Excluding paths and antipaths

Maria Chudnovsky*
Columbia University, New York, NY 10027
Paul Seymour ${ }^{\dagger}$
Princeton University, Princeton, NJ 08540

May 24, 2012; revised June 27, 2013

Abstract

The Erdös-Hajnal conjecture states that for every graph H, there exists a constant $\delta(H)>0$, such that if a graph G has no induced subgraph isomorphic to H, then G contains a clique or a stable set of size at least $|V(G)|^{\delta(H)}$. This conjecture is still open. We consider a variant of the conjecture, where instead of excluding H as an induced subgraph, both H and H^{c} are excluded. We prove this modified conjecture for the case when H is the five-edge path. Our second main result is an asymmetric version of this: we prove that for every graph G such that G contains no induced six-edge path, and G^{c} contains no induced four-edge path, G contains a polynomial-size clique or stable set.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. The complement G^{c} of G is the graph with vertex set $V(G)$, such that two vertices are adjacent in G if and only if they are nonadjacent in G^{c}. A clique in G is a set of vertices all pairwise adjacent. A stable set in G is a set of vertices all pairwise non-adjacent (thus a stable set in G is a clique in G^{c}.) Given a graph H, we say that G is H-free if G has no induced subgraph isomorphic to H. If G is not H-free, we say that G contains H. For a family \mathcal{F} of graphs, we say that G is \mathcal{F}-free is G is F-free for every $F \in \mathcal{F}$.

It is a well-known theorem of Erdös [5] that for all n there exist graphs on n vertices, with no clique or stable set of size larger than $O(\log n)$. However, in 1989 Erdös and Hajnal [6] conjectured that the situation is very different for graphs that are H-free for some fixed graph H, the following (this is the Erdös-Hajnal conjecture):
1.1 For every graph H, there exists a constant $\delta(H)>0$, such that every H-free graph G has either a clique or a stable set of size at least $O\left(|V(G)|^{\delta(H)}\right)$.

We say that a graph H has the Erdös-Hajnal property if there exists a constant $\delta(H)>0$, such that every H-free graph G has either a clique or a stable set of size at least $O\left(|V(G)|^{\delta(H)}\right)$.

Here we consider a variant of 1.1, the following:

[^0]1.2 For every graph H, there exists a constant $\delta(H)>0$, such that every $\left\{H, H^{c}\right\}$-free graph G has either a clique or a stable set of size at least $O\left(|V(G)|^{\delta(H)}\right)$.

Our first main result is that 1.2 holds if H is the five-edge-path. Let us say that a graph G is pure if no induced subgraph of G or G^{c} is isomorphic to the five-edge path. We prove:
1.3 There exists $\delta>0$ such that every pure graph G has either a clique or a stable set of size at least $O\left(|V(G)|^{\delta}\right)$.

We also prove an asymmetric version of this result. Let us call a graph G pristine if no induced subgraph of G is isomorphic to the six-edge path, and no induced subgraph of G^{c} is isomorphic to the four-edge path. We prove:
1.4 There exists $\delta>0$ such that every pristine graph G has either a clique or a stable set of size at least $O\left(|V(G)|^{\delta}\right)$.

Let G be a graph. For $X \subseteq V(G)$, we denote by $G \mid X$ the subgraph of G induced by X. We write $G \backslash X$ for $G \mid(V(G) \backslash X)$, and $G \backslash v$ for $G \backslash\{v\}$, where $v \in V(G)$. For two disjoint subsets A and B of $V(G)$, we say that A is complete to B if every vertex of A is adjacent to every vertex of B, and that A is anticomplete to B if every vertex of A is non-adjacent to every vertex of B. If $A=\{a\}$ for some $a \in V(G)$, we write " a is complete (anticomplete) to B " instead of " $\{a\}$ is complete (anticomplete) to B ". If $b \in V(G) \backslash A$ is neither complete nor anticomplete to A, we say that b is mixed on A. For $v \in V(G)$ we denote by $N_{G}(v)$ (or $N(v)$ when there is no risk of confusion) the set of neighbors of v in G (in particular, $v \notin N_{G}(v)$).

We denote by $\omega(G)$ the largest size of a clique in G, by $\alpha(G)$ the largest size of a stable set in G, and by $\chi(G)$ the chromatic number of G. The graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. The Strong Perfect Graph Theorem [2] characterizes perfect graphs by forbidden induced subgraphs:
1.5 A graph G is perfect if and only if no induced subgraph of G or G^{c} is an odd cycle of length at least five.

Let us say that a function $f: V(G) \rightarrow[0,1]$ is good if for every perfect induced subgraph P of G

$$
\Sigma_{v \in V(P)} f(v) \leq 1 .
$$

For $\alpha \geq 1$, the graph G is α-narrow if for every good function f

$$
\Sigma_{v \in V(G)} f(v)^{\alpha} \leq 1
$$

Thus perfect graphs are 1-narrow. The following was shown in [3], and then again with a much easier proof in [4]:
1.6 If a graph G is α-narrow for some $\alpha>1$, then G contains a clique or a stable set of size at least $|V(G)|^{\frac{1}{2 \alpha}}$.

Consequently, in order to prove that a certain graph H has the Erdös-Hajnal property, it is enough to show that there exists $\alpha \geq 1$ such that all H-free graphs are α-narrow. This conjecture was formally stated in [4]:
1.7 For every graph H, there exists a constant $\alpha(H) \geq 1$, such that every H-free graph G is α narrow.

In fact, in order to prove 1.3 , we show that
1.8 There exists $\alpha>1$ such that every pure graph is α-narrow.

Similarly, in order to prove 1.4, we show that
1.9 There exists $\alpha>1$ such that every pristine graph is α-narrow.

Fox [7] proved that 1.6 is in fact equivalent to 1.1, more precisely, he showed:
1.10 Let H be a graph for which there exists a constant $\delta(H)>0$ such for every H-free graph G either $\omega(G) \geq|V(G)|^{\delta(H)}$ or $\alpha(G) \geq|V(G)|^{\delta(H)}$. Then every H-free graph G is $\frac{3}{\delta(H)}$-narrow.

This paper is organized as follows. In Section 2 we discuss the tools used in the proofs of 1.8 and 1.9, and prove 1.8 assuming and additional result, 2.5. In Section 3 we prove 2.5. Sections 4 and 5 are devoted to results similar to 2.5 , needed for the proof of 1.9 . The proof of 1.9 assuming the results of Section 4 and Section 5 is at the end of Section 4. Finally, in Section 6 we include a proof of 1.10 .

2 The power of substitution

Given graphs H_{1} and H_{2}, on disjoint vertex sets, each with at least two vertices, and $v \in V\left(H_{1}\right)$, we say that H is obtained from H_{1} by substituting H_{2} for v, or obtained from H_{1} and H_{2} by substitution (when the details are not important) if:

- $V(H)=\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right) \backslash\{v\}$,
- $H \mid V\left(H_{2}\right)=H_{2}$,
- $H \mid\left(V\left(H_{1}\right) \backslash\{v\}\right)=H_{1} \backslash v$, and
- $u \in V\left(H_{1}\right)$ is adjacent in H to $w \in V\left(H_{2}\right)$ if and only if w is adjacent to v in H_{1}.

A related notion is that of a "homogeneous set" in a graph. Given a graph G, a subset $X \subseteq V(G)$ is a homogeneous set in G if

- $1<|X|<|V(G)|$, and
- every vertex of $V(G) \backslash X$ with a neighbor in X is complete to X.

We say that G admits a homogeneous set decomposition if there is a homogeneous set in G. Thus a graph admits a homogeneous set decomposition if and only if it is obtained from smaller graphs by substitution. Finally, we say that a graph is prime if it is not obtained from smaller graphs by substitution.

There are three main ingredients in our proof of 1.8. The first is a theorem of Alon, Pach and Solymosi [1], stating that the Erdös-Hajnal property is preserved under substitution:
2.1 Let H_{1} and H_{2} be graphs, and let $0<\delta_{1}, \delta_{2} \leq 1$ such that for $i=1,2$, every H_{i}-free graph G satisfies $\max (\alpha(G), \omega(G)) \geq O\left(|V(H)|^{\delta_{i}}\right)$. Let $\left|V\left(H_{1}\right)\right|=k$, and let H be obtained by substitution H_{2} for a vertex of H_{1}. Then for every δ such that

$$
\delta \leq \frac{\delta_{1} \delta_{2}}{\delta_{1}+k \delta_{2}}
$$

every H-free graph G satisfies $\max (\alpha(G), \omega(G)) \geq O\left(|V(H)|^{\delta}\right)$.
A class \mathcal{G} of graphs is hereditary if for every $G \in \mathcal{C}$, all induced subgraphs of G belong to \mathcal{C}. In fact, we need a slight strengthening of 2.1.
2.2 Let \mathcal{C} be a hereditary class of graphs. Let \mathcal{H}_{1} be a finite family of graphs, let H_{2} be a graph, and write $\mathcal{H}_{2}=\left\{H_{2}\right\}$. Let $0<\delta_{1}, \delta_{2} \leq 1$ such that for $i=1,2$, every \mathcal{H}_{i}-free graph $G \in \mathcal{C}$ satisfies $\max (\alpha(G), \omega(G)) \geq O\left(|V(H)|^{\delta_{i}}\right)$. Let $k=\max _{H_{1} \in \mathcal{H}_{1}}\left|V\left(H_{1}\right)\right|$, and for every $H_{1} \in \mathcal{H}_{1}$, let $v\left(H_{1}\right) \in V\left(H_{1}\right)$. Define \mathcal{H} to be the family of graphs obtained by substituting H_{2} for $v\left(H_{1}\right)$ in H_{1} for every $H_{1} \in \mathcal{H}_{1}$. Then for every δ such that

$$
\delta \leq \frac{\delta_{1} \delta_{2}}{\delta_{1}+k \delta_{2}}
$$

every \mathcal{H}-free graph $G \in \mathcal{C}$ satisfies $\max (\alpha(G), \omega(G)) \geq O\left(|V(G)|^{\delta}\right)$.
The proof of 2.2 is essentially the same as that of 2.1 , and we omit it here. Given a hereditary graph class \mathcal{C}, we say that a family of graphs \mathcal{H} has the Erdös-Hajnal property for \mathcal{C} if there exists a constant $\delta(\mathcal{H})$ such that every H-free graph $G \in \mathcal{C}$ satisfies $\max (\alpha(G), \omega(G)) \geq O\left(|V(G)|^{\delta(H)}\right)$. A graph H has the the Erdös-Hajnal property for \mathcal{C} if the family $\{H\}$ does.

The second ingredient also deals with substitutions, but this time we take advantage of the fact that the graph G, rather than H, from 1.1 is not prime. First, let us generalize the notion of a homogeneous set a little. Let \mathcal{C} be a hereditary class of graphs, let $G \in \mathcal{C}$, and let (X, A, C) be a partition of $V(G)$, where $1<|X|<|V(G)|$. Let G^{\prime} be the graph obtained from $G \backslash X$ by adding a new vertex x, complete to C and anticomplete to A. Then (X, A, C) is a \mathcal{C}-quasi-homogeneous set in G if

- $G^{\prime} \in \mathcal{C}$, and
- If P is a perfect induced subgraph of G^{\prime} with $x \in V(P)$, and Q is a perfect induced subgraph of $G \mid X$, then $G \mid((V(P) \backslash\{x\}) \cup V(Q))$ is perfect.

We say that G admits a \mathcal{C}-quasi-homogeneous set decomposition if there is a \mathcal{C}-quasi-homogeneous set in G.

If \mathcal{C} is a hereditary class of graphs, $G \in \mathcal{C}, X$ is a homogeneous set in G, C is the set of vertices of $G \backslash X$ complete to X, and A is the set of vertices of $G \backslash X$ anticomplete to X, then [8] implies that (X, A, C) is a \mathcal{C}-quasi-homogeneous set in G.

The following was essentially proved in [4]:
2.3 Let \mathcal{C} be a hereditary class of graphs, let $G \in \mathcal{C}$, and let $\alpha>1$. Let (X, A, C) be a \mathcal{C}-quasihomogeneous set in G, and let G^{\prime} be the graph obtained from $G \backslash X$ by adding a new vertex x complete to C and anticomplete to A. If the graphs G^{\prime} and $G \mid X$ are α-narrow, then G is α-narrow.
2.3 has the following immediate corollary:
2.4 Let $\alpha>1$, and G_{1}, G_{2} be α-narrow graphs. If G is obtained from G_{1} and G_{2} by substitution, then G is α-narrow.

Finally, the third ingredient of the proof of 1.8 is a structural result that we prove in the next section, as follows. Let C_{5} denote the cycle of length five. Let Q be the graph obtained from C_{5} by substituting a copy of C_{5} for each of its vertices. More precisely,

- $V(Q)=\bigcup_{i=1}^{5} V^{i}$, where $V^{i}=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i}, v_{4}^{i}, v_{5}^{i}\right\}$ for every $i \in\{1, \ldots, 5\}$
- $Q \mid V^{i}$ is isomorphic to C_{5} for every $i \in\{1, \ldots, 5\}$, and
- for $1 \leq i<j \leq 5, V^{i}$ is complete to V^{j} if $j-i \in\{1,4\}$, and V^{i} is anticomplete to V^{j} if $j-i \in\{2,3\}$.

We prove:
2.5 If a pure graph G contains Q, then G admits a homogeneous set decomposition.

We can now prove 1.8 assuming 2.5.
Proof of 1.8. Let \mathcal{C} be the class of pure graphs. Since by 1.5 every C_{5}-free pure graph is perfect, and therefore 1-narrow, 1.6 implies that C_{5} has the Erdös-Hajnal property for \mathcal{C}. Therefore, by $2.2, Q$ has the Erdös-Hajnal property for \mathcal{C}. Let δ be such that every Q-free graph $G \in \mathcal{C}$ has a clique or a stable set of size at least $|V(G)|^{\delta}$, and let c be as in 1.10. Let $\alpha=\frac{3}{\delta}$.

Let $G \in \mathcal{C}$ be such that G is not α-narrow, and subject to that with $|V(G)|$ minimum. By 1.10, G is not Q-free. By 2.5, G is obtained from smaller graphs, G_{1} and G_{2}, by substitution; and since \mathcal{C} is hereditary, $G_{1}, G_{2} \in \mathcal{C}$. But now, by the minimality of $|V(G)|$, each of G_{1}, G_{2} is α-narrow, contrary to 2.4. This proves 1.8.

The proof of 1.4 is similar, but has more steps, and we postpone it until later.

3 The proof of 2.5

Let G be a graph. A path P in G is an induced subgraph with vertices p_{1}, \ldots, p_{k} such that either $k=1$, or for $i, j \in\{1, \ldots, k\}, p_{i}$ is adjacent to p_{j} if $|i-j|=1$ and p_{i} is non-adjacent to p_{j} if $|i-j|>1$. Under these circumstances we say that P is a path from p_{1} to p_{k}, its interior is the set $P^{*}=V(P) \backslash\left\{p_{1}, p_{k}\right\}$, and the length of P is $k-1$. We also say that P is a $(k-1)$-edge path. Sometimes, we denote P by $p_{1}-\ldots-p_{k}$. A cycle C in G is an induced subgraph with vertices c_{1}, \ldots, c_{k} where $k \geq 3$, such that for $i, j \in\{1, \ldots, k\}, c_{i}$ is adjacent to c_{j} if and only if $|i-j|=1$ or $|i-j|=k-1$. Under these circumstances we call k the length of the cycle. Sometimes, we denote C by $c_{1}-\ldots-c_{k}-c_{1}$.

Given a graph G and $X \subseteq V(G)$, we say that X is connected if $X \neq \emptyset$ and the graph $G \mid X$ is connected, and anticonnected if $X \neq \emptyset$ and the graph $G^{c} \mid X$ is connected. We say that X is tough if $|X| \geq 3$ and for every partition (A, B) of X with $A, B \neq \emptyset$ either

- there exist $a \in A$ and $b_{1}, b_{2} \in B$ such that $a-b_{1}-b_{2}$ is a path in G, or
- there exist $a_{1}, a_{2} \in A$ and $b \in B$ such that $a_{1}-a_{2}-b$ is a path in G^{c}.

We start with a few easy lemmas.
3.1 Let G be a graph, and let $X \subseteq V(G)$. If X is tough, then X is both connected and anticonnected.

Proof. It is enough to prove that X is connected; the fact that X is anticonnected follows by taking complements. Thus it is enough to show that Y is not anticomplete to Z for every partition (Y, Z) of X. But this follows immediately from the definition of a tough set. This proves 3.1.
3.2 Let G be a graph, and let $X \subseteq V(G)$. Let $v \in V(G) \backslash X$ be mixed on X. Then

1. If X is connected, then there exist $x, y \in X$ such that v is adjacent to x and non-adjacent to y, and x is adjacent to y.
2. If X is anticonnected, then there exist $x, y \in X$ such that v is adjacent to x and non-adjacent to y, and x is non-adjacent to y.

Proof. By passing to G^{c} if necessary, it is enough to prove 3.2.1. Since v is mixed on X, both $N(v) \cap X$ and $X \backslash N(v)$ are non-empty. Now, since X is connected it follows that $N(v) \cap X$ is not anticomplete to $X \backslash N(v)$ and 3.2.1 follows. This proves 3.2.
3.3 $V\left(C_{5}\right)$ is tough.

Proof. Let v_{1}, \ldots, v_{5} be the vertices of C_{5}, such that for $1 \leq i<j \leq 5, v_{i}$ is adjacent to v_{j} if and only if $j-i \in\{1,4\}$. Let (A, B) be a partition of $\left\{v_{1}, \ldots, v_{5}\right\}$ with $A, B \neq \emptyset$. Passing to the complement if necessary, we may assume that $|A| \leq 2$. This implies that some edge of C_{5} has both its ends in B, say $v_{1}, v_{2} \in B$; and since $A \neq \emptyset$, we may assume that $v_{5} \in A$. But now setting $a=v_{5}$, $b_{1}=v_{1}$ and $b_{2}=v_{2}$, the first statement of the definition of a tough set holds. This proves 3.3.

We now prove 2.5 that we restate:

3.4 If a pure graph G contains Q, then G admits a homogeneous set decomposition.

Proof. Suppose not, and let G be a pure graph that has an induced subgraph isomorphic to Q, and such that G does not admit a homogeneous set decomposition. A Q-structure in G consists of disjoint subsets V_{1}, \ldots, V_{5} such that

- for $1 \leq i<j \leq 5, V_{i}$ is complete to V_{j} if $j-i \in\{1,4\}$, and V_{i} is anticomplete to V_{j} if $j-i \in\{2,3\}$, and
- V_{i} is tough for $i \in\{1, \ldots, 5\}$.

We denote this Q-structure by $\left(V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right)$. Since G contains Q, it follows that G contains a Q-structure. Let $\left(V_{1}, V_{2}, V_{3}, V_{4}, V_{5}\right)$ be a Q-structure in G with $W=\bigcup_{i=1}^{5} V_{i}$ maximal.

We remark that both the hypotheses and the conclusion of 3.4 are invariant under taking complements, and a Q-structure in G is also a Q-structure in G^{c} (after re-ordering). We will use this symmetry between G and G^{c} in the course of the proof. For $i \in\{1, \ldots, 5\}$, let X_{i} be the set of all vertices of $V(G) \backslash V_{i}$ that are mixed on V_{i}. Since G has no homogeneous set, $X_{i} \neq \emptyset$ for all $i \in\{1, \ldots, 5\}$. From the definition of a Q-structure, we deduce that $X_{i} \cap W=\emptyset$ for all $i \in\{1, \ldots, 5\}$. Let $X=\bigcup_{i=1}^{5} X_{i}$. For $i \in\{1, \ldots, 5\}$ and $v \in V(G) \backslash W$, let $A_{i}(v)=N(v) \cap V_{i}$, and $B_{i}(v)=V_{i} \backslash A_{i}(v)$.
(1) No $v \in X_{1}$ is complete to $V_{2} \cup V_{5}$, and anticomplete to $V_{3} \cup V_{4}$.

Suppose such a vertex v exists. We claim that $V_{1} \cup\{v\}$ is tough. Let $A=A_{1}(v)$, and $B=B_{1}(v)$. Since V_{1} is tough, by taking complements if necessary, we may assume that there exist $a \in A$ and $b_{1}, b_{2} \in B$ such that $a-b_{1}-b_{2}$ is a path in G. Let $\left(A^{\prime}, B^{\prime}\right)$ be a partition of $V_{1} \cup\{v\}$ with $A^{\prime}, B^{\prime} \neq \emptyset$. We need to prove that one of the statements of the definition of a tough set holds for $\left(A^{\prime}, B^{\prime}\right)$. If both $A^{\prime} \cap V_{1} \neq \emptyset$ and $B^{\prime} \cap V_{1} \neq \emptyset$, then the result follows from the fact that V_{1} is tough, so we may assume that either $A^{\prime}=\{v\}$, or $A^{\prime}=V_{1}$. If $A^{\prime}=\{v\}$, then $v-a-b_{1}$ is a path in G, and the first statement in the definition of a tough set is satisfied; and if $A^{\prime}=V_{1}$, then $a-b_{2}-v$ is a path in G^{c}, and the second statement in the definition of a tough set is satisfied. This proves the claim that $V_{1} \cup\{v\}$ is tough. But now ($V_{1} \cup\{v\}, V_{2}, V_{3}, V_{4}, V_{5}$) is a Q-structure, contrary to the maximality of W. This proves (1).

We say that $v \in X_{i}$ is a path vertex for V_{i} if there exist $a \in A_{i}(v)$ and $b_{1}, b_{2} \in B_{i}(v)$ such that $a-b_{1}-b_{2}$ is a path in G; and that $v \in X_{i}$ is an antipath vertex for V_{i} if there exist $a_{1}, a_{2} \in A_{i}(v)$ and $b \in B_{i}(v)$ such that $b-a_{1}-a_{2}$ is a path in G^{c}.
(2) If $v \in X_{1}$ is a path vertex for V_{1}, then v is not mixed on $V_{3} \cup V_{4}$; and if $v \in X_{1}$ is an antipath vertex for V_{1}, then v is not mixed on $V_{2} \cup V_{5}$. Consequently, no $v \in X_{1}$ is mixed on both $V_{2} \cup V_{5}$ and $V_{3} \cup V_{4}$.

Let $v \in X_{1}$. By taking complements if necessary, we may assume that v is a path vertex for V_{1} and there exist $a \in A_{1}(v)$ and $b_{1}, b_{2} \in B_{1}(v)$ such that $a-b_{1}-b_{2}$ is a path in G. If v is mixed on $V_{3} \cup V_{4}$, then, since $V_{3} \cup V_{4}$ is connected, there exist $x, y \in V_{3} \cup V_{4}$ as in 3.2.1. But now $b_{2}-b_{1}-a-v-x-y$ is a five-edge path in G, contrary to the fact that G is pure. Since V_{1} is tough, it follows that every vertex of X_{1} is either a path or an antipath vertex for V_{1}, and so no $v \in X_{1}$ is mixed on both $V_{2} \cup V_{5}$, and $V_{3} \cup V_{4}$. This proves (2).
(3) If $v \in X_{1} \cap X_{2}$, then v is anticomplete to $V_{3} \cup V_{4} \cup V_{5}$; and if $v \in X_{1} \cap X_{3}$, then v is complete to $V_{2} \cup V_{4} \cup V_{5}$.

By taking complements, it is enough to prove the first statement of (3). By 3.1 and 3.2.1, there exist $a_{1} \in A_{1}(v)$ and $b_{1} \in B_{1}(v)$ such that a_{1} is adjacent to b_{1}. By 3.1 and 3.2.2, there exist $a_{2} \in A_{2}(v)$ and $b_{2} \in B_{2}(v)$ such that a_{2} is non-adjacent to b_{2}. If there exists $a_{3} \in A_{3}(v)$, then $a_{1}-a_{3}-b_{1}-v-b_{2}-a_{2}$ is a five-edge path in G^{c}, a contradiction. So $A_{3}(v)=\emptyset$, and v is anticomplete to V_{3}. Similarly, v is anticomplete to V_{5}. Since $v \in X_{1}$, and v is mixed on $X_{2} \cup X_{5}$, (2) implies that v is not mixed on
$V_{3} \cup V_{4}$, and so v is anticomplete to V_{4}. Consequently v is anticomplete to $V_{3} \cup V_{4} \cup V_{5}$, and (3) follows.
We say that $v \in \bigcup_{i=1}^{5} X_{i}$ is minor if it is anticomplete to at least three of the sets sets V_{1}, \ldots, V_{5}, major if it is complete to at least three of the sets X_{1}, \ldots, X_{5}, and intermediate otherwise. Observe that passing to G^{c} switches minor vertices with major, and leaves the set of intermediate vertices unchanged.
(4) If $v \in X_{1}$ and v is intermediate, $v \notin \bigcup_{i=2}^{5} X_{i}$, and v is complete to $V_{i-2} \cup V_{i+2}$, and anticomplete to $V_{i-1} \cup V_{i+1}$ (here the index arithmetic is mod 5).

By (2) and passing to the complement if necessary, we may assume that v is not mixed on $V_{3} \cup V_{4}$. If v is complete to $V_{3} \cup V_{4}$, then by (3) $v \notin X_{2} \cup X_{5}$, and since v is intermediate, it follows that v is anticomplete to $V_{2} \cup V_{5}$. If v is anticomplete to $V_{3} \cup V_{4}$, then since v is intermediate, v has neighbors in each of V_{2}, V_{5}; now by (3) v is complete to $V_{2} \cup V_{5}$, contrary to (1). This proves (4).
(5) If $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ are intermediate, then x_{1} is adjacent to x_{2}; and if $x_{1} \in X_{1}$ and $x_{3} \in X_{3}$ are intermediate, then x_{1} is non-adjacent to x_{3}.

By taking complements, it is enough to prove the first statement of (5). Suppose x_{1} is non-adjacent to x_{2}. Let $v_{1} \in B_{1}\left(x_{1}\right), v_{2} \in B_{2}\left(x_{2}\right), v_{3} \in V_{3}$ and $v_{5} \in V_{5}$. Then $x_{1}-v_{3}-v_{2}-v_{1}-v_{5}-x_{2}$ is a five-edge path in G, a contradiction. This proves (5).
(6) At most two of the sets X_{1}, \ldots, X_{5} contain intermediate vertices.

Suppose at least three of the sets X_{1}, \ldots, X_{5} contain intermediate vertices. By taking complements if necessary, we may assume that $x_{1} \in X_{1}, x_{2} \in X_{2}$ and $x_{3} \in X_{3}$ are intermediate. By (5), the pairs $x_{1} x_{2}, x_{2} x_{3}$ are adjacent, and the pair $x_{1} x_{3}$ is non-adjacent. Let $v_{1} \in A_{1}\left(x_{1}\right), v_{4} \in V_{4}$, and $v_{5} \in V_{5}$. Then $v_{5}-x_{1}-x_{3}-v_{4}-v_{1}-x_{2}$ is a five-edge path in G^{c}, a contradiction. This proves (6).
(7) At most one of X_{1}, X_{3} contains a minor vertex.

Suppose $x_{1} \in X_{1}$ and $x_{3} \in X_{3}$ are both minor. By (3), $x_{1} \notin X_{3} \cup X_{4}$, and $x_{3} \notin X_{1} \cup X_{5}$, and in particular, $x_{1} \neq x_{3}$. By (2), if x_{1} is a path vertex for V_{1}, then x_{1} is anticomplete to $V_{3} \cup V_{4}$, and if x_{1} is an antipath vertex for V_{1}, then x_{1} is anticomplete to $V_{2} \cup V_{5}$. Similarly, if x_{3} is a path vertex for V_{3}, then x_{3} is anticomplete to $V_{1} \cup V_{5}$, and if x_{3} is an antipath vertex for V_{3}, then x_{3} is anticomplete to $V_{2} \cup V_{4}$. Since V_{1}, V_{3} are tough, 3.1 and 3.2 .1 imply that there exist $a_{1} \in A_{1}\left(x_{1}\right), b_{1} \in B_{1}\left(x_{1}\right), a_{3} \in A_{3}\left(x_{3}\right), b_{3} \in B_{3}\left(x_{3}\right)$ such that $a_{1} b_{1}$ and $a_{3} b_{3}$ are edges of G. By 3.1 and 3.2.2, there exist $a_{3}^{\prime} \in A_{3}\left(x_{3}\right), b_{3}^{\prime} \in B_{3}\left(x_{3}\right)$ such that a_{3}^{\prime} is non-adjacent to b_{3}^{\prime}.

Suppose first that x_{1} is adjacent to x_{3}. Since $b_{1}-a_{1}-x_{1}-x_{3}-a_{3}-b_{3}$ is not a five-edge path in G, we may assume using symmetry that x_{3} is complete to V_{1}. Since x_{3} is minor, this implies that x_{3} is anticomplete to $V_{2} \cup V_{4} \cup V_{5}$. Suppose that exists $a_{5} \in A_{5}\left(x_{1}\right)$. Then x_{1} is anticomplete to $V_{2} \cup V_{3} \cup V_{4}$ (since x_{1} is minor). Let $v_{2} \in V_{2}$. Then $b_{3}^{\prime}-v_{2}-a_{3}^{\prime}-x_{3}-x_{1}-a_{5}$ is a five-edge path in G, a contradiction. This proves that x_{1} is anticomplete to V_{5}. If there exist $u, v \in A_{1}\left(x_{1}\right)$ and $w \in B_{1}\left(x_{1}\right)$ such that $w-v-u$ is a path in G^{c}, then $u-v-w-x_{1}-v_{5}-x_{3}$ is a five-edge path in G^{c} for every $v_{5} \in V_{5}$,
a contradiction. So no such u, v, w exist. Since V_{1} is tough, it follows that x_{1} is a path vertex for V_{1}, and x_{1} is anticomplete to $V_{3} \cup V_{4}$. But now $x_{1}-x_{3}-b_{1}-v_{5}-v_{4}-b_{3}$ is a five-edge path in G for every $v_{4} \in V_{4}$, a contradiction. This proves that x_{1} is non-adjacent to x_{3}.

If x_{1} is anticomplete to $V_{3} \cup V_{4} \cup V_{5}$, and x_{3} is anticomplete to $V_{1} \cup V_{4} \cup V_{5}$, then $x_{1}-a_{1}-v_{5}-v_{4}-a_{3}-x_{3}$ is a five-edge path in G for every $v_{4} \in V_{4}$ and $v_{5} \in V_{5}$, a contradiction. So either x_{1} has a neighbor in $V_{3} \cup V_{4} \cup V_{5}$, or x_{3} has a neighbor in $V_{1} \cup V_{4} \cup V_{5}$.

Suppose first that x_{1} is anticomplete to V_{3}, and x_{3} is anticomplete to V_{1}. From the symmetry, we may assume that there exists $v_{5} \in V_{5}$, adjacent to at least one of x_{1}, x_{3}. If x_{3} is adjacent to v_{5}, and x_{1} is non-adjacent to V_{5}, then $b_{3}-a_{3}-x_{3}-v_{5}-a_{1}-x_{1}$ is a path in G. If x_{1} is adjacent to v_{5}, and x_{3} is non-adjacent to v_{5}, then, since both x_{1} and x_{3} are minor, $x_{1}-v_{5}-b_{1}-v_{2}-a_{3}-x_{3}$ is a path in G for every $v_{2} \in B_{2}\left(x_{3}\right)$, and $x_{1}-v_{5}-v_{4}-b_{3}-v_{2}-x_{3}$ is a path in G for every $v_{4} \in V_{4}$ and $v_{2} \in A_{2}\left(x_{3}\right)$. Finally, if x_{1} and x_{3} are both adjacent to v_{5}, then since x_{1} and x_{3} are both minor, $b_{3}^{\prime}-v_{2}-a_{3}^{\prime}-x_{3}-v_{5}-x_{1}$ is a path in G for every $v_{2} \in V_{2}$. We get a contradiction in all cases, and so we may assume that x_{1} is complete to V_{3}.

Since x_{1} is minor, it follows that x_{1} is anticomplete to $V_{2} \cup V_{4} \cup V_{5}$. Recall that x_{3} is either a path vertex for V_{3} and is anticomplete to $V_{1} \cup V_{5}$, or an antipath vertex for V_{3} and is anticomplete to $V_{2} \cup V_{4}$. If v_{3} is anticomplete to $V_{1} \cup V_{5}$, then choosing $a_{1}^{\prime} \in A_{1}\left(x_{1}\right)$ and $b_{1}^{\prime} \in B_{1}\left(x_{1}\right)$ non-adjacent (such a_{1}^{\prime} and b_{1}^{\prime} exist by 3.1 and 3.2.2), and $v_{5} \in V_{5}$, we get that $b_{1}^{\prime}-v_{5}-a_{1}^{\prime}-x_{1}-a_{3}-x_{3}$ is a path in G, a contradiction. So x_{3} is an antipath vertex, and x_{3} is anticomplete to $V_{2} \cup V_{4}$; and since $x_{3} \notin X_{1} \cup X_{5}$, we deduce that x_{3} is complete to at least, and therefore exactly, one of V_{1} and V_{5}. If x_{3} is complete to V_{1}, then, since both x_{1} and x_{3} are minor, $x_{1}-b_{3}-v_{4}-v_{5}-b_{1}-x_{3}$ is a path in G for every $v_{4} \in V_{4}$ and $v_{5} \in V_{5}$. If x_{3} is complete to V_{5}, then, since x_{3} is minor, $x_{3}-v_{5}-b_{1}-v_{2}-b_{3}-x_{1}$ is a path in G for every $v_{5} \in V_{5}$ and $v_{2} \in V_{2}$; in both cases a contradiction. This proves (7).
(8) If $x_{1} \in X_{1}$ is minor, and $x_{2} \in X_{2}$ is intermediate, then x_{1} is anticomplete to $V_{3} \cup V_{4} \cup V_{5} \cup\left\{x_{2}\right\}$, and complete to $B_{2}\left(v_{2}\right)$.

Since $x_{2} \in X_{2}$ is intermediate, by (4) x_{2} is complete to $V_{4} \cup V_{5}$, and anticomplete to $V_{1} \cup V_{3}$. By 3.1 and 3.2 there exist $a_{1} \in A_{1}\left(x_{1}\right)$ and $b_{1} \in B_{1}\left(x_{1}\right)$ adjacent to each other, and $a_{1}^{\prime} \in A_{1}\left(x_{1}\right)$ and $b_{1}^{\prime} \in B_{1}\left(x_{1}\right)$ non-adjacent to each other. Let $b_{2} \in B_{2}\left(x_{2}\right)$.

Assume first that x_{1} is adjacent to x_{2}. If x_{1} is anticomplete to $V_{3} \cup V_{4}$, then $b_{1}-a_{1}-x_{1}-x_{2}-v_{4}-v_{3}$ is a path in G for every $v_{3} \in V_{3}$ and $v_{4} \in V_{4}$. So x_{1} has neighbors in at least, and therefore exactly, one of V_{3}, V_{4}. Consequently, by (2), x_{1} is an antipath vertex and x_{1} is anticomplete to $V_{2} \cup V_{5}$. If x_{1} is anticomplete to V_{4}, then $b_{1}^{\prime}-b_{2}-a_{1}^{\prime}-x_{1}-x_{2}-v_{4}$ is a path in G for every $v_{4} \in V_{4}$, a contradiction; therefore x_{1} has a neighbor in V_{4} and is anticomplete to V_{3}. But now $x_{1}-x_{2}-v_{5}-b_{1}-b_{2}-v_{3}$ is a path in G for every $v_{3} \in V_{3}$ and $v_{5} \in V_{5}$. This proves that x_{1} is non-adjacent to x_{2}.

Since $x_{1}-a_{1}-b_{2}-v_{3}-v_{4}-x_{2}$ is not a path in G for any $v_{3} \in V_{3}, v_{4} \in V_{4}$, it follows that x_{1} is complete to at least, and therefore exactly, one of $B_{2}\left(x_{2}\right), V_{3}, V_{4}$. If x_{1} is complete to V_{4}, then $b_{1}^{\prime}-b_{2}-a_{1}^{\prime}-x_{1}-v_{4}-x_{2}$ is a path in G for every $v_{4} \in V_{4}$; and if x_{1} is complete to V_{3}, then $b_{1}-a_{1}-x_{1}-v_{3}-v_{4}-x_{2}$ is a path in G for every $v_{3} \in V_{3}$ and $v_{4} \in V_{4}$, in both cases a contradiction. This proves that x_{1} is complete to $B_{2}\left(x_{2}\right)$. Since x_{1} is minor, it follows that x_{1} is anticomplete to $V_{3} \cup V_{4} \cup V_{5}$, and (8) follows.
(9) If $x_{1} \in X_{1}$ is minor and $x_{3} \in X_{3}$ is intermediate, then x_{1} is anticomplete to $V_{4} \cup V_{5}$, and either

- x_{1} is anticomplete to V_{3} and complete to $V_{2} \cup\left\{x_{3}\right\}$, or
- x_{1} is anticomplete to $V_{2} \cup\left\{x_{3}\right\}$, and complete to V_{3}.

Since $x_{3} \in X_{3}$ is intermediate, by (4) x_{3} is complete to $V_{1} \cup V_{5}$ and anticomplete to $V_{2} \cup V_{5}$. Assume first that x_{1} is adjacent to x_{3}. Suppose that x_{1} is an antipath vertex for V_{1}; and let $p \in B_{1}\left(x_{1}\right)$ and $q, r \in A_{1}\left(x_{1}\right)$ such that $p-q-r$ is a path in G^{c}. Since x_{1} is minor, it follows that x_{1} is anticomplete to $V_{2} \cup V_{4}$. But now $r-q-p-x_{1}-v_{2}-x_{3}$ is a path in G^{c} for every $v_{2} \in V_{2}$, a contradiction. This proves that x_{1} is a path vertex for V_{1}, and therefore, since x_{1} is minor, x_{1} is anticomplete to $V_{3} \cup V_{4}$. If x_{1} has a non-neighbor $v_{2} \in V_{2}$, then $x_{1}-x_{3}-b_{1}-v_{2}-b_{3}-v_{4}$ is a path in G for every $b_{1} \in B_{1}\left(x_{1}\right), b_{3} \in B_{3}\left(x_{3}\right)$ and $v_{4} \in V_{4}$, a contradiction; so x_{1} is complete to V_{2}. Since x_{1} is minor, it is anticomplete to V_{5}, and the first outcome of (9) holds.

We may therefore assume that x_{1} is non-adjacent to x_{3}. We may assume that x_{1} is anticomplete to V_{3}, for otherwise, since x_{1} is minor and by (3), the second outcome of (9) holds. Now, if x_{1} has a non-neighbor $v_{4} \in V_{4}$, then choosing $a_{3}^{\prime} \in A_{3}\left(x_{3}\right)$ and $b_{3}^{\prime} \in B_{3}\left(x_{3}\right)$ non-adjacent (by 3.1 and 3.2.2), and $a_{1} \in A_{1}\left(x_{1}\right)$, we get that $b_{3}^{\prime}-v_{4}-a_{3}^{\prime}-x_{3}-a_{1}-x_{1}$ is a path in G, a contradiction. So x_{1} is complete to V_{4}. Since x_{1} is minor, x_{1} is anticomplete to $V_{2} \cup V_{3} \cup V_{5}$. Let $b_{1} \in B_{1}\left(x_{1}\right), b_{3} \in B_{3}\left(x_{3}\right), v_{2} \in V_{2}$ and $v_{4} \in V_{4}$. Then $x_{1}-v_{4}-b_{3}-v_{2}-b_{1}-x_{3}$ is a path in G, again a contradiction. This proves (9).

By (6) and taking complements if necessary, since $X_{i} \neq \emptyset$ for every $i \in\{1, \ldots, 5\}$, we may assume that at least two of the sets X_{1}, \ldots, X_{5} contain minor vertices. By (7), it follows that there are exactly two such sets, and we may assume that $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ are minor, and none of X_{3}, X_{4}, X_{5} contain minor vertices.
(10) There are no intermediate vertices in $X_{3} \cup X_{5}$.

From symmetry, it is enough to prove that no vertex of X_{3} is intermediate. Suppose $x_{3} \in X_{3}$ is intermediate. By (8) applied with all indices shifted by one, we deduce that x_{2} is complete to $B_{3}\left(x_{3}\right)$, and anticomplete to $V_{1} \cup V_{4} \cup V_{5} \cup\left\{x_{3}\right\}$. By 3.1 and 3.2 .2 there exist $a_{1} \in A_{1}\left(x_{1}\right)$ and $b_{1} \in B_{1}\left(x_{1}\right)$ non-adjacent to each other. Let $b_{3} \in B_{3}\left(x_{3}\right)$, and $v_{i} \in V_{i}$ for $i=4,5$.

Assume first that x_{1} is adjacent to x_{3}. Then, by (9), x_{1} is complete to V_{2} and anticomplete to $V_{3} \cup V_{4} \cup V_{5}$. Now, if x_{1} adjacent to x_{2}, then $b_{1}-x_{3}-x_{1}-x_{2}-b_{3}-v_{4}$ is a path in G, and if x_{1} is non-adjacent to x_{2}, then $x_{1}-x_{3}-v_{5}-v_{4}-b_{3}-x_{2}$ is a path in G; in both cases a contradiction. This proves that x_{1} is non-adjacent to x_{3}.

Consequently, by (9), x_{1} is complete to V_{3}, and anticomplete to $V_{2} \cup V_{4} \cup V_{5}$. Now, if x_{1} is non-adjacent to x_{2}, then $b_{1}-v_{5}-a_{1}-x_{1}-b_{3}-x_{2}$ is a path in G; and if x_{1} is adjacent to x_{2}, then choosing $a_{2} \in A_{2}\left(x_{2}\right)$, we get that $x_{1}-x_{2}-a_{2}-b_{1}-v_{5}-v_{4}$ is a path in G; in both cases a contradiction. This proves (10).

Using symmetry, it follows from (7) applied in G^{c} and (10) that every vertex of $X_{3} \cup X_{5}$ is major, every vertex of $X_{1} \cup X_{2}$ is minor, and every vertex of X_{4} is intermediate. Thus the symmetry between G and G^{c} is restored. For $i \in\{3,4,5\}$, let $x_{i} \in X_{i}$.
(11) x_{4} is non-adjacent to both x_{1}, x_{2}; and x_{1} is adjacent to x_{2}.

By (9), exchanging V_{3} and V_{4}, x_{1} is anticomplete to $V_{2} \cup V_{3}$; and similarly x_{2} is anticomplete to $V_{1} \cup V_{5}$. By 3.1 and 3.2.2, there exist $a_{1} \in A_{1}\left(x_{1}\right)$ and $b_{1} \in B_{1}\left(x_{1}\right)$ non-adjacent to each other. For $i \in\{2,4\}$, let $b_{i} \in B_{i}\left(x_{i}\right)$.

Suppose x_{1} is adjacent to x_{2}. Assume that x_{2} has a neighbor $v_{3} \in V_{3}$. Then by (2) x_{2} is a path vertex for V_{2}, and so there exist $p, q, r \in V_{2}$ such that $x_{2}-p-q-r$ is a path in G. If x_{1} has a non-neighbor $v_{5} \in V_{5}$, then $b_{1}-v_{5}-a_{1}-x_{1}-x_{2}-v_{3}$ is a path in G, and if x_{1} is complete to V_{5}, then $r-q-p-x_{2}-x_{1}-v_{5}$ is a path in G for every $v_{5} \in V_{5}$; in both cases a contradiction. So x_{2} is anticomplete to V_{3}, and similarly x_{1} is anticomplete to V_{5}. Now by (9), x_{4} is non-adjacent to both x_{1}, x_{2}, and (11) follows. So we may assume that x_{1} is non-adjacent to x_{2}.

Suppose that x_{4} is adjacent to both x_{1} and x_{2}. By (9) and symmetry, this implies that x_{2} is complete to V_{3} and anticomplete to $V_{1} \cup V_{4} \cup V_{5}$, and x_{1} is complete to V_{5} and anticomplete to $V_{2} \cup V_{3} \cup V_{4}$. Now $x_{1}-v_{5}-b_{1}-b_{2}-v_{3}-x_{2}$ is a path in G for every $v_{3} \in V_{3}$ and $v_{5} \in V_{5}$, a contradiction. This proves that x_{4} is non-adjacent to at least one of x_{1}, x_{2}.

From the symmetry, we may assume that x_{4} is non-adjacent to x_{1}. By (9) and symmetry, x_{1} is complete to V_{4} and anticomplete to $V_{2} \cup V_{3} \cup V_{5}$. Suppose x_{4} is adjacent to x_{2}. Then by (9) and symmetry, x_{2} is complete to V_{3} and anticomplete to $V_{1} \cup V_{4} \cup V_{5}$. But now $b_{1}-a_{1}-x_{1}-b_{4}-v_{3}-x_{2}$ is a path in G for every $v_{3} \in V_{3}$, a contradiction. So x_{4} is non-adjacent to x_{2}. By (9) and symmetry, x_{2} is complete to V_{4} and anticomplete to $V_{1} \cup V_{3} \cup V_{5}$. But now $b_{1}-b_{2}-a_{1}-x_{1}-b_{4}-x_{2}$ is a path in G, again a contradiction. This proves (11).

By (11) and (9), x_{1} and x_{2} are complete to V_{4}, x_{1} is anticomplete to $V_{2} \cup V_{3} \cup V_{5}$, and x_{2} is anticomplete to $V_{1} \cup V_{3} \cup V_{5}$. Applying (11) and (9) in G^{c}, we deduce that x_{4} is adjacent to both x_{3} and x_{5}, and x_{3} is non-adjacent to $x_{5} ; x_{3}$ and x_{5} are anti-complete to V_{4}, x_{3} is complete to $V_{1} \cup V_{2} \cup V_{5}$, and x_{5} is complete to $V_{1} \cup V_{2} \cup V_{3}$.
(12) x_{3} is adjacent to x_{1}.

Suppose not. By 3.1 and 3.2.2, there exist $a_{1} \in A_{1}\left(x_{1}\right)$ and $b_{1} \in B_{1}\left(x_{1}\right)$ non-adjacent to each other. Let $b_{3} \in B_{3}\left(x_{3}\right)$ and $v_{4} \in V_{4}$. Then $b_{1}-x_{3}-a_{1}-x_{1}-v_{4}-b_{3}$ is a path in G, a contradiction.

By (12) applied in G^{c}, it follows that x_{2} is non-adjacent to x_{3}. Since x_{3} is mixed on $V_{2} \cup V_{4}$, (2) implies that x_{3} is a path vertex. Let $p \in A_{3}\left(x_{3}\right)$ and $q, r \in B_{3}\left(x_{3}\right)$ such that $p-q-r$ is a path in G. Now $r-q-p-x_{3}-x_{1}-x_{2}$ is a path in G, contrary to the fact that G is pure. This proves 2.5.

4 Pristine graphs

Let \mathcal{C}_{0} be the class of pristine graphs. First we define a few pristine graphs that will be important in the proof of 1.9.

- Let S_{0} be the three-edge path.
- Let $S_{1}=C_{7}$.
- Let S_{2}^{1} be the graph with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b\right\}$ such that $a_{1}-a_{2}-\ldots-a_{6}-a_{1}$ is a cycle, b is adjacent to a_{3}, and there are no other edges in S_{2}^{1}.
- Let S_{2}^{2} be the graph with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b\right\}$ such that $a_{1}-a_{2}-\ldots-a_{6}-a_{1}$ is a cycle, b is adjacent to a_{2} and to a_{3}, and there are no other edges in S_{2}^{2}.
- Let S_{3} be the graph with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b, c\right\}$ such that $a_{1}-a_{2}-\ldots-a_{5}-a_{1}$ is a cycle, b is adjacent to a_{3} and c, and there are no other edges in S_{3}.
- Let S_{4} be the graph with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b, c, d\right\}$ such that $a_{1}-a_{2}-\ldots-a_{5}-a_{1}$ is a cycle, the pairs $a_{1} b, a_{5} b, a_{3} c, a_{4} d$ and $b c$ are adjacent, and all other pairs are non-adjacent.
- Let S_{5} be the graph with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b\right\}$ such that $a_{1}-a_{2}-\ldots-a_{5}-a_{1}$ is a cycle, b is adjacent to a_{2}, and there are no other edges in S_{5}.
- Let $S_{6}=C_{5}$.

It is easy to check that all the graphs above are pristine. We need the following subclasses of \mathcal{C}_{0}.

- Let \mathcal{C}_{1} be the class of S_{1}-free graphs in \mathcal{C}_{0}.
- Let \mathcal{C}_{2} be the class of $\left\{S_{2}^{1}, S_{2}^{2}\right\}$-free graphs in \mathcal{C}_{1}.
- Let \mathcal{C}_{3} be the class of S_{3}-free graphs in \mathcal{C}_{2}.
- Let \mathcal{C}_{4} be the class of S_{4}-free graphs in \mathcal{C}_{3}.
- Let \mathcal{C}_{5} be the class of S_{5}-free graphs in \mathcal{C}_{4}.
- Let \mathcal{C}_{6} be the class of S_{6}-free graphs in \mathcal{C}_{5}.

In the next section, we will prove a number of structural results concerning pristine graphs, namely $5.1,5.2,5.3,5.4,5.5$, and 5.6. Let us now prove 1.9, that we restate, assuming these results.

4.1 There exists $\alpha>1$ such that every pristine graph is α-narrow.

Proof. For $i \in\{1,3,4,5,6\}$, let S_{i}^{\prime} be the graph obtained from S_{i} by substituting S_{0} for a_{1}. For $i \in\{1,2\}$ let $S_{2}^{i \prime}$ be the graph obtained from S_{2}^{i} by substituting S_{0} for a_{1}. For $i \in\{0, \ldots, 6\}$ we will show that:

- (P_{i}) There exists $\alpha_{i} \geq 1$ such that all graphs in \mathcal{C}_{i} are α_{i}-narrow.

For $i \in\{0, \ldots, 5\}$ we will show that:

- $\left(Q_{i}\right)$ If $G \in \mathcal{C}_{i}$ contains S_{i+1}^{\prime} (or a member of $\left\{S_{2}^{1^{\prime}}, S_{2}^{2^{\prime}}\right\}$ in the case when $i=1$), then G admits a \mathcal{C}_{i}-quasi-homogeneous set decomposition.

The validity of $\left(Q_{5}\right), \ldots,\left(Q_{0}\right)$ is established in $5.1,5.2,5.3,5.4,5.5$, and 5.6 , respectively.
(1) For $i \in\{1, \ldots, 5\}$, if $\left(P_{i}\right)$ holds, then $\left(P_{i-1}\right)$ holds.

We need to show that there exists $\alpha_{i-1} \geq 1$ such that every graph in \mathcal{C}_{i-1} is α_{i-1}-narrow. Since by $\left(P_{i}\right)$ there exists α_{i} such that every graph in \mathcal{C}_{i} is α_{i}-narrow, it follows from 1.6 that S_{i} has the Erdös-Hajnal property for \mathcal{C}_{i-1} (and $\left\{S_{2}^{1}, S_{2}^{2}\right\}$ has the Erdös-Hajnal property for \mathcal{C}_{1}, in the case
when $i=2$). Since all S_{0}-free graphs are perfect and therefore 1-narrow, 1.6 implies that S_{0} has the Erdös-Hajnal property for class of all graphs, and in particular for \mathcal{C}_{i-1}. Now by 2.2, S_{i}^{\prime} has the Erdös-Hajnal property for \mathcal{C}_{i-1} (and $\left\{S_{2}^{1^{\prime}}, S_{2}^{2^{\prime}}\right\}$ has the Erdös-Hajnal property for \mathcal{C}_{1}, in the case when $i=2$). Therefore, by 1.10 that there exists $\alpha_{i-1} \geq 1$ such that all $\left\{S_{i}^{\prime}\right\}$-free graphs in \mathcal{C}_{i-1} (and $\left\{S_{2}^{1^{\prime}}, S_{2}^{2^{\prime}}\right\}$-free graphs in \mathcal{C}_{1} in the case when $i=2$) are α_{i-1}-narrow.

Let G be a graph in \mathcal{C}_{i-1} that is not α_{i-1}-narrow with $|V(G)|$ minimum. By $\left(Q_{i-1}\right), G$ admits a \mathcal{C}_{i-1}-quasi-homogeneous set decomposition. But then G is α_{i-1}-narrow by 2.3 and the minimality of $|V(G)|$, a contradiction. This proves (1).

Next we observe that 4.1 follows immediately from from (P_{0}). By (1), in order to prove 4.1, it is enough to prove that $\left(P_{6}\right)$ holds; and since all S_{6}-free graphs in \mathcal{C}_{5} are perfect by 1.5, $\left(P_{6}\right)$ follows. This proves 4.1.

We conclude this section with a few technical lemmas about pristine graphs.
4.2 Let $G \in \mathcal{C}_{0}$, and let $X_{1}, X_{2} \in V(G)$ be disjoint anticonnected sets complete to each other. Then no vertex of $V(G) \backslash\left(X_{1} \cup X_{2}\right)$ is mixed on both X_{1} and X_{2}.

Proof. Suppose $v \in V(G) \backslash\left(X_{1} \cup X_{2}\right)$ is mixed on both X_{1} and X_{2}. Let $a_{i}, b_{i} \in X_{i}$ be such that v is adjacent to a_{i} and non-adjacent to b_{i}, and a_{i} is non-adjacent to b_{i} (such a_{i}, b_{i} exist by 3.2.2). Now $a_{1}-b_{1}-v-b_{2}-a_{2}$ is a four-edge path in G^{c}, a contradiction. This proves 4.2.

Let G be a graph, H an induced subgraph of G, and $h \in V(H)$. Let $X \subseteq\{h\} \cup(V(G) \backslash V(H))$ be such that $H^{\prime}=G \mid(X \cup(V(H) \backslash\{h\}))$ is the graph obtained from H by substituting $G \mid X$ for h. (This implies that $G \mid(V(H) \backslash\{h\} \cup\{x\})$ is isomorphic to H for every $x \in X$.) In this case we say that H^{\prime} is obtained from H by expanding h to X. An (H, h)-structure in G is a set X such that

- $H^{\prime}=G \mid(X \cup(V(H) \backslash\{h\}))$ is obtained from H by expanding h to X,
- X is both connected and anticonnected in G, and
- $|X| \geq 4$.

An (H, h)-structure X is maximal if X is maximal (under subset inclusion) subject to X being an (H, h)-structure.
4.3 Let $G \in \mathcal{C}_{0}$, and let $a-b-c-d$ be a path in G, say P. Let $X \subseteq V(G) \backslash\{a, b, d\}$ and let X be a (P, c)-structure in G. Let $v \in V(G) \backslash(X \cup\{a, b, d\})$ be mixed on X. Then either

1. v is complete to $\{b, d\}$ and non-adjacent to a, or
2. v is anticomplete to $\{a, b, d\}$.

Proof. Since X and $\{b, d\}$ are anticonnected subsets of $V(G)$ complete to each other, 4.2 implies that v is either complete or anticomplete to $\{b, d\}$. If v is complete to $\{b, d\}$, then since $b-d-a-x-v$ is not a path in G^{c} for any $x \in X \backslash N(v)$, it follows that v is non-adjacent to a, and 4.3.1 holds. So we may assume that v is anticomplete to $\{b, d\}$, and adjacent to a. Let $x, y \in X$ as in 3.2.1. Now $b-v-y-a-x$ is a path in G^{c}, a contradiction. This proves 4.3.
4.4 Let $G \in \mathcal{C}_{0}$, and let e-a-b-c-d be a path in G, say P. Let $X \subseteq V(G) \backslash\{e, a, b, d\}$, and let X be $a(P, c)$-structure in G. Let $v \in V(G) \backslash(X \cup\{e, a, b, d\})$ be mixed on X. If v is complete to $\{b, d\}$, then v is anticomplete to $\{e, a\}$.

Proof. By 4.3, v is non-adjacent to a. Let $x \in X$ be adjacent to v. Now since $b-e-x-a-v$ is not a path in G^{c}, it follows that v is non-adjacent to e, and 4.4 holds. This proves 4.4.
4.5 Let $G \in \mathcal{C}_{0}$, and let $a_{1}-a_{2}-a_{3}-a_{4}-a_{5}-a_{1}$ be a cycle in G, say C. Let $X \subseteq V(G) \backslash\left\{a_{2}, \ldots, a_{5}\right\}$, and let X be a $\left(C, a_{1}\right)$-structure in G. Let $v \in V(G) \backslash\left(X \cup\left\{a_{2}, \ldots, a_{5}\right\}\right.$ be mixed on X. Then either

1. v is complete to $\left\{a_{2}, a_{5}\right\}$ and anticomplete to $\left\{a_{3}, a_{4}\right\}$, or
2. v is anticomplete to $\left\{a_{2}, \ldots, a_{5}\right\}$.

Proof. Apply 4.3 to $a_{4}-a_{5}-a_{1}-a_{2}$ and $a_{3}-a_{2}-a_{1}-a_{5}$. It follows that v is anticomplete to $\left\{a_{3}, a_{4}\right\}$, and either complete or anticomplete to $\left\{a_{2}, a_{5}\right\}$. This proves 4.5.
4.6 Let G be a graph, H an induced subgraph of G, and $h \in V(H)$. Let X be a maximal (H, h) structure in G. Let $v \in V(G) \backslash(X \cup(V(H) \backslash\{h\}))$ be such that every $u \in V(H) \backslash\{h\}$ is adjacent to v if and only if u is adjacent to h. Then v is not mixed on H.

Proof. Suppose v is mixed on X. Then $X \cup\{v\}$ is both connected and anticonnected, and so $X \cup\{v\}$ is an (H, h)-structure in G, contrary to the maximality of X. This proves 4.6.

5 Decomposing pristine graphs

In this section we prove a number of structural results for pristine graphs. We remind the reader that for a hereditary class of graphs \mathcal{C}, if a graph $G \in \mathcal{C}$ is not prime, then G admits a homogeneous set decomposition, and therefore \mathcal{C}-quasi-homogeneous set decomposition, and so the results of this section are sufficient for the proof of 4.1.
5.1 If $G \in \mathcal{C}_{5}$ contains S_{6}^{\prime}, then G is not prime.

Proof. Since G contains S_{6}^{\prime}, there exists a maximal $\left(S_{6}, a_{1}\right)$-structure X in G. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists $v \in V(G) \backslash$ $\left(X \cup\left\{a_{2}, \ldots, a_{5}\right\}\right)$ such that v is mixed on X. Apply 4.5 to C. By 4.6 and the maximality of X, 4.5.1 does not hold, and so 4.5.2 holds. But then $G \mid\left\{y, a_{2}, \ldots, a_{5}, v\right\}$ is isomorphic to S_{5} for every $y \in X \cap N(v)$, contrary to the fact that $G \in \mathcal{C}_{5}$. This proves 5.1.
5.2 If $G \in \mathcal{C}_{4}$ contains S_{5}^{\prime}, then G admits a \mathcal{C}_{4}-quasi-homogeneous set decomposition.

Proof. Since G contains S_{5}^{\prime}, there exists a maximal $\left(S_{5}, a_{1}\right)$-structure X in G. Let V be the set of vertices of $V(G) \backslash X$ that are mixed on X. Then $V \subseteq V(G) \backslash\left(X \cup\left\{a_{2}, \ldots, a_{5}, b\right\}\right)$. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, $V \neq \emptyset$.
(1) V is anticomplete to $\left\{a_{2}, \ldots, a_{5}, b\right\}$.

Let $v \in V$. By 4.5 applied to $a_{1}-a_{2}-a_{3}-a_{4}-a_{5}-a_{1}$, it follows that v is anticomplete to $\left\{a_{3}, a_{4}\right\}$ and either complete or anticomplete to $\left\{a_{2}, a_{5}\right\}$. By 4.3 applied to $b-a_{2}-a_{1}-a_{5}$, we deduce that v is nonadjacent to b. By 4.6 and the maximality of X, v is not complete to $\left\{a_{2}, a_{5}\right\}$, and so (1) follows.

Let C be the set of vertices complete to X, and let $A=V(G) \backslash(X \cup C)$. We will show that (X, A, C) is a \mathcal{C}_{4}-quasi-homogeneous set in G. Let A^{\prime} be the set of vertices in A that are anticomplete to X. Then $A=A^{\prime} \cup V$.
(2) If $x \in X$ and $s, t \in A$ are adjacent, then x is not mixed on $\{s, t\}$. Consequently, V is anticomplete to A^{\prime}.

Suppose x is adjacent to s and non-adjacent to t. Since X is anticomplete to A^{\prime}, it follows that $s \in V . \operatorname{By}(1), s$ is anticomplete to $\left\{a_{2}, \ldots, a_{5}, b\right\}$. Since $G \mid\left\{a_{2}, \ldots, a_{5}, x, s, t\right\}$ is not isomorphic to S_{3} (because $G \in \mathcal{C}_{4}$), it follows that t has a neighbor in $\left\{a_{2}, \ldots, a_{5}\right\}$. Therefore, by (1), $t \notin V$, and thus $t \in A^{\prime}$. Let $x^{\prime}, y^{\prime} \in X$ be as in 3.2.1 (applied with $v=s$). Since $x^{\prime}-t-y^{\prime}-s-a_{2}$ and $x^{\prime}-t-y^{\prime}-s-a_{5}$ are not paths in G^{c}, it follows that t is anticomplete to $\left\{a_{2}, a_{5}\right\}$, and therefore t has a neighbor in $\left\{a_{3}, a_{4}\right\}$.

If t is adjacent to both a_{3} and a_{4}, then t is non-adjacent to b (since $t-a_{2}-a_{4}-b-a_{3}$ is not a path in G^{c}), and so $G \mid\left\{a_{2}, \ldots, a_{5}, x, s, t, b\right\}$ is isomorphic to S_{4}, a contradiction. So t is adjacent to exactly one of $\left\{a_{3}, a_{4}\right\}$. Let $x^{\prime \prime}, y^{\prime \prime} \in X$ be as in 3.2.2 (applied with $v=s$). But now if t is adjacent to a_{4}, then $G \mid\left\{x^{\prime \prime}, a_{2}, a_{3}, a_{4}, t, s, y^{\prime \prime}\right\}$ is isomorphic to S_{2}^{1}, and if t is adjacent to a_{3} then $G \mid\left\{x^{\prime \prime}, a_{5}, a_{4}, a_{3}, t, s, y^{\prime \prime}\right\}$ is isomorphic to S_{2}^{1}; both contrary to the fact that $G \in \mathcal{C}_{4}$. This proves (2).
(3) There do not exist non-adjacent $c_{1}, c_{2} \in C$ and $v \in V$ such that v is mixed on $\left\{c_{1}, c_{2}\right\}$.
(3) follows immediately from 4.2.

Let G^{\prime} be obtained from $G \backslash X$ by adding a new vertex x complete to C and anticomplete to A.
(4) $G^{\prime} \in \mathcal{C}_{4}$.

Let \mathcal{F} be the set of graphs consisting of the six-edge path, the complement of the four-edge path, $S_{1}, S_{2}^{1}, S_{2}^{2}, S_{3}$, and S_{4}. Assume that G^{\prime} has an induced subgraph B, isomorphic to a member of \mathcal{F}. Since B is not an induced subgraph of G, it follows that $x \in V(B)$, and $V(B) \cap V \neq \emptyset$. Let b be the number of components of $B \mid V$.

Suppose first that $b=1$. Let $v \in V(B) \cap V$, and let $y \in X$ be non-adjacent to v. By (2), and since X is anticomplete to A^{\prime}, it follows that y is anticomplete to $V(B) \cap A$, and so $G \mid((V(B) \backslash\{x\}) \cup\{y\})$ is an induced subgraph of G isomorphic to B, contrary to the fact that $G \in \mathcal{C}_{4}$. This proves that $b \geq 2$.

Since by (2) A^{\prime} is anticomplete to V, it follows that no component of $B \mid A$ meets both V and A^{\prime}. Since for every $F \in \mathcal{F}$ and $w \in V(F)$, the graph $F \backslash\left(\{w\} \cup N_{F}(w)\right)$ has at most two components, we deduce that $B \mid A$ has at most two components, and therefore $b=2, V(B) \cap A^{\prime}=\emptyset$ and $F \backslash\left(\{w\} \cup N_{F}(w)\right)$ has at most two components. Checking the graphs of \mathcal{F} one by one, we deduce that B is isomorphic either to the six-edge path, S_{2}^{1}, S_{3}, or S_{4}, and $N_{B}(x)$ is not a clique. The last implies that there exists a component C^{\prime} of $B^{c} \mid C$ with $\left|V\left(C^{\prime}\right)\right|>1$. Since no member of \mathcal{F} has a homogeneous set, there exists a vertex $v \in V(B) \backslash C^{\prime}$ that is mixed on C^{\prime}. Then $v \neq x$, and $v \notin C \backslash C^{\prime}$, and therefore $v \in V$. By 3.2.2, we get a contradiction to (3). This proves (4).
(5) If P^{\prime} is a perfect induced subgraph of G^{\prime} with $x \in V\left(P^{\prime}\right)$, and Q is a perfect induced subgraph of $G \mid X$, then $P=G \mid\left(\left(V\left(P^{\prime}\right) \cup V(Q)\right) \backslash\{x\}\right)$ is perfect.

Suppose P is not perfect. Since P is an induced subgraph of G, and $G \in \mathcal{C}_{4}$, it follows that P contains an induced cycle of length five, say D, with vertices $d_{1}-d_{2}-d_{3}-d_{4}-d_{5}$ in order.

We claim that some vertex of $V(D) \cap X$ is adjacent to a vertex of $V(D) \cap V$. Suppose not. Since Q contains no induced cycle of length five, $V(D) \backslash X \neq \emptyset$. Since $V(D) \cap X$ is not a homogeneous set in D, it follows that $|V(D) \cap X|=1$. But now $P^{\prime} \mid((V(D) \backslash X) \cup\{x\})$ is a cycle of length five, contrary to the fact that P^{\prime} is perfect. This proves the claim that some vertex of $V(D) \cap X$ is adjacent to a vertex of $V(D) \cap V$.

We may assume that $d_{1} \in X$ and $d_{2} \in V$. By (2), $d_{3} \notin A$. Since d_{3} is non-adjacent to d_{1}, it follows that $d_{3} \notin C$, and therefore $d_{3} \in X$. If d_{4} is in X, then, by (1), $a_{2}-d_{2}-d_{4}-d_{1}-d_{3}$ is a path in G^{c}, a contradiction; thus $d_{4} \notin X$. Since d_{4} is not adjacent to d_{1}, it follows that $d_{4} \notin C$, and so $d_{4} \in A$. Similarly, $d_{5} \in A$. But now d_{1} is mixed on $\left\{d_{4}, d_{5}\right\}$, contrary to (2). This proves (5).

Now (4) and (5) imply that (X, A, C) is a \mathcal{C}_{4}-quasi-homogeneous set in G. This proves 5.2.

5.3 If $G \in \mathcal{C}_{3}$ contains S_{4}^{\prime}, then G is not prime.

Proof. Since G contains S_{4}^{\prime}, there exists a maximal $\left(S_{4}, a_{1}\right)$-structure X in G. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists $v \in V(G) \backslash\left(X \cup\left\{a_{2}, \ldots, a_{5}, b, c, d\right\}\right)$ such that v is mixed on X. By 4.5 applied to $a_{1}-a_{2}-a_{3}-a_{4}-a_{5}-a_{1}$ and $a_{1}-a_{2}-a_{3}-c-b-a_{1}$, it follows that v is anticomplete to $\left\{a_{3}, a_{4}, c\right\}$ and either complete or anticomplete to $\left\{a_{2}, a_{5}, b\right\}$. By 3.2.2 there exist $x \in N(v) \cap X$ and $y \in X \backslash N(v)$ non-adjacent to each other.

Suppose first that v is complete to $\left\{a_{2}, a_{5}, b\right\}$. Since $G \in \mathcal{C}_{3}$, it follows that $G \mid\left\{b, c, a_{3}, a_{4}, d, v, x\right\}$ is not isomorphic to S_{2}^{2}, and therefore v is non-adjacent to d, contrary to 4.6. This proves that v is anticomplete to $\left\{a_{2}, a_{5}, b\right\}$. Since $G \in \mathcal{C}_{3}$, it follows that $G \mid\left\{a_{2}, \ldots, a_{5}, y, d, v\right\}$ is not isomorphic to S_{3}, and so v is non-adjacent to d. Now $v-x-b-c-a_{3}-a_{4}-d$ is a path of length six in G, a contradiction. This proves 5.3.
5.4 If $G \in \mathcal{C}_{2}$ contains S_{3}^{\prime}, then G is not prime.

Proof. Since G contains S_{3}^{\prime}, there exists a maximal $\left(S_{3}, a_{1}\right)$-structure X in G. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists $v \in V(G) \backslash$ $\left(X \cup\left\{a_{2}, \ldots, a_{5}, b, c\right\}\right)$ such that v is mixed on X. By 4.5, v is anticomplete to $\left\{a_{3}, a_{4}\right\}$ and either complete or anticomplete to $\left\{a_{2}, a_{5}\right\}$. Let $x \in X \cap N(v)$.

Suppose first that v is complete to $\left\{a_{2}, a_{5}\right\}$. By 4.4 applied to $b-a_{3}-a_{2}-a_{1}-a_{5}$ we deduce that v is non-adjacent to b. Now 4.6 implies that v is adjacent to c, and $G \mid\left\{a_{3}, a_{4}, a_{5}, v, c, b, x\right\}$ is isomorphic to S_{2}^{2} for every $y \in X \backslash N(v)$, contrary to the fact that $G \in \mathcal{C}_{2}$. This proves that v is anticomplete to $\left\{a_{2}, a_{5}\right\}$.

If v is non-adjacent to b, then $G \mid\left\{v, x, a_{5}, a_{4}, a_{3}, b, c\right\}$ is either a path of length six, or a cycle of length seven in G, in both cases a contradiction. So v is adjacent to b. But now $G \mid\left\{v, x, a_{5}, a_{4}, a_{3}, b, c\right\}$ is isomorphic to S_{2}^{1} if v is non-adjacent to c, and to S_{2}^{2} if v is adjacent to c, contrary to the fact that $G \in \mathcal{C}_{2}$. This proves 5.4.
5.5 If $G \in \mathcal{C}_{1}$ contains a member of $\left\{S_{2}^{1^{\prime}}, S_{2}^{2^{\prime}}\right\}$, then G is not prime.

Proof. Since G contains a member of $\left\{S_{2}^{1^{\prime}}, S_{2}^{2^{\prime}}\right\}$, there exists either a maximal $\left(S_{2}^{1}, a_{1}\right)$ or a maximal $\left(S_{2}^{2}, a_{1}\right)$ structure in G. Denote it by X. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists $v \in V(G) \backslash\left(X \cup\left\{a_{2}, \ldots, a_{6}, b\right\}\right)$ such that v is mixed on X.

Applying 4.3 to the paths $a_{3}-a_{2}-a_{1}-a_{6}$ and $a_{5}-a_{6}-a_{1}-a_{2}$, we deduce that either 4.3 .1 holds for both paths, or 4.3.2 holds for both paths.

Assume first that 4.3.1 holds. Then v is complete to $\left\{a_{2}, a_{6}\right\}$ and anticomplete to $\left\{a_{3}, a_{5}\right\}$. Now applying 4.4 to $a_{4}-a_{3}-a_{2}-a_{1}-a_{6}$, we deduce that v is non-adjacent to a_{4}. We claim that v is nonadjacent to b. This follows applying 4.3 to $b-a_{2}-a_{1}-a_{6}$ if b is adjacent to a_{2} (and X is an $\left(S_{2}^{2}, a_{1}\right)$ structure), and applying 4.4 to $b-a_{3}-a_{2}-a_{1}-a_{6}$ if b is non-adjacent to a_{2} (and X is an (S_{2}^{1}, a_{1}) structure). But now we get a contradiction to 4.6. This proves that 4.3.1 does not hold, and therefore 4.3.2 holds.

Consequently, v is anticomplete to $\left\{a_{2}, a_{3}, a_{5}, a_{6}\right\}$. Let $x, y \in X$ be as in 3.2.2. If v is nonadjacent to a_{4}, then either $b-a_{3}-a_{4}-a_{5}-a_{6}-x-v$ is a path of length six in G (if v is non-adjacent to b), or $b-a_{3}-a_{4}-a_{5}-a_{6}-x-v-b$ is a cycle of length seven in G (if v is adjacent to b); in both cases contrary to the fact that $G \in \mathcal{C}_{1}$. This proves that v is adjacent to a_{4}. If v is non-adjacent to b, then $b-a_{3}-a_{4}-v-x-a_{6}-y$ is a path of length six in G, a contradiction; thus v is adjacent to b. This implies that b is non-adjacent to a_{2}, (for otherwise we get a contradiction applying 4.3 to $a_{6}-a_{1}-a_{2}-b$), and so X is an $\left(S_{2}^{1}, a_{1}\right)$-structure. Now $b-v-a_{4}-a_{5}-a_{6}-y-a_{2}$ is a path of length six in G, again a contradiction. This proves 5.5.
5.6 If $G \in \mathcal{C}_{0}$ contains S_{1}^{\prime}, then G is not prime.

Proof. Since G contains S_{1}^{\prime}, there exists a maximal $\left(S_{1}, a_{1}\right)$-structure X in G. We may assume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists $v \in V(G) \backslash(X \cup$ $\left.\left\{a_{2}, \ldots, a_{7}\right\}\right)$ such that v is mixed on X. Applying 4.3 to the paths $a_{3}-a_{2}-a_{1}-a_{7}$ and $a_{6}-a_{7}-a_{1}-a_{2}$, we deduce that either 4.3.1 holds for both paths, or 4.3.2 holds for both paths.

Assume first that 4.3.1 holds. Then v is complete to $\left\{a_{2}, a_{7}\right\}$ and anticomplete to $\left\{a_{3}, a_{6}\right\}$. Now applying 4.4 to $a_{4}-a_{3}-a_{2}-a_{1}-a_{7}$ and $a_{5}-a_{6}-a_{7}-a_{1}-a_{2}$, we deduce that v is anticomplete to $\left\{a_{4}, a_{5}\right\}$, contrary to 4.6. This proves that 4.3.1 does not hold, and therefore 4.3.2 holds.

It follows that v is anticomplete to $\left\{a_{6}, a_{7}, a_{2}, a_{3}\right\}$. Let $x \in X$ be adjacent to v, and $y \in X$ nonadjacent to v. If v is adjacent to a_{5}, then $v-a_{5}-a_{6}-a_{7}-y-a_{2}-a_{3}$ is a path of length six in G, contrary to the fact that $G \in \mathcal{C}_{0}$. But now, by symmetry, v is anticomplete to $\left\{a_{4}, a_{5}\right\}$, and $v-x-a_{2}-a_{3}-a_{4}-a_{5}-a_{6}$ is a path of length six in G, again a contradiction. This proves 5.6.

6 The proof of 1.10

In this section we prove 1.10. This is a result of Fox [7], but we include a proof for completeness. Let us start by restating the theorem:
6.1 Let H be a graph for which there exists a constant $\delta(H)>0$ such for every H-free graph G either $\omega(G) \geq|V(G)|^{\delta(H)}$ or $\alpha(G) \geq|V(G)|^{\delta(H)}$. Then every H-free graph G is $\frac{3}{\delta(H)}$-narrow.

Proof. The proof is by induction on $|V(G)|$. Let G be an H-free graph, and let $f: V(G) \rightarrow[0,1]$ be a good function. Write $t=\frac{1}{\delta(H)}$. We need to show that:
(1) $\Sigma_{v \in V(G)} f(v)^{3 t} \leq 1$.

For every integer $i \geq 0$ define:

$$
V_{i}=\left\{v \in V(G): \frac{1}{2^{i}} \leq f(v)<\frac{1}{2^{i-1}}\right\} .
$$

Let $G_{i}=G \mid V_{i}$, and let

$$
V^{+}=\{v \in V(G): f(v)>0\} .
$$

Since (1) clearly holds if $f(v)=1$ for some $v \in V(G)$, we may henceforth assume that $V^{+}=\bigcup_{i \geq 1} V_{i}$.
(2) $\left|V_{i}\right| \leq 2^{i t}$.

Let $i \geq 1$ be an integer. Recall that $f(v) \geq \frac{1}{2^{i}}$ for every $v \in V_{i}$. Since f is good, this implies that if P is a perfect induced subgraph of G_{i}, then $|V(P)| \leq 2^{i}$. In particular, both $\alpha\left(G_{i}\right) \leq 2^{i}$ and $\omega\left(G_{i}\right) \leq 2^{i}$. On the other hand, since G_{i} is H-free, it follows that either $\alpha\left(G_{i}\right) \geq\left|V_{i}\right|^{\frac{1}{t}}$ or $\omega\left(G_{i}\right) \geq\left|V_{i}\right|^{\frac{1}{t}}$. Thus

$$
2^{i} \geq\left|V_{i}\right|^{\frac{1}{t}}
$$

and therefore $\left|V_{i}\right| \leq 2^{i t}$. This proves (2).
(3) If $V_{1}=\emptyset$, then the theorem holds.

Since $V_{1}=\emptyset$, it follows that

$$
\Sigma_{v \in V(G)} f(v)^{3 t}=\Sigma_{v \in V^{+}} f(v)^{3 t}=\Sigma_{i \geq 2} \Sigma_{v \in V_{i}} f(v)^{3 t}
$$

Since for $i \geq 1, f(v)<\frac{1}{2^{i-1}}$ for every $v \in V_{i}$, it follows that

$$
\Sigma_{i \geq 2} \Sigma_{v \in V_{i}} f(v)^{3 t} \leq \Sigma_{i \geq 2} \Sigma_{v \in V_{i}} \frac{1}{2^{3 t(i-1)}}
$$

By (2), for fixed $i \geq 2$,

$$
\Sigma_{v \in V_{i}} \frac{1}{2^{3 t(i-1)}} \leq \frac{2^{i t}}{2^{3 t(i-1)}}=\frac{2^{3 t}}{2^{2 i t}}
$$

Now, exchanging variables,

$$
\Sigma_{i \geq 2} \frac{2^{3 t}}{2^{2 i t}}=\Sigma_{j \geq 0} \frac{2^{3 t}}{2^{2(j+2) t}}=2^{-t} \Sigma_{j \geq 0}\left(\frac{1}{2^{2 t}}\right)^{j}=\frac{2^{t}}{2^{2 t}-1} \leq 1 .
$$

This proves that

$$
\Sigma_{v \in V(G)} f(v)^{3 t} \leq 1,
$$

and threfore proves (3).
By (3) we may assume that for some $v_{0} \in V(G), f\left(v_{0}\right) \geq \frac{1}{2}$. Let $N=N\left(v_{0}\right)$ and $M=V(G) \backslash$ $\left(N \cup\left\{v_{0}\right\}\right)$. Since if P is a perfect induced subgraph of $G \mid N$, then $G \mid\left(V(P) \cup\left\{v_{0}\right\}\right)$ is perfect, it follows that

$$
\Sigma_{v \in V(P)} f(v) \leq 1-f\left(v_{0}\right)
$$

for every perfect induced subgraph P of of $G \mid N$. Consequently, $g(v)=\frac{f(v)}{1-f\left(v_{0}\right)}$ is a good function on $G \mid N$. Inductively, this implies that

$$
\Sigma_{v \in N} g(v)^{3 t} \leq 1,
$$

and thus

$$
\Sigma_{v \in N} f(v)^{3 t} \leq\left(1-f\left(v_{0}\right)\right)^{3 t}
$$

Similarly,

$$
\Sigma_{v \in M} f(v)^{3 t} \leq\left(1-f\left(v_{0}\right)\right)^{3 t}
$$

Therefore,

$$
\Sigma_{v \in V(G)} f(v)^{3 t} \leq f\left(v_{0}\right)^{3 t}+2\left(1-f\left(v_{0}\right)\right)^{3 t} .
$$

Let $q=3 t$ and let

$$
F(x)=x^{q}+2(1-x)^{q}
$$

Then $F(x)$ is convex for $x \in\left[\frac{1}{2}, 1\right]$. Consequently, $F(x) \leq \max \left(F\left(\frac{1}{2}\right), F(1)\right)$ for every $x \in\left[\frac{1}{2}, 1\right]$. Thus $F(x) \leq \max \left(\frac{3}{2^{q}}, 1\right)$, and since $q>2$, it follows that $F(x) \leq 1$ for all $x \in\left[\frac{1}{2}, 1\right]$. Now, setting $x=f\left(v_{0}\right)$, we obtain (1). This proves 6.1.

References

[1] N. Alon, J. Pach, and J. Solymosi, "Ramsey-type theorems with forbidden subgraphs", Combinatorica 21, 155-170.
[2] M. Chudnovsky, N.Robertson, P.Seymour, and R.Thomas, "The strong perfect graph theorem", Annals of Math 164 (2006), 51-229.
[3] M. Chudnovsky and S. Safra, "The Erdös-Hajnal conjecture for bull-free graphs", J. Combin. Theory, Ser. B, 98 (2008), 1301-1310.
[4] M. Chudnovsky and Y. Zwols, "Large cliques or stable sets in graphs with no four-edge path and no five-edge path in the complement", to appear in J. Graph Theory.
[5] P. Erdös, "Some remarks on the theory of graphs", Bull. Amer. Math. Soc. 53 (1947), 292-294.
[6] P. Erdös and A. Hajnal, "Ramsey-type theorems", Discrete Applied Mathematics 25 (1989), 37-52.
[7] J. Fox, private communication.
[8] L. Lovász, "Normal hypergraphs and the perfect graph conjecture", Discrete Mathematics 2 (1972), 253-267.

[^0]: *Supported by NSF grants DMS-1001091 and IIS-1117631.
 ${ }^{\dagger}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

