Solution of three problems of Cornuéjols

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544

May 4, 2006; revised May 29, 2007

[^0]
Abstract

A graph is balanced if it is bipartite and every induced cycle has length divisible by four. In his book [6], Gérard Cornuéjols proposed a number of open questions, offering $\$ 5000$ for the solution of any of them. Here we solve three of them, about balanced graphs.

1 Introduction

A graph is said to be balanced if it is bipartite, and every induced cycle has length divisible by four. In his excellent book [6], Gérard Cornuéjols proposed eighteen conjectures, and offered $\$ 5000$ for a proof or counterexample for any of them. Two, concerned with perfect graphs, were settled by the solution of the strong perfect graph conjecture [2]. Now we are happy to report the solution of three more, concerned with balanced graphs; conjectures $9.23,9.28$ and 9.29 of [6]. We give a counterexample to the first two, and a proof of the third.

2 A counterexample to conjectures 9.23 and 9.28 of [6]

Conjecture 9.23 on page 98 of [6] asserts:
2.1 Conjecture (Conforti, Cornuéjols and Rao [4]) If G is a balanced graph that is not totally unimodular, then G is either $a W_{p q}$ or has a biclique cutset or a 2-join.

We need to explain these terms. A graph is totally unimodular if it admits a bipartition (A, B) such that every square submatrix of the matrix $\left(m_{a b}: a \in A, b \in B\right)$ has determinant ± 1 or 0 , where $m_{a b}=1$ if a, b are adjacent and 0 otherwise. The graphs $W_{p q}$ are a particular class of balanced graphs that we do not need to define here (they are essentially a special case of what we call crossmatchings below). A biclique cutset is a pair of disjoint nonempty sets $A, B \subseteq V(G)$, such that every vertex in A is adjacent to every vertex in B, and $G \backslash(A \cup B)$ is disconnected. A graph G has a 2-join if its vertex set can be partitioned into V_{1}, V_{2} in such a way that, for each $i=1,2$, there exist disjoint nonempty subsets $A_{i}, B_{i} \subseteq V_{i}$, such that

- every vertex of A_{1} is adjacent to every vertex of A_{2},
- every vertex of B_{1} is adjacent to every vertex of B_{2},
- there are no other adjacencies between V_{1} and V_{2},
- for $i=1,2 V_{i}$ contains at least one path from A_{i} to B_{i}, and
- for $i=1,2$, if $\left|A_{i}\right|=\left|B_{i}\right|=1$ then the graph induced by V_{i} is not a chordless path between A_{i} and B_{i}.
(Remark: the definition of a 2-join in [6] contains a minor error, and the fifth condition above has been amended to fix this error.)

Two disjoint subsets A, B of the vertex set $V(G)$ are said to be matched in G if A, B are stable sets in G and each member of A has a unique neighbour in B and vice versa. Here is a class of balanced graphs. Let $p, q \geq 1$ be integers, and let C be a cycle with vertices

$$
a_{1}, \ldots, a_{4 p-3}, b_{1}, \ldots, b_{4 q-3}, c_{1}, \ldots, c_{4 p-3}, d_{1}, \ldots, d_{4 q-3}, a_{1}
$$

in order. Take $p+q$ new vertices $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}$, and add edges as follows:

- x_{i}, y_{j} are adjacent for all i, j with $1 \leq i \leq p$ and $1 \leq j \leq q$
- for $1 \leq i \leq p, x_{i}$ and $c_{4 i-3}$ are adjacent
- for $1 \leq j \leq q, y_{j}$ and $d_{4 j-3}$ are adjacent
- $\left\{a_{1}, a_{5}, a_{9}, \ldots, a_{4 p-3}\right\}$ and $\left\{x_{1}, \ldots, x_{p}\right\}$ are matched
- $\left\{b_{1}, b_{5}, b_{9}, \ldots, b_{4 q-3}\right\}$ and $\left\{y_{1}, \ldots, y_{q}\right\}$ are matched
and there are no other edges. Let us call such a graph a crossmatching. It is easy to check that every crossmatching is balanced.

In particular, let $p=3, q=2$, and take a crossmatching such that the pairs

$$
a_{1} x_{1}, a_{9} x_{2}, a_{5} x_{3}, b_{1} y_{1}, b_{5} y_{2}
$$

are edges. This is balanced, and does not satisfy 2.1 (we leave it to the reader to check this). The same graph is also a counterexample to conjecture 9.28 of [6] (we do not state this in full, because it is just a strengthening of 2.1, and needs several further definitions).

3 Conjecture 9.29 of [6]

The goal of the remainder of this paper is to prove conjecture 9.29 on page 100 of [6], which asserts the following:
3.1 Conjecture (Conforti, Cornuéjols, Kapoor and Vušković [3]) Every balanceable bipartite graph that is not regular has a double star cutset.

We need first to define these terms. A graph is eulerian if every vertex has even degree (we do not require it to be connected). If G is a graph and $w: E(G) \rightarrow\{-1,1\}$ is a map, and H is a subgraph of G, we denote $\sum_{e \in E(H)} w(e)$ by $w(H)$. A bipartite graph G is balanceable if there is a map $w: E(G) \rightarrow\{-1,1\}$ such that $w(C)$ is a multiple of four for every induced cycle C of G. A bipartite graph G is regular if there is a map $w: E(G) \rightarrow\{-1,1\}$ such that $w(H)$ is a multiple of four for every induced eulerian subgraph H of G. (This definition of "regular" is more convenient for us than the definition used in [6]; they are equivalent, because of Camion's theorem [1].) Any such map w is called a $t . u$. signing of G.

A cutset in G is a subset $X \subseteq V(G)$ such that $G \backslash X$ has at least two components. (This is not quite the definition from [6], but the difference is not significant.) A star cutset in G is a cutset X such that some $u \in X$ is adjacent to all other members of X. Then u is called a centre of the star cutset. A double star cutset in G is a cutset X such for some edge $u v$ with $u, v \in X$, every member of X is adjacent to one of u, v; and then $u v$ is called a centre of the double star cutset.

A remark: the definition of "double star cutset" above is the standard definition used in many of Cornuéjols' papers, such as [3]. However, in [6] the definition is different; he requires in addition that the subgraph induced on the cutset is a tree. This is presumably a mistake in [6], because with this definition it is easy to give counterexamples to 3.1 ; for instance, take the graph with ten vertices

$$
a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, d_{1}, d_{2}
$$

and adjacency as follows: $a_{i} b_{i}$ is an edge for $i=1,2,3 ;\left\{b_{1}, b_{2}, b_{3}\right\}$ is complete to $\left\{c_{1}, c_{2}\right\} ;\left\{c_{1}, c_{2}\right\}$ is complete to $\left\{d_{1}, d_{2}\right\}$; and $\left\{d_{1}, d_{2}\right\}$ is complete to $\left\{a_{1}, a_{2}, a_{3}\right\}$. Then this graph is a counterexample
to 3.1 using the definition of "double star cutset" from [6]. Henceforth then, we use the standard definition.

If $v \in V(G)$ we denote the union of $\{v\}$ and the set of neighbours of v by $N[v]$; and if $u v$ is an edge of G then $N[u v]$ denotes $N[u] \cup N[v]$. If $v, w \in V(G)$ are distinct, we say that v dominates w if every vertex adjacent to w is also adjacent to v (and hence v, w are nonadjacent). We observe:
3.2 Let G be a bipartite graph with $|V(G)| \geq 5$ and $E(G) \neq \emptyset$ and with no double star cutset. Then

- G is connected
- G has no star cutset
- no vertex of G dominates another
- for every edge uv, the subgraph induced on $V(G) \backslash N[u v]$ is nonnull and connected, and every vertex in $N[u v] \backslash\{u, v\}$ has a neighbour in $V(G) \backslash N[u v]$.

Proof. Suppose that G is not connected, and let $u v$ be an edge, chosen from the component C of G that has most vertices. Then either G has at least three components, or $|V(C)| \geq 3$, and in either case $\{u, v\}$ is a double star cutset, a contradiction. Thus G is connected.

Suppose that X is a star cutset with centre u. If there exists $v \in X \backslash\{u\}$, then X is also a double star cutset with centre $u v$, a contradiction; so $X=\{u\}$. Let A_{1} be a component of $G \backslash X$, and let $A_{2}=V(G) \backslash\left(A_{1} \cup X\right)$; thus $A_{2} \neq \emptyset$. Since G is connected, u has neighbours $v_{i} \in A_{i}$ for $i=1,2$. Since $X \cup\left\{v_{i}\right\}$ is not a double star cutset, it follows that $A_{i}=\left\{v_{i}\right\}$ for $i=1,2$, and so $|V(G)|=3$, a contradiction. Thus G has no star cutset.

Now suppose that v dominates w. Let X be the union of $\{v\}$ and the set of all neighbours of w. Since X is not a star cutset with centre v, it follows that $X \cup\{w\}=V(G)$. Let u be adjacent to w. Since $\{u, v, w\}$ is not a star cutset with centre u, we deduce that $|V(G)| \leq 4$, a contradiction. Thus no vertex dominates another.

Finally, let $u v$ be an edge. Suppose first that $N[u v]=V(G)$. Then u dominates every neighbour of v different from u, so by what we just proved, v has degree one, and similarly u has degree one, a contradiction. Thus $N[u v] \neq V(G)$. Since $N[u v]$ is not a double star cutset, it follows that the subgraph induced on $V(G) \backslash N[u v]$ is connected. Now let $w \in N[u v]$ with $w \neq u, v$; say w is adjacent to u. Since v does not dominate w, it follows that w has a neighbour in $V(G) \backslash N[u v]$. This completes the proof of 3.2 .

4 Operations preserving regularity

In this section we discuss some lemmas stating that if we piece two regular graphs together in prescribed ways, then the graph we produce is also regular.

If $X \subseteq V(G)$, we denote the subgraph induced on X by $G \mid X$. Let G be a connected bipartite graph that admits a 2-join, and let $V_{i}, A_{i}, B_{i}(i=1,2)$ be as in the definition of a 2-join. Let G_{1} be the graph obtained from $G \mid V_{1}$ by adding a path $p_{1}-p_{2} \cdots-p_{k}$ of new vertices, where p_{1} is adjacent to every vertex in A_{1}, p_{k} is adjacent to every vertex in B_{1}, and there are no other edges between V_{1} and $\left\{p_{1}, \ldots, p_{k}\right\}$, and $k \geq 3$, and k is chosen so that G_{1} is bipartite. Define G_{2} similarly, adding a path to $G \mid V_{2}$. We call G_{1}, G_{2} a pair of blocks of the 2-join. We need first:
4.1 Let G be a connected bipartite graph that admits a 2-join, and let $V_{i}, A_{i}, B_{i}(i=1,2)$ be as before, and let G_{1}, G_{2} be a pair of blocks of the 2 -join. If G_{1}, G_{2} are both regular then so is G.

This result is well-known, and related to the fact that 3 -sums in matroid theory preserve matroid regularity. Another closely related result is that if G_{1}, G_{2} are totally unimodular then so is G, and that is proved in lemma 2.3 of [4]. The proof given there can easily be adapted to prove 4.1, and we omit the details.

Let G be a bipartite graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a 6 -join if $\left|V_{1}\right|,\left|V_{2}\right| \geq 4$ and there exist disjoint nonempty subsets $A_{1}, A_{3}, A_{5} \subseteq V_{1}$ and $A_{2}, A_{4}, A_{6} \subseteq V_{2}$, satisfying:

- for $i=1, \ldots, 6 A_{i}$ is complete to A_{i+1}, where A_{7} means A_{1}
- there are no other edges between V_{1} and V_{2}.

In this case, let G_{1} be obtained from $G \mid V_{1}$ by adding three new vertices b_{2}, b_{4}, b_{6}, where for $i=2,4,6$, b_{i} is adjacent to every vertex of $A_{i-1} \cup A_{i+1}$ (reading subscripts modulo 6), and there are no other new edges. Similarly, define G_{2} by adding four vertices b_{1}, b_{3}, b_{5} to $G \mid V_{2}$, where for $i=1,3,5, b_{i}$ is adjacent to every vertex of $A_{i-1} \cup A_{i+1}$, and there are no other new edges. We call G_{1}, G_{2} a pair of blocks of the 6 -join. We need a result analogous to 4.1 for 6 -joins, but first a lemma:
4.2 Let a_{1}, \ldots, a_{6} be integers such that a_{1}, a_{3}, a_{5} are all even or all odd, and a_{2}, a_{4}, a_{6} are all even or all odd. Then

$$
a_{1} a_{2}-a_{2} a_{3}+a_{3} a_{4}-a_{4} a_{5}+a_{5} a_{6}-a_{6} a_{1}
$$

is a multiple of four.
Proof. Changing the value of a_{1} by two does not change the value of the expression modulo four, since a_{1} multiplies $a_{2}-a_{6}$, which is even. Thus we may assume that $a_{1} \in\{0,1\}$, and similarly $a_{2}, \ldots, a_{6} \in\{0,1\}$. Since a_{1}, a_{3}, a_{5} are all even or all odd, they are all equal, and so are a_{2}, a_{4}, a_{6}; and hence the expression is zero.

The analogue of 4.1 is:
4.3 Let $\left(V_{1}, V_{2}\right)$ be a 6-join in a connected bipartite graph G, and let G_{1}, G_{2} be a pair of blocks of this 6 -join. If G_{1}, G_{2} are both regular then so is G.

Proof. Let A_{1}, \ldots, A_{6} be as in the definition of a 6 -join, and let b_{1}, \ldots, b_{6} be the new vertices of G_{1}, G_{2} as above. (Throughout this proof we read subscripts modulo 6.) Let $a_{i} \in A_{i}$ for $i=1,3,5$. Let w_{1} be a t.u. signing of G_{1}. If $Y \subseteq V\left(G_{1}\right)$ and we replace $w_{1}(e)$ by $-w_{1}(e)$ for every edge e of G_{1} with exactly one end in Y, we obtain another t.u. signing of G_{1}; and we may therefore choose w_{1} such that:

- for $j=2,4,6, w_{1}(e)=1$ for every edge e incident with b_{j} and a vertex of A_{j-1}, and
- for $j=2,4, w_{1}(e)=-1$ for the edge $e=b_{j} a_{j+1}$.

Since the subgraph of G_{1} induced on $\left\{a_{1}, b_{2}, a_{3}, b_{4}, a_{5}, b_{6}\right\}$ is eulerian and w_{1} is a t.u. signing, it follows that also $w_{1}(e)=-1$ for the edge $e=b_{6} a_{1}$. Also, for each choice of $a_{1}^{\prime} \in A_{1}$, since the subgraph induced on $\left\{a_{1}^{\prime}, b_{2}, a_{3}, b_{4}, a_{5}, b_{6}\right\}$ is eulerian, it follows that $w_{1}(e)=-1$ for the edge $e=b_{6} a_{1}^{\prime}$. Similarly for $j=2,4$ and for each $a_{j+1}^{\prime} \in A_{j+1}$, it follows that $w_{1}(e)=-1$ for the edge $e=b_{j} a_{j+1}^{\prime}$. Thus in summary we have:

- for $j=2,4,6, w_{1}(e)=1$ for every edge e incident with b_{j} and a vertex of A_{j-1}, and
- for $j=2,4,6, w_{1}(e)=-1$ for every edge e incident with b_{j} and a vertex of A_{j+1}.

Similarly we may choose a t.u. signing w_{2} of G_{2} such that:

- for $j=1,3,5, w_{2}(e)=1$ for every edge e incident with b_{j} and a vertex of A_{j+1}, and
- for $j=1,3,5, w_{2}(e)=-1$ for every edge e incident with b_{j} and a vertex of A_{j-1}.

For each edge e of G, either $e \in E\left(G \mid V_{i}\right)$ for some $i \in\{1,2\}$, or $e=u v$ where $u \in A_{i}$ and $v \in A_{i+1}$ for some $i \in\{1, \ldots, 6\}$. In the first case let $w(e)=w_{i}(e)$, and in the second case let $w(e)=1$ if i is odd and -1 if i is even. We claim that w is a t.u. signing of G. For let $X \subseteq V(G)$ such that $G \mid X$ is eulerian.

Let $x_{i}=\left|X \cap A_{i}\right|$ for $1 \leq i \leq 6$. We say that for $1 \leq i \leq 6, x_{i}$ is exceptional if $x_{i}+x_{i+2}, x_{i}+x_{i-2}$ are both odd (and therefore $x_{i+2}+x_{i-2}$ is even). Thus at most one of x_{1}, x_{3}, x_{5} is exceptional, and at most one of x_{2}, x_{4}, x_{6}; and if there is one of each, say x_{i} and x_{j}, we claim that $j \neq i+1, i-1$. To see the last assertion, suppose that x_{1}, x_{2} are exceptional, say. Thus $x_{1}+x_{3}, x_{2}+x_{4}$ are odd, and $x_{4}+x_{6}$ is even; and so

$$
\left(x_{1}+x_{3}\right)\left(x_{2}+x_{4}\right)+\left(x_{1}+x_{5}\right)\left(x_{4}+x_{6}\right)
$$

is odd. But this equals

$$
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{6}+x_{6} x_{1}
$$

modulo 2 , and so the total number of edges between $V_{1} \cap X$ and $V_{2} \cap X$ is odd, contradicting that $G \mid X$ is eulerian. This proves our assertion. Consequently, from the symmetry we may assume that $x_{1}, x_{5}, x_{2}, x_{4}$ are not exceptional, that is, $x_{1}+x_{5}$ and $x_{2}+x_{4}$ are both even.

Let $X_{1} \subseteq V\left(G_{1}\right)$ be defined as follows. Let $X_{1} \cap V_{1}=X \cap V_{1}$, let $b_{2}, b_{4} \notin X_{1}$, and let $b_{6} \in X_{1}$ if and only if x_{6} is exceptional. Similarly, let $X_{2} \subseteq V\left(G_{2}\right)$ where $X_{2} \cap V_{2}=X \cap V_{2}, b_{1}, b_{5} \notin X_{2}$, and $b_{3} \in X_{2}$ if and only if x_{3} is exceptional.
(1) $G_{1} \mid X_{1}$ is eulerian.

For let $v \in X_{1}$; we must check that its degree d_{1} say in $G_{1} \mid X_{1}$ is even. If $v=b_{6}$ then its degree is $x_{1}+x_{5}$, which is even, so we may assume that $v \in X$; let its degree in $G \mid X$ be d. Thus d is even. If $v \in V_{1} \backslash\left(A_{1} \cup A_{3} \cup A_{5}\right)$ then $d_{1}=d$ and therefore is even; if $v \in A_{3}$ then $d_{1}=d-\left(x_{2}+x_{4}\right)$, and therefore is even; if $v \in A_{1}$ then $d_{1}=d-\left(x_{2}+x_{6}\right)$ if $b_{6} \notin X_{1}$ (that is, if $x_{2}+x_{6}$ is even), and $d_{1}=d-\left(x_{2}+x_{6}\right)+1$ if $b_{6} \in X_{1}$ (that is, if $x_{2}+x_{6}$ is odd), and in either case d_{1} is even; and similarly d_{1} is even if $v \in A_{5}$. This proves (1).

Define $X_{2} \subseteq V\left(G_{2}\right)$ similarly. Then $w_{1}\left(G_{1} \mid X_{1}\right)$ and $w_{2}\left(G_{2} \mid X_{2}\right)$ are multiples of four, so let us examine $w(G \mid X)-w_{1}\left(G_{1} \mid X_{1}\right)-w_{2}\left(G_{2} \mid X_{2}\right)$. First,

$$
w(G \mid X)=w\left(G \mid\left(X \cap V_{1}\right)\right)+w\left(G \mid\left(X \cap V_{2}\right)\right)+\sum_{i=1,3,5} x_{i}\left(x_{i+1}-x_{i-1}\right) .
$$

Let $y_{6}=1$ if $b_{6} \in X_{1}$, and $y_{6}=0$ otherwise, and define y_{3} similarly; then

$$
w_{1}\left(G_{1} \mid X_{1}\right)=w\left(G \mid\left(X \cap V_{1}\right)\right)+y_{6}\left(x_{5}-x_{1}\right)
$$

and

$$
w_{2}\left(G_{2} \mid X_{2}\right)=w\left(G \mid\left(X \cap V_{2}\right)\right)+y_{3}\left(x_{4}-x_{2}\right) .
$$

Thus $w(G \mid X)-w_{1}\left(G_{1} \mid X_{1}\right)-w_{2}\left(G_{2} \mid X_{2}\right)=R$, where by definition

$$
R=x_{1} x_{2}-x_{2}\left(x_{3}-y_{3}\right)+\left(x_{3}-y_{3}\right) x_{4}-x_{4} x_{5}+x_{5}\left(x_{6}-y_{6}\right)-\left(x_{6}-y_{6}\right) x_{1} .
$$

But since x_{1}, x_{5} are not exceptional, the definition of y_{3} ensures that $x_{1}, x_{3}-y_{3}, x_{5}$ are all odd or all even; and similarly $x_{2}, x_{4}, x_{6}-y_{6}$ are all odd or all even. By 4.2, it follows that R is a multiple of four. Consequently $w(G \mid X)$ is a multiple of four, and so w is a t.u. signing of G. This proves 4.3.

Third, we need the following. Let us say distinct vertices of G are twins if they have the same neighbour sets (and consequently are nonadjacent to each other).

4.4 Let u, v be twins in G, and suppose that $G \backslash\{v\}$ is regular. Then G is regular.

Proof. Let w be a t.u. signing of $G \backslash\{v\}$, and extend the domain of w to $E(G)$ by defining $w(v x)=w(u x)$ for each edge $v x$ of G. We claim that w is a t.u. signing of G. For let $X \subseteq V(G)$ such that $G \mid X$ is eulerian. If $v \notin X$ then $w(G \mid X)$ is a multiple of four since w is a t.u. signing of $G \backslash\{v\}$, and if $u \notin X$ the same conclusion follows from the symmetry between u, v. Thus we may assume that $u, v \in X$. Let $X^{\prime}=X \backslash\{u, v\}$; then $G \mid X^{\prime}$ is eulerian, and so $w\left(G \mid X^{\prime}\right)$ is a multiple of four. But $w(G \mid X)=w\left(G \mid X^{\prime}\right)+2 z$, where z is the sum of $w(u x)$ over all edges $u x$ with $x \in X^{\prime}$; and since $G \mid X$ is eulerian, it follows that z is even. Hence $w(G \mid X)$ is a multiple of four, and so w is a t.u. signing of G, and therefore G is regular. This proves 4.4.

5 Some 6-join lemmas

A 6-join $\left(V_{1}, V_{2}\right)$ in a bipartite graph G is said to be skeletal if $\left|V_{2}\right|=7$, and V_{2} can be numbered as $\left\{a_{2}, a_{4}, a_{6}, c_{2}, c_{4}, c_{6}, c_{8}\right\}$ such that

- c_{8} has degree three in G, with neighbours c_{2}, c_{4}, c_{6}
- for $i=2,4,6, c_{i}$ has degree two in G, with neighbours a_{i}, c_{8}
- there are disjoint nonempty subsets $A_{1}, A_{3}, A_{5} \subseteq V_{1}$ such that for $i=2,4,6, a_{i}$ is complete to $A_{i-1} \cup A_{i+1}$ (where A_{7} means A_{1}) and there are no other edges between V_{1} and V_{2}.

An induced subgraph of G that is a cycle is called a hole in G, and a hole of length k is a k-hole. If G is a balanceable bipartite graph, an induced subgraph H is said to be an irregularity in G if H is not regular, and every induced subgraph of G with fewer vertices than H is regular. We need:
5.1 Let G be balanceable, and let $\left(V_{1}, V_{2}\right)$ be a skeletal 6 -join. Let $V_{2}=\left\{a_{2}, a_{4}, a_{6}, c_{2}, c_{4}, c_{6}, c_{8}\right\}$ as in the definition of "skeletal". Let H be an irregularity in G; then $c_{2}, c_{4}, c_{6}, c_{8} \notin V(H)$.

Proof. Let A_{1}, \ldots, A_{6} be as in the definition of 6 -join, where $A_{i}=\left\{a_{i}\right\}$ for $i=2,4,6$. Let $w: E(G) \rightarrow\{-1,1\}$ such that $w(C)$ is a multiple of four for every induced cycle C of G. As usual we may assume that $w\left(a_{i} a_{i+1}\right)=1$ for $i=1,3,5$ and all $a_{i} \in A_{i}$, and $w\left(a_{i} a_{i-1}\right)=-1$ for $i=1,3,5$ and all $a_{i} \in A_{i}$, where A_{0} means A_{6}. Now w induces a t.u. signing of J for every regular induced
subgraph J of G. Since H is an irregularity in G, it follows that H is eulerian; and since w induces a t.u. signing of every proper induced subgraph of H and not of H itself, we deduce that $w(H)$ is not a multiple of four. Suppose that one of $c_{2}, c_{4}, c_{6}, c_{8} \in V(H)$. Hence we may assume that $a_{2}, c_{2}, c_{8}, c_{4}, a_{4} \in V(H)$ and $c_{6} \notin V(H)$. For $i=1,3,5$, let $x_{i}=\left|V(H) \cap A_{i}\right|$.

Let $Y=\left\{a_{2}, c_{2}, c_{8}, c_{4}, a_{4}\right\}$; then $w(G \mid Y)$ is a multiple of four, since $w(C)$ is a multiple of four where C is the hole $c_{8}-c_{2}-a_{2}-a_{3}-a_{4}-c_{4}-c_{8}$ for some $a_{3} \in A_{3}$. Suppose first that $a_{6} \in V(H)$, and let $X=V(H) \cap V_{1}$. Then $G \mid X$ is eulerian, and therefore regular from the minimality of $|V(H)|$, and so $w(G \mid X)$ is a multiple of four. But $w(H)=w(G \mid X)+w(G \mid Y)$, and so $w(H)$ is a multiple of four, a contradiction. Thus $a_{6} \notin V(H)$. Let $X=\left(V(H) \cap V_{1}\right) \cup\left\{a_{6}\right\}$. Then again $G \mid X$ is eulerian, and has fewer vertices than H, and so $w(G \mid X)$ is a multiple of four. But

$$
w(H)=w(G \mid X)+w(G \mid Y)-2 x_{5}+2 x_{1},
$$

and $x_{5}-x_{1}$ is even since a_{6} has even degree in $G \mid X$. It follows again that $w(H)$ is a multiple of four, a contradiction. This proves 5.1.

A 6 -join $\left(V_{1}, V_{2}\right)$ in a bipartite graph G is said to be internal if $\left|V_{1}\right|,\left|V_{2}\right| \geq 8$. We need several results saying that balanceable graphs containing certain induced subgraphs admit either double star cutsets or internal 6 -joins.

If $X, Y \subseteq V(G)$, we say that X is anticomplete to Y if $X \cap Y=\emptyset$ and there is no edge $x y$ with $x \in X$ and $y \in Y$. The proof of theorem 6.3 of [3] also proves the following:
5.2 Let G be balanceable, and let $a_{1}-b_{2}-a_{3}-b_{1}-a_{2}-b_{3}-a_{1}$ be a 6 -hole C in G. Suppose that there are subsets $A, B \subseteq V(G)$ with the following properties:

- $A, B, V(C)$ are pairwise disjoint, and $G|A, G| B$ are connected;
- a_{1}, a_{2}, a_{3} have neighbours in A, and b_{1}, b_{2}, b_{3} do not;
- b_{1}, b_{2}, b_{3} have neighbours in B, and a_{1}, a_{2}, a_{3} do not; and
- A is anticomplete to B.

Then either G admits a double star cutset, or G admits a 6 -join $\left(V_{1}, V_{2}\right)$ with $A \cup\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq V_{1}$ and $B \cup\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq V_{2}$.

6 Big dominoes

A triple $\left(a b, C_{1}, C_{2}\right)$ is a domino in G if C_{1}, C_{2} are holes in G, and $a b$ is an edge, and $V\left(C_{1}\right) \cap V\left(C_{2}\right)=$ $\{a, b\}$, and $V\left(C_{1}\right) \backslash\{a, b\}$ is anticomplete to $V\left(C_{1}\right) \backslash\{a, b\}$. An odd theta is a graph consisting of two nonadjacent vertices u, v and three odd length paths between u, v, such that the interiors of these three paths are pairwise disjoint and pairwise anticomplete. An odd wheel is a graph consisting of a cycle C and another vertex $v \notin V(C)$, such that v has an odd number, at least three, of neighbours in $V(C)$. We need the following easy and well-known lemma (we omit the proof).
6.1 If G is a balanceable bipartite graph, then no induced subgraph of G is an odd theta or an odd wheel.

Let us say two vertices u, v in the same component of a bipartite graph G have the same biparity if every path between them has even length, and otherwise they have opposite biparity (and therefore every path between them has odd length). We begin with a lemma.
6.2 Let $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ be a domino in a balanceable graph G, such that C_{1}, C_{2} both have length at least six. For $i=1,2$, let $P_{i}=C_{i} \backslash\left\{a_{0}, b_{0}\right\}$; then P_{i} is a chordless path of length at least three with ends a_{i}, b_{i} say, where a_{i} is adjacent to b_{0} and b_{i} to a_{0}. Suppose that G does not admit a double star cutset, and does not admit a 6-join $\left(V_{1}, V_{2}\right)$ such that $V\left(C_{i}\right) \backslash\left\{a_{0}, b_{0}\right\} \subseteq V_{i}$ for $i=1,2$, and V_{1}, V_{2} each contain exactly one of a_{0}, b_{0}. Let $q_{1} \cdots-q_{n}$ be a chordless path such that

- for $1 \leq i \leq n, q_{i}$ has a neighbour in the interior of P_{1} if and only if $i=1$, and q_{i} has a neighbour in the interior of P_{2} if and only if $i=n$, and
- q_{1}, \ldots, q_{n} are all nonadjacent to both a_{0}, b_{0}.

Then either
(a) a_{1} is adjacent to one of q_{2}, \ldots, q_{n}, and a_{2} is adjacent to one of q_{1}, \ldots, q_{n-1}, and b_{1} is nonadjacent to q_{2}, \ldots, q_{n}, and b_{2} is nonadjacent to q_{1}, \ldots, q_{n-1}, or
(b) b_{1} is adjacent to one of q_{2}, \ldots, q_{n}, and b_{2} is adjacent to one of q_{1}, \ldots, q_{n-1}, and a_{1} is nonadjacent to q_{2}, \ldots, q_{n}, and a_{2} is nonadjacent to q_{1}, \ldots, q_{n-1}.

Moreover, if (a) holds then either

- q_{1} is adjacent to both a_{1}, a_{2}, and a_{2} is nonadjacent to q_{2}, \ldots, q_{n-1}, or
- q_{n} is adjacent to both a_{1}, a_{2}, and a_{1} is nonadjacent to q_{2}, \ldots, q_{n-1}.

An analogous statement holds if (b) is true.
Proof. Let us say a_{1} or b_{1} is active if it is adjacent to one of q_{2}, \ldots, q_{n}, and a_{2} or b_{2} is active if it is adjacent to one of q_{1}, \ldots, q_{n-1}.
(1) At least one of $a_{1}, b_{1}, a_{2}, b_{2}$ is active, and so $n \geq 2$.

For suppose not. We may assume that q_{1}, a_{0} have opposite biparity. If q_{1} has more than one neighbour in P_{1}, there are three paths between q_{1}, a_{0} forming an odd theta, namely two with interior in $V\left(C_{1}\right)$ and the third with interior in $\left\{q_{2}, \ldots, q_{n}\right\} \cup\left(V\left(P_{2}\right) \backslash\left\{a_{2}\right\}\right)$, a contradiction. Thus q_{1} has a unique neighbour, p_{1} say, in P_{1}. Since q_{1} has a neighbour in the interior of P_{1} it follows that $p_{1} \neq a_{1}$; and there are three paths between p_{1}, b_{0} forming an odd theta, namely two with interior in $V\left(C_{1}\right)$ and the third with interior in $\left\{q_{2}, \ldots, q_{n}\right\} \cup\left(V\left(P_{2}\right) \backslash\left\{b_{2}\right\}\right)$, a contradiction. This proves (1).
(2) Not both a_{1}, b_{1} are active.

For if they are, there are three paths between a_{1}, b_{1} forming an odd theta, namely $P_{1}, a_{1}-b_{0}-a_{0}-b_{1}$ and a path with interior in $\left\{q_{2}, \ldots, q_{n}\right\}$, a contradiction.
(3) Not both b_{1}, b_{2} have neighbours in $\left\{q_{2}, \ldots, q_{n-1}\right\}$.

For if they do, let R be a chordless path between b_{1}, b_{2} with interior in $\left\{q_{2}, \ldots, q_{n-1}\right\}$. Then a_{1}, a_{2} are both anticomplete to $V(R)$, by (2), and so

$$
b_{1}-P_{1}-a_{1}-b_{0}-a_{2}-P_{2}-b_{2}-R-b_{1}
$$

is a hole and a_{0} has three neighbours in it, a contradiction. This proves (3).
In view of (1) and (2) we may assume that b_{1} is active and a_{1} is not. Let $j \in\{2, \ldots, n\}$ be maximum such that q_{j}, b_{1} are adjacent.
(4) One of a_{2}, b_{2} is adjacent to one of q_{1}, \ldots, q_{j-1}.

For suppose not. Let R be a chordless path between b_{0} and q_{j} with interior in $\left(V\left(P_{1}\right) \backslash\left\{b_{1}\right\}\right) \cup$ $\left\{q_{1}, \ldots, q_{j-1}\right\}$. Let S, T be chordless paths between q_{j}, b_{0} with interior in $\left\{q_{j+1}, \ldots, q_{n}\right\} \cup\left(V\left(P_{2}\right) \backslash\right.$ $\left.\left\{b_{2}\right\}\right)$ and in $\left\{q_{j+1}, \ldots, q_{n}, a_{0}\right\} \cup\left(V\left(P_{2}\right) \backslash\left\{a_{2}\right\}\right)$ respectively. Then $b_{0}-R-q_{j}-S-b_{0}$ and $b_{0}-R-q_{j}-T-b_{0}$ are holes, and b_{1} has one more neighbour in the second hole than in the first; and so by $6.1, b_{1}$ has exactly one neighbour in R, namely q_{j}. But then there are three paths between q_{j} and b_{0} that form an odd theta, namely $q_{j}-R-b_{0}, q_{j}-S-b_{0}$ and $q_{j}-b_{1}-a_{0}-b_{0}$, a contradiction. This proves (4).
(5) a_{2} is not active.

For suppose that a_{2} is active. Then b_{2} is not, by (2); and so by (4), a_{2} is adjacent to one of q_{1}, \ldots, q_{j-1}. Let $i \in\{1, \ldots, j-1\}$ be minimum such that a_{2}, q_{i} are adjacent. If $j>i+1$, there are three paths between b_{1}, a_{2} forming an odd theta, namely one with interior in $V\left(P_{1}\right) \cup\left\{q_{1}, \ldots, q_{i}\right\}$, one with interior in $\left\{q_{j}, \ldots, q_{n}\right\} \cup V\left(P_{2}\right)$, and $b_{1}-a_{0}-b_{0}-a_{2}$. Thus $j=i+1$; but then the 6 -hole $a_{0}-b_{1}-q_{j}-q_{i}-a_{2}-b_{0}-a_{0}$, and the two subsets $\left(V\left(P_{2}\right) \backslash\left\{a_{2}\right\}\right) \cup\left\{q_{j+1}, \ldots, q_{n}\right\}$ and $\left(V\left(P_{1}\right) \backslash\left\{b_{1}\right\}\right) \cup\left\{q_{1}, \ldots, q_{i-1}\right\}$ satisfy the hypotheses of 5.2 , and consequently there is either a double star cutset or a 6 -join that violates the hypothesis of the theorem. This proves (5).

From (4) and (5), it follows that b_{2} is adjacent to one of q_{1}, \ldots, q_{j-1}, and so there is symmetry between b_{1} and b_{2}. By (3) one of b_{1}, b_{2} is nonadjacent to q_{2}, \ldots, q_{n-1}, so by exchanging C_{1}, C_{2} if necessary, we may assume that b_{2} is nonadjacent to q_{2}, \ldots, q_{n-1}. Consequently b_{2} is adjacent to q_{1}. (Note that possibly b_{2} is adjacent to q_{n}, and possibly $j=n$.)
(6) b_{1} is adjacent to q_{1}.

For suppose not. If q_{1} has at least two neighbours in P_{1}, there are three paths between q_{1} and b_{1} forming an odd theta, namely two with interior in $V\left(C_{1}\right)$ and one with interior in $\left\{q_{2}, \ldots, q_{j}\right\}$, a contradiction. If q_{1} has a unique neighbour p_{1} in P_{1}, then p_{1}, a_{0} are nonadjacent and there are three paths between p_{1}, a_{0} forming an odd theta, namely two paths of C_{1} and a path with interior in $\left\{q_{1}, \ldots, q_{j}\right\}$, again a contradiction. This proves (6), and completes the proof of 6.2.

The lemma is used for the following.
6.3 Let $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ be a domino in a balanceable graph G, such that C_{1}, C_{2} both have length at least six. Then either G admits a double star cutset, or G admits a 6-join $\left(V_{1}, V_{2}\right)$ such that $V\left(C_{i}\right) \backslash\left\{a_{0}, b_{0}\right\} \subseteq V_{i}$ for $i=1,2$, and V_{1}, V_{2} each contain exactly one of a_{0}, b_{0}.

Proof.

For $i=1,2$, let $P_{i}=C_{i} \backslash\left\{a_{0}, b_{0}\right\}$; then P_{i} is a chordless path of length at least three with ends a_{i}, b_{i} say, where a_{i} is adjacent to b_{0} and b_{i} to a_{0}. We assume that G does not admit a double star cutset and does not admit a 6 -join satisfying the theorem. Hence there is a chordless path $q_{1} \cdots \cdots-q_{n}$ as in 6.2 , and again from 6.2 we may assume that q_{1} is adjacent to b_{1}, b_{2}, and b_{1} is adjacent to one of q_{2}, \ldots, q_{n}, and b_{2} is nonadjacent to q_{2}, \ldots, q_{n-1}, and a_{1} is nonadjacent to q_{2}, \ldots, q_{n}, and a_{2} is nonadjacent to q_{1}, \ldots, q_{n-1}.

Since b_{1} is adjacent to q_{1} and to one of q_{2}, \ldots, q_{n}, it follows that $n \geq 3$. Let p_{2} be the neighbour of b_{2} in P_{2}. Since G does not admit a double star cutset, there is a chordless path R between q_{2} and some vertex r such that r has a neighbour in $V\left(C_{1}\right) \cup V\left(C_{2}\right) \backslash\left\{a_{0}, b_{1}, b_{2}, p_{2}\right\}$, and a_{0}, b_{2} are both nonadjacent to every vertex of R. By choosing R minimal, it follows that r is the only vertex of R with a neighbour in $V\left(C_{1}\right) \cup V\left(C_{2}\right) \backslash\left\{a_{0}, b_{1}, b_{2}, p_{2}\right\}$. (However, b_{1}, p_{2} may have neighbours in $V(R) \backslash\{r\}$.)

(1) r is adjacent to b_{0}.

For suppose not. Let $\mathbf{S}_{\mathbf{1}}$ be the statement that r has a neighbour in $V\left(P_{1}\right) \backslash\left\{b_{1}\right\}$, and $\mathbf{S}_{\mathbf{2}}$ the statement that some vertex of R has a neighbour in $V\left(P_{2}\right) \backslash\left\{b_{2}\right\}$ (in other words, either r has a neighbour in $V\left(P_{2}\right) \backslash\left\{b_{2}\right\}$ or some vertex of R is adjacent to $\left.p_{2}\right)$. Thus at least one of $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$ holds. We claim that if $\mathbf{S}_{\mathbf{1}}$ holds then r has a neighbour in $V\left(P_{1}\right) \backslash\left\{a_{1}, b_{1}\right\}$. For suppose that a_{1} is the unique neighbour of r in $V\left(P_{1}\right) \backslash\left\{b_{1}\right\}$. Then there are three paths between b_{1}, a_{1} that form an odd theta, namely $b_{1}-a_{0}-b_{0}-a_{1}$, a path with interior in $\left\{q_{2}, \ldots, q_{n}\right\} \cup V(R)$, and P_{1}, a contradiction.

We claim also that if $\mathbf{S}_{\mathbf{2}}$ holds then some vertex of R has a neighbour in $V\left(P_{2}\right) \backslash\left\{a_{2}, b_{2}\right\}$. For suppose that a_{2} is the unique neighbour of r in $V\left(P_{2}\right) \backslash\left\{b_{2}\right\}$, and there are no other edges between $V(R)$ and $V\left(P_{2}\right) \backslash\left\{b_{2}\right\}$. Then there are three paths between b_{2}, a_{2} that form an odd theta, namely $b_{2}-a_{0}-b_{0}-a_{2}$, a path with interior in $\left\{q_{1}\right\} \cup V(R)$, and P_{2}, a contradiction.

Now suppose that both $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ hold. Then there is a subpath T of R that satisfies the initial hypotheses for the path $q_{1} \cdots \cdots-q_{n}$. Moreover, no vertex of T is adjacent to both b_{1}, b_{2}, and no vertex of $V(T) \backslash\{r\}$ is adjacent to a_{1} or to a_{2}, contrary to 6.2. This proves that not both $\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}$ hold.

Next suppose that $\mathbf{S}_{\mathbf{1}}$ holds, and hence $\mathbf{S}_{\mathbf{2}}$ is false. Then $V(R) \cup\left\{q_{2}, \ldots, q_{n}\right\}$ includes the vertex set of a minimal path T between r and some vertex t that has a neighbour in $V\left(P_{2}\right) \backslash\left\{a_{2}, b_{2}\right\}$. But a_{0}, b_{0} have no neighbours in this path, and a_{2}, b_{2} have no neighbours in this path different from t (since b_{2} is nonadjacent to q_{2}, \ldots, q_{n-1}), contrary to 6.2.

Next suppose that $\mathbf{S}_{\mathbf{2}}$ holds, and so $\mathbf{S}_{\mathbf{1}}$ is false. Since r has a neighbour in

$$
V\left(C_{1}\right) \cup V\left(C_{2}\right) \backslash\left\{a_{0}, b_{1}, b_{2}, p_{2}\right\},
$$

it follows that r has a neighbour in $V\left(P_{2}\right) \backslash\left\{b_{2}\right\}$. Let T be a chordless path between q_{1} and some vertex t that has a neighbour in $V\left(P_{2}\right) \backslash\left\{a_{2}, b_{2}\right\}$, with $V(T) \subseteq V(R) \cup\left\{q_{1}\right\}$, and choose T minimal. Then no vertex of T is adjacent to a_{0} or to b_{0}, and a_{2}, b_{2} both have no neighbours in $V(T) \backslash\{t\}$, contrary to 6.2. This proves (1).

Let T be a chordless path between q_{1} and r with interior in $V(R)$. If r has no neighbour in $V\left(P_{1}\right)$, then there are three paths between q_{1}, b_{0} forming an odd theta, namely $q_{1}-T-r-b_{0}$, a path with interior in $V\left(P_{1}\right)$, and $q_{1}-b_{2}-a_{0}-b_{0}$, a contradiction. Thus r has a neighbour in $V\left(P_{1}\right)$. If r, b_{1} are nonadjacent, then there are three paths joining r, b_{1} forming an odd theta, namely $r-b_{0}-a_{0}-b_{1}$, a path with interior in $V\left(P_{1}\right) \backslash\left\{a_{1}\right\}$, and a path with interior in $V(R) \cup\left\{q_{2}, \ldots, q_{n}\right\}$, a contradiction. Thus r, b_{1} are adjacent. Let b_{1} have k neighbours in T; thus $k \geq 2$. Since we can complete T to a hole via a subpath of P_{1} that contains no neighbour of b_{1}, it follows that k is even. But we can also complete T to a hole via $r-b_{0}-a_{0}-b_{2}-q_{1}$, and in this hole b_{1} has $k+1$ neighbours, contrary to 6.1. This completes the proof of 6.3.

This has the following useful corollary. Let us say a domino $\left(a b, C_{1}, C_{2}\right)$ is big if for $i=1,2, C_{i}$ has length at least six, and if C_{i} has length six then both the vertices of $C_{i} \backslash\{a, b\}$ that are adjacent to a or b have degree at least three in G.
6.4 Every balanceable graph that contains a big domino admits either a double star cutset or an internal 6-join.

Proof. Let $\left(a_{1} a_{2}, C_{1}, C_{2}\right)$ be a big domino in a balanceable graph G. We may assume that G does not admit a double star cutset. By $6.3, G$ admits a 6 -join $\left(V_{1}, V_{2}\right)$ such that $V\left(C_{i}\right) \backslash\left\{a_{1}, a_{2}\right\} \subseteq V_{i}$ for $i=1,2$, and V_{1}, V_{2} each contain exactly one of a_{1}, a_{2}. Let A_{1}, \ldots, A_{6} be as in the definition of 6 -join. We may assume that $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$, and we suppose for a contradiction that $\left|V_{1}\right| \leq 7$. Let a_{6} be the neighbour of a_{1} in C_{2} different from a_{2}, and let a_{3} be the neighbour of a_{2} in C_{1} different from a_{1}. Thus $a_{6} \in A_{2} \cup A_{6}$, since $a_{6} \in V_{2}$ and a_{6} is adjacent to a_{1}, and similarly $a_{3} \in A_{1} \cup A_{3}$. Since a_{3}, a_{6} are nonadjacent, it follows that $a_{3} \in A_{3}$ and $a_{6} \in A_{6}$. Since a_{6} has no neighbour in $V\left(C_{1}\right)$ except a_{1}, it follows that $V\left(C_{1}\right) \cap\left(A_{1} \cup A_{5}\right)=\left\{a_{1}\right\}$. Also, $V\left(C_{1}\right) \cap A_{3}=\left\{a_{3}\right\}$ since a_{1}, a_{3} are the only neighbours of a_{2} in $V\left(C_{1}\right)$. Consequently all vertices of C_{1} except three belong to A_{0}, where $A_{0}=V_{1} \backslash\left(A_{1} \cup A_{3} \cup A_{5}\right)$. Since A_{1}, A_{3}, A_{5} are nonempty, it follows that $\left|V_{1}\right| \geq\left|V\left(C_{1}\right)\right|$. But $\left|V_{1}\right| \leq 7$, and $\left|V\left(C_{1}\right)\right|$ is even, and so C_{1} is a 6 -hole. Let the vertices of C_{1} be $a_{1}-a_{2}-a_{3}-c_{4}-c_{5}-c_{6}-a_{1}$ in order. Since G is bipartite, c_{5} has no neighbour in $A_{1} \cup A_{3} \cup A_{5}$.
(1) If $a_{5} \in A_{5}$, then a_{5} is adjacent to both or neither of c_{4}, c_{6}.

For suppose that a_{5} is adjacent to c_{6} and not to c_{4} say. Let $a_{4} \in A_{4}$. Then the paths $c_{6}-a_{1}-a_{2}-a_{3}$, $c_{6}-a_{5}-a_{4}-a_{3}$ and $c_{6}-c_{5}-c_{4}-a_{3}$ form an odd theta, contrary to 6.1. This proves (1).

Suppose first that $\left|A_{0}\right|=3$, and so $A_{0}=\left\{c_{4}, c_{5}, c_{6}\right\}$. Since we may assume that $A_{1} \cup A_{3} \cup\left\{a_{2}\right\}$ is not a double star cutset, one of c_{4}, c_{5}, c_{6} (and therefore both c_{4}, c_{6}, by (1), and not c_{5}, since c_{5}, a_{5} would have the same biparity) has a neighbour $a_{5} \in A_{5}$. But then a_{5} dominates c_{5}, contrary to 3.2.

Thus $\left|A_{0}\right|>3$. Consequently $\left|A_{0}\right|=4$, and $\left|A_{i}\right|=1$ for $i=1,3,5$. Let $A_{5}=\left\{a_{5}\right\}$. Suppose that c_{4}, c_{6} are adjacent to a_{5}. Since a_{5} does not dominate c_{5} by 3.2 , some neighbour x of c_{5} is nonadjacent to c_{5} and in particular is different from c_{4}, c_{6}. Hence $x \in A_{0}$. For the same reason, some neighbour of x is nonadjacent to c_{4}, and so x, a_{1} are adjacent; and similarly x, a_{3} are adjacent. But then $G \mid V_{1}$ is an odd wheel with centre c_{5}, contrary to 6.1.

Thus not both c_{4}, c_{6} are adjacent to a_{5}, and hence by (1), c_{4}, c_{6} are both nonadjacent to a_{5}. But c_{6} has degree at least three in G, since ($a_{1} a_{2}, C_{1}, C_{2}$) is a big domino; let $x \neq a_{1}, c_{5}$ be adjacent to c_{6}. Thus $x \in A_{0}$. But none of c_{4}, c_{5}, c_{6}, x are adjacent to a_{5} (because c_{5}, x are nonadjacent to a_{5}
since they have the same biparity), and therefore $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a star cutset, contrary to 3.2. Thus $\left|V_{1}\right| \geq 8$, and similarly $\left|V_{2}\right| \geq 8$. This proves 6.4.

$7 \quad$ Small dominoes

A domino (ab, C_{1}, C_{2}) is small if C_{1}, C_{2} are both 4-holes. Our next goal is an analogue of 6.4 for small dominoes, but we first need two more lemmas. The first is theorem 6.2 of [3]. (The graph R_{10} consists of a ten-vertex cycle with edges between the five opposite pairs of vertices of the cycle.)
7.1 Let G be balanceable, with an induced subgraph isomorphic to R_{10}. Then either G is isomorphic to R_{10}, or G admits a double star cutset.

Let $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ be a small domino in a bipartite graph G. A left ear for $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ is a hole H_{1} such that $\left(a_{1} b_{1}, C_{1}, H_{1}\right)$ is a domino (where $\left.V\left(C_{1}\right)=\left\{a_{0}, b_{0}, a_{1}, b_{1}\right\}\right)$ and $V\left(C_{2}\right) \backslash\left\{a_{0}, b_{0}\right\}$ is anticomplete to H_{1}. A right ear for $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ is a left ear for $\left(a_{0} b_{0}, C_{2}, C_{1}\right)$.
7.2 Let G be balanceable, and let $\left(a_{0} b_{0}, C_{1}, C_{2}\right)$ be a small domino with a left ear and a right ear. Then either G is isomorphic to R_{10}, or G admits a double star cutset or an internal 6-join.

Proof. We may assume that G admits no double star cutset. For $i=1,2$, let C_{i} have vertices $a_{0}-b_{i}-a_{i}-b_{0}-a_{0}$ in order. Let H_{1} be a left ear with vertices $a_{1}-p_{1}-p_{2}-\cdots-p_{m}-b_{1}-a_{1}$ in order, and let H_{2} be a right ear with vertices $a_{2}-q_{1}-q_{2}-\cdots-q_{n}-b_{2}-a_{2}$ in order. Thus $\left\{p_{1}, \ldots, p_{m}\right\}$ is anticomplete to $V\left(C_{2}\right)$, and $\left\{q_{1}, \ldots, q_{n}\right\}$ is anticomplete to $V\left(C_{1}\right)$. However, the sets $\left\{p_{1}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, \ldots, q_{n}\right\}$ may not be anticomplete to each other, and may even not be disjoint. If either $\left\{p_{1}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, \ldots, q_{n}\right\}$ are not disjoint, or are disjoint but not anticomplete to each other, let $k\left(H_{1}, H_{2}\right)=0$. If $\left\{p_{1}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, \ldots, q_{n}\right\}$ are disjoint and anticomplete, define $k\left(H_{1}, H_{2}\right)$ to be the minimum k such that there is a path $r_{1}-\cdots-r_{k}$ with r_{1} adjacent to one of p_{1}, \ldots, p_{m}, and r_{k} adjacent to one of q_{1}, \ldots, q_{n}, and a_{0}, b_{0} nonadjacent to r_{1}, \ldots, r_{k} (such a path exists since G does not admit a double star cutset). We proceed by induction on $k\left(H_{1}, H_{2}\right)$.
(1) If $k\left(H_{1}, H_{2}\right)=0$ then the theorem holds.

For suppose first that one of p_{1}, \ldots, p_{m-1} either equals or is adjacent to one of q_{1}, \ldots, q_{n-1}. Then there is a chordless path R between a_{1} and a_{2} with interior in $\left\{p_{1}, \ldots, p_{m-1}, q_{1}, \ldots, q_{n-1}\right\}$, and therefore b_{1}, b_{2} have no neighbours in the interior of R. But then b_{0} has three neighbours in the hole $a_{1}-R-a_{2}-b_{2}-a_{0}-b_{1}-a_{1}$, so G contains an odd wheel, contrary to 6.1. Thus $\left\{p_{1}, \ldots, p_{m-1}\right\}$ is disjoint from and anticomplete to $\left\{q_{1}, \ldots, q_{n-1}\right\}$. Since $p_{m} \notin\left\{q_{1}, \ldots, q_{n}\right\}$ since p_{m} is adjacent to b_{1}, and similarly $q_{n} \notin\left\{p_{1}, \ldots, p_{m}\right\}$, it follows that $\left\{p_{1}, \ldots, p_{m}\right\}$ is disjoint from $\left\{q_{1}, \ldots, q_{n}\right\}$. Moreover, for $1 \leq i \leq m$ and $1 \leq j \leq n$, if p_{i}, q_{j} are adjacent then either $i=m$ or $j=n$. Similarly either $i=1$ or $j=1$. Thus the only pairs $p_{i} q_{j}$ that might be adjacent are $p_{1} q_{n}$ and $p_{m} q_{1}$. Since $k\left(H_{1}, H_{2}\right)=0$ it follows that at least one of these is an edge, so from the symmetry we may assume that p_{1}, q_{n} are adjacent. If $p_{m} q_{1}$ is not an edge then

$$
p_{1}-\cdots-p_{m}-b_{1}-a_{0}-b_{0}-a_{2}-q_{1}-\cdots-q_{n}-p_{1}
$$

is a hole, containing three neighbours of a_{1}, contrary to 6.1. Thus $p_{m} q_{1}$ is an edge. Since the three paths $p_{1}-\cdots-p_{m}, p_{1}-a_{1}-b_{1}-p_{m}$ and $p_{1}-q_{n}-\cdots-q_{1}-p_{m}$ do not form an odd theta, it follows that $m=2$ and similarly $n=2$; but then G contains an induced subgraph isomorphic to R_{10} and the theorem holds by 7.1. This proves (1).

Henceforth then we assume that $\left\{p_{1}, \ldots, p_{m}\right\}$ and $\left\{q_{1}, \ldots, q_{n}\right\}$ are disjoint and anticomplete, so $k\left(H_{1}, H_{2}\right)>0$. Choose a path $r_{1}-\cdots-r_{k}$ such that r_{1} is adjacent to one of p_{1}, \ldots, p_{m}, and r_{k} is adjacent to one of q_{1}, \ldots, q_{n}, and a_{0}, b_{0} are nonadjacent to r_{1}, \ldots, r_{k}, with $k=k\left(H_{1}, H_{2}\right)$; then this path is chordless. Hence $\left\{r_{1}, \ldots, r_{k-1}\right\}$ is anticomplete to $\left\{q_{1}, \ldots, q_{n}\right\}$, and $\left\{r_{2}, \ldots, r_{k}\right\}$ is anticomplete to $\left\{p_{1}, \ldots, p_{m}\right\}$. However, there may be edges between $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$ and $\left\{r_{1}, \ldots, r_{k}\right\}$.
(2) We may assume that either $\left\{a_{1}, b_{2}\right\}$ is anticomplete to $\left\{r_{1}, \ldots, r_{k}\right\}$, or $\left\{a_{2}, b_{1}\right\}$ is anticomplete to $\left\{r_{1}, \ldots, r_{k}\right\}$.

For suppose not. If some r_{i} is adjacent to two of $a_{1}, b_{1}, a_{2}, b_{2}$, then $G \mid\left\{a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, r_{i}\right\}$ is an odd wheel, a contradiction. Thus each r_{i} is adjacent to at most one of $a_{1}, b_{1}, a_{2}, b_{2}$. Choose a chordless path $c_{2} \cdots-c_{t-1}$ with t minimum such that some $c_{1} \in\left\{a_{1}, b_{2}\right\}$ is adjacent to c_{2} and some $c_{t} \in\left\{a_{2}, b_{1}\right\}$ is adjacent to c_{t-1}, and $c_{2}, \ldots, c_{t-1} \in\left\{r_{1}, \ldots, r_{k}\right\}$. Thus $t \geq 4$. From the minimality of t, none of c_{3}, \ldots, c_{t-2} is adjacent to any of $a_{1}, b_{1}, a_{2}, b_{2}$. From the symmetry we may assume that $c_{1}=a_{1}$. If $c_{t}=a_{2}$ then b_{0} has three neighbours in the hole $c_{1}-\cdots-c_{t}-b_{2}-a_{0}-b_{1}-c_{1}$, a contradiction. If $c_{t}=b_{1}$, let H_{3} be the hole $c_{1}-c_{2}-\cdots-c_{t}-c_{1}$; then $k\left(H_{2}, H_{3}\right)<k$ and the result follows from the inductive hypothesis. This proves (2).

Thus we may assume that $\left\{a_{2}, b_{1}\right\}$ is anticomplete to $\left\{r_{1}, \ldots, r_{k}\right\}$.
(3) Either a_{1} is adjacent to one of r_{2}, \ldots, r_{k}, or b_{2} is adjacent to one of r_{1}, \ldots, r_{k-1}, and in particular $k>1$.

For suppose not. If there is a chordless path P^{\prime} between a_{1} and r_{1} with interior in $\left\{p_{1}, \ldots, p_{m-1}\right\}$ and a chordless path Q^{\prime} between a_{2} and r_{k} with interior in $\left\{q_{1}, \ldots, q_{n-1}\right\}$, then

$$
a_{0}-b_{1}-a_{1}-P^{\prime}-r_{1}-\cdots-r_{k}-Q^{\prime}-a_{2}-b_{2}-a_{0}
$$

is a hole containing three neighbours of b_{0}, contrary to 6.1 . So we may assume that there is no such path P^{\prime} say, and therefore p_{m} is the only neighbour of r_{1} in $\left\{a_{1}, p_{1}, \ldots, p_{m}\right\}$. Let Q^{\prime} be a chordless path between r_{k} and b_{2} with interior in $\left\{q_{1}, \ldots, q_{n}\right\}$; then

$$
a_{0}-b_{0}-a_{1}-p_{1}-\cdots-p_{m}-r_{1}-\cdots-r_{k}-Q^{\prime}-b_{2}-a_{0}
$$

is a hole containing three neighbours of b_{1}, contrary to 6.1. This proves (3).
From (3) we may assume that a_{1} is adjacent to some r_{j} with $j>1$. Choose $j \leq k$ maximum with this property.
(4) b_{2} is adjacent to at least one of r_{1}, \ldots, r_{j-1}.

For suppose not. Let $Q^{\prime}, Q^{\prime \prime}$ be chordless paths from r_{j} to b_{2} and a_{2} respectively with interiors in

$$
\left\{r_{j+1}, \ldots, r_{k}, q_{1}, \ldots, q_{n}\right\}
$$

and choose h with $1 \leq h \leq m$ maximum such that r_{1}, p_{h} are adjacent. Then

$$
a_{0}-b_{1}-p_{m^{-}}-\cdots-p_{h}-r_{1}-\cdots-r_{j}
$$

is a chordless path, and it can be completed to a hole via $r_{j}-Q^{\prime}-b_{2}-a_{0}$ and via $r_{j}-Q^{\prime \prime}-a_{2}-b_{0}-a_{0}$. The numbers of neighbours of a_{1} in these two holes differ by one, and yet b_{1}, r_{j} are neighbours of a_{1} that belong to both holes, and so G contains an odd wheel, contrary to 6.1. This proves (4).

Choose i with $1 \leq i<j$ minimum such that b_{2}, r_{i} are adjacent.
(5) $j=i+1$.

For suppose not; then $i \leq j-2$, and there are three paths between a_{1} and b_{2} that form an odd theta, namely a path with interior in $\left\{p_{1}, \ldots, p_{m}, r_{1}, \ldots, r_{i}\right\}$, a path with interior in $\left\{r_{j}, \ldots, r_{k}, q_{1}, \ldots, q_{n}\right\}$, and the path $a_{1}-b_{0}-a_{0}-b_{2}$, contrary to 6.1. This proves (5).

Now $a_{0}-b_{2}-r_{i}-r_{j}-a_{1}-b_{0}-a_{0}$ is a 6 -hole. Let

$$
\begin{aligned}
& A=\left\{b_{1}, p_{1}, \ldots, p_{m}, r_{1}, \ldots, r_{i-1}\right\} \\
& B=\left\{a_{2}, q_{1}, \ldots, q_{n}, r_{j+1}, \ldots, r_{k}\right\}
\end{aligned}
$$

Then $G|A, G| B$ are connected, and the hypotheses of 5.2 are satisfied, and since G admits no double star cutset, it follows that G admits a 6 -join (V_{1}, V_{2}) with $A \cup\left\{a_{0}, a_{1}, r_{i}\right\} \subseteq V_{1}$ and $B \cup\left\{b_{0}, b_{2}, r_{j}\right\} \subseteq V_{2}$. Suppose that $\left|V_{1}\right| \leq 7$. Then

$$
\left|\left\{b_{1}, p_{1}, \ldots, p_{m}, r_{1}, \ldots, r_{i-1}, r_{i}, a_{0}, a_{1}\right\}\right| \leq 7,
$$

and so $m \leq 3$; and since m is even it follows that $m=2$. Also, $i \leq 2$. Now a_{1}, r_{i} have the same biparity (since a_{1}, r_{i+1} are adjacent). If r_{1} is adjacent to p_{2}, then it follows that $i=2$ (since a_{1}, r_{i} have the same biparity), and so $V_{1}=\left\{p_{1}, p_{2}, a_{1}, b_{1}, r_{1}, r_{2}, a_{0}\right\}$. But then a_{1}, p_{2} are the only neighbours of p_{1}, and so $\left\{a_{1}, p_{2}, b_{1}\right\}$ is a star cutset, contrary to 3.2 . Hence r_{1} is adjacent to p_{1}. Since a_{1}, r_{i} have the same biparity it follows that $i=1$, and so a_{1}, r_{2} are adjacent. Since a_{1} does not dominate p_{2} by 3.2 , it follows that p_{2} has a neighbour x nonadjacent to a_{1}, and in particular $x \neq p_{1}, b_{1}$; and so $V_{1}=\left\{p_{1}, p_{2}, a_{1}, b_{1}, r_{1}, x, a_{0}\right\}$. Since x has a neighbour nonadjacent to p_{1} by 3.2 , it follows that x, a_{0} are adjacent. But then $x-p_{2}-p_{1}-a_{1}-b_{0}-a_{0}-x$ is a 6 -hole and b_{1} has three neighbours in it, contrary to 6.1. This completes the proof of 7.2 .
7.3 Every balanceable graph not isomorphic to R_{10} that contains a small domino admits either a double star cutset or an internal 6-join.

Proof. Let G be a balanceable graph not isomorphic to R_{10}, and let ($a_{0} b_{0}, C_{1}, C_{2}$) be a small domino in G. By 7.2 we may assume that G does not contain a right ear for this domino. For $i=1,2$ let C_{i} have vertices $a_{0}-b_{i}-a_{i}-b_{0}-a_{0}$ in order. By 3.2 there is a hole H such that $\left(a_{2} b_{2}, C_{2}, H\right)$ is a domino;
let H have vertices $a_{2}-p_{1} \cdots-p_{m}-b_{2}-a_{2}$ in order. Since H is not a right ear, one of a_{1}, b_{1} is adjacent to one of p_{1}, \ldots, p_{m}. From the symmetry we may assume that b_{1} is adjacent to one of p_{1}, \ldots, p_{m}; choose h, j with $1 \leq h, j \leq m$ minimum and maximum respectively such that b_{1} is adjacent to p_{h}, p_{j}. If a_{1} is nonadjacent to all of p_{j+1}, \ldots, p_{m}, then (since a_{1}, p_{j} have the same biparity and are therefore nonadjacent)

$$
b_{1}-p_{j^{-}} \cdots-p_{m}-b_{2}-a_{2}-b_{0}-a_{1}-b_{1}
$$

is a hole containing three neighbours of a_{0}, contrary to 6.1. So a_{1} is adjacent to one of p_{j+1}, \ldots, p_{m}, and in particular $j<m$. If $h=j$ then the three paths $p_{h}-b_{1}-a_{0}-b_{2}, p_{h}-p_{h-1}-\cdots-p_{1}-a_{2}-b_{2}$ and $p_{h}-p_{h+1} \cdots-p_{m}-b_{2}$ form an odd theta, contrary to 6.1 , so $h<j$. Choose i, k with $1 \leq i, k \leq m$ minimum and maximum respectively such that a_{1} is adjacent to p_{i}, p_{k}. Thus $k>j$, and from the symmetry it follows that $h<i<k$. If $i \geq j$, then the numbers of neighbours of b_{1} in the two holes H and

$$
a_{2}-p_{1}-\cdots-p_{i}-a_{1}-b_{0}-a_{2}
$$

differ by one, and b_{1} has at least three neighbours in the second hole (since $h<j$), contrary to 6.1. Thus $i<j$.

Let us choose the hole H described above such that b_{1} has as few neighbours in it as possible. Choose h^{\prime} with $h<h^{\prime} \leq m$ minimum such that $b_{1}, p_{h^{\prime}}$ are adjacent. We may assume that there is a chordless path $p_{h+1}-r_{1}-\cdots-r_{n}-b_{0}$ such that r_{1}, \ldots, r_{n} are nonadjacent to a_{0}, b_{1}, for otherwise G admits a double star cutset. From the choice of H it follows that every vertex of H that belongs to $\left\{r_{1}, \ldots, r_{n-1}\right\}$ or has a neighbour in $\left\{r_{1}, \ldots, r_{n-1}\right\}$ belongs to $\left\{p_{h}, p_{h+1}, \ldots, p_{h^{\prime}}\right\}$.
(1) r_{n} is adjacent to one of p_{1}, \ldots, p_{h-1}.

For suppose not. Let P be a chordless path between p_{h} and b_{0} with interior in $\left\{p_{h+1}, r_{1}, \ldots, r_{n}\right\}$; then the three paths $P, p_{h}-b_{1}-a_{0}-b_{0}$ and $p_{h}-p_{h-1}-\cdots-p_{1}-a_{2}-b_{0}$ form an odd theta (note that r_{n} is nonadjacent to a_{2}, p_{h} since they have the same biparity), a contradiction. This proves (1).
(2) Every neighbour of r_{n} in H belongs to $\left\{b_{2}, p_{1}, \ldots, p_{h-1}, p_{h+1}\right\}$.

For $b_{1}-a_{0}-b_{0}-r_{n}$ is a chordless path, and by (1) there is a chordless path between b_{1} and r_{n} with interior in $\left\{p_{1}, \ldots, p_{h}\right\}$, so if there is a chordless path between b_{1} and r_{n} with interior in $\left\{p_{h+2}, p_{h+3}, \ldots, p_{m}\right\}$ then these three paths would form an odd prism. This proves (2).

Let P be a chordless path between $p_{h^{\prime}}$ and b_{2} with interior in $\left\{a_{2}, p_{1}, p_{2}, \ldots, p_{h^{\prime}-1}, r_{1}, \ldots, r_{n}\right\} \backslash$
 hole is exactly one fewer than the number of neighbours of b_{1} in H, and so by $6.1, b_{1}$ has exactly two neighbours in H, that is, $h^{\prime}=j$. But then P and the paths $p_{j}-b_{1}-a_{0}-b_{2}$ and $p_{j}-p_{j+1}-\cdots-p_{m}-b_{2}$ form an odd theta, contrary to 6.1. This completes the proof.

8 A proof of conjecture 9.29 of [6]

A bipartite graph G is strongly balanceable if it is balanceable and no induced subgraph is a cycle with exactly one chord. For the proof of 3.1 we also need theorem 6.1 of [3], the following:
8.1 Every connected balanceable bipartite graph that is not strongly balanceable either equals R_{10} or admits a 2-join, a 6-join, or a double star cutset.

Proof of 3.1. We prove 3.1 by induction on $|V(G)|$. Suppose then that G is a nonregular balanceable graph (and consequently $|V(G)| \geq 6$), and every nonregular balanceable graph with fewer vertices than G admits a double star cutset. Suppose for a contradiction that G does not admit a double star cutset. By $3.2, G$ is connected.
(1) G does not admit a 2-join.

For suppose it does, and let $V_{i}, A_{i}, B_{i}(i=1,2)$ be as in the definition of 2-join. Suppose first that there exist $x \in A_{1}$ and $y \in B_{1}$, adjacent. Every path between $V_{1} \backslash\{x, y\}$ and $V_{2} \backslash\left(A_{2} \cup B_{2}\right)$ contains a member of $N[x y]$ in its interior, and since $V_{1} \backslash\{x, y\} \neq \emptyset$ and G does not admit a double star cutset, it follows that $V_{2}=A_{2} \cup B_{2}$. Hence there is an edge between A_{2}, B_{2}, and so similarly $V_{1}=A_{1} \cup B_{1}$. Not both $\left|A_{1}\right|,\left|B_{1}\right|=1$ from the definition of a 2 -join, and if say $v, w \in A_{1}$ are distinct then by 3.2 , since neither of v, w dominates the other, it follows that $\left|B_{1}\right|>1$. Moreover, the same argument proves that there exist $a_{1}, a_{1}^{\prime} \in A_{1}$ and $b_{1}, b_{1}^{\prime} \in B_{1}$ such that $a_{1} b_{1}$ and $a_{1}^{\prime} b_{1}^{\prime}$ are edges, and a_{1}, b_{1}^{\prime} are nonadjacent, and a_{1}^{\prime}, b_{1} are nonadjacent. Similarly there exist $a_{2}, a_{2}^{\prime} \in A_{2}$ and $b_{2}, b_{2}^{\prime} \in B_{2}$ such that the only edges between $\left\{a_{2}, a_{2}^{\prime}\right\}$ and $\left\{b_{2}, b_{2}^{\prime}\right\}$ are $a_{2} b_{2}$ and $a_{2}^{\prime} b_{2}^{\prime}$. But then the subgraph induced on $\left\{a_{2}, a_{1}, b_{1}, b_{2}^{\prime}, b_{1}^{\prime}, a_{1}^{\prime}\right\}$ is a cycle, and b_{2} has exactly three neighbours in it, contrary to 6.1. Hence there are no edges between A_{1} and B_{1}, and similarly no edges between A_{2} and B_{2}.

Let P_{2} be a chordless path of $G \mid V_{2}$ between A_{2} and B_{2} with no internal vertex in $A_{2} \cup B_{2}$. Suppose that $G \mid\left(V_{1} \cup V\left(P_{2}\right)\right)$ is not regular. Let P_{2} have vertices $p_{1} \cdots-p_{k}$ say, where $p_{1} \in A_{2}$ and $p_{k} \in B_{2}$. Every vertex in A_{1} has a neighbour in $V_{1} \backslash A_{1}$ (from the definition of a 2-join if $\left|A_{1}\right|=1$, and by 3.2 if $\left.\left|A_{1}\right|>1\right)$; and every component of $G \mid\left(V_{1} \backslash A_{1}\right)$ contains a vertex of B_{1}, by 3.2 applied to G and the edge $p_{1} p_{2}$. It follows that $G \mid\left(\left(V_{1} \backslash A_{1}\right) \cup\left\{p_{k}\right\}\right)$ is connected, and every vertex in A_{1} has a neighbour in $\left(V_{1} \backslash A_{1}\right) \cup\left\{p_{k}\right\}$; and an analogous statement holds with A_{1}, B_{1} exchanged and p_{1}, p_{k} exchanged.

We claim that if $k=3$ then $\left|V_{2}\right| \geq 6$. For if $\left|A_{2}\right|=\left|B_{2}\right|=1$ then $V(P)$ is a double star cutset (since $P_{2} \neq G \mid V_{2}$ from the definition of a 2-join), so from the symmetry we may assume that $\left|B_{2}\right|>1$. Choose $b_{2} \in B_{2}$ with $b_{2} \neq p_{3}$. From 3.2, there is a chordless path between b_{2} and A_{1} containing no neighbour of either of p_{2}, p_{3} (except possibly b_{2}). In particular, this path is disjoint from B_{1}, and therefore contains a vertex of $V_{2} \backslash\left(A_{2} \cup B_{2}\right)$ different from p_{2}, and a vertex of A_{2} different from p_{1}. Consequently $\left|V_{2}\right| \geq 6$, as claimed.

Let $G_{1}=G \mid\left(V_{1} \cup V\left(P_{2}\right)\right)$. If $k>3$ let $G^{\prime}=G_{1}$ and let $P_{2}^{\prime}=P_{2}$. If $k=3$ let G^{\prime} denote the graph obtained from G_{1} by subdividing twice some edge of P_{2} (that is, replacing some edge of P_{2} by a three-edge path), and let P_{2}^{\prime} be the path obtained from P_{2} by this double subdivision. Then in either case no edge of P_{2}^{\prime} is the centre of a double star cutset of G^{\prime}. Yet G^{\prime} is balanceable and not regular, and since $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, the inductive hypothesis implies that there is an edge $u v$ of G^{\prime} that is the centre of a double star cutset of G^{\prime}. It follows that at least one of $u, v \in V_{1}$, and $u v$ is an edge of G_{1}, and therefore $u v$ is the centre of a double star cutset of G_{1}.

There is a subset $X \subseteq N[u v] \cap V\left(G_{1}\right)$ with $u, v \in X$ such that $G_{1} \backslash X$ is disconnected. Since $X \cup\left(N[u v] \backslash V\left(G_{1}\right)\right)$ is not a double star cutset of G, there is a chordless path Q of G with ends x, y belonging to different components of $G_{1} \backslash X$, and such that no internal vertex of Q belongs to $V\left(G_{1}\right) \cup N[u v]$. Since $Q^{*} \subseteq V_{2}$, there is a chordless path P of G_{1} between x, y with $P^{*} \subseteq V\left(P_{2}\right)$; and therefore $N[u v] \cap P^{*} \neq \emptyset$. Since at least one of $u, v \in V_{1}$, it follows that $\{u, v\} \cap\left(A_{1} \cup B_{1}\right) \neq \emptyset$,
say $u \in A_{1}$. Then $A_{2} \cap Q^{*}=\emptyset$, and since x, y both have neighbours in $Q^{*} \subseteq V_{2} \backslash A_{2}$, it follows that $x, y \in V_{2} \cup B_{1}$. So $P^{*} \cap A_{2}=\emptyset$, and therefore $N[u v] \cap V_{2} \nsubseteq A_{2}$. Hence $v \in A_{2}$, and so $v=p_{1}$, the end of P_{2} in A_{2}. Thus $x, y \notin A_{2}$, and so $N[u v] \cap P^{*}=\emptyset$, a contradiction.

This proves that $G_{1}=G \mid\left(V_{1} \cup V\left(P_{2}\right)\right)$ is regular. Similarly, let P_{1} be a chordless path of $G \mid V_{1}$ between A_{1} and B_{1} with no internal vertex in $A_{1} \cup B_{1}$; then $G_{2}=G \mid\left(V_{2} \cup V\left(P_{1}\right)\right)$ is regular. But then by $4.1, G$ is regular, a contradiction. This proves (1).
(2) If $\left(V_{1}, V_{2}\right)$ is a 6-join in G, then one of $\left(V_{1}, V_{2}\right),\left(V_{2}, V_{1}\right)$ is skeletal.

For let A_{1}, \ldots, A_{6} be as in the definition of a 6 -join, and choose $a_{i} \in A_{i}$ for $1 \leq i \leq 6$. By 4.3 , not both blocks of the 6 -join are regular; so we may assume that G_{1} is not regular, where G_{1} is the block obtained by adding three vertices b_{2}, b_{4}, b_{6} to $G \mid V_{1}$, with adjacency as before. For convenience we assume (as we may) that $b_{i}=a_{i}$ for $i=2,4,6$. Since G_{1} is therefore an induced subgraph of G, it follows that G_{1} is balanceable. Define $A_{7}=V_{1} \backslash\left(A_{1} \cup A_{3} \cup A_{5}\right)$. Let H be obtained from G_{1} by adding four vertices $c_{2}, c_{4}, c_{6}, c_{8}$ to G_{1} and the edges $c_{i} c_{8}$ and $c_{i} a_{i}$ for $i=2,4,6$. We shall show that G, H are isomorphic. Certainly H is balanceable (to see this, take a map $w: E\left(G_{1}\right) \rightarrow\{-1,1\}$ such that $w(C)$ is a multiple of four for every induced cycle C of G_{1}; by reversing the signs of $w(e)$ on some edge-cutsets if necessary we may assume as usual that $w\left(a_{i}^{\prime} a_{i+1}\right)=1$ and $w\left(a_{i}^{\prime} a_{i-1}\right)=-1$ for $i=1,3,5$ and each $a_{i}^{\prime} \in A_{i}$, where a_{0} means a_{6}; then extend the domain of w to $E(H)$ by defining $w(e)=1$ for every edge $e \in E(H) \backslash E\left(G_{1}\right)$; and it is easy to check that $w(C)$ is a multiple of four for every induced cycle C of H.)

We recall that G admits no double star cutset. Suppose that H admits a double star cutset X, with centre $u v$ say. Up to symmetry there are five possibilities for $u v$, namely $c_{2} c_{8}, c_{2} a_{2}, a_{1} a_{2}$, $a_{7} a_{1}$ for some $a_{7} \in A_{7}$, and $a_{7} a_{7}^{\prime}$ for some $a_{7}, a_{7}^{\prime} \in A_{7}$. If $u v=c_{2} c_{8}$, then $A_{1} \cup A_{3} \cup A_{5} \cup\left\{a_{4}, a_{6}\right\}$ is a subset of the vertex set of one component of $H \backslash X$, and so H and hence G is disconnected, a contradiction. If $u v=c_{2} a_{2}$, then the members of $A_{5} \cup\left\{a_{4}, c_{4}, a_{6}, c_{6}\right\}$ all belong to the same component of $H \backslash X$, as does every vertex of $A_{1} \cup A_{3}$ not in X, and so there is a component C of $H \backslash X$ with $V(C) \subseteq A_{7}$. Hence C is a component of $G \backslash N\left[a_{2}\right]$, and therefore G admits a star cutset, contrary to 3.2. If $u v=a_{1} a_{2}$, then the members of $A_{5} \cup\left\{a_{4}, c_{4}, c_{6}, c_{8}\right\}$ all belong to the same component of $H \backslash X$, as does every member of $A_{3} \backslash X$, and so there is a second component C say with $V(C) \subseteq A_{7} \cup A_{1}$. But then $\left(X \backslash\left\{c_{2}\right\}\right) \cup A_{2} \cup A_{6}$ is a double star cutset of G, a contradiction. If $u v=a_{7} a_{1}$ for some $a_{7} \in A_{7}$, then $a_{4}, c_{2}, c_{4}, c_{6}, c_{8}$ all belong to the same component of $H \backslash X$, as does every member of $\left(A_{3} \cup A_{5} \cup\left\{a_{2}, a_{6}\right\}\right) \backslash X$. Hence there is a component C of $H \backslash X$ with $V(C) \subseteq A_{7} \cup A_{1}$, and so $\left(X \cap V_{1}\right) \cup\left(A_{2} \cup A_{6}\right)$ is a double star cutset of G, a contradiction. Finally, if $u, v \in A_{7}$, then $a_{2}, a_{4}, a_{6}, c_{2}, c_{4}, c_{6}, c_{8}$ all belong to the same component of $H \backslash X$, as does every member of $\left(A_{1} \cup A_{3} \cup A_{5}\right) \backslash X$, and so there is a component C of $H \backslash X$ with $V(C) \subseteq A_{7}$; but then X is a double star cutset of G, a contradiction. It follows that H does not admit a double star cutset.

From the inductive hypothesis, we deduce that $|V(H)| \geq|V(G)|$, and so $\left|V_{2}\right| \leq 7$. Let $A_{8}=$ $V_{2} \backslash\left(A_{2} \cup A_{4} \cup A_{6}\right)$. If $A_{8}=\emptyset$, then since $\left|V_{2}\right| \geq 4$ it follows that two members of V_{2} are twins, contradicting 3.2. Thus $A_{8} \neq \emptyset$. Suppose that some vertex in A_{8} has neighbours in two of A_{2}, A_{4}, A_{6}, say $a_{8} \in A_{8}$ is adjacent to $a_{2} \in A_{2}$ and to $a_{4} \in A_{4}$. Since $N\left[a_{3} a_{2}\right] \backslash\left\{a_{8}\right\}$ is not a double star cutset, there is a chordless path P between a_{8} and A_{6} such that $V(P) \backslash\left\{a_{8}\right\}$ is anticomplete to a_{2}. Choose P minimal; then all its vertices belong to A_{8} except for its final vertex a_{6} say in A_{6}. Since the subgraph induced on $\left\{a_{8}, a_{1}, \ldots, a_{6}\right\}$ is not an odd wheel by 6.1 , it follows that a_{8}, a_{6} are nonadjacent, and
since a_{8}, a_{6} have opposite biparity it follows that P has odd length, and length at least three. Since $\left|V_{2}\right| \leq 7$ and so $\left|A_{8}\right| \leq 4$, it follows that P has length three; let its vertices be $a_{8}-p_{1}-p_{2}-a_{6}$ in order. Now the paths $a_{8}-P-a_{6}, a_{8}-a_{2}-a_{1}-a_{6}$ and $a_{8}-a_{4}-a_{5}-a_{6}$ do not form an odd theta, by 6.1 , and so a_{4} is adjacent to p_{2}. But then every neighbour of p_{1} is adjacent to a_{4}, contrary to 3.2. This proves that no vertex of A_{8} has neighbours in two of A_{2}, A_{4}, A_{6}.

Let C be a component of $G \mid A_{8}$. Since G does not admit a double star cutset, at least one member of A_{i} has a neighbour in C for $i=2,4,6$, and so we may assume that for $i=2,4,6, a_{i}$ is adjacent to $c_{i} \in C$. Hence c_{2}, c_{4}, c_{6} are all distinct, since no vertex of A_{8} has neighbours in two of A_{2}, A_{4}, A_{6}. Moreover, since C is connected, there is a vertex $c_{8} \in C$ such that a_{2}, c_{8} have the same biparity. Hence $A_{8}=\left\{c_{2}, c_{4}, c_{6}, c_{8}\right\}$, and $A_{i}=\left\{a_{i}\right\}$ for $i=2,4,6$; and since C is connected, it follows that c_{8} is adjacent to each of c_{2}, c_{4}, c_{6}. But then (V_{1}, V_{2}) is skeletal. This proves (2).

From (2) and 6.4 and 7.3 , it follows that G contains no big domino or small domino.
(3) Let $\left(V_{1}, V_{2}\right)$ be a 6-join, and let A_{1}, \ldots, A_{6} be defined as usual. If $v \in V_{1}$ has a neighbour in A_{1} and a neighbour in A_{3}, then v is complete to $A_{1} \cup A_{3}$.

For let v be adjacent to $a_{1} \in A_{1}$ and $a_{3} \in A_{3}$, and suppose it is nonadjacent to some $a_{1}^{\prime} \in A_{1}$ say. Choose $a_{2} \in A_{2}$ and $a_{6} \in A_{6}$; then

$$
\left(a_{1} a_{2}, a_{1}-a_{2}-a_{1}^{\prime}-a_{6}-a_{1}, a_{1}-a_{2}-a_{3}-v-a_{1}\right)
$$

is a small domino, a contradiction. This proves (3).
(4) Let $\left(v_{1} v_{2}, C, D\right)$ be a domino, where $|V(C)| \geq 8$ and $|V(D)| \geq 6$. For $i=1,2$, let c_{i}, d_{i} be the neighbours of v_{i} in $C \backslash\left\{v_{1}, v_{2}\right\}, D \backslash\left\{v_{1}, v_{2}\right\}$ respectively, and let d_{1} have degree at least three in G. Then every vertex of G adjacent to both c_{2} and v_{1} is adjacent to every neighbour of v_{2} except possibly d_{2}, and d_{2} belongs to no irregularity in G.

For by $6.3, G$ admits a 6 -join $\left(V_{1}, V_{2}\right)$ such that $V(C) \backslash\left\{v_{1}, v_{2}\right\} \subseteq V_{1}$ and $V(D) \backslash\left\{v_{1}, v_{2}\right\} \subseteq V_{2}$, and V_{1}, V_{2} each contain exactly one of v_{1}, v_{2}. Let $\{i, j\}=\{1,2\}$, where $v_{j} \in V_{1}$ and $v_{i} \in V_{2}$. Since C has length at least eight, it follows that $\left(V_{2}, V_{1}\right)$ is not skeletal, and so by $(2)\left(V_{1}, V_{2}\right)$ is skeletal. Hence d_{i} has degree two, and by $5.1 d_{i}$ does not belong to any irregularity in G. Since d_{1} has degree at least three, it follows that $i=2$ and $j=1$. Let the sets A_{1}, \ldots, A_{6} be defined as usual, where $c_{2} \in A_{1}, v_{2} \in A_{2}, v_{1} \in A_{3}$ and $d_{1} \in A_{4}$. Then $N\left[v_{2}\right]=A_{1} \cup A_{3} \cup\left\{v_{2}, d_{2}\right\}$, and v_{2} is the only vertex in V_{2} adjacent to both c_{2}, v_{1}, and by (3) every vertex in V_{1} adjacent to both c_{2}, v_{1} is complete to $A_{1} \cup A_{3}$. This proves (4).

Since R_{10} is regular, it follows from 8.1 that either G is strongly balanceable, or G admits a 2 -join, or G admits a 6 -join. The first is impossible since it is a theorem of [5] that every strongly balanceable graph is regular. So by (1) and (2), it follows that G admits a skeletal 6 -join $\left(V_{1}, V_{2}\right)$. Let A_{1}, \ldots, A_{6} be as in the definition of a 6 -join, and for $1 \leq i \leq 6$ choose $a_{i} \in A_{i}$. Thus $A_{i}=\left\{a_{i}\right\}$ for $i=2,4,6$. Since G is not regular, it follows that there is an irregularity H, and from 5.1 $V(H) \cap V_{2} \subseteq\left\{a_{2}, a_{4}, a_{6}\right\}$. Choose H such that $\left|V(H) \cap\left\{a_{2}, a_{4}, a_{6}\right\}\right|$ is as small as possible.
(5) If $a_{2} \in V(H)$ then there is no vertex $v \in V_{1}$ with a neighbour in A_{1} and a neighbour in A_{3}.

For suppose that $a_{2} \in V(H)$ and such a vertex v exists. By (3) v is complete to $A_{1} \cup A_{3}$. Since G does not admit a double star cutset, there is a chordless path $v-p_{1}-\cdots-p_{k}$ of G such that $p_{1}, \ldots, p_{k-1} \in V_{1}$ and $\left\{p_{1}, \ldots, p_{k}\right\}$ is anticomplete to $\left\{a_{1}, a_{2}\right\}$, and $p_{k} \in A_{1} \cup A_{3} \cup A_{5}$ (and therefore $p_{k} \in A_{5}$, since p_{k} is nonadjacent to a_{2}). By 6.1, v does not have three neighbours in the hole induced on $\left\{a_{1}, \ldots, a_{6}\right\}$, and so $k>1$. Since the paths $v-p_{1}-\cdots-p_{k}, v-a_{3}-a_{4}-p_{k}$ and $v-a_{1}-a_{6}-p_{k}$ do not form an odd theta by 6.1, it follows that a_{3} is adjacent to one of p_{1}, \ldots, p_{k}. Choose i with $1 \leq i \leq k$ minimum such that a_{3}, p_{i} are adjacent. Since v, p_{i} have the same biparity, it follows that $i<k$, and i is even. If $i=2$ then

$$
\left(v a_{3}, v-a_{1}-a_{2}-a_{3}-v, v-p_{1}-p_{2}-a_{3}-v\right)
$$

is a small domino, a contradiction; so $i \geq 4$. Since $\left(V_{1}, V_{2}\right)$ is skeletal, there is a chordless path Q of length four between a_{6} and a_{4} with interior in $V_{2} \backslash\left\{a_{2}, a_{4}, a_{6}\right\}$. Let C be the hole $v-a_{1}-a_{6}-Q-a_{4}-a_{3}-v$, and let D be the hole $v-p_{1} \cdots-p_{i}-a_{3}-v$. Then $\left(v a_{3}, C, D\right)$ is a domino, and C has length eight, and D has length at least six. Let $v_{1}=a_{3}$ and $v_{2}=v$, and for $i=1,2$, let c_{i}, d_{i} be the neighbours of v_{i} in $C \backslash\left\{v_{1}, v_{2}\right\}, D \backslash\left\{v_{1}, v_{2}\right\}$ respectively; then $d_{1}=p_{i}$, and therefore d_{1} has degree at least three in G. By (4) every vertex of G adjacent to both c_{2} and v_{1} is adjacent to every neighbour of v_{2} except possibly d_{2}, and d_{2} belongs to no irregularity in G. Since $c_{2}=a_{1}$, and $d_{2}=p_{1}$, and a_{2} is adjacent to both a_{1}, a_{3}, it follows that a_{2} is adjacent to every neighbour of v_{2} except p_{1}. But the neighbour set of a_{2} is $A_{1} \cup A_{3} \cup\left\{u_{2}\right\}$ for some $u_{2} \in V_{2} \backslash\left\{a_{2}, a_{4}, a_{6}\right\}$, where no irregularity contains u_{2} by 5.1; and since we have already seen that v is complete to $A_{1} \cup A_{3}$, it follows that the neighbour set of v is $A_{1} \cup A_{3} \cup\left\{p_{1}\right\}$. If $v \in V(H)$ then since $p_{1}, u_{2} \notin V(H)$ it follows that v, a_{2} are twins in H, which is impossible. Thus $v \notin V(H)$. Since $p_{1}, u_{2} \notin V(H)$, it follows that the subgraph induced on $\left(V(H) \backslash\left\{a_{2}\right\}\right) \cup\{v\}$ is isomorphic to H, and therefore is also an irregularity, contrary to the minimality of $\left|V(H) \cap\left\{a_{2}, a_{4}, a_{6}\right\}\right|$. This proves (5).

Let I be the set of all $i \in\{2,4,6\}$ such that no vertex in V_{1} has a neighbour in A_{i-1} and a neighbour in A_{i+1}, where A_{7} means A_{1}. Let J be the subgraph of G induced on $V_{1} \cup\left\{a_{i}: i \in I\right\}$.

(6) J does not admit a double star cutset.

For suppose there is a double star cutset X in J, with centre $u v$ say, and let C_{1}, C_{2} be distinct components of $J \backslash X$. Let $X^{\prime}=X \cup(N[u v] \backslash V(J))$. Since X^{\prime} is not a double star cutset of G, it follows that C_{1}, C_{2} are both subgraphs of the same component C of $G \backslash X^{\prime}$. In particular, for $j=1,2$, some vertex p_{j} of C_{j} has a neighbour $q_{j} \in V(C) \backslash V\left(C_{j}\right)$ that is nonadjacent to both u, v. Thus $q_{j} \notin V(J)$, and hence $p_{j} \in A_{1} \cup A_{3} \cup A_{5} \cup\left\{a_{i}: i \in I\right\}$. For $i=2,4,6$, if $i \in I$ let $a_{i}^{\prime}=a_{i}$, and if $i \notin I$ let a_{i}^{\prime} be some vertex in V_{1} that is complete to $A_{i-1} \cup A_{i+1}$ (this exists, by (3) and the definition of I). We observe that for $i=2,4,6, a_{i}^{\prime}$ is anticomplete to A_{i+3}; for this is clear if $a_{i}^{\prime}=a_{i}$, and if $a_{i}^{\prime} \neq a_{i}$ then it follows since otherwise a_{i}^{\prime} would have three neighbours in a 6 -hole contained in $A_{1} \cup \cdots \cup A_{6}$. Let R be the subgraph of G induced on $\left.A_{1} \cup A_{3} \cup A_{5} \cup\left\{a_{2}^{\prime}, a_{4}^{\prime}, a_{6}^{\prime}\right\}\right)$. Then R is a subgraph of J, and is connected, and both $p_{1}, p_{2} \in V(R)$.

Suppose first that $u=a_{2}$ say, and therefore $2 \in I$. From the symmetry we may assume that $v \in A_{1}$. Hence $X \cap\left(A_{5} \cup\left\{a_{4}^{\prime}\right\}\right)=\emptyset$, and so we may assume that $A_{5} \cup\left\{a_{4}^{\prime}\right\} \subseteq V\left(C_{1}\right)$. Thus $p_{2} \notin A_{3} \cup A_{5} \cup\left\{a_{2}^{\prime}, a_{4}^{\prime}, a_{6}^{\prime}\right\}$, and so $p_{2} \in A_{1}$. But then $q_{2}=a_{6}$, and so q_{2} is adjacent to v, a
contradiction. Thus $u \neq a_{2}$, and similarly $u, v \neq a_{2}, a_{4}, a_{6}$.
Next suppose that $u \in A_{1}$. Thus v has a neighbour in A_{1}, and so is anticomplete to one of A_{3}, A_{5}, say A_{5} without loss of generality. Hence $X \cap\left(A_{5} \cup\left\{a_{4}^{\prime}\right\}\right)=\emptyset$, and so we may assume that $A_{5} \cup\left\{a_{4}^{\prime}\right\} \subseteq V\left(C_{1}\right)$. Consequently $p_{2} \in A_{1} \cup\left\{a_{2}^{\prime}\right\}$. If $p_{2}=a_{2}^{\prime}$, then $a_{2}^{\prime}=a_{2}$ and so $2 \in I$, and so v has no neighbour in A_{3}; but then $A_{3} \cap X=\emptyset$, and so $A_{3} \subseteq V\left(C_{1}\right)$, a contradiction. Thus $p_{2} \in A_{1}$, and so q_{2} is adjacent to u, a contradiction. Thus $u \notin A_{1}$, and similarly $u, v \notin A_{1} \cup A_{3} \cup A_{5}$.

Next suppose that $a_{2}^{\prime}, a_{4}^{\prime}$ belong to the same component of $J \backslash X$, say $a_{2}^{\prime}, a_{4}^{\prime} \in V\left(C_{1}\right)$. Then $V\left(C_{2}\right) \cap\left(A_{1} \cup A_{3} \cup A_{5}\right)=\emptyset$, and so $p_{2}=a_{6}^{\prime}=a_{6}$ and $6 \in I$. But then $A_{1} \cup A_{5} \subseteq X$, and so one of u, v is complete to $A_{1} \cup A_{5}$, contradicting that $6 \in I$.

Next suppose that $a_{2}^{\prime}, a_{4}^{\prime} \in X$. Thus we may assume that u is adjacent to $a_{2}^{\prime}, a_{4}^{\prime}$. Since $u \notin$ $A_{1} \cup A_{3} \cup A_{5}$, it follows that $a_{2}^{\prime}, a_{4}^{\prime} \notin V_{2}$. But then

$$
\left(a_{2}^{\prime} a_{3}, a_{2}^{\prime}-u-a_{4}^{\prime}-a_{3}-a_{2}^{\prime}, a_{2}^{\prime}-a_{1}-a_{2}-a_{3}-a_{2}^{\prime}\right)
$$

is a small domino in G, a contradiction. Thus at most one of $a_{2}^{\prime}, a_{4}^{\prime}, a_{6}^{\prime}$ belongs to X, and so we may assume that $a_{2}^{\prime}, a_{4}^{\prime} \notin X$.

Since $a_{2}^{\prime}, a_{4}^{\prime}$ are not both in the same component of $J \backslash X$, we may therefore assume that $a_{2}^{\prime} \in$ $V\left(C_{1}\right)$ and $a_{4}^{\prime} \in V\left(C_{2}\right)$. Consequently $A_{3} \subseteq X$, and so we may assume that u is complete to A_{3}. Suppose that v is adjacent to a_{6}^{\prime}, and therefore $a_{6}^{\prime} \neq a_{6}$. If u, a_{1} are adjacent then

$$
\left(u a_{1}, u-a_{3}-a_{2}-a_{1}-u, u-v-a_{6}^{\prime}-a_{1}-u\right)
$$

is a small domino, a contradiction. Thus u is nonadjacent to a_{1} and similarly to a_{5}. But then the subgraph induced on $\left\{u, v, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}^{\prime}\right\}$ is an odd theta, contrary to 6.1. Thus v, a_{6}^{\prime} are nonadjacent, and so $a_{6}^{\prime} \notin X$. Since u is complete to A_{3}, it follows that u is anticomplete to one of A_{1}, A_{5}, say A_{1} without loss of generality. It follows that $A_{1} \cap X=\emptyset$ (since v has the same biparity as the members of A_{1}) and so $A_{1} \subseteq V\left(C_{1}\right)$; and since $a_{6}^{\prime} \notin X$, we deduce that $a_{6}^{\prime} \in V\left(C_{1}\right)$. Consequently $A_{5} \subseteq X$, and so u is complete to A_{5}. It follows that $4 \notin I$, and therefore $p_{2} \neq a_{4}^{\prime}$; but $p_{2} \in V(R) \cap V\left(C_{2}\right) \subseteq\left\{a_{4}^{\prime}\right\}$, a contradiction. This proves (6).

Now $|V(J)|<|V(G)|$, since $|I| \leq 3$ and $\left|V_{2}\right| \geq 4$. From (5), $V(H) \subseteq V(J)$ and so J is not regular. But from (6), J has no double star cutset, contrary to the inductive hypothesis. Thus our assumption that G has no double star cutset is false. This completes the proof of 3.1.

9 Acknowledgement

Our sincere thanks to the referees, who noticed a major mistake in the first version of this paper.

References

[1] P. Camion, "Charactérisation des matrices unimodulaires," Cahier du Centre d'Études de Recherche Opérationelle, 5 (1963), 181-190.
[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Math., 164 (2006), 51-229.
[3] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, "Balanced 0, ± 1-matrices, Part I: Decomposition", J. Combinatorial Theory, Ser. B, 81 (2001), 243-274.
[4] M. Conforti, G. Cornuéjols and M.R. Rao, "Decomposition of balanced matrices," J. Combinatorial Theory, Ser. B, 77 (1999), 292-406.
[5] M. Conforti and M.R. Rao, "Structural properties and recognition of restricted and strongly unimodular matrices", Math. Programming, 38 (1987), 17-27.
[6] G. Cornuéjols, Combinatorial Optimization: Packing and Covering, CBMS-NSF Regional Conference Series in Applied Math. 74, 2001.

[^0]: ${ }^{1}$ This research was conducted while the author served as a Clay Mathematics Institute Research Fellow at Princeton University.
 ${ }^{2}$ Supported by ONR grant N00014-01-1-0608 and NSF grant DMS-0070912.

