Even-hole-free graphs still have bisimplicial vertices

Maria Chudnovsky ${ }^{1}$ and Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544

June 5, 2019; revised September 1, 2021

[^0]
Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least four. A hole is called even if it has an even number of vertices. An even-hole-free graph is a graph with no even holes. A vertex of a graph is bisimplicial if the set of its neighbours is the union of two cliques.

In an earlier paper [1], Addario-Berry, Havet and Reed, with the authors, claimed to prove a conjecture of Reed, that every even-hole-free graph has a bisimplicial vertex, but we have recently been shown that the "proof" has a serious error. Here we give a proof using a different approach.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A clique in G is a set of pairwise adjacent vertices. A vertex is bisimplicial (in G) if its neighbourhood is the union of two cliques. A hole in a graph is an induced subgraph that is a cycle of length at least four. A hole is even if it has even length and odd otherwise. A graph is even-hole-free if it contains no even hole. The following was conjectured in [4]:

1.1 Every non-null even-hole-free graph has a bisimplicial vertex.

Louigi Addario-Berry, Frédéric Havet and Bruce Reed, with the authors, published a "proof" in [1]. However, there is a major error in this proof, pointed out to us recently by Rong Wu. The flawed proof is for a result (theorem 3.1 of that paper) that is fundamental to much of the remainder of the paper, and we have not been able to fix the error (although we still believe 3.1 of that paper to be true). The error in [1] is in the very last line of the proof of theorem 3.1 of that paper: we say "it follows that $N_{G}(v)=N_{G^{\prime}}(v)$, and so v is bisimplicial in $G^{\prime \prime}$; and this is not correct, since cliques of G^{\prime} may not be cliques of G.

In this paper we give a different proof of 1.1. For inductive purposes we prove something a little stronger, namely:
1.2 Let G be even-hole-free, and let K be a clique of G with $|K| \leq 2$. Let M be the set of vertices in $V(G) \backslash V(K)$ with no neighbour in $V(K)$. If $M \neq \emptyset$, then some vertex in M is bisimplicial in G.

The proof is via two decomposition theorems for even-hole-free graphs. Most of the paper is concerned with proving these decomposition theorems, and at the end we give the application to finding a bisimplicial vertex.

2 Preliminaries, and a sketch of the proof

Before we can outline the proof we need more definitions. Let S be a subset of $V(G)$. We denote by $G[S]$ the subgraph of G induced on S, and by $G \backslash S$ the subgraph of G induced on $V(G) \backslash S$. We say $S \subseteq V(G)$ is connected if $G[S]$ is connected. The neighbourhood of S, denoted by $N_{G}(S)$ (or $N(S)$ when there is no risk of confusion), is the set of all vertices of $V(G) \backslash S$ with a neighbour in S, and $N[S]$ means $N(S) \cup S$. If $S=\{v\}$, we write $N_{G}(v)$ instead of $N_{G}(\{v\})$; for an induced subgraph H of G, we define $N(H)$ to be $N(V(H))$, and so on. A subgraph S is dominating in G if $N[S]=V(G)$, and non-dominating otherwise.

Two disjoint subsets A, B of $V(G)$ are complete to each other if every vertex of A is adjacent to every vertex of B, and anticomplete to each other if no vertex of A is adjacent to any vertex of B. If $A=\{a\}$, we write " a is complete (anticomplete) to B " instead of " $\{a\}$ is complete (anticomplete) to $B^{\prime \prime}$.

The length of a path is the number of edges in it. A path is called even if its length is even, and odd otherwise. Let the vertices of P be p_{1}, \ldots, p_{k} in order. Then p_{1}, p_{k} are called the ends of P (sometimes we say P is from p_{1} to p_{k} or between p_{1} and p_{k}), and the set $V(P) \backslash\left\{p_{1}, p_{k}\right\}$ is the interior of P and is denoted by P^{*}. For $1 \leq i<j \leq k$ we will write $p_{i}-P-p_{j}$ or $p_{j}-P-p_{i}$ to mean the subpath of P between p_{i} and p_{j}. More generally, if S is an induced subgraph of a graph G, and u, v both have neighbours in $V(S)$, we denote by $u-S-v$ some induced path between u, v with interior
in $V(S)$. (Here u, v might or might not belong to $V(S)$.) If H is a cycle, and a, b and c are three vertices of H such that a is adjacent to b, then $a-b-H-c$ is a path, consisting of a, and the subpath of $H \backslash\{a\}$ between b and c. A triangle is a set of three vertices, pairwise adjacent, and we use the same word for the subgraph induced on a triangle.

Here are some types of graph that we will need:

- A theta with ends s, t is a graph that is the union of three paths R_{1}, R_{2}, R_{3}, each with the same pair of ends s, t, each of length more than one, and pairwise vertex-disjoint except for their ends.

Figure 1: A theta and a pyramid (dashed lines mean paths of arbitrary positive length)

- A pyramid with apex a and base $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a graph P in which
- a, b_{1}, b_{2}, b_{3} are distinct vertices, and $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a triangle,
- P is the union of this triangle and three paths R_{1}, R_{2}, R_{3}, where R_{i} has ends a, b_{i} for $i=1,2,3$, and
- R_{1}, R_{2}, R_{3} are pairwise vertex-disjoint except for their common end, and at least two of R_{1}, R_{2}, R_{3} have length at least two.
- A near-prism with bases $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$ is a graph P in which
- $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles, and $\left\{a_{1}, a_{2}, a_{3}\right\} \cap\left\{b_{1}, b_{2}, b_{3}\right\}=\left\{a_{3}\right\} \cap\left\{b_{3}\right\}$ (that is, the triangles are disjoint except that possibly $a_{3}=b_{3}$).
- P is the union of these two triangles and three paths R_{1}, R_{2}, R_{3}, where R_{i} has ends a_{i}, b_{i} for $i=1,2,3$ (and so R_{3} has length zero if $a_{3}=b_{3}$).
- R_{1}, R_{2}, R_{3} are pairwise vertex-disjoint.

If $a_{3} \neq b_{3}, P$ is also called a prism.

Figure 2: Near-prisms

- A wheel is a graph consisting of a hole H and a vertex $v \notin V(H)$ with at least three neighbours in $V(H)$, and if it has exactly three neighbours in $V(H)$ then no two of them are adjacent. We call v its centre and H its hole. If v has k neighbours in H we also call it a k-wheel. If k is even we call it an even wheel.

For a theta, pyramid or near-prism, we call R_{1}, R_{2}, R_{3} its constituent paths. It is easy to see that:

2.1 No even-hole-free graph contains a theta, a near-prism or an even wheel as an induced subgraph.

Even-hole-free graphs can contain pyramids, however. A pyramid is short if one of the three constituent paths has length one.

An extended near-prism is a graph obtained from a near-prism by adding one extra edge, as follows. Let R_{1}, R_{2}, R_{3} be as in the definition of a near-prism, and let $a \in R_{1}^{*}$ and $b \in R_{2}^{*}$; and add an edge $a b$. (It is important that a, b do not belong to the triangles.) We call $a b$ the cross-edge of the extended near-prism.

Figure 3: Extended near-prisms
A vertex $a \in V(G)$ is splendid if

- $V(G) \backslash N[a]$ is connected;
- every vertex in $N(a)$ has a neighbour in $V(G) \backslash N[a]$; and
- there is no short pyramid with apex a in G.

Now we can sketch the idea of the proof. In order to prove 1.2, we use induction on $|V(G)|$. From a result of [1] (that did not depend on theorem 3.1 of that paper, and so is still valid), we may assume that G admits no "full star cutset" (defined later). It follows that, with K as in 1.2, there is a splendid vertex $a \in V(G) \backslash N[K]$. We can assume that a is not bisimplicial. Now there are two possibilities:

- there is an extended near-prism in which a belongs to the cross-edge;
- there is a pyramid with apex a, but there is no extended near-prism in which a belongs to the cross-edge.

In both cases we use a decomposition theorem to find a smaller subgraph to which we can apply the inductive hypthesis and win. There are two different decompositions theorems. The first gives a decomposition of G relative to an extended near-prism, and is fully general (that is, it does not require any vertex to be splendid), and so may be useful in other applications. The second is more tailored to our application, in that it needs a to be splendid.

To apply these to find bisimplicial vertices, we use that both theorems provide a choice of subgraphs (two in the first case, three in the second) that are separated from the remainder of the graph in a convenient way, and we can prove inductively that all these subgraphs contain bisimplicial vertices of G; and in both cases these subgraphs are sufficiently widely separated that at least one of these bisimplicial vertices has no neighbours in K.

The main part of the paper concerns proving the two decomposition theorems, and we use them to prove 1.2 in the final section.

3 Some results from [1].

We will need to use some results of [1] that did not depend on the flawed theorem 3.1 of that paper. A cutset in G is a subset C of $V(G)$ such that $V(G) \backslash C$ is the union of two non-empty sets, anticomplete to each other. A star cutset is a cutset consisting of a vertex and some of its neighbours. If v together with a subset of $N(v)$ is a cutset, we say that v is a centre of this star cutset. A star cutset C is called full if it consists of a vertex and all its neighbours. We need the following, theorem 4.2 of [1]:
3.1 Let G be an even-hole-free graph such that, for every even-hole-free graph H with fewer vertices than G, and every non-dominating clique J of H with $|J| \leq 2$, there is a bisimplicial vertex of H in $V(H) \backslash N_{H}(J)$. Assume that there exists a non-dominating clique K with $|K| \leq 2$ such that no vertex of $V(G) \backslash N_{G}(K)$ is bisimplicial in G. Then G does not admit a full star cutset.
(Actually, theorem 4.2 in [1] takes a stronger hypothesis than we give here, requiring that the dubious theorem 3.1 of that paper holds for all graphs with fewer vertices than G; but fortunately its proof in that paper does not use the extra hypothesis, so we can legitimately omit it.) We will also need the following consequence of theorem 4.5 of [1]:
3.2 Let G be even-hole-free, let H be a hole in G, and let $a \notin V(H)$. If G admits no full star cutset with centre a, then either

- a is complete or anticomplete to $V(H)$; or
- $H[V(H) \cap N(a)]$ is a path; or
- a has exactly three neighbours in H, and two of them are adjacent.

4 Tree strip systems

In this section and the next, we state and prove the decomposition theorem for even-hole-free graphs that contain an extended near-prism.

Here is an example of an even-hole-free graph, due to Conforti, Cornuéjols and Vušković [2], and see also [3]. Start with a tree T with $|V(T)| \geq 3$. (A leaf of T means a vertex of degree exactly one, and a leaf-edge is an edge incident with a leaf.) Let $\left(A^{\prime}, B^{\prime}\right)$ be a bipartition of T. Since $|V(T)| \geq 3$, each leaf-edge is incident with only one leaf; let A be the set of leaf-edges incident with a leaf in A^{\prime}, and define B similarly. Let $L(T)$ be the line-graph of T. Thus the vertex set of $L(T)$ is the edge set of T, and A, B are disjoint subsets of $V(L(T))$. Add to $L(T)$ two more vertices a, b and the edge $a b$, and make a complete to A and b complete to B, forming a graph $H(T)$ say. Thus $H(T)$ has vertex set $E(T) \cup\{a, b\}$. This graph $H(T)$ is even-hole-free, but it is helpful for our purposes to impose additional conditions on T. We will assume that T has at least three leaves, and for every $v \in V(T)$, there is at most one component C of $V(T) \backslash v$ such that $A^{\prime} \cap V(C)=\emptyset$, and at most one such that $B^{\prime} \cap V(C)=\emptyset$. (Note that every component C of $V(T) \backslash v$ contains a leaf of T and therefore meets at least one of A^{\prime}, B^{\prime}.) If this additional condition is satisfied, we say that $H(T)$ is an extended tree line-graph, and $a b$ is its cross-edge.

Figure 4: A tree $T, L(T)$, and $H(T)$. (The dotted lines are just edges.)
Every extended near-prism is an extended tree line-graph, where the corresponding tree has four leaves and exactly two vertices of degree three. In the next few sections we will be working with even-hole-free graphs G that contain extended near-prisms, and therefore the graph also contains an extended tree line-graph that is maximal (subject to keeping the cross-edge fixed); and examining how the remainder of the graph attaches to this subgraph will lead us to the decomposition.

Sometimes we have different graphs with the same vertex set or edge set, and we say G-incident to mean incident in G, and G-adjacent to mean adjacent in G, and so on. A branch-vertex of a tree means a vertex of degree different from two (thus, leaves are branch-vertices). A branch of a tree T means a path P of T with distinct ends u, v, both branch-vertices, such that every vertex of P^{*} has degree two in T. Every edge of T belongs to a unique branch. A leaf-branch is a branch such that one of its ends is a leaf of T. In general, a leaf-path of T means a path of T with one end a leaf of T and the other end a vertex of T that is not a leaf.

Let T be a tree, and let U be the set of branch-vertices of T; and make a new tree J with vertex set U by making $u, v \in U J$-adjacent if there is a branch of T with ends u, v. We call J the shape of T. Thus J has no vertices of degree two; and T is obtained from J by replacing each edge by a path of positive length.

Let A, B, C be subsets of $V(G)$, with $A, B \neq \emptyset$ and disjoint from C, and let $S=(A, B, C)$. A rung of S, or an S-rung, is an induced path $p_{1} \cdots-p_{k}$ of $G[A \cup B \cup C]$ such that $p_{1} \in A, p_{k} \in B$ and $p_{2}, \ldots, p_{k-1} \in C$, and if $k>0$ then $p_{1} \notin B$ and $p_{k} \notin A$. (If $A \cap B \neq \emptyset$ then perhaps $k=0$.) If every vertex in $A \cup B \cup C$ belongs to an S-rung we call S a strip. We denote $A \cup B \cup C$ by $V(S)$. In the later part of the paper, concerned with "pyramid strip systems", we will only need strips (A, B, C) with $A \cap B=\emptyset$, but earlier when we look at "tree strip systems" we need to allow A, B to intersect. A strip (A, B, C) is proper if $A \cap B=\emptyset$.

Let J be a tree with at least three vertices. A J-strip system M in a graph G means:

- for each edge $e=u v$ of J, a subset $M_{u v}=M_{v u}=M_{e}$ of $V(G)$
- for each $v \in V(J)$, a subset M_{v} of $V(G)$
satisfying the following conditions:
- the sets $M_{e}(e \in E(J))$ are pairwise disjoint;
- for each $u \in V(J), M_{u} \subseteq \bigcup\left(M_{u v}: v \in V(J)\right.$ adjacent to $\left.u\right)$;
- for each $u v \in E(J),\left(M_{u v} \cap M_{u}, M_{u v} \cap M_{v}, M_{u v} \backslash\left(M_{u} \cup M_{v}\right)\right)$ is a strip (not necessarily proper);
- if $u v, w x \in E(J)$ with u, v, w, x all distinct, then there are no edges between $M_{u v}$ and $M_{w x}$;
- if $u v, u w \in E(J)$ with $v \neq w$, then $M_{u} \cap M_{u v}$ is complete to $M_{u} \cap M_{u w}$, and there are no other edges between $M_{u v}$ and $M_{u w}$.

A rung of the $\operatorname{strip}\left(M_{u v} \cap M_{u}, M_{u v} \cap M_{v}, M_{u v} \backslash\left(M_{u} \cup M_{v}\right)\right)$ will be called an e-rung or uv-rung. (We leave the dependence on M and J to be understood, for the sake of brevity.) Let $V(M)$ denote the union of the sets $M_{e}(e \in E(J))$.

Let J be a tree, let M be a J-strip system in G, and let (α, β) be a partition of the set of leaves of J. We say an edge $a b$ of G is a cross-edge for M with partition (α, β) if:

- J has no vertex of degree two, and at least three vertices;
- for every vertex $s \in V(J), s$ has at most one neighbour in α, and at most one in β;
- for all $e \in E(J), a, b \notin M_{e}$;
- a is complete to $\bigcup_{u \in \alpha} M_{u}$, and a has no other neighbours in $V(M) ; b$ is complete to $\bigcup_{u \in \beta} M_{u}$, and b has no other neighbours in $V(M)$.

Figure 5: The smallest possible J, and a J-strip system with cross-edge

If we are given J, M and $a b$ then we can reconstruct α, β, so we call (α, β) the corresponding partition. If G is an extended tree line-graph $H(T)$ with cross-edge $a b$, where T is a tree, and J is the shape of T, then there is a J-strip system in G with the same cross-edge $a b$, defined as follows. Let $\left(A^{\prime}, B^{\prime}\right)$ be a bipartition of T, as in the definition of $H(T)$, and let $\alpha=V(J) \cap A^{\prime}$, and $\beta=V(J) \cap B^{\prime}$. For each edge e of J, define M_{e} to be the edge-set of the corresponding branch of T; and for each $u \in V(J)$, let M_{u} be the set of edges of T incident with u. This defines a J-strip system. (Note that some strips might not be proper; if some branch of T has length one then the J-strip system is not proper.)

Let M be a J-strip system in G with cross-edge $a b$. If D is a subtree of J, and we choose an e-rung R_{e} for each $e \in E(J)$, then the subgraph of G induced on $\bigcup_{e \in E(D)} V\left(R_{e}\right)$, denoted by R_{D}, is the line graph of some tree that has the same shape as D. Thus, R_{D} depends on the choices of the individual e-rungs R_{e}, but we leave this dependence implicit.

Let M be a J-strip system in G with cross-edge $a b$ and partition (α, β). We say $X \subseteq V(M) \cup\{a, b\}$ is local if either:

- $X \subseteq M_{e}$ for some $e \in E(J)$; or
- $X \subseteq M_{u}$ for some $u \in V(J)$; or
- X contains a and not b, and $X \backslash\{a\} \subseteq M_{u}$ for some leaf $u \in \alpha$; or X contains b and not a, and $X \backslash\{a\} \subseteq M_{u}$ for some leaf $u \in \beta$.

We need a lemma:
4.1 If $X \subseteq V(M) \cup\{a, b\}$ is not local, and $\{a, b\} \nsubseteq X$, then there exist $x, y \in X$ such that $\{x, y\}$ is not local.

Proof. Suppose first that $a, b \notin X$. Choose $x \in X$, and choose $u v \in E(J)$ such that $x \in M_{u v}$. There exists $y \in X \backslash M_{u v}$, and we may assume that $\{x, y\}$ is local; so we may assume that $x, y \in M_{u}$. There exists $z \in X \backslash M_{u}$; and we may assume that $\{x, z\}$ is local, and so either $z \in M_{u v}$, or $x, z \in M_{v}$. In either case $\{y, z\}$ is not local, since J is a tree.

Thus we may assume that $a \in X$, and $b \notin X$. Also there exists $x \in X \backslash\{a, b\}$; and we may assume that $\{a, x\}$ is local, and so $x \in M_{u}$ for some $u \in \alpha$. There exists $y \in X \backslash\left(M_{u} \cup\{a\}\right)$. Since we may assume that $\{a, y\}$ is local, $y \in M_{v}$ for some $v \in \alpha$, and so $v \neq u$. From the definition of cross-edge, u, v have no common neighbour in J, and so $\{x, y\}$ is not local. This proves 4.1.

We will need two maximizations:

- We start with an even-hole-free graph G, and an edge $a b$ of G, such that there is an extended tree line-graph $H(T)$ that is an induced subgraph of G, with cross-edge $a b$. Subject to this we choose T with as many branches as possible, that is, such that its shape J has $|E(J)|$ maximum.
- Then we choose a J-strip system M in G with the same cross-edge $a b$, with $V(M)$ maximal.

In these circumstances we say that (J, M) is optimal for ab. Our first goal is to prove:
4.2 Let $a b$ be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Let Z be the set of vertices of G adjacent to both a, b. Then for every connected induced subgraph F of $G \backslash(Z \cup V(M))$:

- if not both a, b have neighbours in $V(F)$, then the set of vertices in $V(M)$ with a neighbour in $V(F)$ is local;
- if both a,b have neighbours in $V(F)$, then there exists a leaf t of J such that every vertex of $V(M)$ with a neighbour in $V(F)$ belongs to M_{t}.

We break the proof into three steps, $4.3,4.4$, and 4.5 below, depending on the number of $a, b \in N(F)$.
Under the hypotheses of 4.2 , let (α, β) be the corresponding partition. Let us say that a subgraph F is small if F is connected and F is an induced subgraph of $G \backslash(Z \cup V(M))$; and a small component is a component of $G \backslash(V(M) \backslash Z)$. A small subgraph F is α-peripheral if $X(F) \subseteq M_{t}$ for some $t \in \alpha$. We define β-peripheral similarly; and F is peripheral if it is either α - or β-peripheral. If F is small, the set of vertices in $V(M)$ with a neighbour in $V(F)$ is denoted by $X(F)$. We begin with:
4.3 Under the hypotheses of 4.2, if F is small, and $a, b \notin N(F)$, then $X(F)$ is local.

Proof. Suppose the theorem is false, and choose a small subgraph F not satisfying the theorem, with F minimal. By 4.1, there exist $x, y \in X(F)$ such that $\{x, y\}$ is not local, and so F is a path joining these two vertices. Let F have ends f_{1}, f_{2}.

For $x_{1}, x_{2} \in V(M)$, let us say $s \in V(J)$ separates x_{1}, x_{2} if $x_{1}, x_{2} \notin M_{s}$, and s lies on the path of J between e_{1}, e_{2}, where $x_{i} \in M_{e_{i}}(i=1,2)$.
(1) If $x_{1}, x_{2} \in X(F)$, there is no $s \in V(J)$ that separates x_{1}, x_{2}.

Let $x_{i} \in M_{e_{i}}(i=1,2)$, and suppose that $s \in V(J)$ separates x_{1}, x_{2}. Then $\left\{x_{1}, x_{2}\right\}$ is not local, and so we may assume that $f_{1} x_{1}$ and $f_{2} x_{2}$ are edges. Choose three leaf-paths S_{1}, S_{2}, S_{3} of J, each with one end s and otherwise pairwise vertex-disjoint, with $e_{i} \in E\left(S_{i}\right)$ for $i=1,2$. For $i=1,2,3$ let s_{i} be the edge of S_{i} incident with s. For $i=1,2,3$ and each $e \in E\left(S_{i}\right)$, choose an e-rung R_{e}, such that $x_{i} \in V\left(R_{e_{i}}\right)$ for $i=1,2$. For $i=1,2,3$, let u_{i} be the end of $R_{s_{i}}$ in M_{s}. Then $R_{S_{i}}$ is an induced path of G from u_{i} to some $p_{i} \in N(\{a, b\})$. We may assume that x_{1}, x_{2} have been chosen such that for $i=1,2$ the subpath of $R_{S_{i}}$ between x_{i}, p_{i} is minimal.

Suppose that there exists $x_{3} \in X(F)$, in $V\left(R_{S_{1}} \cup R_{S_{2}} \cup R_{S_{3}}\right)$ and different from and nonadjacent to x_{1}, x_{2}. Choose x_{3} such that the subpath of $R_{S_{3}}$ between x_{3} and p_{3} is minimal. We claim that $|V(F)|=1$. For if not, we may assume that x_{3} has a neighbour in $V\left(F \backslash f_{2}\right)$, and since $X\left(F \backslash f_{2}\right)$ is local (from the minimality of F) and contains x_{1}, x_{3}, and x_{1}, x_{3} are nonadjacent, it follows that $X\left(F \backslash f_{2}\right) \subseteq M_{e_{1}}$, and in particular x_{3} belongs to $R_{e_{1}}$. But then there is an induced path between the ends of $R_{e_{1}}$ and contained in $G\left[V\left(R_{e_{1}} \cup\left(F \backslash f_{2}\right)\right)\right]$, that contains at least one vertex of $F \backslash f_{2}$, and the vertices of this path can be added to $M_{e_{1}}$, contrary to the maximality of $V(M)$. This proves that $|V(F)|=1$.

If $p_{1}, p_{2}, p_{3} \in N(a)$, there is a theta with ends f_{1}, a and constituent paths $f_{1}-x_{i}-R_{S_{i}}-p_{i}-a$ for $i=1,2,3$; and similarly not all $p_{1}, p_{2}, p_{3} \in N(b)$. By exchanging a, b if necessary, we may assume that two of $p_{1}, p_{2}, p_{3} \in N(a)$; then there is a theta with ends f_{1}, a with constituent paths $f_{1}-x_{i}-R_{S_{i}}-p_{i}-a$ for the two values of i with $p_{i} \in N(a)$, and $f_{1}-x_{i}-R_{S_{i}}-p_{i}-b-a$ for the value of i with $p_{i} \in N(b)$.

This proves that $X(F) \cap V\left(R_{S_{3}}\right)=\emptyset$, and every vertex of $X(F) \cap V\left(R_{S_{1}} \cup R_{S_{2}}\right)$ is equal or adjacent to one of x_{1}, x_{2}. For $i=1,2$, let y_{i} be the neighbour of x_{i} in $R_{S_{i}}$ between x_{i} and u_{i} (this exists, since $x_{i} \notin M_{s}$.) The path $R_{S_{1} \cup S_{2}}$ can be completed to a hole H by adding a or b or both. From the minimality of $F, X\left(F \backslash\left\{f_{1}, f_{2}\right\}\right)=\emptyset$. We claim that the only edges between $V\left(R_{S_{1}} \cup R_{S_{2}} \cup R_{S_{3}}\right)$ and $V(F)$ are the edges $f_{1} x_{1}, f_{2} x_{2}$ and exactly one of $f_{1} y_{1}, f_{2} y_{2}$. If $|V(F)|=1$ this is true since f_{1} cannot have two nonadjacent neighbours in H, or four neighbours in H. If $f_{1} \neq f_{2}$ then from the minimality of F, f_{1} is nonadjacent to y_{2}, x_{2}, and f_{2} is nonadjacent to x_{1}, y_{1}; at least one of the pairs $f_{1} y_{1}, f_{2} y_{2}$ is an edge since otherwise the subgraph induced on $V(H) \cup V(F)$ is a theta, and not both since otherwise the same subgraph is a prism. (Note that $y_{1} \neq y_{2}$ since $x_{1}, x_{2} \notin M_{s}$.) Thus we may assume that $f_{1} x_{1}, f_{1} y_{1}, f_{2} x_{2}$ are edges, and there are no other edges between $V\left(R_{S_{1}} \cup R_{S_{2}} \cup R_{S_{3}}\right)$ and $V(F)$. If $x_{2} \notin N(\{a, b\})$, we may assume that at least two of p_{1}, p_{2}, p_{3} are adjacent to a, and then there is a theta between x_{2} and a with constituent paths

$$
\begin{aligned}
& x_{2}-R_{S_{2}}-u_{2}-u_{3}-R_{S_{3}}-p_{3}-a, \\
& x_{2}-f_{2}-F-f_{1}-x_{1}-R_{S_{1}}-p_{1}-a,
\end{aligned}
$$

$$
x_{2^{-}}-R_{S_{2}}-p_{2}-a
$$

inserting b before a in one of these paths if necessary. Thus e_{2} is a leaf-edge of J, and $x_{2}=p_{2} \in$ $N(\{a, b\})$, and we may assume that $x_{2} \in N(b)$. We can choose S_{3} such that it has an end in α (from the definition of a crossedge for a tree strip system), and hence we may assume that $p_{3} \in N(a)$. If $p_{1} \in N(a)$ then the same argument gives a theta, which is impossible; so we may assume that every choice of S_{1} has an end in β, and so e_{1} is also a leaf-edge of J. Let r be the end of e_{1} that is not a leaf of J, and let t be the end of e_{2} that is not a leaf. From the definition of a crossedge, $r \neq t$. Exactly two vertices of $R_{S_{1} \cup S_{2}}$ belong to M_{r}, and they are adjacent, say r_{1}, r_{2}; and define t_{1}, t_{2} similarly, where $r_{1}, r_{2}, t_{1}, t_{2}$ are in order in $R_{S_{1} \cup S_{2}}$ (possibly $r_{2}=t_{1}$). By choosing a leaf-path of J with one end r that is edge-disjoint from S_{1}, S_{2}, and has an end in β, and choosing a rung for each of its edges, we find a path R say of $G[V(M)]$ with ends r_{3}, r_{0} say, where r_{3} is adjacent to r_{1}, r_{2}, and $r_{0} \in N(b)$ and there are no other edges between $V(R)$ and $V\left(R_{1} \cup R_{2}\right)$, Define a path T with ends t_{3}, t_{0} similarly, where t_{3} is adjacent to t_{1}, t_{2} and $t_{0} \in N(b)$, and there are no edges between $V(R)$ and $V(T)$. There is a near-prism with bases $\left\{r_{1}, r_{2}, r_{3}\right\},\left\{t_{1}, t_{2}, t_{3}\right\}$ and constituent paths

$$
\begin{gathered}
r_{1}-R_{S_{1}}-y_{1}-f_{1}-F-f_{2}-x_{2}-R_{S_{2}}-t_{2}, \\
r_{3}-R-r_{0}-b-t_{0}-T-t_{3}, \\
r_{2}-R_{S_{1} \cup S_{2}}-t_{1}
\end{gathered}
$$

contrary to 2.1 (note that possibly $r_{2}=t_{1}$). This proves (1).

(2) There is an edge uv of J such that $X(F) \subseteq M_{u} \cup M_{v} \cup M_{u v}$.

Suppose first that for some $u v \in E(J)$, there exists $x \in X(F) \in M_{u v} \backslash\left(M_{u} \cup M_{v}\right)$. Then for each $y \in X(F)$, (1) implies that no vertex of S separates x, y, and so $y \in M_{u} \cup M_{v} \cup M_{u v}$ as required. Thus we may assume that $X(F) \subseteq \bigcup_{v \in V(J)} M_{v}$. Suppose next that some $x \in X$ belongs to M_{v} for only one value of $v \in V(J)$. Let $y \in X(F) \backslash M_{v}$, and choose $u \in V(J)$ with $y \in M_{u}$. Let w be the neighbour of v in J on the path of J between $v, u(y)$. Since w does not separate x, y, and $x \notin M_{w}$ from the choice of x, it follows that $y \in M_{w}$; define $w(y)=w$. If there exist $y_{1}, y_{2} \in X(F) \backslash M_{v}$ with $w\left(y_{1}\right) \neq w\left(y_{1}\right)$, then v separates y_{1}, y_{2}, contrary to (1). So there exists a neighbour w of v in J, such that $y \in M_{w}$ for all $y \in X(F) \backslash M_{v}$; and so the claim holds.

We may therefore assume that every vertex in $X(F)$ belongs to M_{v} for two vertices $v \in V(J)$. For each $x \in X(F)$, let $e(x)$ be the edge $u v$ of J such that $x \in M_{u} \cap M_{v}$. If all the edges $e(x)(x \in X(F))$ have a common end, then the claim holds; so we may assume that there exist $x_{1}, x_{2} \in X(F)$ such that $e\left(x_{1}\right), e\left(x_{2}\right)$ have no common end. Let $e\left(x_{i}\right)=u_{i} v_{i}$ for $i=1,2$; thus $u_{1}, v_{1}, u_{2}, v_{2}$ are distinct vertices of J. Since no vertex of J separates x_{1}, x_{2} by (1), it follows that one of u_{1}, v_{1} is J-adjacent to one of u_{2}, v_{2}; say v_{1}, v_{2} are J-adjacent, and so $u_{1}-v_{1}-v_{2}-u_{2}$ is a path of J. Suppose there exists $x_{3} \in X(F)$ such that $x_{3} \notin M_{v_{1}} \cup M_{v_{2}}$. Let $e\left(x_{3}\right)=u_{3} v_{3}$ say. Thus $u_{3}, v_{3} \neq v_{1}, v_{2}$; and we may assume that v_{1} lies on the path of J between v_{2} and u_{3}, by exchanging x_{1}, x_{2} if necessary. But then v_{1} separate x_{2}, x_{3}, contrary to (1). This proves (2).
(3) There is an edge $u v$ of J such that $X(F) \subseteq M_{u} \cup M_{u v}$.

Suppose not. Choose $u v$ as in (2); then there exist $x_{1}, x_{2} \in X(F)$ with $x_{1} \in M_{u} \backslash M_{u v}$ and
$x_{2} \in M_{v} \backslash M_{u v}$. We may assume that $f_{1} x_{1}$ and $f_{2} x_{2}$ are edges. From the minimality of F, there are no edges between $V\left(F \backslash f_{1}\right)$ and $\left(M_{u} \cup M_{u v}\right) \backslash M_{v}$, and no edges between $V\left(F \backslash f_{2}\right)$ and $\left(M_{v} \cup M_{u v}\right) \backslash M_{u}$.

Let c_{1}, \ldots, c_{k} be the edges of J incident with u, and different from $u v$; and let d_{1}, \ldots, d_{ℓ} be those incident with v and different from $u v$. Thus $k, \ell \geq 2$. If f_{1} is complete to $M_{u} \backslash M_{u v}$ and f_{2} is complete to $M_{v} \backslash M_{u v}$, we can add f_{1} to M_{u}, add f_{2} to M_{v}, and add $V(F)$ to $M_{u v}$, contrary to the maximality of $V(M)$. Thus we may assume that f_{1} has a non-neighbour in $M_{u} \backslash M_{u v}$; and since $x_{1} \in M_{u} \backslash M_{u v}$ and $k \geq 2$, we may assume that $x_{1} \in M_{c_{1}} \cap M_{u}$ and $y_{1} \in M_{c_{2}} \cap M_{u}$, and f_{1}, y_{1} are nonadjacent. Also we may assume $x_{2} \in M_{d_{1}} \backslash M_{u v}$. For $1 \leq i \leq k$ choose a leaf-path C_{i} of J from u and using c_{i}; and for $1 \leq i \leq \ell$ define D_{i} similarly; and choose an e-rung R_{e} for each of their edges e, containing x_{1}, x_{2}, y_{1}. If $x_{1} \notin N(\{a, b\})$, we may assume that at least two of C_{1}, C_{2}, D_{1} have an end in α; and then there is a theta in G with ends x_{1}, a and constituent paths

$$
\begin{gathered}
x_{1}-R_{C_{1}}-a, \\
x_{1}-y_{1}-R_{C_{2}}-a, \\
x_{1}-f_{1}-F-f_{2}-x_{2}-R_{D_{1}}-a,
\end{gathered}
$$

inserting b into one of these if necessary. Thus we may assume that $x_{1} \in N(b)$ say. Consequently c_{1} has an end in β; and so C_{2} can be chosen with an end in α. If also D_{1} can be chosen with an end in α then the same construction still gives a theta; so the leaf of D_{1} is in β. Hence the leaf of D_{2} is not in β, so f_{1} has no neighbour in $M_{d_{2}}$. This restores the symmetry between u, v. Let $R_{u v}$ be a $u v$-rung, with ends $r_{1} \in M_{u} \cap M_{u v}$ and $r_{2} \in M_{v} \cap M_{u v}$. Since b is adjacent to both x_{1}, x_{2}, it follows that $f_{1} \neq f_{2}$, and for the same reason, $r_{1} \neq r_{2}$. From the minimality of F, the only edges between $V(F)$ and $V\left(R_{u v}\right)$ are either $f_{1} r_{1}$ or $f_{2} r_{2}$; since $x_{1}-r_{1}-R_{u v}-r_{2}-x_{1}$ and $x_{1}-f_{1}-F-f_{2}-x_{2}$ are both odd, exactly one of these two edges is present, say $f_{1} r_{1}$ (without loss of generality, since the symmetry between u, v was restored). But then there is a theta with ends r_{1}, x_{2} and constituent paths

$$
\begin{gathered}
r_{1}-R_{u v}-r_{2}-x_{2}, \\
r_{1}-f_{1}-F-f_{2}-x_{2} \\
r_{1}-y_{1}-R_{C_{2}}-a-b-x_{2}
\end{gathered}
$$

contrary to 2.1 . This proves (3).
Choose $u v$ as in (3). Let c_{1}, \ldots, c_{k} be the edges of J incident with u, and different from $u v$. Since $X(F)$ is not local, there exists $x_{1} \in M_{u} \backslash M_{u v}$ and $x_{2} \in M_{u v} \backslash M_{u}$. We may assume that $f_{1} x_{1}$ and $f_{2} x_{2}$ are edges. From the minimality of F, there are no edges between $V\left(F \backslash f_{2}\right)$ and $M_{u v} \backslash M_{u}$, and none between $V\left(F \backslash f_{1}\right)$ and $M_{u} \backslash M_{u v}$. If f_{1} is complete to $M_{u} \backslash M_{u v}$, we can add f_{1} to M_{u} and $V(F)$ to $M_{u v}$, contrary to the maximality of $V(M)$; so we may assume that $x_{1} \in M_{c_{1}} \cap M_{u}$ and $y_{1} \in M_{c_{2}} \cap M_{u}$, and f_{1}, y_{1} are nonadjacent. For $1 \leq i \leq k$ choose a leaf-path C_{i} of J from u and using c_{i}. Choose a leaf-path D of J from u and using $u v$. (Possibly D has length one.) For each edge e of C_{1}, \ldots, C_{k}, D choose an e-rung R_{e}, where $R_{c_{1}}$ contains $x_{1}, R_{c_{2}}$ contains y_{1}, and $R_{u v}$ contains x_{2}.

Suppose that $x_{1} \notin N(\{a, b\})$; then we may assume that at least two of C_{1}, C_{2}, D have an end in α; and then there is a theta in G with ends x_{1}, a and constituent paths

$$
x_{1}-R_{C_{1}}-a,
$$

$$
\begin{gathered}
x_{1}-y_{1}-R_{C_{2}}-a \\
x_{1}-f_{1}-F-f_{2}-x_{2}-R_{D^{-}} a
\end{gathered}
$$

inserting b into one of these if necessary. Thus we may assume that $x_{1} \in N(b)$ say. Hence C_{2} and D can be chosen to have an end in α, and the same construction still serves to find a theta, a contradiction. This proves 4.3.
4.4 Under the hypotheses of 4.2, if F is small, and $a \in N(F)$ and $b \notin N(F)$, then F is α-peripheral.

Proof. Suppose the theorem is false, and choose a small subgraph F not satisfying the theorem, with F minimal. By 4.1, there exist $x, y \in X(F) \cup\{a\}$ such that $\{x, y\}$ is not local, and so F contains a path joining these two vertices; and a has a neighbour in this path, by 4.3 , and so F is this path, from the minimality of F. Let F have ends f_{1}, f_{2}.
(1) Let D be a path of J with distinct ends both in β, and for each $e \in E(D)$ choose an e-rung R_{e}. Then either $X(F)$ contains no vertices of R_{D}, or it contains exactly two and they are adjacent.

Let the ends of D be $t_{1}, t_{2} \in \beta$. Since R_{d} has both ends in $N(b)$, it follows that a has no G neighbours in $V\left(R_{d}\right)$; and by adding b to R_{D} we obtain a hole H, and so a has a unique G-neighbour b in $V(H)$. We may assume there exists $y \in V(H) \cap X(F)$; and since $\{a, y\}$ is not local, the minimality of F implies that F is a path between a, y; say a is adjacent to f_{1} and to no other vertex of F, and y is adjacent to f_{2} and to no other vertex of F. For the same reason, $F \backslash f_{2}$ is anticomplete to $V(H)$.

If f_{2} has two nonadjacent vertices in $V(H)$, there are two paths P_{1}, P_{2} between f_{2}, b with interior in $V(H)$, and with union a hole; but then there is a theta with ends f_{2}, b and constituent paths

$$
\begin{gathered}
f_{2}-F-f_{1}-a-b \\
f_{2}-P_{1}-b \\
f_{2}-P_{2}-b
\end{gathered}
$$

a contradiction.
If f_{2} has a unique neighbour in $V(H)$, say x, and x is nonadjacent to b, then $G[V(H \cup F)]$ is a theta with ends x, b, again a contradiction.

Suppose next that f_{2} has a unique neighbour in $V(H)$, say x, and x is adjacent to b. Let $x \in M_{t_{1}}$, say, and let s_{1} be the neighbour of t_{1} in J. Since $a-b-x-f_{2}-a$ is not a 4-hole, it follows that a, f_{2} are not adjacent, and therefore $f_{1} \neq f_{2}$, and so $a \in N\left(F \backslash f_{2}\right)$. From the minimality of $F, X\left(F \backslash f_{2}\right) \cup\{a\}$ is local. Choose $t_{3} \in \alpha$ such that $X\left(F \backslash f_{2}\right) \cap M_{e}=\emptyset$ (this is possible, since $|\alpha| \geq 2$ and $X\left(F \backslash f_{2}\right) \cup\{a\}$ is local). Let D_{3} be a path of J, edge-disjoint from D and with ends d, t_{3} where $d \in V(D)$. For each $e \in E\left(D_{3}\right)$ choose an e-rung R_{e}. Let D_{1}, D_{2} be the subpaths of D with ends d and t_{1}, t_{2} respectively.

If F is anticomplete to $R_{D_{3}}$, there is a theta with ends x, a, and constituent paths

$$
\begin{gathered}
x-b-a \\
x-f_{2}-F-f_{1}-a
\end{gathered}
$$

$$
x-R_{D_{1} \cup D_{3}}-a,
$$

contrary to 2.1. Thus F is not anticomplete to $R_{D_{3}}$. Now $F, R_{D_{3}}$ are vertex-disjoint, since $V(F)$ is disjoint from $V(M)$ and $V\left(R_{D_{3}}\right) \subseteq V(M)$. Let $y \in V\left(R_{D_{3}}\right)$ with a neighbour in $V(F)$. If y has a neighbour in $V\left(F \backslash f_{2}\right)$, then $\{a, y\}$ is local, from the minimality of F; but then $y \in N(a)$ and so $y \in M_{t_{3}}$, contrary to the choice of e_{3}. Thus y is adjacent to f_{2} and to no other vertex of F. From the minimality of $F,\{x, y\}$ is local; and so either $y \in M_{s_{1} t_{1}}$ or $x, y \in M_{s_{1}}$. The first is impossible since $s_{1} t_{1}$ is not an edge of D_{3}; and so $x, y \in M_{s_{1}}$. In particular, $d=s_{1}$, and y is the end of $R_{D_{3}}$ in M_{d}. But then

$$
y-R_{D_{2}}-b-a-f_{1}-F-f_{2}-y
$$

is a hole, in which x has exactly four neighbours, making a 4 -wheel, a contradiction. This proves (1).
Let X_{1} be the set of $x \in X(F) \cap V(M)$ such that $x \in M_{e}$ for some $e \in E(J)$ not incident with any vertex in α, and let $X_{2}=X(F) \backslash X_{1}$. From the minimality of F, there are no edges between $V\left(F \backslash f_{2}\right)$ and X_{1}.
(2) $X_{1} \neq \emptyset$.

Suppose that $X_{1}=\emptyset$. Consequently the only edges $e \in E(J)$ with $X(F) \cap M_{e} \neq \emptyset$ are those with an end in α. Suppose that there are distinct e_{1}, e_{2}, both with an end in α, such that $X(F) \cap M_{e_{i}} \neq \emptyset$ for $i=1,2$. Let $e_{i}=s_{i} t_{i}$ where $t_{i} \in \alpha$ for $i=1,2$. Let D be a path of J with both ends in β, containing s_{1} and s_{2}. Let D have end-edges $t_{1}^{\prime}, t_{2}^{\prime}$, where $t_{1}^{\prime}, s_{1}, s_{2}, t_{2}^{\prime}$ are in order on D. For $i=1,2$ let D_{i} be the subpath of D between t_{i}^{\prime}, s_{i}; and let D_{3} be the subpath between s_{1}, s_{2}. For each $e \in E(D) \cup\left\{e_{1}, e_{2}\right\}$ choose an e-rung R_{e}, with $V\left(R_{e_{i}}\right) \cap X(F)$ nonempty for $i=1,2$. Let the ends of $R_{e_{1}}, R_{D_{1}}, R_{D_{3}}$ in $M_{s_{1}}$ be p_{1}, p_{2}, p_{3} respectively, and let the ends of $R_{e_{2}}, R_{D_{2}}, R_{D_{3}}$ in $M_{s_{2}}$ be q_{1}, q_{2}, q_{3} respectively. Now F is anticomplete to R_{D}, since $X_{1}=\emptyset$. Since $X(F)$ meets both $R_{e_{1}}, R_{e_{2}}$, there is an induced path Q between p_{1}, q_{1} with interior in $V\left(R_{e_{1}} \cup R_{e_{2}} \cup F\right)$. There is a near-prism in G with bases $\left\{p_{1}, p_{2}, p_{3}\right\},\left\{q_{1}, q_{2}, q_{3}\right\}$ and constituent paths

$$
\begin{gathered}
p_{2}-R_{D_{1}-b-R_{D_{2}}-q_{2},} \\
p_{1}-Q-q_{1}, \\
p_{3}-R_{D_{3}}-q_{3},
\end{gathered}
$$

a contradiction.
Consequently there is a unique $e \in E(J)$ such that $X(F) \cap M_{e} \neq \emptyset$, say $e=s t$ where $t \in \alpha$. Since $X(F)$ does not satisfy the theorem, it follows that $X(F) \nsubseteq M_{t}$; let $x \in X(F) \backslash M_{t}$. Since $\{a, x\}$ is not local, we may assume that $f_{1} a$ and $f_{2} x$ are edges. But then we can add $V(F)$ to M_{e} and f_{1} to M_{t}, contrary to the maximality of $V(M)$. This proves (2).

For each edge $e \in E(J)$, choose an e-rung R_{e}. The subgraph induced on $\bigcup_{e \in E(J)} V\left(R_{e}\right)$ is the line-graph $L(T)$ of a tree T, where T has shape J, and $E(T)=\bigcup_{e \in E(J)} V\left(R_{e}\right)$. In particular, $E(T)=V\left(R_{J}\right)$, and $V(J)$ is the set of branch-vertices of T. Let us call such a tree T a realization of M. If P is a subgraph of T, then $E(P)$ is a set of vertices of G, and we denote $G[E(P)]$ by $L(P)$ (it is indeed the line-graph of P).
(3) For every realization T with $E(T) \cap X_{1} \neq \emptyset$, there exists $d \in V(T)$ such that $X_{1} \cap E(T)$ consists of all edges of T incident with d that belong to branches of T that do not have an end-edge in $N(a)$.

Let P be a path of T with distinct ends, and both end-edges in $N(b)$, with $E(P) \cap X_{1} \neq \emptyset$. By (1) there exists $d \in V(P)$ such that $X(F) \cap E(P)$ is the set of edges of P that are T-incident with d. We will show that d satisfies the claim. Let P_{1}, P_{2} be the two subpaths of P between d and an end of P, and let x_{1}, x_{2} respectively be the edges of P_{1}, P_{2} that are T-incident with d. Suppose that $x_{3} \in E(T) \cap X(F)$; we will show that x_{3} is incident with d in T. We may assume that $x_{3} \neq E(P)$. Let $e_{3} \in E(J)$ with $x_{3} \in M_{e_{3}}$. Since $x_{3} \notin X_{2}$, there is a path of J with both ends in β containing e_{3}; and hence there is a path of T containing x_{3} with both end-edges in $N(b)$. Choose a path P_{3} of T containing x_{3} with one end-edge in $N(b)$ and the other in $V(P)$, edge-disjoint from P. Let p be the end of P_{3} in $V(P)$; and let $P_{1}^{\prime}, P_{2}^{\prime}$ be the two subpaths of P between p and the ends of P. If $p \neq d$, then d is an internal vertex of one of $P_{1}^{\prime}, P_{2}^{\prime}$, say P_{1}^{\prime}; and $X(F)$ contains two nonconsecutive edges of the path $P_{1}^{\prime} \cup P_{3}$, contrary to (1). So $p=d$. From (1) applied to the path $P_{1} \cup P_{3}$, it follows that there is a unique edge of P_{3} in $X(F)$, and it is T-incident with d. This proves that all edges of T in $X(F)$ are T-incident with d.

Next we show that every edge of T that is T-incident with d, and not in a branch of T with end-edge in $N(a)$, belongs to X_{1}. Let y be an edge of T that is T-incident with d, and let $y \in M_{e}$ say, with no end in α. We must show that $y \in X(F)$. To see this, choose a path P_{3} of T containing y with one end-edge in $N(b)$ and one end d, edge-disjoint from P. From (1) applied to $P_{1} \cup P_{3}$ it follows that $y \in X(F)$. This proves (3).
(4) Let T, d be as in (3). Then there is a branch S of T with one end d and with an end-edge in $N(a)$, such that $X_{2} \cap E(T) \subseteq E(S)$. In particular $d \in V(J)$, and so $X_{1} \cap E(T) \subseteq M_{d}$.

If $X_{2} \cap E(T)=\emptyset$, we can assume there is no branch S of T with one end d and with an endedge in $N(a)$ (for otherwise the claim holds); and then by (3), $X(F) \cap E(T)$ consists of all edges of T incident with d, and the subgraph of G induced on $E(T) \cup V(F) \cup\{a, b\}$ is an extended tree line-graph $H\left(T^{\prime}\right)$ with cross-edge $a b$, for some tree T^{\prime} whose shape has more edges than J, contrary to the choice of J. Thus we may assume that $X_{2} \cap E(T) \neq \emptyset$. Let $t \in \alpha$ with J-neighbour s, such that the branch, S say, of T with ends s, t contains an edge in $X(F)$. If $s=d$ for every such choice of t, then the claim holds (because there is at most one leaf of J in αJ-adjacent to d). Thus we may assume that $s \neq d$. Let P be a path of T, including the subpath of T between s, d, and with both end-edges in $N(b)$. Now P is divided into three subpaths by s, d, namely from an end of P to s, from s to d, and from d to the other end of P. We call these P_{1}, P_{2}, P_{3} respectively. Let d_{1}, d_{2}, d_{3} be the edges of T incident with s that belong to $E\left(P_{1}\right), E\left(P_{2}\right), E(S)$ respectively. Thus exactly one of x_{1}, x_{2} belongs to $E\left(P_{2}\right)$, say x_{1}. Since there are edges between $V(F)$ and $V(L S)$), there is an induced path Q between d_{3}, f_{2} with interior in $V(L(S) \cup F)$. Then there is a near-prism in G with bases $\left\{d_{1}, d_{2}, d_{3}\right\},\left\{f_{2}, x_{1}, x_{2}\right\}$ and constituent paths

$$
\begin{gathered}
d_{1}-L\left(P_{1}\right)-b-L\left(P_{3}\right)-x_{2} \\
d_{3}-Q-f_{2} \\
d_{2}-L\left(P_{2}\right)-x_{1}
\end{gathered}
$$

contrary to 2.1 . This proves (4).
(5) Let T, d, S be as in (4), and let S have ends s, d say; then $X_{2} \subseteq M_{s d}$.

For each $e \in E(J)$, let R_{e} be the e-rung used to define T. If some vertex $x \in X_{2}$ belongs to M_{e} say where $e \in E(J)$, then e has an end in α from the definition of X_{2}, and if $e \neq s d$, we could replace R_{e} with an e-rung that contains x, to obtain a realization that violates (4). This proves (5).
(6) Let T, d, S be as in (4), and let S have ends s, d say; then $X_{1}=M_{d} \backslash M_{s d}$.

There are at least two edges e_{1}, e_{2} of J, J-incident with d and with no end in α; let x_{1}, x_{2} be the edges of the corresponding branches of T that are T-incident with d. We show first that $X_{1} \subseteq M_{d} \backslash M_{s d}$. Let $x \in X_{1}$, and let $x \in M_{e}$ where $e \in E(J)$. Let R_{e}^{\prime} be an e-rung containing x. Let T^{\prime} be the realization of M obtained by replacing R_{e} by R_{e}^{\prime}, and otherwise using all the same rungs. Since $e_{1} \neq e_{2}$ we may assume that $e \neq e_{2}$; and so $x_{2}, x \in V\left(T^{\prime}\right)$. Hence by (4) applied to T^{\prime}, e_{2}, e have a common end $d^{\prime} \in V(J)$, and $x_{2}, x \in M_{d^{\prime}}$. Also either $e=e_{1}$ or $x_{1} \in E\left(T^{\prime}\right)$; and so in either case e_{1} is incident with d^{\prime}. Consequently d^{\prime} is the common end of e_{1}, e_{2} in J, and so $d^{\prime}=d$. This proves that $x \in M_{d}$, and so $X_{1} \subseteq M_{d} \backslash M_{s d}$.

Next we show that $M_{d} \backslash M_{s d} \subseteq X_{1}$. To see this, let $y \in M_{d} \backslash M_{s d}$. Let $e \in E(J)$ with $y \in M_{e}$; since $y \notin M_{s d}$ it follows that e has no end in α. Let R_{e}^{\prime} be an e-rung containing y. Since $y \in M_{d}$ it follows that e is J-incident with d. Let T^{\prime} be the realization obtained by replacing R_{e} by R_{e}^{\prime}. Since $e_{1} \neq e_{2}$ we may assume that $e \neq e_{2}$. Since e has no end in α, there is a path P^{\prime} of T^{\prime} with $x_{2}, y \in E\left(P^{\prime}\right)$ and with both end-edges in $N(b)$; and so X_{1} contains either zero or two consecutive edges in this path, by (1). Not zero, since $x_{2} \in E\left(P^{\prime}\right)$; so a unique vertex of R_{e}^{\prime} belongs to X_{1}, and that vertex is in M_{d}. Since y is the only vertex of R_{e}^{\prime} in M_{d}, it follows that $y \in X_{1}$. This proves (6).

From (5) and (6) we can add f_{2} to M_{d} and add f_{1} to M_{s}, and add $V(F)$ to $M_{s d}$, contrary to the maximality of $V(M)$. This proves 4.4.
4.5 Under the hypotheses of 4.2, if F is small, and $a, b \in N(F)$, then F is peripheral.

Proof. We claim first:
(1) $X(F) \subseteq N[\{a, b\}]$.

Suppose $x \in V(M)$ has a neighbour in $V(F)$, and $x \notin N(\{a, b\})$. Choose a minimal path P of F such that x and at least one of a, b has a neighbour in $V(P)$. Thus P has one end adjacent to x and the other to a, say. But a, b have no common neighbour in $V(F)$, since $V(F) \cap Z=\emptyset$; and so from the minimality of P, b has no neighbour in $V(P)$. But then P violates 4.4. This proves (1).
(2) Either $X(F) \subseteq N[a]$ or $X(F) \subseteq N[b]$.

Suppose not; then there is a vertex $c \in V(M) \cap N[a]$ and $d \in V(M) \cap N[b]$, joined by a path P with interior in $V(F)$. Choose c, d and P such that P has minimum length. Choose $u \in \alpha$ and $v \in \beta$ with $c \in M_{u}$ and $d \in M_{v}$, and let D be a path of J with ends u, v. Let p, q be the neighbours in
P of c, d respectively. Let c_{1}, \ldots, c_{k} be the vertices of $N(a) \cap V(P)$ in order on P, with $c_{1}=c$. Note that c_{1}, \ldots, c_{k} are not adjacent to b since $V(P) \cap Z=\emptyset$. For $1 \leq i<k$, let P_{i} be the subpath of P between c_{i} and c_{i+1}. Since $a-c_{i}-P_{i}-c_{i+1}-a$ is a hole, and b is adjacent to a and not to c_{i}, c_{i+1}, it follows that b has an even number of neighbours in P_{i}. Choose $u^{\prime} \in \alpha \backslash\{u\}$ and $c^{\prime} \in M_{u^{\prime}}$. By 4.3 and 4.4, p has no neighbour in $M_{u^{\prime}}$, since p has a neighbour in M_{u} and $X(p)$ is local; and by the minimality of P, no vertex of P different from p has a neighbour in $M_{u^{\prime}}$. In particular c_{k}, c^{\prime} are nonadjacent. Let S^{\prime} be an induced path of G between c^{\prime}, d with interior in $V(M) \backslash N[\{a, b\}]$. Then $a-c^{\prime}-S^{\prime}-d-P-c_{k^{-}} a$ is a hole (note that c_{k} is not adjacent to c^{\prime}), and b has at least two nonadjacent neighbours in it (a and d), and so it has an odd number; and therefore b has an even number of neighbours in the subpath of P between c_{k}, d. Hence b has an even number of neighbours in $V(P)$ altogether. Also, $d-P-c-R_{D^{-}} d$ is a hole, and b has an even number of neighbours in it, at least one; and it has exactly two and they are adjacent. Consequently b is adjacent to q and has no other neighbours in $V(P)$ except d. Similarly a is adjacent to c, p and has no other neighbours in $V(P)$. But then the subgraph induced on $V\left(R_{D}\right) \cup V(P) \cup\{a, b\}$ is a prism, a contradiction. This proves (2).

From (2) we may assume that $X(F) \subseteq N[a]$. Suppose that there exist distinct $u, u^{\prime} \in \alpha$ such that $X(F) \cap M_{u}, X(F) \cap M_{u^{\prime}} \neq \emptyset$. Choose $c \in X(F) \cap M_{u}$ and $c^{\prime} \in X(F) \cap M_{u^{\prime}}$, such that there is an induced path P between c, c^{\prime} with interior in $V(F)$. Both ends of P are adjacent to a; let the neighbours of a in P be c_{1}, \ldots, c_{k} in order on P, where $c_{1}=c$ and $c_{k}=c^{\prime}$. For $1 \leq i<k$, let P_{i} be the subpath of P between c_{i}, c_{i+1}. For $1 \leq i<k, a-c_{i}-P_{i}-c_{i+1^{-}} a$ is a hole, and since b is adjacent to a and not to c_{i}, c_{i+1}, b has an odd number of neighbours in this hole. Hence it has an even number in P_{i} for each i, and so an even number in P altogether. Let D be the path of J with ends u, u^{\prime}, and choose an internal vertex $d \in V(D)$. Let D_{1} be the subpath of D with ends d, u, and let D_{2} be the subpath with ends d, u^{\prime}. Let D_{3} be a path of J between d, v where $v \in \beta$. For each edge g of $D_{1} \cup D_{2} \cup D_{3}$, choose a g-rung R_{g}, with $c \in V\left(R_{e}\right)$ and $c^{\prime} \in V\left(R_{e^{\prime}}\right)$. For $i=1,2,3$ let d_{i} be the end of $R_{D_{i}}$ in M_{d}. Then

$$
c-R_{D_{1}-}-d_{1}-d_{2}-R_{D_{2}}-c^{\prime}-P-c
$$

is a hole, and b has an even number of neighbours in it; so it has zero, or exactly two adjacent neighbours. Zero is impossible since then 4.3 and 4.4 would imply that $X(P)$ is local. Thus b has exactly two neighbours x, y in $V(P)$, and they are adjacent. Since $x \notin Z$ it follows that c, x, y, c^{\prime} are all distinct. Let c, x, y, d be in order in P. Then the subgraph induced on $V\left(R_{D_{1}} \cup R_{D_{2}} \cup R_{D_{3}} \cup P\right)$ is a prism, with bases $\{b, x, y\},\left\{d_{1}, d_{2}, d_{3}\right\}$, and constituent paths

$$
\begin{gathered}
d_{1}-R_{D_{1}-c-P-x}, \\
d_{2}-R_{D_{2}}-c^{\prime}-P-y, \\
d_{3}-R_{D_{3}}-b,
\end{gathered}
$$

a contradiction. This proves 4.5 .
From 4.3, 4.4 and 4.5, this proves 4.2.

5 Triangles through the cross-edge

Next we prove some results about the set called Z in 4.2 . We need the following lemma.
5.1 Let G be even-hole-free, and let H be a hole of G, with vertices $h_{1}-h_{2}-\cdots-h_{n}-h_{1}$ in order. Let $a, b \in V(G) \backslash V(H)$ each have at least three neighbours in $V(H)$, and let $\{a, b\}$ be complete to $\left\{h_{1}, h_{n}\right\}$. If a, b are nonadjacent, then one of a, b is adjacent to h_{n-1}, h_{n}, h_{1} and to no other vertices in $V(H)$, and the other is adjacent to h_{n}, h_{1}, h_{2} and to no other vertices in $V(H)$.

Proof. Let P be the path $h_{2}-h_{3}-\cdots-h_{n-1}$, and let A, B be the sets of neighbours of a, b respectively in $V(P)$. Since G has no 4 -hole, it follows that $A \cap B=\emptyset$. An (A, B)-gap means a subpath of P with one end in A and the other in B, and with no internal vertices in $A \cup B$. If there is an (A, B)-gap containing both h_{n-1}, h_{2} then the theorem holds, and so we may assume not; and hence every (A, B) gap is anticomplete to one of h_{n}, h_{1}, and therefore has odd length (because it can be completed to a hole by adding a, b and one of h_{n}, h_{1}). It follows that no two (A, B)-gaps are anticomplete; because their union with $\{a, b\}$ would induce an even hole.

There is an (A, B)-gap, since a, b each have at least three neighbours in $V(H)$. Choose an (A, B) gap $h_{i^{-}} \cdots-h_{j}$ with $i<j$ and i minimum, and we may assume that $h_{i} \in A$. Hence b is nonadjacent to h_{2}, \ldots, h_{j-1}, and so $b-h_{1}-\cdots-h_{j}-b$ is a hole, and therefore j is even. Moreover, $j-i$ is odd, since $h_{i^{-}} \cdots-h_{j}$ is an (A, B)-gap; and since n is odd, it follows that $n-i=n+(j-i)-j$ is even. Consequently $a-h_{i^{-}} \cdots-h_{n^{-}} a$ is not a hole, and so there exists $k \in\{j+1, \ldots, n-1\}$ minimum such that $h_{k} \in A$. If $B \cap\left\{h_{i}, \ldots, h_{k}\right\}=\left\{h_{j}\right\}$, there is a theta with ends b, h_{j} induced on $\left\{a, b, h_{i}, \ldots, h_{k}\right\}$, a contradiction. Thus one of h_{j+1}, \ldots, h_{k-1} is in B, and since no two (A, B)-gaps are anticomplete, it follows that $h_{j+1} \in B$ and $h_{j+2}, \ldots, h_{k} \notin B$. Since no two (A, B)-gaps are anticomplete, b has no more neighbours in $V(P)$; but then it is the centre of a 4 -wheel with hole H, a contradiction. This proves 5.1.

Let G be even-hole-free, let $a b \in E(G)$, and let (J, M) be optimal for $a b$. Let Z be the set of common neighbours of a, b in G. It would be helpful if Z were a clique, but unfortunately this is not true, even assuming that a is splendid. It is true if both a, b are splendid, but that assumption is too strong for our application (to find a bisimplicial vertex, later). But here is something on those lines, good enough for the application and true without any additional hypothesis. Let us say that a vertex $y \in Z$ is a-external if there is a path from y to $V(M) \backslash N[a]$ containing no neighbours of a except y, and we define b-external similarly. Let us say a vertex y is major if $y \in Z$, and y is both a-external and b-external. For convenience we write $N[a, b]$ for $N[\{a, b\}]$.
5.2 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Then the set of all major vertices is a clique.

Proof. Let Z be the set of common neighbours of a, b in G, and Y the set of major vertices (thus $Y \subseteq Z)$.
(1) If $y \in Y$, then either y is complete to one of $N(a) \cap V(M), N(b) \cap V(M)$, or there is a path from y to $V(M) \backslash N[a, b]$ containing no neighbours of a or b except y.

We may assume that $X(y) \subseteq N[a, b]$, for otherwise a path of length one satisfies the claim. Since y is b-external, there is a minimal path P with one end y, containing no neighbour of b except y, such that its other end (p say) has a neighbour in $V(M) \backslash N[b]$. It follows that $V(P) \cap V(M)=\emptyset$. Similarly, there is a minimal path Q between y and q say, containing no neighbour of a except y,
where $X(q) \nsubseteq N[a]$. Thus a might have neighbours in $V(P \backslash y)$, and b might have neighbours in $V(Q \backslash y)$.

If $X(p) \nsubseteq N[a, b]$, then by $4.2, a$ has no neighbour in $V(P \backslash y)$ and the claim holds. Thus we may assume that $X(p) \subseteq N[a, b]$, and $X(p) \nsubseteq N[b]$ from the definition of P. We claim that $X(p) \subseteq N[a]$. Suppose not; then p has a neighbour in $V(M) \cap N[a]$ and one in $V(M) \cap N[b]$. By 4.2, p is adjacent to both a, b, and so $p=y$. Choose $t_{1} \in \alpha$ such that $X(p) \cap M_{t_{1}} \neq \emptyset$, and $t_{2} \in \beta$ such that $X(p) \cap M_{t_{2}} \neq \emptyset$, and let D be a path of J with ends t_{1}, t_{2}. For $i=1,2$ let $e_{i} \in E(J)$ be incident with t_{i}. For each $e \in E(D)$, choose an e-rung R_{e}, such that $R_{e_{1}}$ contains a vertex in $X(p) \cap N[a]$ and $R_{e_{2}}$ contains a vertex in $X(p) \cap N[b]$. Then p has exactly four neighbours in the hole $a-R_{D}-b-a$, since $X(y) \subseteq N[a] \cup N[b]$, and so G contains a 4 -wheel, a contradiction. This proves that $X(p) \subseteq N[a]$. Similarly $X(q) \subseteq N[b]$.

Let $t_{1} \in \alpha$ and $t_{2} \in \beta$, such that $X(p) \cap M_{t_{1}} \neq \emptyset$, and $X(q) \cap M_{t_{2}} \neq \emptyset$. For $i=1,2$ let $e_{i} \in E(J)$ be J-incident with t_{i}. Choose $v_{1} \in X(p) \cap M_{t_{1}}$ and $v_{2} \in X(q) \cap M_{t_{2}}$. Let D be a path of J with ends t_{1}, t_{2}, and for each $e \in E(D)$ let R_{e} be an e-rung, with $v_{i} \in V\left(R_{e_{i}}\right)$ for $i=1,2$. Then R_{D} is an induced path with ends v_{1}, v_{2}, and with interior anticomplete to a, b and to $V(P \cup Q)$.

By 4.2, there is no path between v_{1}, v_{2}, with interior disjoint from $V(M) \cup Z$, and so $V(P \backslash y) \cup\left\{v_{1}\right\}$ is disjoint from and anticomplete to $V(Q \backslash y) \cup\left\{v_{2}\right\}$. Consequently $v_{1}-P-y-Q-v_{2}$ is an induced path. Now as we saw above, $p \neq q$ and so at least one of P, Q has length at least one, say Q. Thus b has two nonadjacent neighbours in the hole

$$
v_{2}-q-Q-y-P-p-v_{1}-R_{D}-v_{2},
$$

and so has an odd number, at least three. They all belong to the path $v_{2}-q-Q-y$. We may assume that y is not complete to $V(M) \cap N[a]$, so there exists $e_{3}=s_{3} t_{3}$ where $t_{3} \in \alpha$ and an e_{3}-rung $R_{e_{3}}$ such that y has no neighbour in $V\left(R_{e_{3}}\right)$ (because $\left.X(y) \subseteq N[a, b]\right)$. Let D be a path of J with ends t_{2}, t_{3}, and for each $e \in E(D)$ let R_{e} be an e-rung, with $v_{i} \in V\left(R_{e_{i}}\right)$ for $i=2,3$. Then the hole

$$
v_{2}-q-Q-y-a-v_{3}-R_{D}-v_{2}
$$

contains exactly one neighbour of b in addition to those in $v_{2}-q-Q-y$, and so contains an even number, a contradiction. This proves (1).

For each $y \in Y$, let P_{y} be some minimal path of G between y and its other end (say p_{y}) such that a, b have no neighbours in $V\left(P_{y} \backslash y\right)$ and $X\left(p_{y}\right) \nsubseteq N[a, b]$, if there is such a path. If not, let P_{y} be the one-vertex path with vertex y, and let $p_{y}=y$. From the minimality of $P_{y}, X\left(P_{y} \backslash p_{y}\right) \subseteq N[a, b]$. (Note that there are two cases when $p_{y}=y$, the two extremes: when we don't need the path P_{y}, because y itself has a neighbour in $V(M) \backslash N[a, b]$; and when we can't find the path P_{y}, and therefore y is complete to one of $N[a] \cap V(M), N[b] \cap V(M)$ by (1).)
(2) Let $t_{1} \in \alpha$ and $t_{2} \in \beta$, and let D be a path of J with ends t_{1}, t_{2}. Let $y \in Y$. If

$$
X\left(P_{y}\right) \backslash N[a, b] \nsubseteq \bigcup_{e \in E(D)} M_{e}
$$

there is a vertex d of D and a path Q of G with the following properties:

- d is an internal vertex of D, incident with edges g_{1}, g_{2} of D say;
- Q has ends y, d_{3}, where $d_{3} \in M_{d} \backslash\left(M_{g_{1}} \cup M_{g_{2}}\right)$;
- $V(Q) \subseteq V\left(P_{y}\right) \cup V(M) ;$ and
- Q^{*} is anticomplete to $\bigcup_{e \in E(D)} M_{e}$, and $V(Q \backslash y)$ is anticomplete to $\{a, b\}$.

Since $X\left(P_{y}\right) \backslash N[a, b] \nsubseteq \bigcup_{e \in E(D)} M_{e}$, there exists $e_{3} \in E(J) \backslash E(D)$ such that $X\left(P_{y}\right) \backslash N[a, b]$ meets $M_{e_{3}}$. Let C be a path of J, containing e_{3} and edge-disjoint from D and with one end in $V(D)$; and choose e_{3}, C with C minimal. Let d be the end of C in $V(D)$. Choose an e-rung R_{e} for each $e \in E(C)$, choosing $R_{e_{3}}$ to contain a vertex of $X\left(P_{y}\right) \backslash N[a, b]$. Then R_{C} is an induced path containing a vertex in $X\left(p_{y}\right) \backslash N[a, b]$, with ends c, d_{3} say, and $d_{3} \in M_{d} \backslash\left(M_{g_{1}} \cup M_{g_{2}}\right)$, where g_{1}, g_{2} are the two edges of D incident with d. Thus $R_{C} \backslash d_{3}$ is anticomplete to $\bigcup_{e \in E(D)} M_{d}$. Moreover no vertex of R_{C} belongs to $N[a, b]$ except possibly c, and in that case p_{y} has a neighbour in R_{C} different from c. Choose a minimal subpath S of R_{C} that has one end d_{3} and the other adjacent to p_{y}. Then no vertex of S is adjacent to a or b, and so setting Q to be the path $y-P_{y^{-}}-p_{y}-S-d_{3}$ satisfies the claim. This proves (2).
(3) Let $t_{1} \in \alpha$ and $t_{2} \in \beta$, and let D be a path of J with ends t_{1}, t_{2}. For each $e \in E(D)$ let R_{e} be an e-rung. For each $y \in Y$, either $X\left(P_{y}\right) \cap V\left(R_{D}\right) \neq \emptyset$, or

$$
\emptyset \neq X\left(P_{y}\right) \backslash N[a, b] \subseteq \bigcup_{d \in E(D)} M_{d}
$$

In either case, $X\left(P_{y}\right) \cap \bigcup_{d \in E(D)} M_{d}$ is nonempty.
If $X\left(P_{y}\right) \cap V\left(R_{D}\right) \neq \emptyset$ then the claim holds, so we may assume that $X\left(P_{y}\right) \cap V\left(R_{D}\right)=\emptyset$. Consequently y is not complete to either of $N[a] \cap V(M), N[b] \cap V(M)$, and so by (1), $X\left(P_{y}\right) \nsubseteq N[a, b]$. Suppose that

$$
X\left(P_{y}\right) \backslash N[a, b] \nsubseteq \bigcup_{e \in E(D)} M_{e} .
$$

Choose d, Q as in (2), and for $i=1,2$ let D_{i} be the subpath of D between d and t_{i}. Let Q have ends y, d_{3}. Thus d_{3} has two adjacent neighbours d_{1}, d_{2} in R_{D}, where $d_{i} \in R_{D_{i}}$ for $i=1,2$. But then there is a near-prism with bases $\left\{d_{1}, d_{2}, d_{3}\right\}$ and $\{a, b, y\}$, with constituent paths

$$
\begin{gathered}
a-R_{D_{1}}-d_{1}, \\
b-R_{D_{2}}-d_{2}, \\
y-Q-d_{3},
\end{gathered}
$$

a contradiction. This proves (3).
Choose distinct $a_{1}, a_{2} \in \alpha$ and $b_{1}, b_{2} \in \beta$ such that the paths D_{1}, D_{2} are vertex-disjoint, where for $i=1,2, D_{i}$ is the path of J with ends a_{i}, b_{i}. (This is possible since J has at least two vertices that are not leaves, by hypothesis.) For $i=1,2$, let $W_{i}=\bigcup_{e \in E\left(D_{i}\right)} M_{e}$. We observe that W_{i} is connected, because D_{i} has an internal vertex d, and $M_{d} \cap W_{i}$ is connected, and every other vertex of W_{i} can be joined to $M_{d} \cap W_{i}$ by a union of rungs.

Suppose that $y_{1}, y_{2} \in Y$ are nonadjacent. For $i=1,2$, let us say an induced path T of G between y_{1}, y_{2} is i-normal if for every $v \in V\left(T^{*}\right) \backslash W_{i}$, there exists $j \in\{1,2\}$ such that $v \in V\left(P_{y_{j}} \backslash y_{j}\right)$ and
$X\left(P_{y_{j}} \backslash y_{j}\right) \cap W_{i}$ is nonempty.
(4) For $i=1,2$, there is an i-normal path.

Let $i \in\{1,2\}$. For each $j \in\{1,2\}$, (3) implies that $X\left(P_{y_{j}}\right) \cap W_{i} \neq \emptyset$; and so either y_{j} has a neighbour in W_{i}, or $X\left(P_{y_{j}} \backslash y_{j}\right) \cap W_{i} \neq \emptyset$. Hence there is a path S_{j} between y_{j} and a vertex of W_{i}, such that for every $v \in V\left(S_{j}\right)$, either

- $v \in\left\{y_{j}\right\} \cup W_{i}$; or
- $v \in X\left(P_{y_{j}} \backslash y_{j}\right)$, and $X\left(P_{y_{j}} \backslash y_{j}\right) \cap W_{i} \neq \emptyset$.

Since W_{i} is connected, it follows that there is an induced path joining y_{1}, y_{2} with interior in $V\left(S_{1} \cup S_{2}\right) \cup W_{i}$; and this is therefore i-normal. This proves (4).
(5) For $i=1,2$, let T_{i} be an i-normal path. Then T_{1}^{*} is anticomplete to T_{2}^{*}.

Suppose not. Since W_{1} is anticomplete to W_{2}, we may assume (exchanging D_{1}, D_{2} or y_{1}, y_{2} if necessary) that there exist $v_{1} \in V\left(P_{y_{1}} \backslash y_{1}\right) \cap T_{1}^{*}$, and $v_{2} \in T_{2}^{*}$, such that v_{1}, v_{2} are equal or adjacent. Hence $X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{1} \neq \emptyset$. By 4.2, $X\left(P_{y_{1}} \backslash y_{1}\right)$ is local, and consequently $X\left(P_{y_{1}} \backslash y_{1}\right)$ is disjoint from W_{2}; and in particular $v_{2} \notin W_{2}$, and so $v_{2} \in V\left(P_{y_{2}} \backslash y_{2}\right) \cap T_{2}^{*}$. By the same argument with T_{1}, T_{2} exchanged, $X\left(P_{y_{2}} \backslash y_{2}\right)$ meets W_{2}. But $Q=\left(P_{y_{1}} \backslash y_{1}\right) \cup\left(P_{y_{2}} \backslash y_{2}\right)$ is connected and $X(Q)$ meets both W_{1} and W_{2}, and so is not local, contrary to 4.2. This proves (5).

From (4), for $i=1,2$ there is an i-normal path T_{i}. By (5), $T_{1} \cup T_{2}$ is a hole, and so one of T_{1}, T_{2} is odd and one is even; say T_{1} is odd and T_{2} is even. For every 1-normal path $T_{1}^{\prime}, T_{1}^{\prime} \cup T_{2}$ is a hole, and so T_{1}^{\prime} is odd, and similarly every 2 -normal path is even.
(6) Every 2-normal path meets both $M_{a_{2}}, M_{b_{2}}$. In particular, if $X\left(P_{y_{2}} \backslash y_{2}\right)$ meets W_{2} then y_{1} has no neighbour in $V\left(P_{y_{2}}\right)$, and if $X\left(P_{y_{1}} \backslash y_{1}\right)$ meets W_{2} then y_{2} has no neighbour in $V\left(P_{y_{1}}\right)$.

Let T_{2} be 2-normal. Since T_{2} is even, $y_{1}-T_{2}-y_{2}-a-y_{1}$ is not a hole; and so a has a neighbour in T_{2}^{*}, and similarly so does b. But a has no neighbours in $P_{y_{1}}, P_{y_{2}}$ different from y_{1}, y_{2}, and the set of neighbours of a in W_{2} is $M_{a_{2}}$. Hence T_{2}^{*} meets $M_{a_{2}}$, and similarly it meets $M_{b_{2}}$. This proves the first claim. For the second, observe that if $X\left(P_{y_{2}} \backslash y_{2}\right)$ meets W_{2} and y_{1} has a neighbour in $V\left(P_{y_{2}}\right)$ then there is a 2-normal path with interior in $V\left(P_{y_{2}}\right)$ and therefore not meeting both (or indeed, either of) $M_{a_{2}}, M_{b_{2}}$, a contradiction. This proves (6).

For each $e \in E\left(D_{1}\right)$ choose an e-rung R_{e}.
(7) One of y_{1}, y_{2} has no neighbour in $R_{D_{1}}$.

Suppose that y_{1}, y_{2} both have a neighbour in $V\left(R_{D_{1}}\right)$. By 5.1, since y_{1}, y_{2} are nonadjacent, it follows that one of y_{1}, y_{2} is adjacent to a_{1}, and the other to b_{1}, and neither has any more neighbours in $V\left(R_{D_{1}}\right)$. Since $R_{D_{1}}$ is even, adding y_{1}, y_{2} to $R_{D_{1}}$ gives a 1 -normal path of even length, a contradiction. This proves (7).

Henceforth we assume that y_{1} has no neighbour in $R_{D_{1}}$.
(8) $X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{2}=\emptyset ; X\left(y_{1}\right) \cap W_{2} \subseteq N[a, b]$; and $X\left(P_{y_{1}}\right) \backslash N[a, b] \nsubseteq W_{2}$.

Since y_{1} has no neighbour in $R_{D_{1}}$, it follows that y_{1} is not complete to either of $N[a] \cap V(M), N[b] \cap$ $V(M)$, and so by (1), $X\left(P_{y_{1}}\right) \nsubseteq N[a, b]$. Suppose that $X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{2} \neq \emptyset$. Consequently $P_{y_{1}}$ has length at least one, and so $X\left(y_{1}\right) \subseteq N[a, b]$. Moreover, $X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{1}=\emptyset$, since $X\left(P_{y_{1}} \backslash y_{1}\right)$ is local. Since y_{1} has no neighbour in $R_{D_{1}}$, it follows that $X\left(P_{y_{1}}\right) \cap V\left(R_{D_{1}}\right)=\emptyset$. By (3), $X\left(P_{y_{1}}\right) \backslash N[a, b] \subseteq W_{1}$. But $X\left(P_{y_{1}}\right) \backslash N[a, b] \subseteq X\left(P_{y_{1}} \backslash y_{1}\right)$, since $X\left(y_{1}\right) \subseteq N[a, b]$; and so

$$
X\left(P_{y_{1}}\right) \backslash N[a, b] \subseteq X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{1}=\emptyset,
$$

a contradiction. This proves the first claim. For the second, suppose that y_{1} has a neighbour in $W_{2} \backslash N[a, b]$. From the minimality of $P_{y_{1}}, p_{y_{1}}=y_{1}$. Consequently $X\left(P_{y_{1}}\right) \cap V\left(R_{D_{1}}\right)=\emptyset$, and so by (3), $X\left(P_{y_{1}}\right) \backslash N[a, b] \subseteq W_{1}$, contradicting that y_{1} has a neighbour in $W_{2} \backslash N[a, b]$. This proves the second claim. The third claim follows, since we have shown that $X\left(P_{y_{1}}\right) \backslash N[a, b] \neq \emptyset$ and is disjoint from W_{2}. This proves (8).

For each $e \in E\left(D_{2}\right)$, choose an e-rung R_{e}, such that $X\left(P_{y_{2}}\right)$ meets $R_{D_{2}}$ (this is possible by (3)). Since $X\left(P_{y_{1}}\right) \backslash N[a, b] \nsubseteq W_{2}$ by (8), it follows from (3) that $X\left(P_{y_{1}}\right)$ meets $R_{D_{2}}$; and since $X\left(P_{y_{1}} \backslash y_{1}\right) \cap W_{2}=\emptyset$ by (8), it follows that y_{1} has a neighbour in $R_{D_{2}}$. Thus there is a 2 -normal path T_{2} meeting W_{2} in a subpath of $R_{D_{2}}$. By (6), both ends of $R_{D_{2}}$ belong to T_{2}. Consequently a unique vertex of $R_{D_{2}}$, one of its ends, is adjacent to y_{1}, and a unique vertex of $R_{D_{2}}$, its other end, belongs to $X\left(P_{y_{2}}\right)$. Let $R_{D_{2}}$ have ends s, t where $s \in M_{a_{2}}$ and $t \in M_{b_{2}}$. Exchanging a, b if necessary, we may assume that y_{1} is adjacent to s and to no other vertex of $R_{D_{2}}$, and $X\left(P_{y_{2}}\right) \cap V\left(R_{D_{2}}\right)=\{t\}$. Choose a minimal subpath P_{2} of $P_{y_{2}}$ with ends y_{2}, p_{2} say, such that p_{2} is adjacent to t. (Possibly $p_{2}=y_{2}$.)

By (8), $X\left(P_{y_{1}}\right) \backslash N[a, b] \nsubseteq W_{2}$. By (2) there is a vertex d of D_{2} and a path Q of G with the following properties:

- d is an internal vertex of D_{2}, incident with edges g_{1}, g_{2} of D_{2} say;
- Q has ends y_{1}, d_{3}, where $d_{3} \in M_{d} \backslash\left(M_{g_{1}} \cup M_{g_{2}}\right)$;
- $V(Q) \subseteq V\left(P_{y_{1}}\right) \cup V(M)$; and
- Q^{*} is anticomplete to W_{2}, and $V\left(Q \backslash y_{1}\right)$ is anticomplete to $\{a, b\}$.

In particular, d_{3} has exactly two neighbours in $V\left(R_{D_{2}}\right)$, say d_{1}, d_{2} where s, d_{1}, d_{2}, t are in order in $R_{D_{2}}$, and d_{1}, d_{2} are adjacent.
(9) y_{2} is nonadjacent to t, and $V\left(P_{2} \backslash y_{2}\right)$ is not anticomplete to $V(Q)$, and y_{1} has no neighbour in $V\left(P_{y_{2}}\right)$.

Suppose first that $V\left(P_{2}\right)$ is anticomplete to $V(Q)$. Then there is a near-prism with bases $\left\{d_{1}, d_{2}, d_{3}\right\},\left\{a, s, y_{1}\right\}$ and constituent paths

$$
y_{1}-Q-d_{3},
$$

$$
\begin{gathered}
a-y_{2}-P_{2}-p_{2}-t-R_{D_{2}}-d_{2} \\
s-R_{D_{2}}-d_{1}
\end{gathered}
$$

contrary to 2.1 .
Thus $V\left(P_{2}\right)$ is not anticomplete to $V(Q)$. Suppose next that $V\left(P_{2} \backslash y_{2}\right)$ is anticomplete to $V(Q)$, and therefore y_{2} has a neighbour in $V(Q)$. Let Q^{\prime} be a path with ends y_{2}, d_{3}, where $Q^{\prime} \backslash y_{2}$ is a subpath of Q. It follows that y_{1} has no neighbour in $V\left(Q^{\prime}\right)$; for y_{1} only has one neighbour in $V(Q)$, and that vertex is not adjacent to y_{2} since otherwise there would be a 4 -hole. If y_{2} is adjacent to t, then there is a near-prism with bases $\left\{y_{2}, b, t\right\},\left\{d_{1}, d_{2}, d_{3}\right\}$ and constituent paths

$$
\begin{gathered}
y_{2}-Q^{\prime}-d_{3} \\
b-y_{1}-s-R_{D_{2}}-d_{1} \\
t-R_{D_{2}}-d_{2}
\end{gathered}
$$

If y_{2} is not adjacent to t, there is a theta in G with ends y_{2}, t and constituent paths

$$
\begin{gathered}
y_{2}-P_{2}-p_{2}-t \\
y_{2}-b-t \\
y_{2}-Q^{\prime}-d_{3}-d_{2}-R_{D_{2}}-t
\end{gathered}
$$

contrary to 2.1. This proves that $P_{2} \backslash y_{2}$ is not anticomplete to $V(Q)$. In particular, P_{2} has length at least one, and so y_{2}, t are nonadjacent. Hence $t \in X\left(P_{2} \backslash y_{2}\right)$, and so by (6), y_{1} has no neighbour in $V\left(P_{y_{2}}\right)$. This proves (9).

By (9), we may choose $v_{1} \in V(Q)$ and $v_{2} \in V\left(P_{2} \backslash y_{2}\right)$, such that v_{1}, v_{2} are equal or adjacent. Since y_{1} has no neighbour in $V\left(P_{2}\right)$ by (9), it follows that either $v_{1} \in V\left(P_{y_{1}} \backslash y_{1}\right)$ or $v_{1} \in V(M)$. Suppose that $v_{1} \in V\left(P_{y_{1}} \backslash y_{1}\right)$. Then $F=G\left[V\left(P_{y_{1}} \backslash y_{1}\right) \cup V\left(P_{y_{2}} \backslash y_{2}\right)\right]$ is connected, and disjoint from $V(M) \cup Z$, and $X(F)$ includes both $X\left(P_{y_{1}} \backslash y_{1}\right)$ and $X\left(P_{y_{2}} \backslash y_{2}\right)$. But since $P_{y_{1}}$ has length at least one, it follows that $X\left(P_{y_{1}} \backslash y_{1}\right) \backslash N[a, b]$ is nonempty, and is a subset of W_{1} by (3). Hence $X(F)$ meets W_{1}, and contains t, and so $X(F)$ is not local, contrary to 4.2.

Thus $v_{1} \in V(M)$. Since $V(Q)$ is anticomplete to $\{a, b\}$, it follows that $v_{1} \in V(M) \backslash N[a, b]$. From the minimality of $P_{y_{2}}$, no vertex of $P_{y_{2}}$ except y_{2} has a neighbour in $V(M) \backslash N[a, b]$, and so $v_{2}=p_{y_{2}}$, and in particular $P_{2}=P_{y_{2}}$. But $X\left(P_{y_{2}} \backslash y_{2}\right)$ is local, and contains t and v_{1}. Since $t \in M_{t_{2}}$, and Q^{*} is anticomplete to W_{2}, it follows that $v_{1}, t \in M_{s_{2}}$, and hence $v_{1}=d_{3}$ and $t=d_{2}$. Morover, $V(Q)$ is disjoint from $V\left(P_{2} \backslash y_{2}\right)$, and the edge $p_{y_{2}}-d_{3}$ is the only edge joining them. (But y_{2} might have neighbours in $V(Q)$.) Now y_{2} is nonadjacent to d_{3}, since otherwise $y_{2}-d_{3}-d_{2}-b-y_{2}$ is a 4 -hole. Then

$$
b-y_{1}-s-R_{D_{2}}-d_{1}-d_{3}-p_{y_{2}}-P_{y_{2}}-y_{2}-b
$$

is a hole, and $d_{2}=t$ has exactly four neighbours in it, namley $d_{1}, d_{3}, p_{y_{2}}$ and b, a contradiction. This proves 5.2.

Finally, we have:
5.3 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. Let Z be the set of all common neighbours of a, b, and let $Y \subseteq Z$ be the set of all major vertices. If F is a component of $G \backslash(V(M) \cup Z)$, and some vertex in $Z \backslash Y$ has a neighbour in F, then there is a leaf t of $V(J)$, such that every vertex in $V(M)$ with a neighbour in $V(F)$ belongs to M_{t}.

Proof. Let $z \in Z \backslash Y$ have a neighbour in $V(F)$. Let $X(F)$ be the set of vertices in $V(M)$ with a neighbour in $V(F)$. If one of a, b has a neighbour in $V(F)$, the claim follows from 4.2, so suppose not. If $X(F) \nsubseteq N[a, b]$ has a neighbour in $V(F)$, this contradicts that z is not major. So $X(F) \subseteq N[a, b]$, and then the claim follows since $X(F)$ is local by 4.2. This proves 5.3.

Let us summarize the previous results. The vertices of G are partitioned into the following sets:

- The special vertices a, b.
- $V(M)$ (this is further partitioned into strips corresponding to the edges of J).
- The small components. Each small component F satisfies $X(F) \subseteq M_{e}$ for some $e \in E(J)$ or $X(F) \subseteq M(t)$ for some $t \in V(J)$. Moreover if $N(F)$ contains a or b, or a vertex in $Z \backslash Y$, then F must be peripheral, and if $N(F)$ contains only one of a, b, then $X(F) \subseteq N[a]$ or $N[b]$ correspondingly.
- The set Y of the major vertices. These form a clique, but we know nothing about their neighbours outside of Z.
- The vertices in $Z \backslash Y$. All their neighbours in $V(M)$ are in $N[a, b]$, and all their neighbours in small components belong to peripheral small components.

If we assume that a is splendid (which will be true in our application), we can simplify the theorem a little; let us see that next. We need:
5.4 Let ab be an edge of an even-hole-free graph G, and let (J, M) be optimal for ab. If a is splendid, there is no small F such that a has a neighbour in $V(F)$.

Proof. Let Z be the set of vertices of G adjacent to both a, b. Suppose that there is such an subgraph F, and we may assume that F is small component. If b has no neighbour in $V(F)$, then since by 4.2 every vertex in $V(M)$ with a neighbour in $V(F)$ belongs to $N[a]$, it follows that F is a component of $G \backslash N[a]$, contradicting that a is splendid. Thus b has a neighbour in $V(F)$. For the same reason, some vertex of $V(M)$ nonadjacent to a has a neighbour in $V(F)$; but by 4.2, every such vertex belongs to B.

Hence there is an induced path P of F such that a has a neighbour in $V(P)$, and some vertex in B has a neighbour in $V(P)$. Let P be minimal with this property. Let P have ends p_{1}, p_{2}, where a is adjacent to p_{1} and to no other vertex of $V(P)$, and some vertex in B (v_{2} say) is adjacent to p_{2}, and no vertex in B has a neighbour in $V\left(P \backslash p_{2}\right)$. Since p_{1} is nonadjacent to b (because $p_{1} \notin Z$) and there is no 4 -hole, it follows that p_{1} is anticomplete to B, and in particular $p_{1} \neq p_{2}$. Let $v_{2} \in M_{e_{2}}$, where $e_{2} \in \beta$. From 4.2, there is at most one $e \in \alpha$ such that M_{e} is not anticomplete to $V\left(P \backslash p_{2}\right)$, and so there exists $d_{1} \in \alpha$ such that $M_{d_{1}}$ is anticomplete to $V\left(P \backslash p_{2}\right)$. Since $M_{d_{1}}$ is anticomplete to p_{2} by 4.2 , it follows that $M_{d_{1}}$ is anticomplete to $V(P)$.

There is a path D of J with end-edges d_{1}, e_{2}. Let R_{e} be an e-rung for each $e \in E(J)$, with $v_{2} \in V\left(R_{e_{2}}\right)$; then R_{D} is an induced path of G between a, v_{2}, with interior in $V(M)$ and anticomplete to $V(P)$. Hence $P \cup R_{D}$ is a hole, and b has two nonadjacent neighbour in $P \cup R_{D}$, namely v_{2}, a; and since G has no full star cutset, 3.2 applied to b and $P \cup R_{D}$ implies that b is adjacent to p_{2} and has no other neighbour in $V(P)$. But then there is a short pyramid with apex a and base $\left\{b, v_{2}, p_{2}\right\}$, and constituent paths

$$
\begin{gathered}
a-b, \\
a-f_{1}-F-f_{2}, \\
a-R_{D}-v_{2},
\end{gathered}
$$

contradicting that a is splendid. This proves 5.4.
We deduce an upgraded version of 4.2 :
5.5 Let G be even-hole-free, and $a b$ be an edge of G, where a is splendid. Let (J, M) be optimal for ab. Let Z be the set of vertices of G adjacent to both a, b, and let Y be the set of major vertices. Then

- every vertex in $V(M)$ with a neighbour in $Z \backslash Y$ belongs to M_{t} for some $t \in \beta$; and
- for each $e=s t \in \alpha, M_{s} \cap M_{t}=\emptyset$.

Moreover, for every small subgraph F, let X be the set of vertices in $V(M)$ with a neighbour in $V(F)$; then

- a has no neighbours in $V(F)$;
- if $V(F)$ is anticomplete to $\{b\} \cup(Z \backslash Y)$, then either $X \subseteq M_{e}$ for some $e \in E(J)$ or $X \subseteq M_{t}$ for some $t \in V(J) \backslash \alpha$;
- if either b or some vertex in $Z \backslash Y$ has a neighbour in $V(F)$, then $X \subseteq M_{t}$ for some $t \in \beta$.

Proof. Since a is splendid, every vertex in Z is a-external, and therefore the vertices in $Z \backslash Y$ are not b-external. In particular, none of them has a neighbour in $V(M) \backslash N[b]$. That proves the first claim.

Suppose that there exists $e=s t \in \alpha$ where t is a leaf of J, and $M_{s} \cap M_{t} \neq \emptyset$. Let $v \in M_{s} \cap M_{t}$. Let D be a path of J containing s, with one end in $\alpha \backslash\{t\}$ and the other in β. Choose an e-rung R_{e} for every $e \in E(D)$. Then the subgraph of G induced on $V\left(R_{D}\right) \cup\{a, b, v\}$ is a short pyramid with apex a, contradicting that a is splendid. This proves the second claim. The third claim, about small sets, follows from 4.2 and 5.4. This proves 5.5.

6 Graphs with no extended near-prism

It would be nice if we had a decomposition theorem complementary to the results of the previous sections, describing a decomposition for even-hole-free graphs that do not contain a extended nearprism. We do not have that; we only have a decomposition theorem for such graphs that have a splendid vertex. (This is good enough for our purposes, since it is straightforward to show that every
minimum counterexample to 1.2 has a splendid vertex.) Our next goal is to state and prove this decomposition theorem.

A pyramid strip system $\mathcal{S}=\left(a, S_{1}, \ldots, S_{k}\right)$ in G consists of a set of proper strips S_{1}, \ldots, S_{k} with $k \geq 3$, pairwise vertex-disjoint (that is, the sets $V\left(S_{1}\right), \ldots, V\left(S_{k}\right)$ are pairwise disjoint), and a vertex a of G called the apex, such that, setting $S_{i}=\left(A_{i}, B_{i}, C_{i}\right)$ for $1 \leq i \leq k$:

- for $1 \leq i<j \leq k, B_{i}$ is complete to B_{j}, and there are no other edges between $V\left(S_{i}\right)$ and $V\left(S_{j}\right)$;
- a belongs to none of $V\left(S_{1}\right), \ldots, V\left(S_{k}\right)$;
- for $1 \leq i \leq k, a$ is complete to A_{i}, and anticomplete to $B_{i} \cup C_{i}$.

Let $V(\mathcal{S})$ denote $V\left(S_{1}\right) \cup \cdots \cup V\left(S_{k}\right) \cup\{a\}$. For an induced subgraph F of G with $V(F) \subseteq V(G) \backslash V(\mathcal{S})$, we say $v \in V(\mathcal{S})$ is an attachment of F if v has a neighbour in F, and we define $\mathcal{S}(F)$ to be the set of all attachments of F. A proper strip $S=(A, B, C)$ is indecomposable if $A \cup C$ is connected, and a pyramid strip system is indecomposable if all its strips are indecomposable.

If $a \in V(G)$ is the apex of a pyramid, then it is also the apex of an indecomposable pyramid strip system with $k=3$ and with only one rung in each strip. That motivates the following:
6.1 Let G be even-hole-free, and let $a \in V(G)$ be splendid. Suppose there is no extended near-prism contained in G such that a is an end of its cross-edge. Let $\mathcal{S}=\left(a, S_{1}, \ldots, S_{k}\right)$ be an indecomposable strip system with apex a, with strips $S_{i}=\left(A_{i}, B_{i}, C_{i}\right)$ for $1 \leq i \leq k$, chosen with $V(\mathcal{S})$ maximal. Then for each component F of $G \backslash\left(V(\mathcal{S}) \cup N[a]\right.$, either $\mathcal{S}(F)$ is a nonempty subset of $B_{1} \cup \cdots \cup B_{k}$, or for some $i \in\{1, \ldots, k\}, \mathcal{S}(F)$ is a subset of one of $V\left(S_{i}\right)$ and has nonempty intersection with $B_{i} \cup C_{i}$.

Proof. First we observe:
(1) For each component F of $G \backslash(V(\mathcal{S}) \cup N[a]), \mathcal{S}(F)$ has nonempty intersection with $B_{i} \cup C_{i}$ for some $i \in\{1, \ldots, k\}$.

If not, then F is a component of $G \backslash N[a]$, which is impossible since $G \backslash N[a]$ is connected (because a is splendid). This proves (1).
(2) For each vertex f of $G \backslash(V(\mathcal{S}) \cup N[a]), \mathcal{S}(f)$ is either a subset of $B_{1} \cup \cdots \cup B_{k}$ or a subset of $V\left(S_{i}\right)$ for some $i \in\{1, \ldots, k\}$.

Suppose not. We may assume f has a neighbour in $A_{1} \cup C_{1}$, since $\mathcal{S}(F)$ is not a subset of $B_{1} \cup \cdots \cup B_{k}$. Choose an S_{1}-rung R_{1} in which f has a neighbour in $A_{1} \cup C_{1}$, with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. Suppose also that f has a neighbour in $A_{2} \cup C_{2}$, and choose R_{2}, a_{2}, b_{2} similarly. If f has a neighbour in $V\left(S_{3}\right)$, then there is a theta with ends f, a and constitutent paths

$$
\begin{gathered}
f-R_{1}-a_{1}-a, \\
f-R_{2}-a_{2}-a \\
f_{2}-G\left[V\left(S_{3}\right)\right]-a,
\end{gathered}
$$

contrary to 2.1. Thus f is anticomplete to $V\left(S_{3}\right), \ldots, V\left(S_{k}\right)$. If f has two nonadjacent neighbours in R_{1}, there is a theta with ends a, f and constitutent paths

$$
\begin{gathered}
f-R_{1}-a_{1}-a, \\
f-R_{2}-a_{2}-a, \\
f-R_{1}-b_{1}-G\left[V\left(S_{3}\right)\right]-a,
\end{gathered}
$$

contrary to 2.1 . So f has either one or two adjacent neighbours in R_{1}, and similarly it has one or two adjacent in R_{2}. Since f is not adjacent to both a_{1}, a_{2}, we may assume by exchanging S_{1}, S_{2} if necessary that f is not adjacent to a_{1}. If f has a unique neighbour u in R_{1}, there is a theta with ends u, a and constitutent paths

$$
\begin{gathered}
u-R_{1}-a_{1}-a, \\
u-f-R_{2}-a_{2}-a, \\
u-R_{1}-b_{1}-G\left[V\left(S_{3}\right)\right]-a,
\end{gathered}
$$

contrary to 2.1. Thus f has exactly two adjacent neighbours in R_{1}, say p, q, where a_{1}, p, q, b_{1} are in order in R_{1}. If f also has two adjacent neighbours in R_{2}, there is a 4 -wheel with centre f and hole induced on $V\left(R_{1} \cup R_{2}\right) \cup\{a\}$, a contradiction. Thus f has a unique neighbour u in R_{2}. If $u \neq a_{2}$, we obtain a contradiction as before; and if $u=a_{2}$, the subgraph induced on $V\left(R_{1} \cup R_{2}\right) \cup\{a, f\}$ is an extended near-prism, and a is an end of its cross-edge, a contradiction.

This proves that f has no neighbour in $A_{2} \cup C_{2}$, and similarly none in $A_{i} \cup C_{i}$ for $2 \leq i \leq k$. If f is complete to $B_{2} \cup \cdots \cup B_{k}$, we can add f to B_{1}, contrary to the maximality of $V(\mathcal{S})$. Thus f has a neighbour in $B_{2} \cup \cdots \cup B_{k}$, and a non-neighbour in this set. Since $k \geq 3$, we may assume that f has a neighbour $b_{2} \in B_{2}$ and a non-neighbour $b_{3} \in B_{3}$. But then there is a theta with ends b_{2}, a and constituent paths

$$
\begin{gathered}
b_{2}-f-G\left[A_{1} \cup C_{1}\right]-a, \\
b_{2}-G\left[A_{2} \cup C_{2}\right]-a, \\
b_{2}-b_{3}-G\left[A_{3} \cup C_{3}\right]-a,
\end{gathered}
$$

contrary to 2.1 . This proves (2).
Let us say a subset X of $V(\mathcal{S})$ is local if X is a subset of $A_{1} \cup \cdots \cup A_{k}$, or of $B_{1} \cup \cdots \cup B_{k}$ or of $V\left(S_{i}\right)$ for some $i \in\{1, \ldots, k\}$. (Note that in (2) we did not include $A_{1} \cup \cdots \cup A_{k}$, but here we do.)
(3) Every subset of $V(\mathcal{S})$ that is not local includes a 2-element subset that is not local.

Suppose $X \subseteq V(\mathcal{S})$ is not local. If there exists $c \in X \cap C_{1}$, choose $d \in X \backslash V\left(S_{1}\right)$; then $\{c, d\}$ is not local. So we may assume that $X \cap C_{i}=\emptyset$ for $1 \leq i \leq k$. There exists $c \in X \backslash\left(A_{1} \cup \cdots \cup A_{k}\right)$, say $c \in B_{1}$. If there exists $d \in X \cap A_{i}$ where $i \geq 2$ then $\{c, d\}$ is not local, so we may assume that $X \cap A_{i}=\emptyset$ for $2 \leq i \leq k$. Since $X \nsubseteq B_{1} \cup \cdots \cup B_{k}$, there exists $c \in X \cap A_{1}$; and since $X \nsubseteq V\left(S_{1}\right)$, there exists $d \in X \cap B_{i}$ for some $i>1$, and then $\{c, d\}$ is not local. (The claim also follows from König's matching theorem.) This proves (3).

Suppose the theorem is false; then from (1) there is a minimal connected induced subgraph F of $G \backslash(V(\mathcal{S}) \cup N[a])$ such that $\mathcal{S}(F)$ is not local. By (3) there is a 2-element subset $\left\{v_{1}, v_{2}\right\}$ of $\mathcal{S}(F)$ that is not local. From the minimality of F, F is the interior of a path joining v_{1}, v_{2}. Let F have ends f_{1}, f_{2}, where v_{i}, f_{i} are adjacent for $i=1,2$.
(4) No vertex in F^{*} has a neighbour in $A_{1} \cup \cdots \cup A_{k}$.

Suppose that some $f_{3} \in V(F) \backslash\left\{f_{1}, f_{2}\right\}$ is adjacent to $a_{1} \in A_{1}$ say. Let F_{i} be the subpath of F between f_{i}, f_{3} for $i=1,2$. From the minimality of F, each of $\mathcal{S}\left(F_{1}\right), \mathcal{S}\left(F_{2}\right)$ is a subset of one of $V\left(S_{1}\right), A_{1} \cup \cdots \cup A_{k}$; and since $\mathcal{S}(F)$ is not local, we may assume that $\mathcal{S}\left(F_{1}\right) \subseteq V\left(S_{1}\right)$ and $\mathcal{S}\left(F_{2}\right) \subseteq A_{1} \cup \cdots \cup A_{k}$. Moreover, $v_{1} \notin A_{1} \cup \cdots \cup A_{k}$ and $v_{2} \notin V\left(S_{1}\right)$. Thus $v_{1} \in B_{1} \cup C_{1}$, and we may assume that $v_{2} \in A_{2}$. From the minimality of $F, \mathcal{S}\left(F \backslash f_{1}\right)$ is local and hence is a subset of $A_{1} \cup \cdots \cup A_{k}$, and $\mathcal{S}\left(F \backslash f_{2}\right)$ is a subset of $V\left(S_{1}\right)$ (because they both contains a_{1}). Thus $\mathcal{S}\left(F \backslash\left\{f_{1}, f_{2}\right\}\right) \subseteq A_{1}$, and $\mathcal{S}\left(f_{2}\right) \subseteq A_{2}$ by (2). For $i=1,2$ let R_{i} be an S_{i}-rung with ends $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$, containing v_{i}. Thus $v_{2}=a_{2}$, and $v_{1} \neq a_{1}$, and a_{2} is the unique neighbour of f_{2} in $V\left(R_{2}\right)$.

Let a_{1} have t neighbours in $V\left(F \backslash f_{1}\right)$; thus $t>0$. Choose a neighbour c of f_{1} in $V\left(R_{1}\right)$, such that the subpath of R_{1} between b_{1}, c is minimal. Thus $c \neq a_{1}$. If c, a_{1} are nonadjacent we can add the interior of the path $c_{1}-F-a_{1}$ to C_{1}, contrary to the maximality of $V(\mathcal{S})$. So c, a_{1} are adjacent, and hence a_{1} has at least $t+1$ neighbours in the path $b_{1}-R_{1}-c-F-a_{2}$. (It would have $t+2$ if a_{1}, f_{1} are adjacent, and $t+1$ otherwise.) This path can be completed to a hole via $a_{2}-R_{2}-b_{2}-b_{1}$ or via $a_{2}-a-G\left[V\left(S_{3}\right)\right]-b_{1}$, and the number of neighbours of a_{1} in the second hole is one more than in the first. Since there is no even wheel, it follows that $t=1$, and f_{3} is the unique neighbour of a_{1} in $V(F)$; but then there is a theta with ends f_{3}, c and constituent paths

$$
\begin{gathered}
f_{3}-F-c, \\
f_{3}-a_{1}-c_{1} \\
f_{3}-F-a_{2}-R_{2}-b_{2}-b_{1}-R_{1}-c,
\end{gathered}
$$

contrary to 2.1 . This proves (4).
(5) If f_{1} has a neighbour in $A_{1} \cup C_{1}$, then f_{2} has a neighbour in $A_{i} \cup C_{i}$ for some $i \in\{2, \ldots, k\}$.

Suppose not; then $\mathcal{S}\left(f_{2}\right)$ is a subset of $B_{1} \cup \cdots \cup B_{k}$, and we may assume that f_{2} has a neighbour in B_{2}. By (4), no vertex in A_{2} has a neighbour in $V(F)$, and so from the minimality of $F, \mathcal{S}\left(F \backslash\left\{f_{1}, f_{2}\right\}\right) \subseteq B_{1}$. If f_{2} has a nonneighbour $b_{3} \in B_{3}$, there is a theta with ends b_{2}, a and constituent paths

$$
\begin{gathered}
b_{2}-G\left[A_{2} \cup C_{2}\right]-a, \\
b_{2}-F-f_{1}-R_{1}-a \\
b_{2}-b_{3}-G\left[A_{3} \cup C_{3}\right]-a,
\end{gathered}
$$

contrary to 2.1. So f_{2} is complete to B_{3} and similarly to B_{i} for $3 \leq i \leq k$; and since $k \geq 3$, it follows by exchanging S_{2}, S_{3} that f_{2} is complete to B_{2}. But then we can add f_{2} to B_{1} and $V\left(F \backslash f_{2}\right)$ to C_{1}, contrary to the maximality of $V(\mathcal{S})$. This proves (5).
(6) For $1 \leq i \leq k$, f_{1} has no neighbour in C_{i}, and does not have both a neighbour in A_{i} and one in B_{i}.

Suppose that f_{1} has either a neighbour in C_{1}, or a neighbour in A_{1} and one in B_{1}. In the second case, if the neighbour of f_{1} in A_{1} is nonadjacent to the one in B_{1}, we could add f_{1} to C_{1}, contrary to the maximality of $V(\mathcal{S})$. Thus in either case, there is an S_{1}-rung R_{1}, such that f_{1} has either a neighbour in $V\left(R_{1}\right) \cap C_{1}$, or one in $V\left(R_{1}\right) \cap A_{1}$ and one in $V\left(R_{1}\right) \cap B_{1}$. Let R_{1} have ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. If f_{1} has two nonadjacent neighbours in R_{1}, we can add f_{1} to C_{1}, again contrary to the maximality of $V(\mathcal{S})$. Thus f_{1} has either a unique neighbour or exactly two adjacent neighbours in R_{1}. From the minimality of $F, \mathcal{S}\left(F \backslash f_{2}\right) \subseteq V\left(S_{1}\right)$.

By (5), we may assume that f_{2} has a neighbour in $A_{2} \cup C_{2}$, and so $\mathcal{S}\left(f_{2}\right)$ is a subset of $V\left(S_{2}\right)$ by (2). Hence $\mathcal{S}\left(F \backslash f_{1}\right) \subseteq V\left(S_{2}\right)$ by (4). Consequently $\mathcal{S}\left(F \backslash\left\{f_{1}, f_{2}\right\}\right)=\emptyset$. The only edges between $V(F)$ and $V(\mathcal{S})$ are the edges between f_{1} and $V\left(S_{1}\right)$, and the edges between f_{2} and $V\left(S_{2}\right)$. Choose an S_{2}-rung R_{2} in which f_{2} has a neighbour in $A_{2} \cup C_{2}$, with ends $a_{2} \in A_{2}$ and $b_{2} \in B_{2}$. If f_{2} has two nonadjacent neighbours in $V\left(R_{2}\right)$ we can add f_{2} to C_{2}, a contradiction. Thus f_{2} has one or exactly two adjacent neighbours in R_{2}. Let f_{i} have n_{i} neighbours in $V\left(R_{i}\right)$ for $i=1,2$; thus $n_{i} \in\{1,2\}$.

If $n_{1}=n_{2}=2$, there is a prism, so we may assume that either $n_{1}=1$ or $n_{2}=1$. If $n_{1}=1$, let c be the unique neighbour of f_{1} in $V\left(R_{1}\right)$ (necessarily $c \in C_{1}$), and let R_{3} be an S_{3}-rung with ends $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$. Then there is a theta with ends c, a and constituent paths

$$
\begin{gathered}
c-R_{1}-a_{1}-a, \\
c-f_{1}-F-f_{2}-R_{2}-a_{2}-a, \\
c-R_{1}-b_{1}-b_{3}-R_{3}-a_{3}-a,
\end{gathered}
$$

a contradiction. Thus $n_{1}=2$, and consequently $n_{2}=1$.
Let c be the unique neighbour of f_{2} in $V\left(R_{2}\right)$. By the same argument with S_{1}, S_{2} exchanged, it follows that $c \notin C_{2}$, and so $c=a_{2}$. Let R_{3} be an S_{3}-rung; then the subgraph induced on $V\left(R_{1} \cup R_{2} \cup R_{3} \cup F\right) \cup\{a\}$ is an extended near-prism, a contradiction. This proves (6).

From (6), no vertex of F has a neighbour in $C_{1} \cup \cdots \cup C_{k}$, and since we may assume that f_{1} has a neighbour in $A_{1} \cup C_{1}$, it follows from (6) that $\mathcal{S}\left(f_{1}\right) \subseteq A_{1}$. Since $\left\{v_{1}, v_{2}\right\}$ is not local, it follows that $v_{2} \in B_{2} \cup \cdots \cup B_{k}$, and we may assume that f_{2} has a neighbour in B_{2}. By (6), $\mathcal{S}\left(f_{2}\right) \subseteq B_{1} \cup \cdots \cup B_{k}$, contrary to (5). This proves 6.1.

The reader will observe that much of the generality of strip systems was not used in this proof; we never increased the number of strips, or changed the sets A_{1}, \ldots, A_{k}. That will come in the next proof, where we try to enlarge $V(\mathcal{S})$ by adding vertices from $N[a] \backslash V(\mathcal{S})$. The parity of a path or hole is the parity of its length.

For $1 \leq i \leq k$, let D_{i} be the union of the vertex sets of all components F of $G \backslash(V(\mathcal{S}) \cup N[a])$ such that $\mathcal{S}(F) \cap\left(A_{i} \cup C_{i}\right) \neq \emptyset$. For $v \in N[a] \backslash V(\mathcal{S})$, let us say v has:

- type α if for each $i \in\{1, \ldots, k\}$, either v has a neighbour in $B_{i} \cup C_{i}$ or v is complete to A_{i};
- type α^{\prime} if there exists $i \in\{1, \ldots, k\}$ such that v has a neighbour in D_{i} and none in $B_{i} \cup C_{i}$, and for all $j \in\{1, \ldots, k\} \backslash\{i\}, v$ is complete to A_{j} and anticomplete to $B_{j} \cup C_{j} \cup D_{j}$ (we also call this type α_{i}^{\prime}; it is "almost" a case of type α);
- type β if there exists $i \in\{1, \ldots, k\}$ such that v is anticomplete to $A_{i} \cup B_{i} \cup C_{i}$, and for all $j \in\{1, \ldots, k\} \backslash\{i\}, v$ has a neighbour in $B_{j} \cup C_{j}$ (we also call this type β_{i}).

We also need one other type. In the usual notation, for $v \in N[a] \backslash V(\mathcal{S})$ and $1 \leq i \leq k$, let us say v has type γ or type γ_{i}, and Q is the corresponding private path, if

- Q is an induced path with one end v and the other q say, and $V(Q \backslash v)$ is disjoint from $V(\mathcal{S}) \cup N[a]$;
- q has a neighbour in B, and q is either complete or anticomplete to $B \backslash B_{i}$;
- v is complete to A_{j} for all $j \in\{1, \ldots, k\} \backslash\{i\}$, and v has no neighbours in $B_{j} \cup C_{j} \cup D_{j}$ for $1 \leq j \leq k$; and
- all edges between $V(\mathcal{S})$ and $V(Q \backslash v)$ are between q and B.

We will show:
6.2 Let G be even-hole-free, and let $a \in V(G)$ be splendid. Suppose there is no extended near-prism contained in G such that a is an end of its cross-edge. Let $\mathcal{S}=\left(a, S_{1}, \ldots, S_{k}\right)$ be an indecomposable strip system with apex a, with strips $S_{i}=\left(A_{i}, B_{i}, C_{i}\right)$ for $1 \leq i \leq k$, chosen with $V(\mathcal{S})$ maximal. For each $v \in N[a] \backslash V(\mathcal{S})$, v has type $\alpha, \alpha^{\prime}, \beta$ or γ.

Proof. Let D_{1}, \ldots, D_{k} be defined as before. We begin with:
(1) The sets D_{1}, \ldots, D_{k} are pairwise disjoint, and every component of $G\left[B_{i} \cup C_{i} \cup D_{i}\right]$ contains a vertex of B_{i}.

This is immediate from 6.1.
Let $H \subseteq I$ be the set of $i \in\{1, \ldots, k\}$ such that v has a neighbour in $B_{i} \cup C_{i}$, and $J=$ $\{1, \ldots, k\} \backslash H$. Let $I \subseteq\{1, \ldots, k\}$ be the set of $i \in\{1, \ldots, k\}$ such that v has a neighbour in $B_{i} \cup C_{i} \cup D_{i}$. (Thus $H \subseteq I$.)
(2) If $I \neq \emptyset$, then either:

- v is complete to $\bigcup_{j \in J} A_{j}$ (and so v has type α), or
- $|I|=1$ and v is complete to $\bigcup_{i \notin I} A_{i}$ (and so v has type α or α^{\prime}), or
- $|J|=1, J=\{j\}$ say, and v is anticomplete to A_{j} (and so v has type β_{j}).

We may assume that $I \neq \emptyset$. Choose $h \in\{1, \ldots, k\}$ as follows:

- If $H \neq \emptyset$ choose $h \in H$;
- If $H=\emptyset$ and either $|I|=1$ or v is complete to $A_{1} \cup \cdots \cup A_{k}$, choose $h \in I$;
- If $H=\emptyset$ and $|I|>1$ and v is not complete to $A_{1} \cup \cdots \cup A_{k}$, choose $h \in I$ such that v is not complete to A_{j} for some $j \neq h$.

For notational simplicity let us assume $h=1$. Suppose first that v is complete to A_{j} for all $j \in J \backslash\{1\}$. If $1 \in H$ then the claim holds, so we may assume that $1 \notin H$ and therefore $H=\emptyset$ from the choice of h. Also, from the choice of h, either $|I|=1$ or v is complete to $A_{1} \cup \cdots \cup A_{k}$, and in both cases the claim holds.

Hence we may assume that there exists $j \in J \backslash\{1\}$ such that v is not complete to A_{j}, say $j=2$. Choose an induced path P between v and some $b_{1} \in B_{1}$ with interior in $C_{1} \cup D_{1}$ (this is possible by (1)). Choose $a_{2} \in A_{2}$ nonadjacent to v, and let R_{2} be an S_{2}-rung containing a_{2}, and let b_{2} be its end in B_{2}. Now let $a_{2}^{\prime} \in A_{2}$, and define $R_{2}^{\prime}, b_{2}^{\prime}$ similarly. The R_{2}, R_{2}^{\prime} have the same parity, and so if v is adjacent to a_{2}^{\prime} then the holes

$$
\begin{gathered}
v-P-b_{1}-b_{2}-R_{2}-a_{2}-a-v, \\
v-P-b_{1}-b_{2}^{\prime}-R_{2}^{\prime}-a_{2}^{\prime}-v
\end{gathered}
$$

have different parity, a contradiction. Thus v is nonadjacent to a_{2}^{\prime} for each $a_{2}^{\prime} \in A_{2}$, and therefore anticomplete to A_{2}. If $|J \backslash\{1\}|=1$, then $|J| \leq 2$, and hence $H \neq \emptyset$, and so $1 \in H$ and $|J|=1$. But then the claim holds. Thus we may assume that $|J \backslash\{1\}| \geq 2$; let $3 \in J$ say. Let R_{3} be an S_{3}-rung with ends $a_{3} \in A_{3}$ and $b_{2} \in B_{3}$. If v is adjacent to a_{3}, then similarly the holes

$$
\begin{gathered}
v-P-b_{1}-b_{2}-R_{2}-a_{2}-a-v, \\
v-P-b_{1}-b_{3}-R_{3}-a_{3}-v
\end{gathered}
$$

have different parity, a contradiction. So v is anticomplete to $\bigcup_{j \in J \backslash\{1\}} A_{j}$. For each $i \in I$, let P_{i} be an induced path between v and B_{i} with interior in $C_{i} \cup D_{i}$. Define

$$
\begin{aligned}
A_{0} & =\{v\} \cup \bigcup_{i \in I} A_{i} \\
B_{0} & =\bigcup_{i \in I} B_{i} ; \\
C_{0} & =\bigcup_{i \in I} C_{i} \cup\left(V\left(P_{i}\right) \cap D_{i}\right) ;
\end{aligned}
$$

Then S_{0} is a strip, and $\left(a, S_{i}(i \in J \cup\{0\})\right)$ is an indecomposable pyramid strip system contrary to the maximality of $V(\mathcal{S})$. This proves (2).

To complete the proof of the theorem, we therefore may assume that $I=\emptyset$; so now let $v \in N(a)$ with no neighbour in $B_{i} \cup C_{i} \cup D_{i}$ for $1 \leq i \leq k$. Since a is splendid, v has a neighbour $u \in V(G) \backslash N[a]$; and so $u \notin V(\mathcal{S}) \cup N[a]$. Let F be the component of $G \backslash(V(\mathcal{S}) \cup N[a])$ that contains u. Since F is contained in none of the sets D_{i}, it follows that $\mathcal{S}(F) \subseteq B_{1} \cup \cdots \cup B_{k}$. Choose a minimal path Q of $G[V(F) \cup\{v\}]$ with one end v such that the other end, q say, has a neighbour in $B_{1} \cup \cdots \cup B_{k}$. For $1 \leq i \leq k$ let $B_{i}^{\prime} \subseteq B_{i}$ be the set of vertices in B_{i} adjacent to q, and let $B_{i}^{\prime \prime}=B_{i} \backslash B_{i}^{\prime}$. Let A_{i}^{\prime} be the set of vertices in A_{i} adjacent to v, and $A_{i}^{\prime \prime}=A_{i} \backslash A_{i}^{\prime}$. The only edges between $V(\mathcal{S})$ and $V(Q)$ are the edges between v and $\{a\} \cup A_{1} \cup \cdots \cup A_{k}$, and the edges between q and $B_{1} \cup \cdots \cup B_{k}$, since $Q \backslash v$ is a subgraph of F and $\mathcal{S}(F) \subseteq B_{1} \cup \cdots \cup B_{k}$.

By a rung we mean an S_{i}-rung for some $i \in\{1, \ldots, k\}$. For $1 \leq i \leq k$, let us say an S_{i}-rung R_{i} is crooked if it has one end in A_{i} and the other in B_{i}^{\prime}, or one end in A_{i}^{\prime} and the other in B_{i}; and straight otherwise. Choose $x, y \in\{0,1\}$ such that Q has length x modulo 2 , and every rung has length y
modulo 2.
(3) If $x \neq y$ then no rung is crooked, and either v is complete to $A_{1} \cup \cdots \cup A_{k}$ (and v has type α), or for some i, v is complete to $\bigcup_{j \neq i} A_{j}$, and anticomplete to A_{i}, and q is complete to $\bigcup_{j \neq i} B_{j}$, and anticomplete to B_{i} (and so v has type γ_{i}, and Q is a private path).

Suppose that R_{1} is a crooked S_{1}-rung, with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. If $a_{1} \in A_{1}^{\prime \prime}$ and $b_{1} \in B_{1}^{\prime}$ then $b_{1}-R_{1}-a_{1}-a-v-Q-q-b_{1}$ is an even hole; so $a_{1} \in A_{1}^{\prime}$ and $b_{1} \in B_{1}^{\prime \prime}$. If there exists $b_{2} \in B_{2}^{\prime}$, then $b_{1}-R_{1}-a_{1}-v-Q-q-b_{2}-b_{1}$ is an even hole, a contradiction; so $B_{2}^{\prime}, \ldots, B_{k}^{\prime}=\emptyset$. Hence $B_{1}^{\prime} \neq \emptyset$; and so for $2 \leq i \leq k$ there is no crooked S_{i}-rung, by the same argument with S_{1}, S_{i} exchanged, and so $A_{2}^{\prime}, \ldots, A_{k}^{\prime}=\emptyset$. But then we can add v to A_{1} and $V(Q) \backslash\{v\}$ to C_{1} (note that the edge $v a_{1}$ guarantees the indecomposability of the new strip), contrary to the maximality of $V(\mathcal{S})$.

Thus every rung is straight. Suppose that $A_{1}^{\prime}, A_{1}^{\prime \prime} \neq \emptyset$. Let C_{1}^{\prime} be the union of all interior of S_{1}-rungs between $A_{1}^{\prime}, B_{1}^{\prime}$, and let $C_{1}^{\prime \prime}$ be the union of all interiors of S_{1}-rungs between $A_{1}^{\prime \prime}, B_{1}^{\prime \prime}$. Since every S_{1}-rung is of one of these two types, $C_{1}^{\prime} \cup C_{1}^{\prime \prime}=C_{1}$. Since there is no S_{1}-rung with ends in A_{1}^{\prime} and $B_{1}^{\prime \prime}$, it follows that $C_{1}^{\prime} \cap C_{1}^{\prime \prime}=\emptyset$ and $C_{1}^{\prime}, C_{1}^{\prime \prime}$ are anticomplete. For the same reason, the only edges between $A_{1}^{\prime} \cup C_{1}^{\prime}$ and $A_{1}^{\prime \prime} \cup C_{1}^{\prime \prime}$ are between A_{1}^{\prime} and A_{2}^{\prime}. Since S_{1} is indecomposable, there is an edge between some $a_{1}^{\prime} \in A_{1}^{\prime}$ and some $a_{1}^{\prime \prime} \in A_{1}^{\prime \prime}$. Let $R_{1}^{\prime \prime}$ be an S_{1}-rung with ends $a_{1}^{\prime \prime}$ and some $b_{1}^{\prime \prime} \in B_{1}^{\prime \prime}$. If there exists $a_{2} \in A_{2}^{\prime}$, let R_{2}^{\prime} be an S_{2}-rung with ends a_{2}, b_{2}; then

$$
b_{1}^{\prime \prime}-R_{1}^{\prime \prime}-a_{1}^{\prime \prime}-a_{1}^{\prime}-v-a_{2}-R_{2}-b_{2}-b_{1}^{\prime \prime}
$$

is an even hole, a contradiction. So $A_{2}^{\prime}, \ldots, A_{k}^{\prime}=\emptyset$, and since every rung is straight, it follows that $B_{2}^{\prime}, \ldots, B_{k}^{\prime}=\emptyset$. But then we can add v to A_{1} and $V(Q \backslash v)$ to C_{1}, contrary to the maximality of $V(\mathcal{S})$.

This proves that for each $i \in\{1, \ldots, k\}$, either $A_{i}^{\prime}=B_{i}^{\prime}=\emptyset$, or $A_{i}^{\prime \prime}=B_{i}^{\prime \prime}=\emptyset$. Let I be the set of $i \in\{1, \ldots, k\}$ such that $A_{i}^{\prime} \neq \emptyset$. Suppose that $|I| \leq k-2$, say $I=\{i+1, \ldots, k\}$ where $i \geq 3$. Define $S_{0}=\left(A_{0}, B_{0}, C_{0}\right)$, where

$$
\begin{aligned}
A_{0} & =\{v\} \cup \bigcup_{i \in I} A_{i} \\
B_{0} & =\bigcup_{i \in I} B_{i} \\
C_{0} & =V(Q \backslash v) \cup \bigcup_{i \in I} C_{i} .
\end{aligned}
$$

Then $\left(a, S_{0}, S_{1}, \ldots, S_{i}\right)$ is an indecomposable pyramid strip system, contrary to the maximality of $V(\mathcal{S})$. So $|I| \geq k-1$. This proves (3).
(4) If $x=y$ then there exists i such that v is complete to $\bigcup_{j \neq i} A_{j}$, and q is anticomplete to $\bigcup_{j \neq i} B_{j}$ (and so v has type γ_{i} and Q is a private path).

Suppose that R_{1} is a straight S_{1}-rung, with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. If $a_{1} \in A_{1}^{\prime}$ and $b_{1} \in B_{1}^{\prime}$ then $G\left[V\left(R_{1} \cup Q\right)\right]$ is an even hole, which is impossible. Since R_{1} is straight, it follows that $a_{1} \in A_{1}^{\prime \prime}$ and $b_{1} \in B_{1}^{\prime \prime}$. If there exists $b_{2} \in B_{2}^{\prime}$, then $b_{1}-R_{1}-a_{1}-a-v-Q-q-b_{2}-b_{1}$ is an even hole, a contradiction;
so $B_{2}^{\prime}, \ldots, B_{k}^{\prime}=\emptyset$. Hence $B_{1}^{\prime} \neq \emptyset$; and so for $2 \leq i \leq k$ there is no straight S_{i}-rung, by the same argument with S_{1}, S_{i} exchanged. Hence $A_{2}^{\prime \prime}, \ldots, A_{k}^{\prime \prime}=\emptyset$, and the claim holds.

Thus we may assume that every rung is crooked. Suppose that $A_{1}^{\prime}, A_{1}^{\prime \prime} \neq \emptyset$. Let C_{1}^{\prime} be the union of all interior of S_{1}-rungs between $A_{1}^{\prime}, B_{1}^{\prime \prime}$, and let $C_{1}^{\prime \prime}$ be the union of all interiors of S_{1}-rungs between $A_{1}^{\prime \prime}, B_{1}^{\prime}$. Since every S_{1}-rung is of one of these two types, $C_{1}^{\prime} \cup C_{1}^{\prime \prime}=C_{1}$. Since there is no S_{1}-rung with ends in A_{1}^{\prime} and B_{1}^{\prime}, it follows that $C_{1}^{\prime} \cap C_{1}^{\prime \prime}=\emptyset$ and $C_{1}^{\prime}, C_{1}^{\prime \prime}$ are anticomplete. For the same reason, the only edges between $A_{1}^{\prime} \cup C_{1}^{\prime}$ and $A_{1}^{\prime \prime} \cup C_{1}^{\prime \prime}$ are between A_{1}^{\prime} and A_{2}^{\prime}. Since S_{1} is indecomposable, there is an edge between some $a_{1}^{\prime} \in A_{1}^{\prime}$ and some $a_{1}^{\prime \prime} \in A_{1}^{\prime \prime}$. Let R_{1} be an S_{1}-rung with ends $a_{1}^{\prime \prime}$ and some $b_{1}^{\prime} \in B_{1}^{\prime}$. If there exists $a_{2} \in A_{2}^{\prime}$, let R_{2} be an S_{2}-rung with ends a_{2}, b_{2}; then

$$
b_{1}^{\prime}-R_{1}-a_{1}^{\prime \prime}-a_{1}^{\prime}-v-a_{2}-R_{2}-b_{2}-b_{1}^{\prime}
$$

is an even hole, a contradiction. So $A_{2}^{\prime}, \ldots, A_{k}^{\prime}=\emptyset$, and since every rung is crooked, it follows that $B_{2}^{\prime \prime}, \ldots, B_{k}^{\prime \prime}=\emptyset$. But then we can add v to A_{1}, q to B_{1}, and Q^{*} to C_{1}, contrary to the maximality of $V(\mathcal{S})$.

This proves that for each $i \in\{1, \ldots, k\}$, either $A_{i}^{\prime}=B_{i}^{\prime \prime}=\emptyset$, or $A_{i}^{\prime \prime}=B_{i}^{\prime}=\emptyset$. Let I be the set of $i \in\{1, \ldots, k\}$ such that $A_{i}^{\prime} \neq \emptyset$. If $I=\emptyset$, define $S_{0}=\left(\{v\},\{q\}, Q^{*}\right)$, then $\left(a, S_{0}, S_{1}, \ldots, S_{k}\right)$ is an indecomposable pyramid strip system, contrary to the maximality of $V(\mathcal{S})$. So $I \neq \emptyset$. Suppose that $|I| \leq k-2$, say $I=\{i+1, \ldots, k\}$ where $3 \leq i \leq k$. Define $S_{0}=\left(A_{0}, B_{0}, C_{0}\right)$, where

$$
\begin{aligned}
& A_{0}=\{v\} \cup \bigcup_{i \in I} A_{i} \\
& B_{0}=\{q\} \cup \bigcup_{i \in I} B_{i} \\
& C_{0}=Q^{*} \cup \bigcup_{i \in I} C_{i} .
\end{aligned}
$$

Then $\left(a, S_{0}, S_{1}, \ldots, S_{i}\right)$ is an indecomposable pyramid strip system, contrary to the maximality of $V(\mathcal{S})$. So $|I| \geq k-1$ and again the claim holds. This proves (4).

From (3) and (4) it follows that v has type γ_{i}, and Q is the corresponding private path. In view of (2), this proves 6.2.

We say A meets B if $A \cap B \neq \emptyset$.
6.3 Let G be even-hole-free, and let $a \in V(G)$ be splendid. Suppose there is no extended near-prism contained in G such that a is an end of its cross-edge. Let $\mathcal{S}=\left(a, S_{1}, \ldots, S_{k}\right)$ be an indecomposable strip system with apex a, with strips $S_{i}=\left(A_{i}, B_{i}, C_{i}\right)$ for $1 \leq i \leq k$, chosen with $V(\mathcal{S})$ maximal. Then $N[a] \backslash V(\mathcal{S})$ is a clique.

Proof. For $X, Y \subseteq V(G)$, an $X-Y$ path means (in this proof) an induced path P of G with ends x, y say, where $X \cap V(P)=\{x\}$ and $Y \cap V(P)=\{y\}$ (possibly $x=y$ and $V(P)=\{x\}$, if $x \in X \cap Y$). If $X \subseteq V(G)$, a path of G is said to be within X if $V(P) \subseteq X$. Let $B=B_{1} \cup \cdots \cup B_{k}$.
(1) For each $v \in N[a] \backslash V(\mathcal{S})$ there exists $x(v) \in\{0,1\}$ such that for $1 \leq i \leq k$, every $N(v)-B$ path within $V\left(S_{i}\right)$ has parity $x(v)$.

Since $v \in N(a) \backslash V(\mathcal{S}), 6.2$ implies that there are at least two values of $i \in\{1, \ldots, k\}$ such that $N(v) \cap V\left(S_{i}\right) \neq \emptyset$; and for each such i there is an $N(v)-B$ path within $V\left(S_{i}\right)$. Let $N(v) \cap V\left(S_{i}\right) \neq \emptyset$ for $i=1,2$ say, and for $i=1,2$ let P_{i} be an $N(v)-B$ path within $V\left(S_{i}\right)$. Then $G\left[V\left(P_{1} \cup P_{2}\right) \cup\{v\}\right]$ is a hole, and so P_{1}, P_{2} have the same parity, say $x(v) \in\{0,1\}$. We claim that for $1 \leq j \leq k$, every $N(v)-B$ path P in $V\left(S_{j}\right)$ has parity $x(v)$. To see this, choose $i \in\{1,2\}$ different from j; then $G\left[V\left(P_{i} \cup P\right) \cup\{v\}\right]$ is a hole, and the claim follows. This proves (1).

In particular, $x(a)$ exists, and so for $1 \leq i \leq k$, all S_{i}-rungs have parity $x(a)$. Suppose that $u, v \in N(a) \backslash V(\mathcal{S})$ are nonadjacent.
(2) If X_{1}, X_{2} are connected subsets of $V(G)$, disjoint and anticomplete, and u, v both have neighbours in X_{i} for $i=1,2$, then all $N(u)-N(v)$ paths within X_{1} have the same parity, and all $N(u)-N(v)$ paths within X_{2} have the opposite parity.

For $i=1,2$, let P_{i} be an $N(u)-N(v)$ path P_{i} within X_{i}; then $G\left[V\left(P_{1} \cup P_{2}\right) \cup\{u, v\}\right]$ is a hole, and so P_{1}, P_{2} have opposite parity. This proves (2).
(3) There do not exist three connected subsets X_{1}, X_{2}, X_{3} of $V(G)$, pairwise disjoint and pairwise anticomplete, such that for $i=1,2,3, u, v$ both have neighbours in X_{i}.

This is immediate from (2).
(4) There is at most one $i \in\{1, \ldots, k\}$ such that $N(u) \cap\left(A_{i} \cap C_{i}\right)=\emptyset$, and the same for $N(v)$.

Suppose that $N(u)$ is disjoint from $A_{i} \cup C_{i}$ for $i=1,2$. By $6.2, N(a)$ meets at least $k-1$ of $V\left(S_{1}\right), \ldots, V\left(S_{k}\right)$, so we may assume there exists $b_{1} \in B_{1} \cap N(u)$. Choose $b_{2} \in B_{2}$, and for $i=1,2$ let R_{i} be an S_{i}-rung containing b_{i}. If b_{2}, u are adjacent, there is a short pyramid with apex a, with base $\left\{b_{1}, b_{2}, u\right\}$ and constituent paths R_{1}, R_{2} and the edge $u-a$, which is impossible since a is splendid. If b_{2}, u are nonadjacent, there is a theta with ends b_{1}, a and constituent paths $b_{1}-R_{1} i-a, b_{1}-u-a$, and $b_{1}-b_{2}-R_{2}-a$, contrary to 2.1 . This proves (4).
(5) $k=3$, and there exists $i \in\{1,2,3\}$ such that u, v both have neighbours in $A_{i} \cup C_{i}$.

Since each S_{i} is indecomposable, there are only at most two values of i such that $N(u), N(v)$ both meet $A_{i} \cup C_{i}$, by (3). Then both claims follow from (4). This proves (5).

As before, for $i=1,2,3$, let D_{i} be the union of all components F of $G \backslash(V(\mathcal{S} \cup N[a])$ such that $\mathcal{S}(F) \cap\left(A_{i} \cup C_{i}\right) \neq \emptyset$. From (3), there exists $i \in\{1,2,3\}$ such that not both u, v have neighbours in $A_{i} \cup C_{i} \cup D_{i}$.
(6) If v is anticomplete to $V\left(S_{3}\right) \cup D_{3}$ then v has type β_{3}.

Suppose not. Certainly v does not have type α or α^{\prime}, since it has no neighbour in $V\left(S_{3}\right) \cup D_{3}$. It does not have type β_{1} or β_{2} since it has no neighbour in $B_{3} \cup C_{3}$; and not type γ_{1}, γ_{2} since it is not complete to A_{3}. So v has type γ_{3}; let Q be the corresponding private path, between v and q say,
and let p be the neighbour of v in this path. Also, since v is complete to A_{1} and anticomplete to $B_{1} \cup C_{1}$, it follows that $x(v)=x(a)$.

For $i=1,2$, if $N(u)$ meets $A_{i} \cup C_{i} \cup D_{i}$, then there is an $N(u)-\{a\}$ path R within $\{a\} \cup A_{i} \cup C_{i} \cup D_{i}$; and since its ends are adjacent to u, it has odd length. Hence $R \backslash a$ is an $N(u)-N(v)$ path (since v is complete to A_{i} and anticomplete to $B_{i} \cup C_{i}$), and has even length. By (2), N(u) is disjoint from one of $A_{1} \cup C_{1} \cup D_{1}, A_{2} \cup C_{2} \cup D_{2}$, say $A_{2} \cup C_{2} \cup D_{2}$; and by (4), $N(u)$ meets $A_{1} \cup C_{1}$. Let P_{1} be an even $N(u)-N(v)$ path within $A_{1} \cup C_{1}$.

Now u has no neighbour in $A_{2} \cup C_{2} \cup D_{2}$. Suppose that u has a neighbour in the connected set $C_{3} \cup B_{3} \cup B_{2} \cup V(Q \backslash v)$, and let T be an $N(u)-\{a\}$ path within

$$
C_{3} \cup B_{3} \cup V(Q \backslash v) \cup B_{2} \cup C_{2} \cup A_{2} \cup\{a\} .
$$

This path has odd length (because its ends are neighbours of u), and it contains no neighbour of v except the one in A_{2} (because p is nonadjacent to u). Consequently the path $T \backslash a$ is an $N(u)-N(v)$ path of even length anticomplete to P_{1}, a contradiction. So u has no neighbour in $C_{3} \cup B_{3} \cup V(Q) \cup B_{2}$. Since u is anticomplete to $V\left(S_{2}\right) \cup D_{2}, 6.2$ implies that u has type γ_{2}, and in particular, u is complete to A_{3} and has no neighbour in C_{3}. Let T be an $N(v)-\{a\}$ path within $V(Q) \cup V\left(S_{3}\right) \cup\{a\}$; again it has odd length (since its ends are adjacent to v), and $T \backslash a$ is an even $N(u)-N(v)$-path anticomplete to P_{1}, a contradiction. This proves (6).
(7) There is only one $i \in\{1,2,3\}$ such that both $N(u), N(v)$ meet $A_{i} \cup C_{i} \cup D_{i}$.

Suppose that $N(u), N(v)$ both meet $A_{i} \cup C_{i} \cup D_{i}$ for $i=1,2$. Then by (3), one of u, v has no neighbours in $V\left(S_{3}\right) \cup D_{3}$, say v. By (6), v has type β_{3}, and so has a neighbour in $B_{1} \cup C_{1}$ and one in $B_{2} \cup C_{2}$. For $i=1,2$, let P_{i} be an $N(u)-N(v)$ path within $A_{i} \cup C_{i}$. By exchanging S_{1}, S_{2} if necessary, we may assume that P_{1} has odd length, and so P_{2} is even. Hence there is no $N(u)-N(v)$ path within the connected set $B_{2} \cup B_{3} \cup C_{2} \cup C_{3} \cup D_{2} \cup D_{3}$, because we could combine it with one of $u-a-v$ and $u-P_{1}-v$ to make an even hole. Since v has a neighbour in this set, u does not. So u does not have type β. By (6), u has a neighbour $a_{3} \in A_{3}$. Let R_{3} be an S_{3}-rung containing a_{3}, and for $i=1,2$, let R_{i} be an $N(v)-B_{i}$ path within $B_{i} \cup C_{i}$. For $i=1,2,3$, let b_{i} be the end of R_{i} in B_{i}. Thus R_{1}, R_{2} both have parity $x(v)$. For $i=1,2$, let Q_{i} be the induced path $R_{i}-b_{i}-b_{3}-R_{3}$. Thus Q_{2} is an $N(u)-N(v)$ path, but Q_{1} might not be. Now Q_{1}, Q_{2} have the same parity. Since Q_{2} is anticomplete to P_{1} it follows that Q_{2} is even, and hence Q_{1} is even; and since Q_{1} is anticomplete to P_{2}, it follows that Q_{1} is not an $N(u)-N(v)$ path. But it has one end in $N(v)$ and no other vertex in $N(v)$; and its other end is in $N(u)$. Consequently some internal vertex is in $N(u)$, and so u has a neighbour in $V\left(R_{1}\right)$.

If u has a unique neighbour $t \in V\left(R_{1}\right)$, there is a theta with ends t, v and constituent paths

$$
\begin{gathered}
t-R_{1}-v, \\
t-u-a-v, \\
t-R_{1}-b_{1}-b_{2}-R_{2}-v,
\end{gathered}
$$

contrary to 2.1. (Note that t, v are nonadjacent since u, v have no common neighbour nonadjacent to a.) If u has two nonadjacent neighbours in $V\left(R_{1}\right)$, there is a theta with ends u, v and constituent paths

$$
u-R_{1}-v
$$

$$
\begin{gathered}
u-a-v, \\
u-R_{1}-b_{1}-b_{2}-R_{2}-v,
\end{gathered}
$$

contrary to 2.1 . If u has exactly two adjacent neighbours $p, q \operatorname{in} V\left(R_{1}\right)$, where v, p, q, b_{1} are in order in R_{1}, there is a near-prism with bases $\{v, p, q\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ and constituent paths

$$
\begin{gathered}
p-R_{1}-v-R_{2}-b_{2}, \\
u-R_{3}-b_{3}, \\
q-R_{1}-b_{1},
\end{gathered}
$$

contrary to 2.1 . This proves (7).
In view of (4), (5) and (7), we may assume that u, v both have neighbours in $A_{1} \cup C_{1} ; v$ has a neighbour in $A_{2} \cup C_{2}$ and none in $A_{3} \cup C_{3} \cup D_{3}$, and u has a neighbour in $A_{3} \cup C_{3}$ and none in $A_{2} \cup C_{2} \cup D_{2}$.
(8) u has no neighbour in B_{2}, and v has no neighbour in B_{3}.

Suppose that v has a neighbour in B_{3}, say b_{3}, and so $x(v)=0$. Let R_{3} be an S_{3}-rung with ends a_{3}, b_{3}. The path $a-a_{3}-R_{3}-b_{3}$ is odd, since its ends are neighbours of v, and so $x(a)=0$.

Suppose first that $x(u)=0$. There is an $N(u)-N(v)$ path with one end b_{3} and otherwise contained in $A_{3} \cup C_{3}$. Its length has parity $x(u)$, and it is anticomplete to P_{1}, where P_{1} is an $N(u)-N(v)$ path within $A_{1} \cup C_{1}$; so P_{1} has odd length by (2). Hence there is no $N(u)-N(v)$ path within the connected set $B_{2} \cup C_{2} \cup D_{2} \cup B_{3} \cup C_{3} \cup D_{3}$, and so u is anticomplete to this set. By (6) u has type β_{2}, a contradiction since u has no neighbour in $B_{3} \cup C_{3}$.

This shows that $x(u)=1$, and hence u has no neighbour in B. Let R_{1} be an S_{1}-rung with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$, that contains a neighbour of u, and let T be an $N(u)-B_{1}$ subpath of R_{1}. Thus T has parity $x(u)$ and hence is odd, and so $a_{1} \notin V(T)$ since $x(a)=0$. Consequently u has a neighbour in R_{1}^{*}. Since the connected sets $\{a\}, R_{1}^{*}$ and $V\left(S_{3}\right)$ are pairwise anticomplete, (3) implies that v has no neighbour in R_{1}^{*}. But the path $T-b_{1}-b_{3}$ is even, and anticomplete to $\{a\}$; and so this path is not an $N(u)-N(v)$ path, and so v has a neighbour in T, and therefore v, b_{1} are adjacent. Since R_{1} is even, and v has no neighbour in R_{1}^{*}, it follows that v, a_{1} are not adjacent. But then there is a short pyramid with apex a, base $\left\{v, b_{1}, b_{3}\right\}$, and constituent paths

$$
\begin{gathered}
a-a_{1}-R_{1}-b_{1}, \\
a-v, \\
a-a_{3}-R_{3}-b_{3},
\end{gathered}
$$

contradicting that a is splendid. This proves (8).
Thus u has no neighbour in $V\left(S_{2}\right) \cup D_{2}$, and v has no neighbour in $V\left(S_{3}\right) \cup D_{3}$. By (6), u has type β_{2} and v has type β_{3}. Since v has a neighbour in $B_{2} \cup C_{2}$, there is an S_{2}-rung R_{2} with ends $a_{2} \in A_{2}$ and $b_{2} \in B_{2}$, such that v has a neighbour in R_{2} different from a_{2}. Choose an S_{3}-rung R_{3} with ends a_{3}, b_{3} similarly for u. Now v has two nonadjacent neighbours in the hole

$$
a-a_{2}-R_{2}-b_{2}-b_{3}-R_{3}-a_{3}-a
$$

and hence it has at least three, and an odd number; and they all belong to R_{2} except a. Similarly R_{3} contains a positive even number of neighbours of u. Also, the hole

$$
v-R_{2}-b_{2}-b_{3}-R_{3}-a_{3}-a-v
$$

is odd, and so $x(v) \neq x(a)$, and similarly $x(u) \neq x(a)$.
(9) Every S_{1}-rung contains an even number of neighbours of v, and an even number of neighbours of u.

Let R_{1} be an S_{1}-rung with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. Since

$$
a-a_{1}-R_{1}-b_{1}-b_{2}-R_{2}-a_{2}-a
$$

is a hole, and the path $R_{2}-a_{2}-a$ contains an odd number at least three of neighbours of v, and the total cannot be even and at least three, it follows that there is an even number of neighbours of v in R_{1}. Similarly R_{1} contains an even number of neighbours of u. This proves (9).
(10) For every $N(u)-N(v)$ path P_{1} within $A_{1} \cup C_{1}, P_{1}$ has even length, and either $V\left(P_{1}\right) \subseteq A_{1}$, or one end of P_{1} belongs to A_{1} and its other vertices belong to C_{1}. In particular, $A_{1} \cap V(P) \neq \emptyset$.

There is an $N(u)-N(v)$ path Q within $B_{2} \cup C_{2} \cup B_{3} \cup C_{3}$, and it is anticomplete to $\{a\}$ and so odd; and it is also anticomplete to P_{1}, and so P_{1} is even. Now $u-P_{1}-v-Q-u$ is a hole H say, and the neighbours of a in it are u, v, and all vertices of $V\left(P_{1}\right) \cap A_{1}$. Since a is splendid and therefore $V(G) \backslash N[a]$ is connected, 3.2 implies that either

- a is complete to H; or
- the subgraph induced on the set of vertices of H adjacent to a is a path; or
- a has exactly three neighbours in H, and two of them are adjacent.

The first is impossible since a is not complete to $V(Q)$. The second implies that $V\left(P_{1}\right)$ is complete to a, that is, $V\left(P_{1}\right) \subseteq A_{1}$; and the third implies that one end of P_{1} belongs to A_{1} and the others belong to C_{1}. This proves (10).
(11) No S_{1}-rung meets both $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$.

Let R_{1} be an S_{1}-rung with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$. By (10), not both $N(u), N(v)$ meet R_{1}^{*}, so we may assume that $N(v) \cap V\left(R_{1}\right)=\left\{a_{1}, b_{1}\right\}$ (since it has even cardinality by (9)). Thus $b_{1} \notin N(u)$, and so $N(u)$ meets R_{1}^{*} by (9). Since u has an even number of neighbours in $V\left(R_{1}\right)$, and $v-a_{1}-R_{1}-b_{1}-v$ is a hole, and there is no even wheel and no theta, it follows that u has exactly two neighbours in R_{1} and they are adjacent. But then the subgraph induced on $V\left(R_{1}\right) \cup\{u, v, a\}$ is a near-prism, contrary to 2.1. This proves (11).
(12) There is no $N(u)-N(v)$ path within $A_{1} \cup C_{1}$ with one end in A_{1} and all other vertices in C_{1}.

Suppose there is such a path, P say. Let P have ends $p \in A_{1} \cap N(u)$ and $q \in N(v)$ (possibly $p=q$), with $V(P) \backslash\{p\} \subseteq C_{1}$. If $p=q$, an S_{1}-rung with one end p contradicts (11); so $p \neq q$. Let R_{1} be an S_{1}-rung with ends $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$, containing q. The path $p-P-q-R_{1}-b_{1}$ includes an S_{1}-rung with one end in $N(u)$, and therefore contains another neighbour of u by (9). This does not belong to $V(P)$, so it belongs to $V\left(R_{1}\right)$; and so $V\left(R_{1}\right)$ meets both $N(u)$ and $N(v)$, contrary to (11). This proves (12).

From (10) and (12), every $N(u)-N(v)$ path within $A_{1} \cup C_{1}$ is within A_{1}. Choose P_{1} as in (10) to have as few vertices in A_{1} as possible. It follows that $V\left(P_{1}\right) \subseteq A_{1}$. Let P_{1} have ends p, q, where p is adjacent to u and q to v. From (11) $p \neq q$. Let R_{1} be an S_{1}-rung with one end p, and let b_{1} be the end of R_{1} in B_{1}. By (11), v has no neighbour in $V\left(R_{1}\right)$. Now $V\left(P_{1} \backslash p\right)$ is disjoint from $V\left(R_{1} \backslash p\right)$; suppose these two sets are anticomplete. Then $q-P_{1}-p-R_{1}-b_{1}$ is an $N(v)-B_{1}$ path, and so it has parity $x(v)$. But its parity is the same as that of R_{1}, since P_{1} is even; and so $x(v)=x(a)$, a contradiction. Hence $V\left(P_{1} \backslash p\right)$ is not anticomplete to $V\left(R_{1} \backslash p\right)$.

Suppose that $V\left(P_{1} \backslash p\right)$ is not anticomplete to R_{1}^{*}. Since every $N(u)-N(v)$ path within $A_{1} \cup C_{1}$ is within A_{1}, it follows that no vertex of R_{1}^{*} is adjacent to u. But from (11), at least two vertices of R_{1} are adjacent to u, and so b_{1} is adjacent to u. Since $V\left(P_{1} \backslash p\right)$ is not anticomplete to $V\left(R_{1} \backslash p\right)$, there is an S_{1}-rung with one end b_{1} and the other in $V\left(P_{1} \backslash p\right)$, and this S_{1}-rung therefore contains a unique neighbour of u, contrary to (9).

Thus $V\left(P_{1} \backslash p\right)$ is anticomplete to R_{1}^{*}, and so b_{1} has a neighbour $r \in V\left(P_{1} \backslash p\right)$. By (9), u has a neighbour in $V\left(R_{1} \backslash p\right)$, and so there is an induced path Q between u, b_{1} with interior in R_{1}^{*}. Hence Q has parity $x(u)+1$, and since the path $r-b_{1}$ is an S_{1}-rung and so has parity $x(a) \neq x(u)$, it follows that $a-u-Q-b_{1}-r-a$ is an even hole, a contradiction. This proves 6.3.

7 Using the decomposition theorems

Let $S=(A, B, C)$ be a strip in a graph G, and let $a \in V(G) \backslash V(S)$ be complete to A and anticomplete to $B \cup C$. Let D be the union of all the vertex sets of all components F of $G \backslash(V(S) \cup N[a])$ such that F is not anticomplete to $A \cup C$, and let Z be the set of all vertices in $V(G) \backslash V(S)$ that are adjacent or equal to a and have a neighbour in $A \cup C \cup D$. For $v \in Z$, a backdoor for v is an induced path R of G with ends v, b say, such that R^{*} is anticomplete to $V(S) \cup D$, and b is complete to B and has no neighbours in $A \cup C \cup D$. We say (S, a, D, Z) is a completed strip if

- S is proper;
- Z is a clique; and
- every vertex in Z has a backdoor.

We will see that both our decomposition theorems yield completed strips; and completed strips are good for finding bisimplicial vertices by induction, because of the following.
7.1 Let G be even-hole-free, such that 1.2 holds for all graphs with fewer vertices than G. Let (S, a, D, Z) be a completed strip in G, where $S=(A, B, C)$. Let there be at least three vertices in G that are not in $A \cup C \cup D$ and have no neighbour in this set. Then some vertex in $A \cup C \cup V(F)$ is bisimplicial in G.

Proof. For each $z \in Z$, let R_{z} be a backdoor for z. Let Z_{1} be the set of all $z \in Z$ such that R_{z} has odd length, and Z_{2} the set for which R_{z} has even length.
(1) If $v \in A \cup C \cup D$, then every neighbour of v in G belongs to $V(S) \cup D \cup\{a\} \cup Z$.

Suppose $u \in V(G)$ is adjacent to v, and $u \notin V(S) \cup D \cup\{a\} \cup Z$. Thus u is not adjacent to a, since $u \notin Z$ and $v \in A \cup C \cup D$. If $v \in A \cup C$ then $u \in D$ from the definition of D; and if $v \in D$, let $v \in V(F)$ where F is a component of $G \backslash V(S)$ such that F is anticomplete to a and not anticomplete to $A \cup C$; then u also belongs to $V(F)$ and hence to D, a contradiction. This proves (1),
(2) If $z \in Z_{2}$, every induced path between z, B with interior in $A \cup C \cup D$ is even.

Let P be an induced path between z and some $b^{\prime} \in B$ with interior in $A \cup C \cup D$; then $V\left(P \cup R_{z}\right)$ induces an odd hole, and since R_{z} is even it follows that P is even. This proves (2).
(3) If $z \in Z_{1}$, every induced path between z and B with interior in $Z_{2} \cup A \cup C \cup D$ is odd.

Let P be an induced path between z and some $b^{\prime} \in B$ with interior in $Z_{2} \cup A \cup C \cup D$. If $Z_{2} \cap V(P)=\emptyset$, then $V\left(P \cup R_{z}\right)$ induces an odd hole, and since R_{z} is odd it follows that P is odd. So we may assume that there exists $z_{2} \in V(P) \cap Z_{2}$. Since $Z_{1} \cup Z_{2}$ is a clique, z_{2} is unique, and is the neighbour of z_{1} in P. Thus $P \backslash z_{1}$ is an induced path between z_{2} and b with interior in $A \cup C \cup D$, and so is even by (2); and so P is odd. This proves (3).

Let G^{\prime} be the graph obtained from $G[V(S) \cup D \cup Z]$ by adding two new vertices b, c, where b is complete to $B \cup Z_{1}$ and c is complete to $Z \cup\{b\}$. We claim that G^{\prime} is even-hole-free. To see this, suppose that H is an even hole in G^{\prime}. Since G is even-hole-free, H contains at least one of b, c; and if H contains c then it also contains b since the other G^{\prime}-neighbours of c are a clique. Thus $b \in V(H)$. If both H-neighbours of b belong to B, then there is an induced subgraph of the even-hole-free graph $G\left[V(S) \cup D \cup Z \cup V\left(R_{a}\right)\right]$ isomorphic to H, which is impossible. Thus b is H-adjacent to some vertex $z_{1} \in Z_{1} \cup\{c\}$. Since b is G^{\prime}-complete to $Z_{1} \cup\{c\}$, only one vertex of H belongs to this set. Consequently the other H-neighbour of belongs to B, and $|V(H) \cap B|=1$. If $z_{1} \in Z_{1}$ then $c \notin V(H)$ and $H \backslash b$ is an even induced path of G between z_{1} and B_{1} with interior in $Z_{2} \cup A \cup C \cup D$, contrary to (3). Thus $z_{1}=c$, and hence $V(H) \cap Z_{1}=\emptyset$, and the other H-neighbour of c is some $z_{2} \in Z_{2}$. But then $H \backslash\{b, c\}$ is an odd induced path of G between z_{2}, B with interior in $A \cup C \cup D$, contrary to (2). This proves that G^{\prime} is even-hole-free.

Now $A \neq \emptyset$, and so $b c$ is a non-dominating clique of G^{\prime}, since S is proper. But $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, since every vertex of G^{\prime} except b, c belongs to $V(G)$ and is not anticomplete to $A \cup C \cup D$. From the inductive hypothesis, there is a vertex $v \in V\left(G^{\prime}\right) \backslash N_{G^{\prime}}[b, c]$ that is bisimplicial in G. Consequently $v \in A \cup C \cup D$. Since v is nonadjacent to b, all edges of G^{\prime} with both ends in $N_{G^{\prime}}(v)$ are edges of G. But all neighbours of v in G are neighbours of v in G^{\prime}, by (1); and so v is bisimplicial in G. This proves 7.1.

In order to prove 1.2 , we will show:
7.2 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G. Let K be a non-dominating clique in G with $|K| \leq 2$. Then some vertex in $V(G) \backslash N[K]$ is
bisimplicial in G.
We divide the proof into four parts. First we need:
7.3 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G. Let K be a non-dominating clique in G with $|K| \leq 2$, and let $a \in V(G) \backslash N[K]$ be splendid, and such that there is an extended near-prism in G with cross-edge ab for some b. Then some vertex in $V(G) \backslash N[K]$ is bisimplicial in G.

Proof. Choose a tree J and a J-strip system M in G with the same cross-edge $a b$, with (J, M) optimal for $a b$. Let Z be the set of all vertices adjacent to both a, b, and Y the set of major vertices. Let (α, β) be the corresponding partition. For each $e=s t \in E(J)$ with $t \in \alpha$, let D_{e} be the union of the vertex sets of all components of $G \backslash(V(M) \cup Z)$ that are not anticomplete to $M_{e} \backslash M_{s}$. By 5.5 , if F^{\prime} is such a component then a, b have no neighbour in F^{\prime}, and every vertex in $V(M)$ with a neighbour in F^{\prime} belongs to M_{e}.
(1) For each edge $e=$ st of J with $t \in \alpha$, there is a bisimplicial vertex of G in $\left(M_{e} \backslash M_{s}\right) \cup D_{e}$, where D_{e} is the union of the vertex sets of all components of $G \backslash(V(M) \cup Z)$ that are anticomplete to a and not anticomplete to $M_{e} \backslash M_{s}$.

Let $A=M_{t} \cap M_{e}, B=M_{s} \cap M_{e}, C=M_{e} \backslash\left(M_{s} \cup M_{t}\right)$ and $D=D_{e}$; then $S=(A, B, C)$ is a strip, and it is proper, by 5.5 . Let Z^{\prime} be the set of all vertices in $V(G) \backslash V(S)$ that are adjacent or equal to a and have a neighbour in $A \cup C \cup D$. We claim that all vertices in Z^{\prime} are major. Let $z \in Z^{\prime}$. Then $\{z\}$ is not small, since a has a neighbour in $\{z\}$, and so b, z are adjacent; and hence $z \in Z$. Since z has a neighbour in $V(S)$, and b has no neighbour in $V(S)$, it follows that z is b-external; and since a is splendid, every vertex in $N(a)$ is a-external. This proves that $z \in Y$. Consequently Z^{\prime} is a clique, by 5.2.

Choose $t^{\prime} \in \beta$, and let P be a path of J with ends s, t^{\prime}. Choose an f-rung R_{f} for each $f \in E(P)$. Let u, v be the ends of R_{P}, where $u \in M_{t^{\prime}}$ and $v \in M_{s}$. For each $z \in Z^{\prime}$, since z is adjacent to b, there is a path from z to v with interior in $V\left(R_{P}\right) \cup\{b\}$; and this is a backdoor for z since v is complete to B and anticomplete to $A \cup C$.

Now D is the union of the vertex sets of all components F of $G \backslash(V(M) \cup Z)$ that are not anticomplete to $M_{e} \backslash M_{s}$. By 5.5, for each such F, a has no neighbour in $V(F)$; and so D is the union of the vertex sets of all components F of $G \backslash(V(S) \cup N[a])$ such that F is not anticomplete to $A \cup C$. Hence $\left(S, a, D, Z^{\prime}\right)$ is a completed strip, and there are at least three vertices of G that are anticomplete to $A \cup C \cup D$, namely b and at two vertices of $M_{e^{\prime}}$ (the latter has at least two vertices, since the corresponding strip is proper by 5.5). From 7.1, there is a bisimplicial vertex of G in $A \cup C \cup D$. This proves (1).

Choose edges $e=s t$ and $e^{\prime}=s^{\prime} t^{\prime}$ of J where $t, t^{\prime} \in \alpha$ are distinct; then by (1), there are bisimplicial vertices $v \in\left(M_{e} \backslash M_{s}\right) \cup D_{e}$, and $v^{\prime} \in\left(M_{e^{\prime}} \backslash M_{s^{\prime}}\right) \cup D_{e^{\prime}}$, defining $D_{e}, D_{e^{\prime}}$ as in (1). Suppose they both belong to $N[K]$. Now for $k \in K, k$ is not adjacent to a since $a \in V(G) \backslash N[K]$ by hypothesis; and so $k \notin Z$. We may choose $k \in K$ adjacent or equal to v, and so k is not anticomplete to $\left(M_{e} \backslash M_{s}\right) \cup D_{e}$. Consequently $k \in M_{e} \cup D_{e}$. Similarly there exists $k^{\prime} \in K \cap\left(M_{e^{\prime}} \cup D_{e^{\prime}}\right)$. But $M_{e} \cup D_{e}$ is anticomplete to $M_{e^{\prime}} \cup D_{e^{\prime}}$ by 4.2, a contradiction. This proves that one of v, v^{\prime} is anticomplete to K, and so satisfies the theorem. This proves 7.3.

Second, we need:
7.4 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G. Let K be a non-dominating clique in G with $|K| \leq 2$, and let $a \in V(G) \backslash N[K]$ be splendid. Suppose that there is no extended near-prism in G such that a is an end of its cross-edge, and there is a pyramid in G with apex a. Then some vertex in $V(G) \backslash N[K]$ is bisimplicial in G.

Proof. From 6.2 since there is a pyramid with apex a, and all its constituent paths have length at least two (because a is splendid), there is an indecomposable strip system with apex a. Let $\mathcal{S}=\left(a, S_{1}, \ldots, S_{k}\right)$ be an indecomposable strip system with apex a, with strips $S_{i}=\left(A_{i}, B_{i}, C_{i}\right)$ for $1 \leq i \leq k$, chosen with $V(\mathcal{S})$ maximal. In the notation of 6.2 , for $1 \leq i \leq k$, let D_{i} be the union of the vertex sets of all components F of $G \backslash\left(V(\mathcal{S} \cup N[a])\right.$ such that $\mathcal{S}(F) \cap\left(A_{i} \cup C_{i}\right) \neq \emptyset$.
(1) For $1 \leq i \leq k$, there is a bisimplicial vertex of G in $A_{i} \cup C_{i} \cup D_{i}$.

Let $1 \leq i \leq k, i=1$ say; and let Z be the set of all $z \in N(a) \backslash V(\mathcal{S})$ such that z has a neighbour in $A_{1} \cup C_{1} \cup D_{1}$. Thus Z is a clique by 6.3. We need to show that each $z \in Z$ has a backdoor. By 6.2 , z has type $\alpha, \alpha^{\prime}, \beta$ or γ, and hence for some $2 \leq j \leq k$, z has a neighbour in $V\left(S_{j}\right)$. Choose an S_{j}-rung R in which z has a neighbour, with an end $b \in B_{j}$ say; then a path between z, b with interior in $V(R)$ provides a backdoor. Thus each $z \in Z$ has a backdoor; and there are at least three vertices in G that are anticomplete to $A_{1} \cup C_{1} \cup D_{1}$, for instance all vertices of A_{2}, \ldots, A_{k} and B_{2}, \ldots, B_{k}. By 7.1 , this proves (1).

Since $|K| \leq 2$ and $k \geq 3$, we may assume that K is disjoint from $S_{1} \cup D_{1}$. Let $v \in A_{1} \cup C_{1} \cup D_{1}$ be bisimplicial. Since K is anticomplete to a, it follows from 6.2 that K is anticomplete to v, and so v satisfies the theorem. This proves 7.4.

Third, we need:
7.5 Let G be an even-hole-free graph, such that 1.2 holds for all graphs with fewer vertices than G. Let K be a non-dominating clique in G with $|K| \leq 2$, and let $a \in V(G) \backslash N[K]$ be splendid. Suppose that there is no pyramid in G with apex a. Then some vertex in $V(G) \backslash N[K]$ is bisimplicial in G.

Proof. By 3.1, we may assume that G does not admit a full star cutset. We begin with:
(1) There do not exist distinct $y_{1}, y_{2}, y_{3} \in N(a)$, pairwise nonadjacent.

Suppose such y_{1}, y_{2}, y_{3} exist. Now $G \backslash N[a]$ is connected, and y_{1}, y_{2}, y_{3} all have neighbours in it, since a is splendid. Let S be a minimal connected induced subgraph of $G \backslash N[a]$ such that y_{1}, y_{2}, y_{3} all have neighbours in S. No two of y_{1}, y_{2}, y_{3} have a common neighbour in $V(S)$, since such a vertex would make a 4-hole with a and two of y_{1}, y_{2}, y_{3}. Consequently $|V(S)| \geq 2$, and so there are at least two vertices $x \in V(S)$ such that $S \backslash x$ is connected. Choose two such vertices x_{1}, x_{2} say. From the minimality of S, for $i=1,2$ one of y_{1}, y_{2}, y_{3} has no neighbour in $V(S) \backslash\left\{x_{i}\right\}$, and so we may assume that for $i=1,2, x_{i}$ is the unique neighbour of y_{i} in $V(S)$. Let $P=p_{1}-\cdots-p_{k}$ be an induced path of S with $p_{1}=x_{1}$ and $p_{k}=x_{2}$. Now y_{3} might or might not have neighbours in $V(P)$. Let $Q=q_{0}-q_{1} \cdots-q_{\ell}$ be a minimal path in $G\left[S \cup\left\{y_{3}\right\}\right]$ where $q_{0}=y_{3}$ and q_{ℓ} has a neighbour in $V(P)$.
(Thus if y_{3} has a neighbour in $V(P)$ then $\ell=0$.) If q_{ℓ} has a unique neighbour $p_{i} \in V(P)$, there is a theta in G with ends a, p_{i} and constituent paths

$$
\begin{aligned}
& a-y_{1}-P-p_{i}, \\
& a-y_{2}-P-p_{i}, \\
& a-y_{3}-Q-p_{i},
\end{aligned}
$$

contrary to 2.1 .
Suppose that q_{ℓ} has two nonadjacent neighbours in $V(P)$. Then $\ell=0$ by the minimality of S (because if $\ell>0$, we could delete from S a vertex of P between the first and last neighbour of q_{ℓ} in $P)$. Let H be the hole induced on $V(P) \cup\left\{a, y_{1}, y_{2}\right\}$. Then y_{3} is adjacent to a and not to its neighbours in H; and y_{3} has two other neighbours in $V(H)$, nonadjacent to each other. Since G admits no full star cutset, this is contrary to 3.2 .

Thus q_{ℓ} has exactly two neighbours in $V(P)$ and they are adjacent, say p_{i}, p_{i+1}. But then there is a pyramid with apex a, base $\left\{q_{\ell}, p_{i}, p_{i+1}\right\}$ and constituent paths

$$
\begin{gathered}
a-Q-q_{\ell} \\
a-y_{1}-P-p_{i} \\
a-y_{2}-P-y_{i+1}
\end{gathered}
$$

a contradiction. This proves (1).
We suppose that a is not bisimplicial, and so the graph complement of $G[N(a)]$ is not bipartite, and hence has an induced odd cycle. It has no induced cycle of length at least six, since $G[N(a)]$ has no 4-hole; and none of length three by (1). Thus it has an induced cycle of length five, and hence so does $G[N(a)]$. Let $v_{1}-\cdots-v_{5}-v_{1}$ be a 5 -hole of G where v_{1}, \ldots, v_{5} are adjacent to a. Choose a connected subgraph S with $V(S) \cap N(a)=\emptyset$, minimal such that at least four of v_{1}, \ldots, v_{5} have a neighbour in $V(S)$.
(2) If $u, v \in\left\{v_{1}, \ldots, v_{5}\right\}$ are nonadjacent then they have no common neighbour in $V(S)$.

Because if $s \in V(S)$ is adjacent to both u, v then $s-u-a-v-s$ is a 4-hole. This proves (2).
(3) If $P=p_{1}-\cdots-p_{k}$ is a path of S such that $p_{1} v_{2}$ and $p_{k} v_{4}$ are edges, then one of v_{1}, v_{5} has a neighbour in $\left\{p_{1}, \ldots, p_{k}\right\}$.

Suppose not, and choose k minimum. Thus $v_{2}-p_{1}-p_{k}-v_{4}$ is an induced path. If v_{3} is nonadjacent to p_{1}, \ldots, p_{k} then there is a theta with ends v_{2}, v_{4} and constituent paths

$$
\begin{gathered}
v_{2}-v_{3}-v_{4} \\
v_{2}-v_{1}-v_{5}-v_{4} \\
v_{2}-p_{1}-\cdots-p_{k}-v_{4}
\end{gathered}
$$

contrary to 2.1. So v_{3} is adjacent to at least one of p_{1}, \ldots, p_{k}. Let v_{3} be adjacent to $n \geq 1$ of p_{1}, \ldots, p_{k}. If n is odd then there is an even wheel with centre v_{3} and hole $a-v_{2}-p_{1}-\cdots-p_{k}-v_{4}-a$; and if n is even there is an even wheel with centre v_{3} and hole $v_{1}-v_{2}-p_{1}-\cdots-p_{k}-v_{4}-v_{5}-v_{1}$, in both cases contrary to 2.1 . This proves (3).

From (2) it follows that $|V(S)| \geq 2$. Let X be the set of vertices $x \in V(S)$ such that $S \backslash x$ is connected. For each $x \in X$, let $T(x)$ be the set of $v \in\left\{v_{1}, \ldots, v_{5}\right\}$ such that x is the unique neighbour of v in $V(S)$. The minimality of S implies that $T(x) \neq \emptyset$ for each $x \in X$, and (2) implies that $T(x)$ is a clique.
(4) Exactly four of v_{1}, \ldots, v_{5} have a neighbour in $V(S)$.

Suppose v_{1}, \ldots, v_{5} all have a neighbour in $V(S)$. From the minimality of S, it follows that $|T(x)| \geq 2$ for each $x \in X$, and since the sets $T(x)(x \in X)$ are pairwise disjoint, it follows that $|X| \leq 2$. Since $|V(S)| \geq 2$ and S is connected, it follows that S is a path of length at least one, and X consists of the ends of S. Let S have vertices $s_{1}-\cdots-s_{k}$ in order. Now $T\left(s_{1}\right)$ is a clique, so we may assume that $T\left(s_{1}\right)=\left\{v_{1}, v_{2}\right\}$. Since $T\left(s_{1}\right), T\left(s_{k}\right)$ are disjoint, similarly we may assume that $T\left(s_{k}\right)=\left\{v_{4}, v_{5}\right\}$. Thus each of $v_{1}, v_{2}, v_{4}, v_{5}$ has a unique neighbour in $V(S)$, and v_{3} has at least one such neighbour. But then there is a 4 -hole with centre v_{3} and hole $s_{1}-S-v_{3}-a-v_{1}-s_{1}$, contrary to 2.1. This proves (4).

We may therefore assume that v_{3} has no neighbour in $V(S)$. If $x \in X$, then $T(x) \neq\left\{v_{2}\right\}$, since otherwise $S \backslash x$ would contain a path in which v_{1}, v_{4} have neighbours and v_{2}, v_{3} do not, contrary to (3). Similarly $T(x) \neq\left\{v_{4}\right\}$, and $T(x) \neq\left\{v_{2}, v_{4}\right\}$ since $T(x)$ is a clique. Thus $T(x)$ contains one of v_{1}, v_{5}. Hence $|X|=2$, and so S is a path $s_{1} \cdots-s_{k}$ say, where $v_{1} \in T\left(s_{1}\right)$ and $v_{5} \in T\left(S_{k}\right)$. If both v_{2}, v_{4} have a neighbour in S^{*}, there is a theta with ends v_{2}, v_{4} and constituent paths

$$
\begin{gathered}
v_{2}-v_{3}-v_{4}, \\
v_{1}-v_{1}-v_{5}-v_{4}, \\
v_{2}-G\left[S^{*}\right]-v_{4},
\end{gathered}
$$

contrary to 2.1 . From the symmetry we may therefore assume that v_{2} has no neighbour in S^{*}. Also by (2), v_{2} is nonadjacent to s_{k}, so $v_{2} \in T\left(s_{1}\right)$. Let v_{4} have n neighbours in $V(S)$. If n is even then there is an even wheel with centre v_{4} and hole $a-v_{2}-s_{1}-\cdots-s_{k}-v_{5}-a$, and if n is odd and $n>1$ then there is an even wheel with centre v_{4} and hole $v_{1}-s_{1}-\cdots-s_{k}-v_{5}$. Thus $n=1$. Let s_{i} be the unique neighbour of v_{4} in $V(S)$. If $i=k$, there is a prism with bases $\left\{v_{1}, v_{2}, s_{1}\right\},\left\{v_{4}, v_{5}, s_{k}\right\}$ and constituent paths

$$
\begin{gathered}
v_{1}-v_{5} \\
v_{2}-v_{3}-v_{4} \\
s_{1}-\cdots-s_{k}
\end{gathered}
$$

contrary to 2.1. If $i<k$ there is a theta with ends s_{i}, v_{5} and constituent paths

$$
\begin{gathered}
s_{i} \cdots-s_{k}-v_{5} \\
s_{i}-\cdots-s_{1}-v_{1}-v_{5} \\
s_{i}-v_{4}-v_{5}
\end{gathered}
$$

contrary to 2.1 . This proves 7.5.

Finally, the fourth part of the proof of 7.2 ; we will show:
7.6 Let G be even-hole-free, and let K be a non-dominating clique in G with $|K| \leq 2$. Suppose that 1.2 holds for all graphs with fewer vertices than G, but there is no bisimplicial vertex of G in $V(G) \backslash N[K]$. Then there is a splendid vertex in $V(G) \backslash N[K]$.

Proof. If $K \neq \emptyset$ let Z be the set of all vertices in $V(G) \backslash K$ that are complete to K, and if $K=\emptyset$ let $Z=\emptyset$. Choose $a \in V(G) \backslash N[K]$ with as few neighbours in Z as possible; and subject to that, with degree as small as possible. We claim that a is splendid. By 3.1 we may assume that G admits no full star cutset, and so for every vertex v, the subgraph induced on $V(G) \backslash N[v]$ is connected. In particular, this holds when $v=a$, which is the first requirement to be splendid.
(1) Every vertex in $N(a)$ has a neighbour in $V(G) \backslash N[a]$.

Suppose that $v \in N(a)$ has no neighbour in $V(G) \backslash N[a]$. Then every neighbour of v belongs to $N[a]$, and in particular, $v \notin N[K]$, and every vertex in Z adjacent to v is also adjacent to a, and the degree of v is at most that of a. From the choice of a, equality holds, and so a, v have the same neighbours (except for a, v themselves). Let $G^{\prime}=G \backslash v$. Since K is non-dominating in G^{\prime}, the inductive hypothesis implies that there exists $u \in V\left(G^{\prime}\right) \backslash N_{G^{\prime}}[K]$ that is bisimplicial in G^{\prime}. If $u=a$, then since v is adjacent to every neighbour of a, it follows that a is bisimplicial in G; so we may assume that u, v, a are all distinct. If u, v are nonadjacent, then u is bisimplicial in G. If u, v are adjacent, then u, a are adjacent, and since v, a have the same neighbours in $N[u]$, it follows that u is bisimplicial in G. In each case this is impossible. This proves (1).

Suppose there is a short pyramid in G with apex a; with base $\left\{b_{1}, b_{2}, b_{3}\right\}$ say, and constituent paths R_{1}, R_{2}, R_{3} where R_{i} has ends a, b_{i} for $i=1,2,3$, and R_{3} has length one. Thus R_{1}, R_{2} have length at least three. For $i=1,2$ let y_{i} be the neighbour of a in R_{i}. Let S be the set of vertices of G nonadjacent to both a, b_{3}.
(2) If $P=p_{1} \cdots-p_{k}$ is a path with $p_{1}, \ldots, p_{k} \in S$, of minimum length such that p_{1} has a neighbour in $R_{1}^{*} \backslash\left\{y_{1}\right\}$ and p_{k} has a neighbour in $V\left(R_{2}\right)$, then p_{1} has exactly two adjacent neighbours in $V\left(R_{1}\right)$ and y_{2} is the unique neighbour of p_{k} in $V\left(R_{2}\right)$, and these three edges are the only edges between $\left\{p_{1}, \ldots, p_{k}\right\}$ and $V\left(R_{1} \cup R_{2} \cup R_{3}\right)$.

From the minimality of k, none of p_{2}, \ldots, p_{k} has a neighbour in $R_{1}^{*} \backslash\left\{y_{1}\right\}$, but they might be adjacent to b_{1} or y_{1}. Also none of p_{1}, \ldots, p_{k-1} has a neighbour in $V\left(R_{2}\right)$. (Note that possibly $k=1$.) Suppose that p_{k} has two nonadjacent neighbours in $V\left(R_{2}\right)$. Then there is a theta with ends p_{k}, a and constituent paths

$$
\begin{gathered}
p_{k}-R_{2}-a, \\
p_{k^{-}} R_{2}-b_{2}-b_{3}-a \\
p_{k^{-}}\left(P \cup R_{1} \backslash b_{1}\right)-a,
\end{gathered}
$$

contrary to 2.1 . If p_{k} has exactly two neighbours x, y in R_{2} and they are adjacent (and a, x, y, b_{2} are in this order in R_{2}, say), there is a near-prism with bases $\left\{b_{1}, b_{2}, b_{3}\right\}$ and $\left\{p_{k}, x, y\right\}$, with constituent paths

$$
x-R_{2}-a-b_{3}
$$

$$
\begin{gathered}
p_{k^{-}}\left(P \cup R_{1} \backslash a\right)-b_{1}, \\
y-R_{2}-b_{2},
\end{gathered}
$$

contrary to 2.1. Thus p_{k} has a unique neighbour u say in $V\left(R_{2}\right)$. If $u \neq y_{2}$, there is a theta with ends u, a and constituent paths

$$
\begin{gathered}
u-R_{2}-a, \\
u-R_{2}-b_{2}-b_{3}-a, \\
u-\left(P \cup R_{1} \backslash b_{1}\right)-a,
\end{gathered}
$$

contrary to 2.1. So $u=y_{2}$. Hence p_{k} is not adjacent to y_{1}, because otherwise there would be a 4-hole $p_{k}-y_{2}-a-y_{1}-p_{k}$. If b_{1} is the unique neighbour of p_{k} in $V\left(R_{1}\right)$, there is a theta with ends y_{1}, b_{1} and constituent paths

$$
\begin{gathered}
y_{1}-a-R_{1}-b_{1} \\
y_{1}-R_{2}-b_{2}-b_{1} \\
y_{1}-p_{k}-b_{1}
\end{gathered}
$$

contrary to 2.1. So if p_{k} has a neighbour in $V\left(R_{1}\right)$ then $k=1$. Thus the only edges between $\left\{p_{1}, \ldots, p_{k}\right\}$ and $V\left(R_{1} \cup R_{2} \cup R_{3}\right)$ are the edges between p_{1} and $V\left(R_{1}\right)$, and the edge $p_{k} y_{2}$. If p_{1} has two nonadjacent neighbours in R_{1}, say x, y where a, x, y, b_{1} are in order in R_{1}, then there is a theta with ends p_{1}, a and constituent paths

$$
\begin{gathered}
p_{1}-x-R_{1}-a, \\
p_{1}-y-R_{1}-b_{1}-b_{3}-a, \\
p_{1}-P-p_{k}-y-a,
\end{gathered}
$$

contrary to 2.1. If p_{1} has a unique neighbour say v in $V\left(R_{1}\right)$, then since $v \neq y_{1}$ (because by hypothesis, p_{1} has a neighbour in $R_{1}^{*} \backslash\left\{y_{1}\right\}$), there is a theta with ends v, a and constituent paths

$$
\begin{gathered}
v-R_{1}-a, \\
v-R_{1}-b_{1}-b_{3}-a, \\
v-P-y_{2}-a,
\end{gathered}
$$

contrary to 2.1. So p_{1} has exactly two neighbours in $V\left(R_{1}\right)$ and they are adjacent. Ths proves (2).
(3) There is no path p_{1}, \ldots, p_{k} with $p_{1}, \ldots, p_{k} \in S$, such that p_{1} has a neighbour in $R_{1}^{*} \backslash\left\{y_{1}\right\}$ and p_{2} has a neighbour in $R_{2}^{*} \backslash\left\{y_{2}\right\}$.

Suppose $P=p_{1}, \ldots, p_{k}$ is such a path, chosen with k minimum. Note that $y_{1}, y_{2}, b_{1}, b_{2}$ may have neighbours in the interior of P, but from the minimality of $k, p_{1}, \ldots, p_{k-1}$ have no neighbours in $R_{2}^{*} \backslash\left\{y_{2}\right\}$, and p_{2}, \ldots, p_{k} have no neighbours in $R_{1}^{*} \backslash\left\{y_{1}\right\}$. Choose $i \in\{1, \ldots, k\}$ minimum such that p_{i} has a neighbour in $V\left(R_{2}\right)$. From (2) applied to the path $p_{1} \cdots-p_{i}$, it follows that p_{1} has exactly two neighbours in $V\left(R_{1}\right)$, say x_{1}, y_{1}, and they are adjacent, and y_{2} is the unique neighbour of p_{i} in $V\left(R_{2}\right)$, and these three edges are the only edges between $\left\{p_{1}, \ldots, p_{i}\right\}$ and $V\left(R_{1} \cup R_{2} \cup R_{3}\right)$. In particular $i<k$. Choose $j \in\{1, \ldots, k\}$ maximum such that p_{j} has a neighbour in $V\left(R_{1}\right)$; then similarly p_{k} has
exactly two neighbours in $V\left(R_{2}\right)$, say x_{2}, y_{2}, and they are adjacent, and y_{1} is the unique neighbour of p_{j} in $V\left(R_{1}\right)$, and these three edges are the only edges between $\left\{p_{j}, \ldots, p_{k}\right\}$ and $V\left(R_{1} \cup R_{2} \cup R_{3}\right)$. Thus $j>i$, and since $1 \leq i<j \leq k$ it follows that $k \geq 2$. Let Q be the path $p_{i}-p_{i+1} \cdots-p_{j}$. Thus the only edges between $\left\{p_{1}, \ldots, p_{k}\right\}$ and $V\left(R_{1} \cup R_{2} \cup R_{3}\right)$ are edges between p_{1} and $V\left(R_{1}\right)$, edges between p_{k} and $V\left(R_{2}\right)$, the edges $p_{i} y_{2}, p_{j} y_{1}$, and edges between Q^{*} and $\left\{y_{1}, y_{2}, b_{1}, b_{2}\right\}$. If b_{1} has a neighbour in Q^{*}, there is a theta with ends b_{1}, y_{1} and constituent paths

$$
\begin{gathered}
b_{1}-R_{1}-y_{1}, \\
b_{1}-b_{3}-a-y_{1} \\
b_{1}-Q-y_{1}
\end{gathered}
$$

contrary to 2.1. So b_{1} has no neighbour in $\left\{p_{2}, \ldots, p_{k}\right\}$, and similarly b_{2} has no neighbour in $\left\{p_{1}, \ldots, p_{k-1}\right\}$. If y_{1}, y_{2} both have neighbours in P^{*}, there is a theta with ends y_{1}, y_{2} and constituent paths

$$
\begin{gathered}
y_{1}-G\left[P^{*}\right]-y_{2}, \\
y_{1}-a-y_{2}, \\
y_{1}-R_{1}-b_{1}-b_{2}-R_{2}-y_{2},
\end{gathered}
$$

contrary to 2.1. Thus we may assume that y_{2} has no neighbour in P^{*}, and in particular $i=1$. Consequently p_{1}, y_{1} are nonadjacent, since $p_{1}-y_{1}-a-y_{2}-p_{1}$ is not a 4 -hole. Then there is a theta with ends p_{1}, y_{1} and constituent paths

$$
\begin{gathered}
p_{1}-R_{1}-y_{1}, \\
p_{1}-R_{1}-b_{1}-b_{3}-a-y_{1}, \\
p_{1}-P-y_{1},
\end{gathered}
$$

contrary to 2.1 . This proves (3).
For $i=1,2$, let S_{i} be the component of $G[S]$ that contains $R_{i} \backslash\left\{a, y_{i}, b_{i}\right\}$. So S_{1}, S_{2} are nonempty since R_{1}, R_{2} have length at least three; and S_{1}, S_{2} are distinct by (3). For $i=1,2$, let B_{i} be the set of vertices adjacent to b_{3} and not to a, with a neighbour in S_{i}. So $b_{i} \in B_{i}$ for $i=1,2$. If there exists $v \in B_{1} \cap B_{2}$, there is a theta with ends v, a and constituent paths

$$
\begin{gathered}
v-b_{3}-a, \\
v-S_{1}-y_{1}-a, \\
v-S_{2}-y_{2}-a,
\end{gathered}
$$

contrary to 2.1. So $B_{1} \cap B_{2}=\emptyset$.
The only vertices of G not in $V\left(S_{1}\right)$ but with a neighbour in $V\left(S_{1}\right)$ belong to $B_{1} \cup N[a]$. From the inductive hypothesis, applied to the graph $G^{\prime}=G\left[S_{1} \cup B_{1} \cup N[a] \cup\left\{b_{3}\right\}\right]$, since the edge $a b_{3}$ is non-dominating in G^{\prime}, it follows that some vertex in S_{1} is bisimplicial in G^{\prime} and hence in G. Since there is no bisimplicial vertex of G in $V(G) \backslash N[K]$, it follows that $N[K] \cap S_{1} \neq \emptyset$, and similarly $N[K] \cap S_{2} \neq \emptyset$. But $K \cap N[a]=\emptyset$ from the choice of a; and so $K \cap\left(V\left(S_{i}\right) \cup B_{i}\right) \neq \emptyset$ for $i=1,2$. Since the sets $V\left(S_{1}\right), B_{1}, B_{2}, V\left(S_{2}\right)$ are pairwise disjoint, and there are no edges between $B_{2} \cup V\left(S_{2}\right)$
and $V\left(S_{1}\right)$, it follows that $K \cap S_{1}=\emptyset$, and so $K \cap B_{1} \neq \emptyset$; and similarly $K \cap B_{2} \neq \emptyset$. In particular $|K|=2$. Let $K \cap B_{i}=b_{i}^{\prime}$ for $i=1,2$.

We recall that Z is the set of all vertices adjacent to both $b_{1}^{\prime}, b_{2}^{\prime}$, and so $b_{3} \in Z$. Now a, b_{3} are adjacent. But $y_{1} \notin N[K]$ (because if y_{1}, b_{i}^{\prime} are adjacent then there is a 4 -hole $y_{1}-b_{i}^{\prime}-b_{3}-a-y_{1}$), and y_{1}, b_{3} are nonadjacent. From the choice of a, y_{1} has at least as many neighbours in Z as does a; and since b_{3} is adjacent to a and not to y_{1}, there exists $z \in Z$ adjacent to y_{1} and not to b_{3}. Since $z-y_{1}-a-b_{3}-z$ is not a 4-hole, z, b_{3} are nonadjacent. Since $b_{2}^{\prime} \in B_{2}$ and hence $b_{2}^{\prime} \notin B_{1}$, and b_{2}^{\prime} is adjacent to z, it follows that $z \notin V\left(S_{1}\right)$. But then there is a theta with ends b_{1}^{\prime}, y_{1} and constituent paths

$$
\begin{gathered}
b_{1}^{\prime}-z-y_{1}, \\
b_{1}^{\prime}-b_{3}-a-y_{1} \\
b_{1}^{\prime}-S_{1}-y_{1}
\end{gathered}
$$

contrary to 2.1 . This proves 7.6 .
From 7.3, 7.4, 7.5 and 7.6 , this completes the proof of 7.2 , and hence of 1.2 .

Acknowledgement

We would like to thank Rong Wu for bringing the error in [1] to our attention, which gave rise to this paper.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed and P. Seymour, "Bisimplicial vertices in even-hole-free graphs", J. Combinatorial Theory, Ser. B, 98 (2008), 1119-1164.
[2] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, "Even-hole-free graphs, Part I: Decomposition theorem", J. Graph Theory 39 (2002), 6-49.
[3] K. Vušković, "Even-hole-free graphs: a survey", Applicable Analysis and Discrete Mathematics, 4 (2010), 219-240.
[4] J. Ramirez-Alfonsin and B. Reed (eds.), Perfect Graphs, Wiley, Chichester, 2001, 130.

[^0]: ${ }^{1}$ This material is based upon work supported in part by the U. S. Army Research Office under grant number W911NF-16-1-0404, and by NSF grant DMS-1763817.
 ${ }^{2}$ Partially supported by NSF grant DMS-1800053 and AFOSR grant A9550-19-1-0187.

