c+\delta \tau^{2}+\ell\right)$; we claim this satisfies the statement of 7.2 . For let $c \geq 0$, and let G satisfy (i)-(v) with $\chi(G)>\phi(c)$. By 4.7, there is a 2-cleaned (ζ, η)-template array \mathcal{T} in G such that $\chi(U(\mathcal{T}))>c+\delta \tau^{2}+\ell$. By 6.2, there is a 2-cleaned (ζ, η)-template array \mathcal{T}_{1} in G that admits a privatization, such that $\chi\left(U\left(\mathcal{T}_{1}\right)\right)>c+\ell$. Let X be the set of vertices in $U\left(\mathcal{T}_{1}\right)$ that have at least ε neighbours in $H\left(\mathcal{T}_{1}\right)$. By $7.1, \chi(X) \leq \ell$. Let \mathcal{T}^{\prime} be the (ζ, η)-template array with the same sequence as \mathcal{T}_{1} and with $U\left(\mathcal{T}^{\prime}\right)=U\left(\mathcal{T}_{1}\right) \backslash X$. It follows that \mathcal{T}^{\prime} is 3-cleaned, and $\chi\left(U\left(\mathcal{T}^{\prime}\right)\right) \geq \chi\left(U\left(\mathcal{T}_{1}\right)\right)-\ell>c$. This proves 7.2.

8 Edges within a shadowing

Now we have come to the final stage of the proof: we investigate the edges between different sets of a shadowing. First we prove that there is some template array such that every shadowing has bounded degree; and privatize it; and then we will show that for a privatized template array, if every shadowing has bounded degree then the graph has bounded chromatic number.

So far, our technique in this paper has been to start with a template array, and make nicer and nicer ones at the cost of reducing the chromatic number of $U(\mathcal{T})$. This has more-or-less reached its limit, with 7.2 , so now we need to do something different. To prove the next result, we will start with a 3 -cleaned template array \mathcal{T}, and apply 7.2 to $G[U(\mathcal{T})]$ to get a second one, with vertex set a subset of $U(\mathcal{T})$; and repeat, generating a nested sequence of template arrays.
8.1 Let $\eta \geq \alpha+2(\delta+1)^{3}(\varepsilon+1)^{2}$ and $\zeta \geq \eta+\delta$ be integers. Then there is a non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$, and an integer s, with the following property. Let G satisfy $(\mathrm{i})-(\mathrm{v})$, with $\chi(G)>\phi(c)$. Then there is a 3 -cleaned (ζ, η)-template array \mathcal{T} in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, such that $\chi(U(\mathcal{T}))>c$, and such that for each vertex $v \in U(\mathcal{T})$, there are fewer than s values of $i \in\{1, \ldots, n\}$ such that some neighbour of v in $U(\mathcal{T})$ has a neighbour in H_{i}.

Proof.

Let

$$
\begin{aligned}
s_{3} & =(\delta(\delta+1)+1) \varepsilon+\delta \\
s_{2} & =((2 \delta \varepsilon+1) \delta \tau+\varepsilon) s_{3} \\
s_{1} & =(2 \varepsilon+1) \tau s_{2} \\
s & =s_{1}+\varepsilon \\
t_{4} & =2 \delta \\
t_{3} & =2 \delta t_{4} \\
t_{2} & =\left(\alpha \tau 2^{\beta \zeta}+1\right) t_{3} \\
t_{1} & =t_{2}^{s_{2}}, \text { and } \\
t & =1+2^{s_{2}} \delta \tau+t_{1} .
\end{aligned}
$$

Let ψ satisfy 7.2 (with ϕ replaced by ψ). Define $\phi^{0}(x)=x$ for $x \geq 0$, and inductively for $i \geq 1$, let $\phi^{i}(x)=\psi\left(\phi^{i-1}(x)\right)$ for $x \geq 0$. Let $\phi=\phi^{t}$; we claim that ϕ, s satisfy the statement of 8.1.

Let G satisfy (i)-(v), with $\chi(G)>\phi(c)$. Define $U^{0}=V(G)$; thus $\chi\left(U^{0}\right)>\phi^{t}(c)$. For $1 \leq j \leq t$ define \mathcal{T}^{j} and U^{j} inductively as follows. Let j satisfy $1 \leq j \leq t$, and suppose we have defined U^{j-1}, and $\chi\left(U^{j-1}\right)>\phi^{t-j+1}(c)$. By 7.2 applied to $G\left[U^{j-1}\right]$, there is a 3-cleaned (ζ, η)-template array \mathcal{T}^{j} in $G\left[U^{j-1}\right]$ such that $\chi\left(U\left(\mathcal{T}^{j}\right)\right)>\phi^{t-j}(c)$. Let $U^{j}=U\left(\mathcal{T}^{j}\right)$. This completes the inductive definition. Let \mathcal{T} be the (ζ, η)-template array with the same sequence as \mathcal{T}^{1}, and with $U(\mathcal{T})=U^{t}$; we will show that \mathcal{T} satisfies the statement of 8.1. Certainly it is 3-cleaned, and $\chi(U(\mathcal{T}))>c$.

We remark that for all $j<j^{\prime} \leq t$, every vertex in $H\left(\mathcal{T}^{j^{\prime}}\right)$ has fewer than ε neighbours in $H\left(\mathcal{T}^{j}\right)$ (since $H\left(\mathcal{T}^{j^{\prime}}\right) \subseteq U\left(\mathcal{T}^{j}\right)$ and \mathcal{T}^{j} is 3-cleaned), and for all j every vertex in U^{t} has fewer than ε neighbours in $H\left(\mathcal{T}^{j}\right)$ (for the same reason); but when $j^{\prime}>j$ we know nothing about the number of neighbours a vertex in $H\left(\mathcal{T}^{j}\right)$ has in $H\left(\mathcal{T}^{j^{\prime}}\right)$.

For $1 \leq j \leq t$, let the sequence of \mathcal{T}^{j} be $\left(Y_{i}^{j}, H_{i}^{j}\right)\left(1 \leq i \leq n_{j}\right)$. We assume for a contradiction that there exist $y \in U^{t}$ and a subset $I \subseteq\left\{1, \ldots, n_{1}\right\}$ with $|I|=s$, such that for each $i \in I$, there exists $u_{i} \in U^{t}$ adjacent to y and with a neighbour in H_{i}^{1}. Since there are at most ε values of i such that y has a neighbour in H_{i}^{1}, there exists $I_{1} \subseteq I$ with $\left|I_{1}\right|=|I|-\varepsilon=s_{1}$ such that for each $i \in I_{1}$, y has no neighbour in H_{i}^{1}.
(1) There exist $I_{2} \subseteq I_{1}$ with $\left|I_{2}\right|=s_{2}$, and for each $i \in I_{2}$, a $(2, \delta)$-broom B_{i} of $G\left[\left\{y, u_{i}\right\} \cup H_{i}^{1}\right]$ with handle y, such that every edge joining two of these brooms is incident with y.

Let D be the digraph with vertex set I_{1} in which for all distinct $i, i^{\prime} \in I_{1}, i^{\prime}$ is adjacent from i if u_{i} has a neighbour in $H_{i^{\prime}}^{1}$. Since D has maximum outdegree at most ε, by 3.3 the graph underlying D has chromatic number at most $2 \varepsilon+1$. Hence there exists $I_{1}^{\prime} \subseteq I_{1}$ with $\left|I_{1}^{\prime}\right|=s_{1} /(2 \varepsilon+1)$, such that for all distinct $i, i^{\prime} \in I_{1}^{\prime}, u_{i}$ has no neighbour in $H_{i^{\prime}}^{1}$. Since the set $\left\{u_{i}: i \in I_{1}^{\prime}\right\}$ has chromatic number at most τ (because each u_{i} is adjacent to y), there exists $I_{2} \subseteq I_{1}^{\prime}$ with $\left|I_{2}\right|=\left|I_{1}^{\prime}\right| / \tau=s_{2}$ such that the vertices $u_{i}\left(i \in I_{2}\right)$ are pairwise nonadjacent. For each $i \in I_{2}$, choose $w_{i} \in H_{i}^{1}$ adjacent to u_{i}, with $w_{i} \in Y_{i}^{1}$ if possible. If $w_{i} \in Y_{i}^{1}$, let A be a part of Y_{i}^{1} not containing w_{i}; then since u_{i} has fewer than η neighbours in A, and w_{i} is adjacent to every vertex in A, there exists $R_{i} \subseteq A$ of cardinality δ all adjacent to w_{i} and nonadjacent to u_{i}. If $w_{i} \notin Y_{i}^{1}$, then u_{i} has no neighbour in Y_{i}^{1}; since $w_{i} \in H_{i}^{1}, w_{i}$ has at least $\eta \geq \delta$ neighbours in some part of Y_{i}^{1}; and so there exists a stable set $R_{i} \subseteq Y_{i}^{1}$ of cardinality δ, all adjacent to w_{i} and not to u_{i}. In either case, $G\left[\left\{y, u_{i}, w_{i}\right\} \cup R_{i}\right]$ is a $(2, \delta)$-broom with handle y. This proves (1).

Let J_{1} be the set of all $j \in\{2, \ldots, t\}$ such that some vertex in $H\left(\mathcal{T}^{j}\right)$ is adjacent to at least s_{3} of the vertices $u_{i}\left(i \in I_{2}\right)$.
(2) If $j \in\{2, \ldots, t\} \backslash J_{1}$, there is a subset $X^{j} \subseteq H\left(\mathcal{T}^{j}\right)$ and a subset $I^{j} \subseteq I_{2}$, such that

- $\left|X^{j}\right|=\left|I^{j}\right|=(2 \delta \varepsilon+1) \delta \tau$;
- y has no neighbour in X^{j};
- every vertex in X^{j} has a unique neighbour in $\left\{u_{i}: i \in I^{j}\right\}$; and
- every vertex in $\left\{u_{i}: i \in I^{j}\right\}$ has a unique neighbour in X^{j}.

Since for all $i \in I_{2}, u_{i}$ has a neighbour in $H\left(\mathcal{T}^{j}\right)$, there exists $X \subseteq H\left(\mathcal{T}^{j}\right)$, minimal such that each $u_{i}\left(i \in I_{2}\right)$ has a neighbour in X. Since every vertex in X is adjacent to fewer than s_{3} vertices in $\left\{u_{i}: i \in I_{2}\right\}$, it follows that $|X| \geq s_{2} / s_{3}=(2 \delta \varepsilon+1) \delta \tau+\varepsilon$. From the minimality of X, for each $x \in X$ there exists $i(x) \in I_{2}$ such that x is the unique neighbour of $u_{i(x)}$ in X. (There may be more than one choice for $i(x)$; if so, choose one and call it $i(x)$.) Since y has at most ε neighbours in $H\left(\mathcal{T}^{j}\right)$, there exists $X^{j} \subseteq X$ with $\left|X^{j}\right|=(2 \delta \varepsilon+1) \delta \tau$ such that y has no neighbours in X^{j}. Let $I^{j}=\left\{i(x): x \in X^{j}\right\} ;$ then this proves (2).
(3) $\left|\{2, \ldots, t\} \backslash J_{1}\right| \leq 2^{s_{2}} \delta \tau$.

Suppose not. For each $j \in\{2, \ldots, t\} \backslash J_{1}$, there are at most $2^{s_{2}}$ possibilities for the set I^{j}, and so there exists $J^{\prime} \subseteq\{2, \ldots, t\} \backslash J_{1}$ with $\left|J^{\prime}\right|=\delta \tau$, and a subset $I_{3} \subseteq I_{2}$ (necessarily with $\left|I_{3}\right|=(2 \delta \varepsilon+1) \delta \tau$),
such that $I^{j}=I_{3}$ for each $j \in J^{\prime}$. Let $X=\bigcup_{j \in J^{\prime}} X^{j}$; then $\chi(X) \leq \tau$. Take a partition Z_{1}, \ldots, Z_{τ} of X into stable sets. For each $i \in I_{3}$, since u_{i} has $\delta \tau$ neighbours in X, there exists $r \in\{1, \ldots, \tau\}$ such that u_{i} has at least δ neighbours in Z_{r}. Since there are only τ possibilities for r, there exist $I_{4} \subseteq I_{3}$ with $\left|I_{4}\right|=\left|I_{3}\right| / \tau=(2 \delta \varepsilon+1) \delta$, and $r \in\{1, \ldots, \tau\}$, such that for each $i \in I_{4}, u_{i}$ has at least δ neighbours in Z_{r}; let N_{i} be a set of δ such neighbours. Since for each $j \in J^{\prime}$, every vertex in X_{j} has a unique neighbour in $\left\{u_{i}: i \in I_{2}\right\}$, the sets $N_{i}\left(i \in I_{4}\right)$ are pairwise disjoint. Moreover, the union of these sets is stable. Let D be the digraph with vertex set I_{4}, in which for all distinct $i, i^{\prime} \in I_{4}, i^{\prime}$ is adjacent from i if some vertex in N_{i} has a neighbour in $V\left(B_{i^{\prime}}\right)$ (as defined in (1)). Then D has maximum outdegree $\delta \varepsilon$, since $\left|N_{i}\right|=\delta$ and each vertex in N_{i} has at most ε neighbours in H^{1} (and none in $V\left(B_{i^{\prime}}\right) \backslash H^{1}$). By 3.3 the graph underlying D has chromatic number at most $2 \delta \varepsilon+1$, and so there exists $I_{5} \subseteq I_{4}$ with

$$
\left|I_{5}\right|=\left|I_{4}\right| /(2 \delta \varepsilon+1)=\delta,
$$

such that for all distinct $i, i^{\prime} \in I_{5}$, no vertex in N_{i} has a neighbour in $V\left(B_{i^{\prime}}\right)$. It follows that G contains $T(\delta)$, a contradiction. This proves (3).

From (3), it follows that $\left|J_{1}\right| \geq t-1-2^{s_{2}} \delta \tau=t_{1}$. For each $j \in J_{1}$, choose $v^{j} \in H\left(\mathcal{T}^{j}\right)$ adjacent to at least s_{3} of the vertices $u_{i}\left(i \in I_{2}\right)$. Consequently there exists $J_{2} \subseteq J_{1}$ with $\left|J_{2}\right|=t_{2} \leq\left|J_{1}\right| 2^{-s_{2}}$ and a subset $I_{3} \subseteq I_{2}$ with $\left|I_{3}\right|=s_{3}$, such that every vertex $v^{j}\left(j \in J_{2}\right)$ is adjacent to every vertex $u_{i}\left(i \in I_{3}\right)$. For each $j \in J_{2}$, there exists $i \in\left\{1, \ldots, n_{j}\right\}$ such that $v^{j} \in H_{i}^{j}$; let us write $H^{j}=H_{i}^{j}$ and $Y^{j}=Y_{i}^{j}$, since we will have no need for the other terms of the sequence of \mathcal{T}^{j}.
(4) There exists $J_{3} \subseteq J_{2}$ with $\left|J_{3}\right|=\left|J_{2}\right| /\left(\alpha \tau 2^{\beta \zeta}+1\right)=t_{3}$ such that for all distinct $j, j^{\prime} \in J_{3}$, v^{j} is not dense to $Y^{j^{\prime}}$.

Let D be the digraph with vertex set J_{2} in which for all distinct $j, j^{\prime} \in J_{2}, j^{\prime}$ is adjacent from j if v^{j} is dense to $Y^{j^{\prime}}$. Since v^{j} is not dense to $Y^{j^{\prime}}$ if $j>j^{\prime}$, it follows that D is acyclic, and has maximum indegree at most $\alpha \tau 2^{\beta \zeta}$, by 2.6 , and so by 3.3 the graph underlying D has chromatic number at most $\alpha \tau 2^{\beta \zeta}+1$. This proves (4).
(5) For each $j_{0} \in J_{3}$ there are fewer than δ values of $j \in J_{3} \backslash\left\{j_{0}\right\}$ such that $v^{j_{0}}$ has at least $\delta(\delta+1) \varepsilon+s_{3} \varepsilon$ neighbours in some part of Y^{j}.

For suppose that there exists $J_{4} \subseteq J_{3} \backslash\left\{j_{0}\right\}$ with $\left|J_{4}\right|=\delta$ such that for each $j \in J_{4}$, $v^{j_{0}}$ has at least $\delta(\delta+1) \varepsilon+s_{3} \varepsilon$ neighbours in some part of Y^{j}. For each $j \in J_{4}$, since there is a part of Y^{j} in which $v^{j_{0}}$ has fewer than α neighbours (because $v^{j_{0}}$ is not dense to Y^{j}), it follows that there are distinct parts A, A^{\prime} of Y^{j}, such that $v^{j_{0}}$ has at least $\delta(\delta+1) \varepsilon+s_{3} \varepsilon$ neighbours in A and at least $\zeta-\alpha+1 \geq \delta(\delta+1) \varepsilon+s_{3} \varepsilon$ non-neighbours in A^{\prime}. Since at most $s_{3} \varepsilon$ vertices of Y^{j} have a neighbour in $\left\{u_{i}: i \in I_{3}\right\}$, there is a subset $P^{j} \subseteq A$ with cardinality $\delta(\delta+1) \varepsilon$, such that all vertices in P^{j} are adjacent to $v^{j_{0}}$ and have no neighbours in $\left\{u_{i}: i \in I_{3}\right\}$; and there is a subset $Q^{j} \subseteq A^{\prime}$ with cardinality $\delta(\delta+1) \varepsilon$, such that all vertices in Q^{j} are nonadjacent to $v^{j_{0}}$ and have no neighbours in $\left\{u_{i}: i \in I_{3}\right\}$.

For each $j \in J_{4}$, we choose a $(1, \delta)$-broom C^{j} of $G\left[Y^{j} \cup\left\{v^{j_{0}}\right\}\right]$ with handle $v^{j_{0}}$, inductively as follows. Let $j \in J_{4}$, and assume that $C^{j^{\prime}}$ is defined for all $j^{\prime} \in J_{4}$ with $j^{\prime}>j$. Let S be the union of all the sets $V\left(C^{j^{\prime}}\right) \backslash\left\{v^{j_{0}}\right\}$ for $j^{\prime} \in J_{4}$ with $j^{\prime}>j$. Then $|S| \leq(\delta-1)(\delta+1)$, and since each vertex
in S has at most ε neighbours in H^{j}, it follows that at most $(\delta-1)(\delta+1) \varepsilon$ vertices in H^{j} have a neighbour in S. Since

$$
\left|P^{j}\right|,\left|Q^{j}\right|=\delta(\delta+1) \varepsilon>(\delta-1)(\delta+1) \varepsilon+\delta
$$

there exist a vertex in P^{j}, and a set of δ vertices in Q^{j}, each with no neighbours in S. Hence there is a $(1, \delta)$-broom C^{j} of $G\left[Y^{j} \cup\left\{v^{j_{0}}\right\}\right]$ containing no neighbours of S different from $v^{j_{0}}$. This completes the inductive definition of C^{j} for $j \in J_{4}$.

Now let S be the union of the sets $V\left(C^{j}\right)$ for $j \in J_{4}$. Then $|S|=\delta(\delta+1)+1$, and so there are at most $(\delta(\delta+1)+1) \varepsilon$ vertices in $H\left(\mathcal{T}^{1}\right)$ with neighbours in S. Since $s_{3} \geq(\delta(\delta+1)+1) \varepsilon+\delta$, there are at least δ values of $i \in I_{3}$ such that the edge $u_{i} v^{j_{0}}$ is the only edge between $V\left(B_{i}\right)$ and $V\left(C^{j}\right)$ for each $j \in J_{4}$; and so G contains $T(\delta)$ (with handle $v^{j_{0}}$), a contradiction. This proves (5).
(6) There exists $J_{4} \subseteq J_{3}$ with $\left|J_{4}\right|=t_{4}$ such that for all distinct $j, j^{\prime} \in J_{4}, v^{j}$ has fewer than $\delta(\delta+1) \varepsilon+s_{3} \varepsilon$ neighbours in each part of $Y^{j^{\prime}}$.

Let D be the digraph with vertex set J_{3} in which for all distinct $j, j^{\prime} \in J_{3}, j^{\prime}$ is adjacent from j if v^{j} has at least $\delta(\delta+1) \varepsilon+s_{3} \varepsilon$ neighbours in some part of Y^{j}. By (5), D has maximum outdegree at most $\delta-1$, and so by 3.3 the graph underlying D has chromatic number at most 2δ, and the claim follows. This proves (6).

Fix $i \in I_{3}$; and partition J_{4} into two sets $J_{4}^{\prime}, J_{4}^{\prime \prime}$, both of cardinality δ. For each $j \in J_{4}^{\prime}$, we define a $(2, \delta)$-broom C^{j} of $G\left[Y^{j} \cup\left\{v^{j}, u_{i}\right\}\right]$ with handle u_{i}, and for each $j \in J_{4}^{\prime \prime}$, we define a $(1, \delta)$-broom C^{j} of $G\left[Y^{j} \cup\left\{v^{j}, u_{i}\right\}\right]$ with handle u_{i}, inductively as follows. Let $j \in J_{4}$, and assume that $C^{j^{\prime}}$ is defined for all $j^{\prime} \in J_{4}$ with $j^{\prime}>j$. Let S be the union of $\left\{u_{i}\right\}$ and all the sets $V\left(C^{j^{\prime}}\right) \backslash\left\{v^{j^{\prime}}\right\}$ for $j^{\prime} \in J_{4}$ with $j^{\prime}>j$. Then $|S| \leq(\delta+1)\left(t_{4}-1\right)$. There are distinct parts A, A^{\prime} of Y^{j} such that v^{j} has at least η neighbours in A and at most $\alpha-1$ neighbours in A^{\prime}. But at most $\varepsilon(\delta+1)\left(t_{4}-1\right)$ vertices of A have a neighbour in S, and at most $\left(t_{4}-1\right)\left(\delta(\delta+1) \varepsilon+s_{3} \varepsilon\right)$ vertices in A have a neighbour in $\left\{v^{j^{\prime}}: j^{\prime} \in J_{4} \backslash\{j\}\right\}$, by (6) and the definition of J_{4}, and the same for A^{\prime}. Since

$$
\eta, \zeta-\alpha+1 \geq(\delta+1)\left(t_{4}-1\right) \varepsilon+\left(t_{4}-1\right)\left(\delta(\delta+1) \varepsilon+s_{3} \varepsilon\right)+\delta,
$$

there exist a set of δ neighbours of v^{j} in A, and a set of δ non-neighbours of v^{j} in A^{\prime}, all with no neighbours in $S \cup\left\{v^{j^{\prime}}: j^{\prime} \in J_{4} \backslash\{j\}\right\}$. Consequently the desired broom C^{j} can be chosen as specified. This completes the inductive definition. But by taking the union of all the $C^{j}\left(j \in J_{4}\right)$, we see that G contains $T(\delta)$, a contradiction. This proves 8.1.
8.2 Let $\zeta, \eta, s \geq 0$. Let \mathcal{T} be a 2-cleaned (ζ, η)-template array in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq$ n), that admits a privatization Π. Suppose that for each vertex $v \in U(\mathcal{T})$, there are fewer than s values of $i \in\{1, \ldots, n\}$ such that some neighbour of v in $U(\mathcal{T})$ has a neighbour in H_{i}. Let $q=2 \delta+s$ and

$$
r=4(\delta+1) s\left(2 q \zeta^{2} \beta^{2} \tau^{2}\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right)+2 q \zeta^{2} \beta^{2} \tau\right)
$$

Then

$$
\chi(U(\mathcal{T}) \backslash \Pi) \leq 3 r s \beta \delta \zeta \tau^{2}
$$

Proof. It follows that every shadowing has degree less than s. For $1 \leq i \leq n$, let B_{i} be the set of vertices in $U(\mathcal{T})$ with a neighbour in H_{i} and with no neighbour in $H_{1} \cup \cdots \cup H_{i-1}$. It follows that $\left(B_{1}, \ldots, B_{n}\right)$ is a shadowing, and hence has degree less than s.

For distinct $u, v \in U(\mathcal{T})$, we say that v is later than u if $u \in B_{i}$ and $v \in B_{j}$ where $j>i$. For $i, a, b, c \in\{1, \ldots, n\}$, we say that i is strong to (a, b, c) if

- $i<\min (a, b, c)$ and $a<c ;$
- there exist $u \in B_{i} \backslash \Pi$ and $v \in B_{a} \backslash \Pi$, adjacent;
- there exist δ vertices in $B_{b} \backslash \Pi$, pairwise nonadjacent, and all adjacent to u (and possibly also adjacent to v); and
- there exist δ vertices in $B_{c} \backslash \Pi$, pairwise nonadjacent, and all adjacent to v and not to u.
(1) For $1 \leq i \leq n$, there do not exist r triples $\left(a_{1}, b_{1}, c_{1}\right), \ldots,\left(a_{r}, b_{r}, c_{r}\right)$, such that i is strong to them all, and a_{j}, b_{j}, c_{j} are different from $a_{j^{\prime}}, b_{j^{\prime}}, c_{j^{\prime}}$ for $1 \leq j<j^{\prime} \leq r$.

Suppose that r such triples exist. For $1 \leq j \leq r$, choose $u_{j} \in B_{i} \backslash \Pi$ and $v_{j} \in B_{a_{j}} \backslash \Pi$ adjacent to u_{j}, and a stable set P_{j} of δ vertices in $B_{b_{j}} \backslash \Pi$, all adjacent to u_{j}, and a stable set Q_{j} of δ vertices in $B_{c_{j}} \backslash \Pi$, all adjacent to v_{j} and not to u_{j}. Let D be the digraph with vertex set $\{1, \ldots, r\}$ in which for all distinct $j, j^{\prime} \in\{1, \ldots, r\}, j^{\prime}$ is adjacent from j if some vertex $u \in\left\{u_{j}, v_{j}\right\} \cup P_{j} \cup Q_{j}$ is adjacent in G to a vertex $v \in\left\{v_{j^{\prime}}\right\} \cup P_{j^{\prime}} \cup Q_{j^{\prime}}$ and u is earlier than v. Then D has maximum outdegree less than $2(\delta+1) s$, and so by 3.3 there exists $J \subseteq\{1, \ldots, r\}$ with

$$
|J| \geq r /(4(\delta+1) s)=2 q \zeta^{2} \beta^{2} \tau^{2}\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right)+2 q \zeta^{2} \beta^{2} \tau
$$

such that for all distinct $j, j^{\prime} \in J$, there are no edges between $\left\{u_{j}, v_{j}\right\} \cup P_{j} \cup Q_{j}$ and $\left\{v_{j^{\prime}}\right\} \cup P_{j^{\prime}} \cup Q_{j^{\prime}}$. In particular, the vertices $u_{j}(j \in J)$ are all distinct. Since the set $\left\{u_{j}: j \in J\right\}$ has chromatic number at most $\zeta \beta \tau$ (because each u_{j} has distance at most two from some vertex of Y_{i}, and $\left|Y_{i}\right|=\zeta \beta$), there exists $J_{1} \subseteq J$ with $\left|J_{1}\right|=|J| /(\zeta \beta \tau)$ such that the vertices $u_{j}\left(j \in J_{1}\right)$ are pairwise nonadjacent. For $j \in J_{1}$, there are no edges between H_{i} and P_{j}, from the definition of the shadowing. For each $j \in J_{1}$ choose $w_{j} \in H_{j}$ adjacent to u_{j}; then $G\left[\left\{w_{j}, u_{j}\right\} \cup P_{j}\right]$ is a daisy $D_{b_{j}}$ say, and $\left\{D_{b_{j}}: j \in J_{1}\right\}$ is a bunch of daisies. But

$$
|J| /(\zeta \beta \tau) \geq 2 q \zeta \beta \tau\left((q+s)\left(\delta^{2}+1\right)+2 \delta+\delta \tau\right)+2 q \zeta \beta
$$

and so by 6.3 , applied to $\left\{D_{b_{j}}: j \in J_{1}\right\}$, we deduce that there exist $w \in H_{i} \cup B_{i}$ and $J_{2} \subseteq J_{1}$ with $\left|J_{2}\right|=q$, such that for each $j \in J_{2}, w$ is adjacent to the eye u_{j} of $D_{b_{j}}$ and nonadjacent to the petals P_{j} of $D_{b_{j}}$. Moreover there are no edges between $\left\{u_{j}, v_{j}\right\} \cup P_{j} \cup Q_{j}$ and $\left\{u_{j^{\prime}}, v_{j^{\prime}}\right\} \cup P_{j^{\prime}} \cup Q_{j^{\prime}}$ for all distinct $j, j^{\prime} \in J_{2}$. Now w has neighbours in at most s of the sets $\left\{v_{j}\right\} \cup P_{j} \cup Q_{j}\left(j \in J_{2}\right)$, and so there exists $J_{3} \subseteq J_{2}$ with $\left|J_{3}\right|=2 \delta$ such that w has no neighbours in $\left\{v_{j}\right\} \cup P_{j} \cup Q_{j}$ for $j \in J_{3}$. Hence for $j \in J_{3}, G\left[\left\{w, u_{j}\right\} \cup P_{j}\right]$ is a $(1, \delta)$-broom with handle w, and $G\left[\left\{w, u_{j}, v_{j}\right\} \cup Q_{j}\right]$ is a $(2, \delta)$-broom with handle w; and taking the first for δ choices of $j \in J_{3}$, and the second for the remaining δ choices of j, and taking their union, we find that G contains $T(\delta)$, a contradiction. This proves (1).

By (1), for each $i \in\{1, \ldots, n\}$ there is a subset $J_{i} \subseteq\{i+1, \ldots, n\}$ with $\left|J_{i}\right|<3 r$, such that for all a, b, c, if i is strong to (a, b, c) then one of a, b, c is in J_{i}. Let D be the digraph with vertex set
$\{1, \ldots, n\}$ in which for $i<j, j$ is adjacent from i if $j \in J_{i}$. Thus D has maximum outdegree less than $3 r$, and since D is acyclic, by 3.3 the graph underlying D has chromatic number at most $3 r$. It follows that there is a subset $I \subseteq\{1, \ldots, n\}$ such that

$$
3 r \chi\left(\bigcup_{i \in I} B_{i} \backslash \Pi\right) \geq \chi\left(\bigcup_{1 \leq i \leq n} B_{i} \backslash \Pi\right),
$$

with the property that for all $i, a, b, c \in I, i$ is not strong to (a, b, c). Let $W=\bigcup_{i \in I} B_{i} \backslash \Pi$.
(2) $\chi(G[W]) \leq s^{2} \delta \zeta \beta \tau^{2}$.

Let D be the digraph obtained from $G[W]$ by deleting all edges $u v$ such that $\{u, v\}$ is a subset of some $B_{i}(i \in I)$, and directing every remaining edge such that the head of every edge is later than its tail. Let X be the set of all $v \in W$, where $v \in B_{i}$ say, such that for some $j>i$, there are $s \delta$ neighbours of v in B_{j}, pairwise nonadjacent. Suppose that $D[X]$ has a directed path with $s+1$ vertices, say $v_{0}-\cdots-v_{s}$ in order. Let $v_{i} \in B_{j_{i}}$ where $j_{i} \in I$; then $j_{0}<\cdots<j_{s}$. For $0 \leq i \leq s$, since $v_{i} \in X$, there exist $b_{i} \in I$ with $b_{i}>j_{i}$ and a stable subset P_{i} of $B_{b_{i}}$ with $\left|P_{i}\right|=s \delta$, all adjacent to v_{i}. For $1 \leq i \leq s$, let Q_{i} be the set of vertices in P_{s} that are adjacent to v_{i} and not to v_{i-1}. Since j_{i-1} is not strong to $\left(j_{i}, b_{i-1}, b_{s}\right)$, it follows that $\left|Q_{i}\right|<\delta$ for $1 \leq i \leq s$, and so there is a vertex $v \in P_{s}$ that belongs to none of the sets Q_{1}, \ldots, Q_{s}. Consequently v is adjacent to all of $v_{0}, v_{1}, \ldots, v_{s}$, and hence has a neighbour in B_{j} for $s+1$ different values of j, contrary to the hypothesis. This proves that $D[X]$ has no directed path with $s+1$ vertices, and hence the graph underlying $D[X]$ has chromatic number at most s, from the Gallai-Roy theorem $[2,8]$.

For each $v \in W \backslash X$, there are fewer than s values of $j \in I$ such that $B_{j} \backslash \Pi$ contains some vertex adjacent from v in D, by hypothesis. Moreover, since $v \notin X$, if $v \in B_{i} \backslash \Pi$ and some vertex in $B_{j} \backslash \Pi$ is adjacent from v in D, then $j>i$, and there do not exist $s \delta$ vertices in $B_{j} \backslash \Pi$, pairwise nonadjacent in G and all adjacent to v in G. Since the set of neighbours of v is τ-colourable, it follows that fewer than $s \delta \tau$ vertices in $B_{j} \backslash \Pi$ are adjacent in D from v; and so $D[W \backslash X]$ has maximum outdegree less than $(s-1) s \delta \tau$. Thus by 3.3 the graph underlying $D[W \backslash X]$ has chromatic number at most $(s-1) s \delta \tau$ (since D is acyclic).

Consequently the graph underlying D has chromatic number at most $s+(s-1) s \delta \tau \leq s^{2} \delta \tau$. Since for each $i \in I, G\left[B_{i} \backslash \Pi\right]$ has chromatic number at most $\beta \zeta \tau$, it follows that $\chi(G[W]) \leq s^{2} \beta \delta \zeta \tau^{2}$. This proves (2).

From the choice of $I, 3 r \chi(W) \geq \chi\left(\cup_{1 \leq i \leq n} B_{i} \backslash \Pi\right)$, and so from (2),

$$
\chi\left(\bigcup_{1 \leq i \leq n} B_{i} \backslash \Pi\right) \leq 3 r s \beta \delta \zeta \tau^{2}
$$

This proves 8.2.
We deduce, finally:
8.3 There exists c such that if G satisfies (i)-(v) then $\chi(G) \leq c$.

Proof. Let $\eta=\alpha+2(\delta+1)^{3}(\varepsilon+1)^{2}$ and $\zeta=\eta+\delta$. Let ϕ and s satisfy 8.1. Let r be as in 8.2. Let $c_{2}=3 r s \beta \delta \zeta \tau^{2}$, let $c_{1}=c_{2}+\delta \tau^{2}$, and let $c=\phi\left(c_{1}\right)$.

Let G satisfy (i)-(v), and suppose that $\chi(G)>c$. By 8.1, there is a 3-cleaned (ζ, η)-template array \mathcal{T} in G, with sequence $\left(Y_{i}, H_{i}\right)(1 \leq i \leq n)$, such that $\chi(U(\mathcal{T}))>c_{1}$, and such that for each vertex $v \in U(\mathcal{T})$, there are fewer than s values of $i \in\{1, \ldots, n\}$ such that some neighbour of v in $U(\mathcal{T})$ has a neighbour in H_{i}. By 6.2, there is a 2 -cleaned (in fact 3 -cleaned) (ζ, η)-template array \mathcal{T}^{\prime}, with sequence $\left(Y_{i}, H_{i}^{\prime}\right)(1 \leq i \leq n)$ and a privatization Π for \mathcal{T}^{\prime} such that

- $H_{i}^{\prime} \subseteq H_{i}$ for $1 \leq i \leq n$;
- $U\left(\mathcal{T}^{\prime}\right) \subseteq U(\mathcal{T})$; and
- $\chi\left(U\left(\mathcal{T}^{\prime}\right) \backslash \Pi\right) \geq \chi(U(\mathcal{T}))-\delta \tau^{2}>c_{2}$.

It follows that for each vertex $v \in U\left(\mathcal{T}^{\prime}\right)$, there are fewer than s values of $i \in\{1, \ldots, n\}$ such that some neighbour of v in $U\left(\mathcal{T}^{\prime}\right)$ has a neighbour in H_{i}^{\prime}. By 8.2 applied to \mathcal{T}^{\prime},

$$
\chi\left(U\left(\mathcal{T}^{\prime}\right) \backslash \Pi\right) \leq 3 r s \beta \delta \zeta \tau^{2}
$$

a contradiction. This proves 8.3.
Consequently, this completes the proof of 2.5 , and hence of 1.2 .

Acknowledgement

We would like to thank the referees, who both did an excellent job, substantially improving the paper.

References

[1] M. Chudnovsky, A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. XII. Distant stars", J. Graph Theory https://doi.org/10.1002/jgt.22450 arXiv:1711.08612.
[2] T. Gallai, "On directed graphs and circuits", in Theory of Graphs (Proc. Colloquium Tihany, 1966), Academic Press, 1968, 115-118.
[3] A. Gyárfás, "On Ramsey covering-numbers", Coll. Math. Soc. János Bolyai, in Infinite and Finite Sets, North Holland/American Elsevier, New York (1975), 10.
[4] A. Gyárfás, E. Szemerédi and Zs. Tuza, "Induced subtrees in graphs of large chromatic number", Discrete Math. 30 (1980), 235-344.
[5] H. A. Kierstead and S. G. Penrice, "Radius two trees specify χ-bounded classes", J. Graph Theory 18 (1994), 119-129.
[6] H. A. Kierstead and V. Rödl, "Applications of hypergraph coloring to coloring graphs not inducing certain trees", Discrete Math. 150 (1996), 187-193.
[7] H. A. Kierstead and Y. Zhu, "Radius three trees in graphs with large chromatic number", SIAM J. Disc. Math. 17 (2004), 571-581.
[8] B. Roy, "Nombre chromatique et plus longs chemins d'un graphe", Rev. Française Informat. Recherche Opérationnelle 1 (1967), 129-132.
[9] A. D. Scott, "Induced trees in graphs of large chromatic number", J. Graph Theory 24 (1997), 297-311.
[10] D. P. Sumner, "Subtrees of a graph and chromatic number", in The Theory and Applications of Graphs, (G. Chartrand, ed.), John Wiley \& Sons, New York (1981), 557-576.

[^0]: ${ }^{1}$ Supported by a Leverhulme Trust Research Fellowship
 ${ }^{2}$ Supported by ONR grant N00014-14-1-0084 and NSF grants DMS-1265563 and NSF DMS-1800053.

[^1]: ${ }^{1}$ To be deleted before publication: one referee queried the range of s, whether we require $s<n$. No, we don't, it holds for all $s \geq 0$.

