
Graph Minors

XXIII. Nash-Williams’ immersion conjecture

Neil Robertson1

Ohio State University, Columbus, Ohio

Paul Seymour

Princeton University, Princeton, New Jersey.

December 1995; revised April 18, 2011

1Supported by NSF grant number DMS8903132.



Abstract

We define a quasi-order of the class of all finite hypergraphs, and prove it is a well-quasi-order. This
has two corollaries of interest:

• Wagner’s conjecture, proved in a previous paper, states that for every infinite set of finite
graphs, one of its members is a minor of another. The present result implies the same conclusion
even if the vertices or edges of the graphs are labelled from a well-quasi-order and we require
the minor relation to respect the labels.

• Nash-Williams’ “immersion” conjecture states that in any infinite set of finite graphs, one can be
“immersed” in another; roughly, embedded such that the edges of the first graph are represented
by edge-disjoint paths of the second. The present result implies this, in a strengthened form
where we permit vertices to be labelled from a well-quasi-order and require the immersion to
respect the labels.



1 Introduction

Let G,H be graphs. (All graphs in this paper are finite.) An immersion of H in G is a function α
with domain V (H) ∪ E(H), such that:

• α(v) ∈ V (G) for all v ∈ V (H), and α(u) 6= α(v) for all distinct u, v ∈ V (H)

• for each edge e of H, if e has distinct ends u, v then α(e) is a path of G with ends α(u), α(v),
and if e is a loop incident with a vertex v then α(e) is a circuit of G with α(v) ∈ V (α(e))

• for all distinct e, f ∈ E(H), E(α(e) ∩ α(f)) = ∅.

(Paths have at least one vertex, and no “repeated” vertices. Circuits have at least one edge and no
“repeated” vertices.) Nash-Williams [2] proposed the following conjecture, which is one of our main
results.

1.1 For every countable sequence Gi (i = 1, 2, ...) of graphs, there exist j > i ≥ 1 such that there is
an immersion of Gi in Gj .

In fact Nash-Williams also proposed another “immersion” conjecture, in [1], with another condi-
tion in the definition of immersion, that

• for all v ∈ V (H) and e ∈ E(H), if e is not incident with v in H then α(v) 6∈ V (α(e)).

Let us call this “strong immersion”. Thus there are actually two immersion conjectures, but we are
only proving the weaker. It seemed to us at one time that we had a proof of the stronger, but even
if it was correct it was very much more complicated, and it is unlikely that we will write it down.

We prove 1.1 as a corollary of a well-quasi-ordering result about hypergraphs. A hypergraph G
consists of a finite set V (G) of vertices, a finite set E(G) of edges, and an incidence relation between
them. If e is an edge, V (e) or VG(e) denotes the set of vertices of G incident with e, that is, the set
of ends of e. If V is a finite set, KV denotes the complete graph with vertex set V , that is, E(KV )
is the set of all 2-element subsets of V with the natural incidence relation.

Let H,G be hypergraphs. We say a collapse of G to H is a function η with domain V (H)∪E(H),
such that

(i) η(v) is a non-null connected subgraph of KV (G) for each v ∈ V (H), and η(u), η(v) are
disjoint for all distinct u, v ∈ V (H)

(ii) η(e) ∈ E(G) for all e ∈ E(H), and η(e) 6= η(f) for all distinct e, f ∈ E(H)

(iii) if v ∈ V (H) and e ∈ E(H) and e is incident in H with v, then η(e) is incident in G with
a vertex of η(v)

(iv) for each v ∈ V (H) and f ∈ E(η(v)) with ends x, y, there is an edge e of G incident with
x and y.

Note that, in (iv), it is possible that e ∈ η(E(H)). (If we could insist that e 6∈ η(E(H)) this would
yield Nash-Williams’ strong immersion conjecture.)

We shall prove
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1.2 For every countable sequence Gi (i = 1, 2, ...) of hypergraphs there exist j > i ≥ 1 such that
there is a collapse of Gj to Gi.

If all the hypergraphs Gi are loopless graphs (that is, every edge has two ends) and there is a
collapse of Gj to Gi then Gi is isomorphic to a minor of Gj in the usual sense of graph minors; and
so 1.2 contains Wagner’s conjecture (see [6]), at least for loopless graphs. Thus, we would expect 1.2
to be difficult. On the other hand, most of the work has already been done in previous papers.

In fact we shall prove much more than 1.2; for instance, it is permissible to label the edges of the
hypergraphs from a well-quasi-order, and ask for a collapse that respects labels; and it is possible to
order, independently, the elements of each edge of bounded size, and ask for the collapse to maintain
the order; and indeed, if we take hypergraphs in which all edges have bounded size, we can arrange
the stronger form of (iv) above, with e 6∈ η(E(H)). But first let us see that even 1.2 implies the
immersion conjecture for loopless graphs.

Let G be a loopless graph. Its transpose is the hypergraph G′ with V (G′) = E(G) and E(G′) =
V (G), with the same incidence relation as G. We need:

1.3 If G,H are loopless graphs, and there is a collapse of the transpose of G to the transpose of H,
then there is an immersion of H in G.

Proof. Let the transposes of G,H be G′,H ′ respectively, and let η be a collapse of G′ to H ′. Choose
η such that

Σ(|E(η(v))| : v ∈ V (H ′))

is minimum.

(1) For each v ∈ V (H ′) incident with distinct e, f ∈ E(H ′), η(v) is a path with ends incident
with η(e), η(f) respectively, and with no internal vertex incident with η(e) or η(f).

Subproof. By condition (iii) in the definition of “collapse”, there exist x, y ∈ V (η(v)) such that
x is incident in G with η(e) and y with η(f). By condition (i), η(v) is connected, and so there is a
path P of η(v) with ends x, y. Define η′ = η except that η′(v) = P ; then η′ is another collapse. (To
verify condition (iii) in the definition of “collapse” we use that e, f are the only edges of H ′ incident
in H ′ with v.) By the choice of η, it follows that η(v) = P ; and hence the choice of x, y was unique.
Consequently, no vertex of η(v) except x is incident in G′ with η(e), and similarly for y, f . This
proves (1).

Let v, e, f be as in (1). Let the vertices of the path η(v) be v1, v2, . . . , vk in order, where v1 is an
end of η(e) and vk is an end of η(f). For 1 ≤ i < k, there is an edge fi of G′ incident with vi and
vi+1, by condition (iv) in the definition of collapse.

(2) f1, . . . , fk−1 are distinct.

Subproof. Suppose that fi = fj say where 1 ≤ i < j ≤ k − 1. Let P be the path with vertex
set v1, . . . , vi, vj+1, . . . , vk. Since fi is incident with vi and vj+1, if we define η′ = η except that
η′(v) = P we contradict the minimality of |E(η(v))|. This proves (2).
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For each v ∈ V (H ′) = E(H), incident with distinct e, f ∈ E(H ′) = V (H), let α(v) be the path
of G with ends η(e), η(f) and with edge set V (η(v)) and vertex set {η(e), f1, . . . , fk−1, η(f)} where
f1, . . . , fk−1 are as in (2). By (2), there is indeed such a path. For each e ∈ E(H ′) = V (H), define
α(e) = η(e). We claim that α satisfies conditions (i)-(iii) in the definition of “immersion”. Conditions
(i) and (ii) are clear, since there are no loops. For (iii), if e, f ∈ E(H) = V (H ′) are distinct then
E(α(e) ∩ α(f)) = V (η(e)) ∩ V (η(f)) = ∅, and so (iii) holds. This proves 1.3.

From 1.3 and 1.2 it follows immediately that 1.1 holds for loopless graphs. To prove 1.1 when
there may be loops we need an extension of 1.2 where the edges are labelled from a well-quasi-order.
A quasi-order Ω is a pair (E(Ω),≤), where E(Ω) is a set and ≤ is a reflexive transitive relation on
E(Ω). It is a well-quasi-order if for every countable sequence xi (i = 1, 2, . . .) of elements of E(Ω)
there exist j > i ≥ 1 with xi ≤ xj . We shall prove the following strengthening of 1.2:

1.4 Let Ω be a well-quasi-order, and for i = 1, 2, . . . let Gi be a hypergraph and φi : E(Gi) → E(Ω)
some function. Then there exist j > i ≥ 1 and a collapse η of Gj to Gi such that for all e ∈ E(Gi),
φi(e) ≤ φj(η(e)).

The proof that 1.2 implies 1.1 can be adapted (we omit the details) to show:

1.5 Let Ω be a well-quasi-order, and for i = 1, 2, . . . let Gi be a loopless graph and φi : V (Gi) → E(Ω)
some function. Then there exist j > i ≥ 1 and an immersion α of Gi in Gj such that for all
v ∈ V (Gi), φi(v) ≤ φj(α(v)).

In particular, 1.5 implies 1.1 for graphs which may have loops. To see this, let G be a graph,
and let G′ be obtained from G by deleting all loops. For each v ∈ V (G′) let φ(v) be the number
of loops of G incident with v. Given a countable sequence Gi (i = 1, 2, . . .) of graphs, we take Ω to
be the non-negative integers with their natural order, and apply 1.5 to the corresponding sequences
G′

i, φ
′
i (i = 1, 2, . . .). Thus 1.5 implies 1.1.

Here is a statement of our most general result, expressed in terms of hypergraphs.

1.6 Let Ω be a well-quasi-order, let k ≥ 0 be an integer, and for i = 1, 2, . . . let Gi be a hypergraph,
let φi : E(Gi) → E(Ω) be some function, and let Mi ⊆ E(Gi), such that |V (e)| ≤ k for all e ∈ Mi.
For each e ∈ Mi, let µi(e) be some sequence (v1, . . . , vm) such that v1, . . . , vm are all distinct and
{v1, . . . , vm} = V (e). Then there exist j > i ≥ 1 and a collapse η of Gj to Gi such that for every
e ∈ E(Gi):

• φi(e) ≤ φj(η(e)),

• η(e) ∈Mj if and only if e ∈Mi, and if so then |V (η(e))| = |V (e)|,

• if e ∈ Mi, let µi(e) = (v1, . . . , vm) and µj(η(e)) = (u1, . . . , um); then uh ∈ V (η(vh)) for
1 ≤ h ≤ m.

This evidently implies 1.5, taking Mi = ∅ for each i. If Mi = E(Gi) for each i and each edge of
each Gi has one or two ends, it yields a version of Wagner’s conjecture in which labels are permitted.
Since this may be of some independent interest, let us state it explicitly:

3



1.7 Let Ω be a well-quasi-order. For i ≥ 1 let Gi be a directed graph, and let φi : V (Gi)∪E(Gi) →
E(Ω) be some function. Then there exist j > i ≥ 1 and a map η with domain V (Gi) ∪ E(Gi),
satisfying:

• for each v ∈ V (Gi), η(v) is a connected subgraph of Gj , and there exists w ∈ V (η(v)) with
φi(v) ≤ φj(w); and η(v) ∩ η(v′) is null for all distinct v, v′ ∈ V (Gi)

• for each e ∈ E(Gi), η(e) is an edge of Gj , a loop if and only if e is a loop, with φi(e) ≤ φj(η(e));
and η(e) 6= η(e′) for all distinct e, e′ ∈ E(Gi)

• for each e ∈ E(Gi) with head u and tail v, η(e) has head in V (η(u)) and tail in V (η(v)), and
η(e) is not an edge of η(u) or η(v) (the last is trivial unless u = v).

Proof. Let Ω′ be the well-quasi-order of all pairs (x, i) where x ∈ Ω and i ∈ {0, 1}, ordered by
(x, i) ≤ (y, j) if and only if x ≤ y in Ω and i = j. For i ≥ 1, let Hi be the hypergraph obtained from
Gi by adding a new edge ei(v) incident only with v, for each v ∈ V (Gi). Let ψi(ei(v)) = (φi(v)i, 1).
For each edge e of Gi let ψi(e) = (φ(e), 0). Take Mi = E(Hi); then the result follows from 1.6 applied
to the Hi’s and ψi’s. This proves 1.7.

2 Patchworks and other terminology

To prove 1.6 we apply a result about “patchworks”, proved in [6]. This needs a great mass of
definition (some five pages of [6]) and it seems pointless to repeat it all here. Thus, we refer the
reader to [6] (pages 326–329, 344, 346, 353) for the meaning of the following terms: subhypergraphs,
separation, order of a separation, tangle, order of a tangle, march, rooted hypergraph, rooted location,
θ-isolate, tie-breaker, edge-based tie-breaker defined by f and ν, patch, free patch, grouping, (partial)
Ω-patchwork, free patchwork, rootless, realizable expansion, simulation, sk(G), controls an H-minor.

Let λ be a tie-breaker in a hypergraph G, let T be a tangle in G, and let (A,B) ∈ T . We say
that (A,B) is λ-linked to T if there is no (A′, B′) ∈ T with smaller λ-order with A ⊆ A′ and B′ ⊆ B.

The definition of “θ-isolate” depends implicitly on the choice of some tie-breaker, and for clarity
we prefer in this paper to make the dependence explicit. Thus we shall normally speak of “θ-isolating
with respect to a tie-breaker λ ”. It is convenient for inductive purposes to fix (for the remainder
of the paper) two disjoint countably infinite sets Γ1,Γ2 of “new” elements. A well-quasi-order Ω is
proper if E(Ω) ∩ (Γ1 ∪ Γ2) is finite and there do not exist γ ∈ E(Ω) ∩ (Γ1 ∪ Γ2) and x ∈ E(Ω) with
x 6= γ such that x ≤ γ or γ ≤ x in Ω.

Let Ω be proper, and let P = (G,µ,∆, φ) be a partial Ω-patchwork. For Y ⊆ Γ1 ∪ Γ2 we denote
{e ∈ E(G) : φ(e) ∈ Y } by φ−1(Y ); and for γ ∈ Γ1 ∪ Γ2 we often write φ−1(γ) for φ−1({γ}). For
X ⊆ E(G), we denote {φ(e) : e ∈ X ∩ dom(φ)} by φ(X).

If P = (G,µ,∆, φ) is a partial Ω-patchwork, a non-null set X of edges of G is a star of G if

• for every e ∈ X, e ∈ dom(µ) and |V (e)| = 2, and

• for some vertex v of G, v is the first term of µ(e) for all e ∈ X.

We call v the centre of the star; it is unique. Let Ω be proper. A partial Ω-patchwork P = (G,µ,∆, φ)
is proper if
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• for each γ ∈ Γ1 ∩ φ(E(G)), there is exactly one e ∈ E(G) with φ(e) = γ, and it satisfies
e ∈ dom(µ) and |V (e)| = 1, and

• for each γ ∈ Γ2 ∩ φ(E(G)), φ−1(γ) is a star of G.

We denote by V (φ−1(Γ1)) the set of vertices of G incident with members of φ−1(Γ1). We denote by
V (φ−1(Γ2)) the set of centres of the stars φ−1(γ)(γ ∈ Γ2 ∩ φ(E(G))).

Let P = (G,µ,∆, φ) be a proper partial Ω-patchwork. If u, v ∈ V (G) are distinct, we say {u, v}
is a muscle of P if

• there exists e ∈ E(G) \ dom(µ) with u, v ∈ V (e), and

• there is no e ∈ dom(µ) with V (e) = {u, v}.

We say that P is skeletal if it is free, rootless, and proper, and every muscle is a subset of V (φ−1(Γ1)).
Our main result is:

2.1 Let Ω be a proper well-quasi-order, and let k ≥ 0 be an integer. Every set of skeletal Ω-
patchworks (G,µ,∆, φ) such that |V (e)| ≤ k for all e ∈ dom(µ), is well-quasi-ordered by simulation.

Proof of 1.6, assuming 2.1. Let Ω, k,Gi, φi,Mi, µi (i = 1, 2, . . .) be as in 1.6. We may assume that
E(Ω) 6= ∅. Let Ω′ be the well-quasi-order with

E(Ω′) = {(x, 0) : x ∈ E(Ω)} ∪ {(x, 1) : x ∈ E(Ω)}

where (x, a) ≤ (y, b) if and only if a = b and x ≤ y in Ω. We may assume that E(Ω′)∩ (Γ1 ∪Γ2) = ∅,
by replacing Ω by an isomorphic quasi-order. For each i ≥ 1, let P ′

i = (G′
i, µ

′
i,∆

′
i, φ

′
i) be an Ω′-

patchwork, defined as follows:

• G′
i is the rooted hypergraph with V (G′

i) = V (Gi), E(G′
i) = E(Gi) ∪ L(Gi), and π(G′

i) = 0,
with the natural incidence relation, where L(Gi) is the set of all unordered pairs {u, v} of
distinct vertices of Gi such that u, v ∈ V (e) for some e ∈ E(Gi) \Mi (we assume for notational
convenience that E(Gi) ∩ L(Gi) = ∅)

• dom(µ′i) = Mi ∪ L(Gi); for each e ∈ Mi, µ
′
i(e) = µi(e), and for each e = {u, v} ∈ L(Gi), µ

′
i(e)

is (u, v) or (v, u)

• P ′
i is free (this determines ∆′

i)

• for each e ∈ E(Gi), φ
′
i(e) = (φi(e), 0); and for e ∈ L(Gi), φ

′
i(e) = (x, 1) where x ∈ E(Ω) is

arbitrary.

Then each P ′
i is skeletal. Moreover, for each i ≥ 1 and each e ∈ dom(µ′i), |V (e)| ≤ max(k, 2),

since |V (e)| ≤ k if e ∈ Mi, and |V (e)| = 2 otherwise. Hence by 2.1 there exist j > i ≥ 1 such that
P ′

i is simulated in P ′
j . Let η′ be a realizable expansion of P ′

i in P ′
j , and let H be a realization of

P ′
j\η

′(E(G′
i)) realizing η′. For v ∈ V (Gi), let η(v) be the component of H with vertex set η′(v), and

for e ∈ E(Gi) let η(e) = η′(e); we claim that η is a collapse of Gj to Gi, satisfying 1.6. Certainly
condition (i) in the definition of “collapse” holds. For (ii), let e1 ∈ E(Gi). Then φ′i(e1) = (φi(e1), 0).
Let η(e1) = e2 and let φ′j(e2) = (a, b); then since

(φi(e1), 0) = φ′i(e) ≤ φ′j(e2) = (a, b)
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it follows that b = 0 and φi(e1) ≤ a. Since b = 0 we deduce that e2 ∈ E(Gj), and so a = φj(e2), and
therefore φi(e1) ≤ φj(e2). Hence statement (ii) of the definition of “collapse” holds, and moreover
φi(e) ≤ φj(η(e)) for all e ∈ E(Gi).

For (iii), let e ∈ E(Gi) be incident with v ∈ V (Gi); then since e ∈ E(G′
i), it follows from the

definition of an expansion that η′(v) contains an end of η′(e) in G′
j , and so (iii) holds. For (iv), let

v ∈ V (Gi) and f ∈ E(η(v)) with ends x, y. Since f ∈ E(sk(G
′−
j )), there is an edge of G′

j incident
with x and y, and so (from the definition of G′

j) there is an edge of Gj incident with x and y. Hence
(iv) holds.

Consequently, η is indeed a collapse of Gj to Gi. We must check the three statements of 1.6; but
we have already seen the first, and the other two are immediate from the definition of “expansion”.
This proves 1.6.

Our method of proof of 2.1 is to apply theorem 11.2 of [6], 2.2 below. The main part of the paper
is devoted to constructing an appropriate set C such that 2.2 is satisfied.

2.2 Let Ω be a well-quasi-order, let C be a well-behaved set of partial Ω-patchworks, and let θ ≥ 1 and
n ≥ 0. Let Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . .) be a countable sequence of free rootless Ω-patchworks.
For each i ≥ 1, let λi be an edge-based tie-breaker in Gi. Suppose that for each i ≥ 1 and each tangle
T in Gi of order ≥ θ which controls a Kn-minor of sk(G−

i ), there is a rooted location L in Gi which
θ-isolates T with respect to λi, such that (Pi, L) has a heart in F . Then there exist j > i ≥ 1 such
that Pi is simulated in Pj .

3 The induction

Let Ω,Ω′ be quasi-orders. We write Ω ⊆ Ω′ if E(Ω) ⊆ E(Ω′) and for x, y ∈ E(Ω), x ≤ y in Ω if
and only if x ≤ y in Ω′. We say Ω is an ideal of Ω′, and write Ω ≤ Ω′, if Ω ⊆ Ω′ and Ω is “closed
downwards”, that is, there do not exist x ∈ E(Ω′) \E(Ω) and y ∈ E(Ω) with x ≤ y in Ω′. If Ω ≤ Ω′

and Ω 6= Ω′ we write Ω < Ω′. We need the following well-known lemma (we omit the proof, which is
elementary):

3.1 There is no countable sequence Ωi (i = 1, 2, . . .) such that Ω1 is a well-quasi-order and Ωi+1 < Ωi

for all i ≥ 1.

If Ω is a quasi-order and X ⊆ E(Ω), the unique minimal ideal of Ω containing X is called the
ideal generated by X. A shadow is a finite sequence

(Ω∞,m,Ωm,Ωm−1, . . . ,Ω1, R2, R1)

where m ≥ 2 is an integer, R2 is a finite subset of Γ2, R1 is a finite subset of Γ1, and Ω∞ and
Ωm, . . . ,Ω1 are proper well-quasi-orders, each with no element in Γ1 ∪ Γ2. If

Σ = (Ω∞,m,Ωm,Ωm−1, . . . ,Ω1, R2, R1)

is a shadow, we define Ω∞(Σ) = Ω∞, m(Σ) = m, etc. We order shadows lexicographically; thus, if

Σ = (Ω∞,m,Ωm,Ωm−1, . . . ,Ω1, R2, R1)

Σ′ = (Ω′
∞,m

′,Ω′
m′ ,Ω′

m′−1, . . . ,Ω
′
1, R

′
2, R

′
1)

are shadows, we write Σ ≤ Σ′ if either:
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• Ω∞ < Ω′
∞, or

• Ω∞ = Ω′
∞ and m < m′, or

• Ω∞ = Ω′
∞,m = m′, and for some k with 1 ≤ k ≤ m, Ωk < Ω′

k and Ωi = Ω′
i for k < i ≤ m, or

• Ω∞ = Ω′
∞,m = m′, Ωi = Ω′

i for 1 ≤ i ≤ m, and R2 ⊂ R′
2, or

• Ω∞ = Ω′
∞,m = m′, Ωi = Ω′

i for 1 ≤ i ≤ m, R2 = R′
2, and R1 ⊆ R′

1.

The relation ≤ is transitive on shadows, as is easily seen. If Σ ≤ Σ′ and Σ 6= Σ′ we write Σ < Σ′. It
follows from 3.1 (again, we omit the elementary proof) that

3.2 There is no countable sequence Σi (i = 1, 2, . . .) of shadows such that Σi+1 < Σi for all i ≥ 1.

Now let Ω be a well-quasi-order, and let S be a set of partial Ω-patchworks. We define ht(S) to
be the minimum integer k ≥ 0 such that |V (e)| ≤ k for all (G,µ,∆, φ) ∈ S and all e ∈ dom(µ). (If
there is no such k then ht(S) is undefined.) If ht(S) exists, S is said to be limited.

Let Ω be a proper well-quasi-order, and let S be a limited set of proper partial Ω-patchworks.
We define the shadow of S to be

(Ω∞,m,Ωm, . . . ,Ω1, R2, R1)

where:

• Ω∞ is the ideal of Ω generated by

{φ(e) : (G,µ,∆, φ) ∈ S, e ∈ dom(φ) \ dom(µ)}

• m = ht(S)

• for 3 ≤ h ≤ m,Ωh is the ideal of Ω generated by

{φ(e) : (G,µ,∆, φ) ∈ S, e ∈ dom(φ) ∩ dom(µ), |V (e)| = h}

• Ω2 is the ideal generated by

{φ(e) : (G,µ,∆, φ) ∈ S, e ∈ dom(φ) ∩ dom(µ) \ φ−1(Γ2), |V (e)| = 2}

• Ω1 is the ideal generated by

{φ(e) : (G,µ,∆, φ) ∈ S, e ∈ dom(φ) ∩ dom(µ) \ φ−1(Γ1), |V (e)| = 1}

• R2 =
⋃

(Γ2 ∩ φ(E(G)) : (G,µ,∆, φ) ∈ S)

• R1 =
⋃

(Γ1 ∩ φ(E(G)) : (G,µ,∆, φ) ∈ S).

A sequence Pi (i = 1, 2, . . .) of proper partial Ω-patchworks is said to be limited if {Pi : i ≥ 1} is
limited, and its shadow is the shadow of {Pi : i ≥ 1}. A sequence Pi (i = 1, 2, . . .) of Ω-patchworks is
bad if there do not exist j > i ≥ 1 such that Pi is simulated in Pj ; and a shadow Σ is evil if there is
some proper well-quasi-order Ω and some bad sequence of skeletal Ω-patchworks with shadow Σ. A
shadow Σ is sharp if Σ is evil and no shadow Σ′ < Σ is evil. Our objective to prove that no shadow is
evil (for this evidently implies 2.1); and to do so it suffices (because of 3.2) to prove that no shadow
is sharp. Proving that no shadow is sharp is the objective of the remainder of the paper.
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4 A sufficient condition for simulation

Let G be a hypergraph, and let T be a tangle in G of order θ. A subset X ⊆ V (G) is free relative to
T if |X| ≤ θ and there is no (A,B) ∈ T of order < |X| with X ⊆ V (A). Theorem 12.2 of [3] asserts
the following.

4.1 Let G be a hypergraph, and let T be a tangle in G of order θ. For X ⊆ V (G), let r(X) be the
least order of a separation (A,B) ∈ T with X ⊆ V (A), if one exists, and otherwise r(X) = θ. The
free sets relative to T are the independent sets of a matroid on V (G) with rank function r.

Now let P be a rootless Ω-patchwork, let T be a tangle in G of order θ, let ξ ∈ E(Ω), and let
h ≥ 1 and w ≥ 0 be integers. We say that T is

• (ξ, h,w)-restricted internally if there existsW ⊆ V (G) with |W | ≤ w such thatW is free relative
to T , and there is no edge e of G such that e ∈ dom(µ), |V (e)| = h, ξ ≤ φ(e), V (e) ∩W = ∅,
and V (e) ∪W is free relative to T

• (ξ, h,w)-restricted externally if there are at most w edges e of G such that e 6∈ dom(µ), ξ ≤ φ(e)
and there exists X ⊆ V (e) with |X| = h free relative to T .

Let P = (G,µ,∆, φ) be a skeletal Ω-patchwork. For γ ∈ Γ1 ∩ φ(E(G)) we denote the unique vertex
of the unique edge e of G with φ(e) = γ by φ−2(γ). For γ ∈ Γ2 ∩ φ(E(G)), we denote the centre of
the star φ−1(γ) by φ−2(γ). A null edge of P is an edge e ∈ E(G) with V (e) = ∅.

4.2 Let Ω be a proper well-quasi-order, and let P0 = (G0, µ0,∆0, φ0) be a skeletal Ω-patchwork with
no null edge. Let n > 3

2 |V (G0)| (|E(G0)| + 2) be an integer. Now let P = (G,µ,∆, φ) be a skeletal
Ω-patchwork with no null edge, and let T be a tangle in G of order > n, controlling a Kn-minor of
sk(G−). Suppose that the following five conditions holds:

• Γ1∩φ0(E(G0)) = Γ1∩φ(E(G)), and all the corresponding singleton edges are pairwise disjoint,
that is,

|V (φ−1
0 (Γ1))| = |V (φ−1(Γ1))| = |Γ1 ∩ φ(E(G))|

• Γ2 ∩ φ0(E(G0)) = Γ2 ∩ φ(E(G)), V (φ−1(Γ1)) ∩ V (φ−1(Γ2)) = ∅ and for all distinct γ, γ′ ∈
Γ2 ∩ φ(E(G)), if φ−2(γ) = φ−2(γ′) then φ−2

0 (γ) = φ−2
0 (γ′)

• V (φ−1(Γ1)) ∪ V (φ−1(Γ2)) is free relative to T , and for each γ ∈ Γ2 ∩ φ(E(G)), there is no
(A,B) ∈ T of order ≤ n with φ−1(γ) ⊆ E(A)

• for each e ∈ E(G0) \ dom(µ0),T is not (φ0(e), n, |E(G0)|)-restricted externally, and

• for each e ∈ dom(µ0),T is not (φ0(e), |V (e)|, n)-restricted internally.

Then P0 is simulated in P.

Proof. For γ ∈ Γ2, let N(γ) denote the set of vertices v of G such that V (e) = {φ−2(γ), v} for some
e ∈ φ−1(γ). Let D0 = V (φ−1(Γ1)) ∪ V (φ−1(Γ2)). By hypothesis, D0 is free relative to T . For each
γ ∈ Γ2 ∩ φ(E(G)) choose D(γ) ⊆ N(γ) such that
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• for each γ, |D(γ)| ≤ |φ−1
0 (γ)|, and

• D0 and the sets D(γ) are all pairwise disjoint and their union, U say, is free relative to T .

(This is possible by taking each D(γ) = ∅.) Choose such D(γ), U with U maximal.

(1) For each γ ∈ Γ2 ∩ φ(E(G)), |D(γ)| = |φ−1
0 (γ)|.

Subproof. The sets φ−1
0 (γ) (γ ∈ Γ2 ∩ φ(E(G))) are pairwise disjoint subsets of E(G0), and so

the sum of their cardinalities is at most |E(G0)|. Consequently

|U | ≤ |D0| + |E(G0)| ≤ |V (G0)| + |E(G0)| < n.

Suppose that γ ∈ Γ2 ∩ φ2(E(G)) and |D(γ)| < |φ−1
0 (γ)|. But by hypothesis, there is no separation

(A,B) ∈ T of order < n with φ−1(γ) ⊆ E(A), and hence N(γ) ∪ {φ−2(γ)} has rank ≥ n in the
matroid defined by the free subsets of V (G) relative to T by 4.1. Hence there exists v ∈ N(γ) \ U
such that U ∪ {v} is free relative to T ; but then adding v to D(γ) contradicts the maximality of U .
This proves (1).

Consequently, there is a subset F ⊆ E(G0) and an injection η : F → E(G), and for each
f ∈ F \ dom(µ0) a subset Xf of V (G), with the following properties:

• φ−1
0 (Γ1) ∪ φ

−1
0 (Γ2) ⊆ F

• φ0(f) ≤ φ(η(f)) for all f ∈ F

• η(f) ∈ dom(µ) and |V (η(f))| = |V (f)| for all f ∈ F ∩ dom(µ0)

• η(f) ∈ E(G) \ dom(µ) and Xf ⊆ V (η(f)) and |Xf | = |V (f)|, for all f ∈ F \ dom(µ0)

• for all distinct f, f ′ ∈ F

– if f, f ′ /∈ dom(µ0) then Xf ∩Xf ′ = ∅;

– if f ∈ dom(µ0) and f ′ /∈ dom(µ0) then V (η(f)) ∩Xf ′ = ∅; and

– if f, f ′ ∈ dom(µ0), then either V (η(f)) ∩ V (η(f ′)) = ∅ or all the following hold:

∗ φ0(f), φ0(f
′) ∈ Γ2, and therefore the sequences µ0(f), µ0(f

′), µ(η(f)), µ(η(f ′)) all
have length 2

∗ µ0(f), µ0(f
′) have the same first term

∗ µ(η(f)), µ(η(f ′)) have the same first term v say, and V (η(f)) ∩ V (η(f ′)) = {v}.

• the union of all the sets V (η(f)) (f ∈ F ∩ dom(µ0)) and Xf (f ∈ F \ dom(µ0)) is free relative
to T .

(To see this, set F = φ−1
0 (Γ1)∪ φ−1

0 (Γ2) and use (1).) Choose such F, η and sets Xf with F maximal,
and let W be the union of all the sets V (η(f)) (f ∈ F ∩ dom(µ0)) and Xf (f ∈ F \ dom(µ0)). Since
|Xf | = |V (f)| ≤ |V (G0)| for f ∈ F \dom(µ0) and |V (η(f))| = |V (f)| ≤ |V (G0)| for f ∈ F ∩dom(µ0),
it follows that

|W | ≤ |E(G0)||V (G0)|,
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and |W | ≤ (|E(G0)| − 1)|V (G0)| if F 6= E(G0).

(2) dom(µ0) ⊆ F .

Subproof. Suppose that dom(µ0) 6⊆ F , and let f ∈ dom(µ0) \ F . By the final condition of the
theorem, T is not (φ0(f), |V (f)|, n)-restricted internally. But |W | ≤ n and W is free relative to T ,
and so there is an edge e of G such that e ∈ dom(µ), |V (e)| = |V (f)|, φ0(f) ≤ φ(e), V (e) ∩W = ∅,
and V (e) ∪W is free relative to T . Suppose that e = η(f ′) for some f ′ ∈ F . Since V (e) ∩W = ∅,
and V (η(f ′)) ⊆W , it follows that V (e) = ∅, contrary to hypothesis. Thus e 6∈ η(F ), and so we may
define η(f) = e and add f to F , contradicting the maximality of F . This proves (2).

(3) F = E(G0).

Subproof. Suppose not; then by (2) there exists f ∈ E(G0) with f 6∈ dom(µ0) ∪ F . By the fourth
condition of the theorem, T is not (φ0(f), n, |E(G0)|)-restricted externally. Hence there are at least
|E(G0)| + 1 edges e of G such that e 6∈ dom(µ), φ0(f) ≤ φ(e), and there exists X ⊆ V (e) with
|X| = n such that X is free relative to T . Choose some one of these edges, e say, such that e 6∈ F
(this is possible since |F | ≤ |E(G0)|), and let X be as above. Now the subsets of V (G) free rela-
tive to T are the independent sets of a matroid, by 4.1; and so since W and X are both free, and
|X| = n ≥ |W | + |V (f)|, there exists Xf ⊆ X \W with |Xf | = |V (f)| such that W ∪ Xf is free
relative to T . But then setting η(f) = e and adding f to F contradicts the maximality of F . This
proves (3).

For each v ∈ V (G0) and each e ∈ E(G0) incident with v, let β(v, e) ∈ V (G), such that

• if e ∈ dom(µ0) and v is the ith vertex of µ0(e) then β(v, e) is the ith vertex of µ(η(e))

• if e /∈ dom(µ0) then β(v, e) ∈ Xe

in such a way that every vertex in W is β(v, e) for some choice of v, e. (Note that if (v1, e1) 6= (v2, e2),
then β(v1, e1) = β(v2, e2) only if v1 = v2 ∈ V (φ−1

0 (Γ2)).)
For each v ∈ V (G0) choose w(v) ∈ V (G) \W , such that all the vertices w(v) (v ∈ V (G0)) are

distinct, and
W ′ = W ∪ {w(v) : v ∈ V (G0)}

is free relative to T . (This is possible by 4.1, since T has order > n ≥ |W | + |V (G0)|.) For each
v ∈ V (G0) let

α(v) = {w(v)} ∪ {β(v, e) : e ∈ E(G0) is incidentwith v}.

Thus, the sets α(v) (v ∈ V (G0)) form a partition of W ′ into non-empty sets. Since W ′ is free relative
to T , and T controls a Kn-minor of sk(G−), and n ≥ 3

2 |W
′|, by theorem 5.4 of [4] it follows that

there are disjoint connected subgraphs η(v) (v ∈ V (G0)) of sk(G−) such that

W ′ ∩ V (η(v)) = α(v) (v ∈ V (G0)).

(4) For each v ∈ V (G0), and every edge xy of η(v), there is an edge e ∈ E(G) \ η(E(G0)) with
x, y ∈ V (e).
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Subproof. Certainly there is an edge e ∈ E(G) with x, y ∈ V (e), since xy ∈ E(sk(G−)). Sup-
pose that x, y ∈ V (φ−1(Γ1)). Since η maps φ−1

0 (Γ1) bijectively onto φ−1(Γ1), there are edges a, b of
φ−1

0 (Γ1) such that V (η(a)) = {x} and V (η(b)) = {y}. Since xy ∈ E(η(v)) it follows that V (η(v))
meets both V (η(a)) and V (η(b)), and so, since V (η(a)), V (η(b)) ⊆ W ′, we deduce that α(v) meets
both V (η(a)) and V (η(b)). Hence, from the definition of α(v), it follows that a and b are both
incident in G0 with v, contradicting that |V (φ−1

0 (Γ1))| = |φ−1
0 (Γ1)|. Consequently, not both x, y

belong to V (φ−1(Γ1)). Since P is skeletal it follows that {x, y} is not a muscle of P , and so e may
be chosen to belong to dom(µ). Suppose that e = η(f) for some f ∈ E(G0). Then f ∈ dom(µ0),
and |V (e)| = |V (f)| = k say. Now x, y ∈ V (η(f)), and V (η(f)) ⊆ W since f ∈ dom(µ0), and since
W ′ ∩ V (η(v)) = α(v), it follows that x, y ∈ α(v). But β(v, f) is the only member of α(v) ∩ V (η(f))
(since f ∈ dom(µ0)) and so x = y, a contradiction. Hence e 6∈ η(E(G0)). This proves (4).

Since P is free, it follows from (4) that η is a realizable expansion of P0 in P , and so P0 is
simulated in P . This proves 4.2.

5 Freeing the roots

4.2 gives us five conditions which together are sufficient to force P0 to be simulated in P . When P0

and P are two terms of a bad sequence, one of the five conditions must therefore fail; and in each
case there turns out to be a suitable well-behaved set satisfying 2.2. We consider the five possibilities
separately. In this section we handle the failures of the first three conditions.

Let Ω be a proper well-quasi-order, and let P = (G,µ,∆, φ) be a rootless proper partial Ω-
patchwork. Let v ∈ V (G), and let γ ∈ Γ1 ∩ E(Ω) \ φ(E(G)). Let P ′ = (G′, µ′,∆′, φ′) be the partial
Ω-patchwork defined as follows:

• V (G′) = V (G), E(G′) = E(G) ∪ {f} where f is a new element, π(G′) = 0, G− is a subhyper-
graph of G

′−, and the only end of f in G′ is v

• dom(µ′) = dom(µ) ∪ {f}; for e ∈ dom(µ), µ′(e) = µ(e), and µ′(f) = (v)

• for e ∈ E(G),∆′(e) = ∆(e), and ∆(f) is free

• dom(φ′) = dom(φ) ∪ {f}; for e ∈ dom(φ), φ′(e) = φ(e), and φ′(f) = γ.

We say that P ′ is obtained from P by tieing v to γ.

5.1 Let Ω be a proper well-quasi-order, and let Pi = (Gi, µi,∆i, φi) (i = 1, 2) be proper Ω-patchworks.
Let

γ ∈ Γ ∩E(Ω) \ (φ1(E(G1)) ∪ φ2(E(G2))).

Let vi ∈ V (Gi) (i = 1, 2), and for i = 1, 2 let P ′
i be obtained from Pi by tieing vi to γ. If η′ is

a realizable expansion of P ′
1 in P ′

2, then η′(f1) = f2, where f1, f2 are the new elements, and the
restriction η of η′ to G1 is a realizable expansion of P1 in P2 satisfying v2 ∈ η(v1).
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The proof of 5.1 is easy and we omit it.
If Ω is a proper well-quasi-order and Γ′ ⊆ Γ1 ∪ Γ2 is finite with Γ′ ∩ E(Ω) = ∅, we denote by

Ω ∪ Γ′ the well-quasi-order Ω′ with E(Ω′) = E(Ω) ∪ Γ′, in which x ≤ y for distinct x, y ∈ E(Ω′) if
and only if x, y ∈ E(Ω) and x ≤ y in Ω. We see that Ω′ = Ω ∪ Γ′ is also proper, and Ω ≤ Ω′.

Now let Ω,Ω′ be proper well-quasi-orders with Ω ≤ Ω′. Let P ′ = (G,µ,∆, φ′) be an Ω′-completion
of a proper partial Ω-patchwork P = (G,µ,∆, φ). We say P ′ is a strict Ω′-completion of P if it is
proper and φ′(e) 6∈ E(Ω) for all E(G′) \ dom(φ). The next lemma says roughly that to check if a set
is well-behaved, it is enough to examine strict completions.

5.2 Let Ω be a proper well-quasi-order, and let C be a set of proper partial Ω-patchworks. Suppose
that for every proper well-quasi-order Ω′ with Ω ≤ Ω′ and E(Ω′)∩ (Γ1 ∪ Γ2) ⊆ E(Ω), there is no bad
sequence of strict Ω′-completions of members of C. Then C is well-behaved.

Proof. We must show that if Ω′ is a well-quasi-order with Ω ⊆ Ω′, and P ′
i = (Gi, µi,∆i, φ

′
i) is an

Ω′-completion of Pi = (Gi, µi,∆i, φi) for i = 1, 2, . . . , then P ′
i (i = 1, 2, . . .) is not a bad sequence.

For each x ∈ E(Ω′) let x∗ be a new element (not in Γ1 ∪ Γ2), and let Ω′′ be the well-quasi-order
with E(Ω′′) = E(Ω) ∪ {x∗ : x ∈ E(Ω′)} in which

• for x, y ∈ E(Ω), x ≤ y in Ω′′ if and only x ≤ y in Ω

• for x, y ∈ E(Ω′), x∗ ≤ y∗ in Ω′′ if and only if x ≤ y in Ω′

• for x ∈ E(Ω) and y ∈ E(Ω′), x 6≤ y∗ in Ω′′ and y∗ 6≤ x in Ω′′.

Thus Ω′′ is proper, Ω ≤ Ω′′, and (Γ1 ∪ Γ2) ∩ E(Ω′′) ⊆ E(Ω). For each i ≥ 1, let φ′′i (e) = φi(e) for all
e ∈ dom(φi), and φ′′i (e) = (φ′i(e))

∗ for all e ∈ E(Gi) \ dom(φi). Then each P ′′
i = (Gi, µi,∆i, φ

′′
i ) is a

strict Ω′′-completion of Pi, and so, by hypothesis, there exist j > i ≥ 1 such that P ′′
i is simulated in

P ′′
j . But then it follows easily that P ′

i is simulated in P ′
j . This proves 5.2.

5.3 Let Ω be a proper well-quasi-order, and let Σ be a sharp shadow. Let Pi = (Gi, µi,∆i, φi)
(i = 1, 2, . . .) be a bad sequence of skeletal Ω-patchworks, with shadow Σ′ ≤ Σ. Then Σ′ = Σ, and
there exist Γ∗

1 ⊆ Γ1 and Γ∗
2 ⊆ Γ2 such that for all except finitely many values of i,

Γ1 ∩ φi(E(Gi)) = Γ∗
1

Γ2 ∩ φi(E(Gi)) = Γ∗
2

|V (φ−1
i (Γ1))| = |φ−1

i (Γ1)|,

and
V (φ−1

i (Γ1)) ∩ V (φ−1
i (Γ2)) = ∅.

Proof. Certainly Σ′ = Σ since Σ is sharp. For each i ≥ 1, let Γj(i) = Γj∩ φi(E(Gi)) (j = 1, 2). Let
R2, R1 be the last two terms of Σ; then Rj =

⋃
(Γj(i) : i ≥ 1) (j = 1, 2).

(1) Γ1(i) = R1 and Γ2(i) = R2 for all i ≥ 1 except finitely many.

Subproof. Suppose not; then there are Γ′
1 ⊆ R1 and Γ′

2 ⊆ R2 with either Γ′
1 6= R1 or Γ′

2 6= R2,
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such that for infinitely many i ≥ 1, Γ1(i) = Γ′
1 and Γ2(i) = Γ′

2. But then the corresponding subse-
quence of Pi(i = 1, 2, . . .) is bad and has shadow < Σ, a contradiction. This proves (1).

(2) |V (φ−1
i (Γ1))| = |φ−1

i (Γ1)| and V (φ−1
i (Γ1)) ∩ V (φ−1

i (Γ2)) = ∅ for all i ≥ 1 except finitely many.

Subproof. Suppose not; then there exist distinct γ1 ∈ Γ1 and γ2 ∈ Γ1∪Γ2 such that φ−2
i (γ1) = φ−2

i (γ2)
for infinitely many values of i ≥ 1. By restricting to a subsequence, we may therefore assume that
φ−2

i (γ1) = φ−2
i (γ2) for all i ≥ 1. For all i ≥ 1, let fi ∈ E(Gi) with φi(fi) = γ1, and let P ′

i be obtained
from Pi by deleting fi. Then the sequence P ′

i (i = 1, 2, . . .) has shadow < Σ, and each P ′
i is skeletal,

so there exist j > i ≥ 1 such that P ′
i is simulated in P ′

j . Let η be a realizable expansion of P ′
i in

P ′
j , and let vi, vj be the (unique) vertices of fi, fj in Pi, Pj respectively. Now let gi ∈ E(Gi) with
φi(gi) = γ2, and let gj = η(gi). Then gj ∈ E(Gj) with φj(gj) = γ2. Now vi is the first term of µi(gi)
(µi(gi) has length one or two, depending whether γ2 ∈ Γ1 or γ2 ∈ Γ2), and vj is the first term of
µj(gj), and since gj = η(gi) it follows that vj ∈ η(vi). Consequently by defining η(fi) = fj we obtain
a realizable expansion of Pi in Pj , a contradiction. This proves (2).

From (1) and (2), this proves 5.3.

5.4 Let Ω be a proper well-quasi-order, and let Σ be a sharp shadow. Let C be a set of rootless
proper partial Ω-patchworks with shadow Σ′ ≤ Σ such that for each P = (G,µ,∆, φ) ∈ C there exists
g ∈ E(G) satisfying:

• dom(φ) = E(G) \ {g}, and g ∈ dom(µ), and |V (g)| < |R1(Σ)|

• ∆(e) is free for every edge e ∈ E(G) \ {g}

• φ−1(Γ1) = ∅

• V (g) includes every muscle of P .

Then C is well-behaved.

Proof. Since φ−1(Γ1) = ∅ for each (G,µ,∆, φ) ∈ C, we may assume that E(Ω) ∩ Γ1 = ∅. Let Ω′ be
a well-quasi-order with Ω ≤ Ω′ and Γ1 ∩E(Ω′) = ∅, and for i ≥ 1 let P ′

i = (Gi, µi,∆i, φ
′
i) be a strict

Ω′-completion of Pi = (Gi, µi,∆i, φi) ∈ C. By 5.2, it suffices to show that P ′
i (i = 1, 2, . . .) is not a

bad sequence.
For each i ≥ 1, let E(Gi) \ dom(φi) = {g}. Now |V (gi)| < |R1(Σ)|, and hence there are only

finitely many possibilities for |V (gi)|; and by restricting to a subsequence, we may therefore assume
that |V (gi)| = s for all i ≥ 1.

Since there are only finitely many possibilities for ∆i(gi), we may assume they are all “equal”;
more precisely, that for all i 6= j, the bijection from V (gi) to V (gj) that maps µi(gi) onto µj(gj) maps
∆i(gi) onto ∆j(gj). We may also assume that φ′1(g1) ≤ φ′2(g2) ≤ . . ., by restricting to a subsequence.

Let γ1, . . . , γs ∈ R1(Σ) be distinct, and let Ω′′ = Ω′ ∪ {γ1, . . . , γs}. For i ≥ 1, let P ′′
i =

(G′′
i , µ

′′
i ,∆

′′
i , φ

′′
i ) be the Ω′′-patchwork obtained from P ′

i by tieing the jth term of µ(gi) to γj for
1 ≤ j ≤ s, and then deleting gi. Then P ′′

i is a skeletal Ω′′-patchwork, and P ′′
i (i = 1, 2, . . .) has

shadow Σ′′ ⊆ Σ′ say; and since |R1(Σ
′′)| = s < |R1(Σ)| and R1(Σ

′′) ⊆ R1(Σ), it follows that Σ′′ 6= Σ.
Hence Σ′′ is not evil, and so P ′′

i (i = 1, 2, . . .) is not bad, and consequently (by 5.1) P ′
i (i = 1, 2, . . .)

is not bad. This proves 5.4.
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5.5 Let Ω be a proper well-quasi-order, and let S be a set of skeletal Ω-patchworks with shadow
Σ. Let Σ be sharp. There is a well-behaved set C of proper partial Ω-patchworks, with the following
property. Let P = (G,µ,∆, φ) ∈ S with |V (φ−1(Γ1))| = |R1(Σ)|, let T be a tangle in G of order
> |R1(Σ)|, let λ be a tie-breaker in G, and let there be a separation (A,B) ∈ T of order < |R1(Σ)|
with φ−1(Γ1) ⊆ E(A). Then there is a rooted location L in G which |R1(Σ)|-isolates T with respect
to λ, such that (P,L) has a heart in C.

Proof. Let C be the set of all hearts of (P,L), for all P = (G,µ,∆, φ) ∈ S with |V (φ−1(Γ1))| =
|φ−1(Γ1)| = |R1(Σ)| and rooted locations L in G with |L| = 1, L = {A} say, where φ−1(Γ1) ⊆ E(A)
and |π̄(A)| < |R1(Σ)|. By 5.4, C is well-behaved. Now let P = (G,µ,∆, φ) ∈ S, T , λ, (A,B) be as
in the theorem; and choose (A,B) with A minimal. Let A′ be a rooted subhypergraph of G with
A

′− = A and π̄(A′) = V (A ∩ B), and let L = {A′}. Then since (A,B) is λ-linked to T , it follows
that L |R1(Σ)|-isolates T with respect to λ (by theorem 7.1 of [5]), and (P,L) has heart in C. This
proves 5.5.

5.6 Let Ω be a proper well-quasi-order, and let Σ be a sharp shadow. Let n ≥ 1 be an integer, and
let γ ∈ R2(Σ). Let C be a set of rootless proper partial Ω-patchworks with shadow Σ′ ≤ Σ such that
for each P = (G,µ,∆, φ) ∈ C there exists g ∈ E(G) satisfying:

• dom(φ) = E(G) \ {g}, and g ∈ dom(µ), and |V (g)| ≤ n

• ∆(e) is free for every edge e ∈ E(G) \ {g}

• γ 6∈ φ(E(G) \ {g})

• V (g) ∪ V (φ−1(Γ1)) includes every muscle of P .

Then C is well-behaved.

Proof. Let Ω′ be a proper well-quasi-order with Ω ≤ Ω′ and E(Ω′)∩ (Γ1 ∪Γ2) ⊆ E(Ω). For i ≥ 1 let
P ′

i = (Gi, µi,∆i, φ
′
i) be a strict Ω′-completion of Pi = (Gi, µi,∆i, φi) ∈ C. By 5.2, it suffices to show

that P ′
i (i = 1, 2, . . .) is not a bad sequence.

For each i ≥ 1 let E(Gi) \ dom(φi) = {gi}. As in the proof of 5.4, we may assume that
|V (gi)| = s ≤ n for all i ≥ 1; and that for all j > i ≥ 1 the bijection taking µi(gi) to µj(gj)
maps ∆i(gi) to ∆j(gj); and that φ′1(g1) ≤ φ′2(g2) ≤ . . ..

Choose distinct γ1, . . . , γs ∈ Γ1\R1(Σ). Let Ω′′ and P ′′
i (i = 1, 2, . . .) be as in 5.4. Then each P ′′

i is
skeletal, and the sequence P ′′

i (i = 1, 2, . . .) has shadow Σ′′ ≤ Σ′ say, with γ 6∈ R2(Σ
′′). Consequently

Σ′′ 6= Σ, and so Σ′′ is not evil. The conclusion follows as in 5.4. This proves 5.6.

5.7 Let Ω be a proper well-quasi-order, and let S be a set of skeletal Ω-patchworks with shadow Σ.
Let Σ be sharp, let n ≥ 1 be an integer, and let γ ∈ R2(Σ). There is a well-behaved set C of proper
partial Ω-patchworks with the following property. Let P = (G,µ,∆, φ) ∈ S, let T be a tangle in G
of order > n, let λ be a tie-breaker in G, and let there be a separation (A,B) ∈ T of order ≤ n with
φ−1(γ) ⊆ E(A). Then there is a rooted location L in G which (n + 1)-isolates T with respect to λ,
such that (P,L) has a heart in C.

The proof is like that of 5.5, using 5.6 in place of 5.4, and we omit it.
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6 External restriction

In this section we handle the failure of the fourth condition of 4.2. If Ω is a proper well-quasi-order,
an Ω-patchwork P = (G,µ,∆, φ) is near-skeletal if there exists g ∈ dom(µ) such that

• P is free, rootless and proper, and

• φ−1(Γ1) ∪ V (g) includes every muscle of P .

6.1 Let Σ be a sharp shadow. Let Ω be a proper well-quasi-order, and let Pi = (Gi, µi,∆i, φi)
(i = 1, 2, . . .) be a sequence of skeletal or near-skeletal Ω-patchworks with shadow Σ′, where Ω∞(Σ′) ≤
Ω∞(Σ). Let t ≥ 0 be an integer, and let ξ ∈ E(Ω∞(Σ)). Suppose that for each i ≥ 1 there are at
most t edges e ∈ E(Gi) \ dom(µi) such that ξ ≤ φi(e). Then there exist j > i ≥ 1 such that Pi is
simulated in Pj .

Proof. We may assume (by replacing P1, P2, . . . by an infinite subsequence and reducing t) that
for each i ≥ 1 there are exactly t edges e ∈ E(Gi) \ dom(µi) with ξ ≤ φi(e). Let these edges be
ei1, . . . , eit. Again, since Ω∞(Σ) is a well-quasi-order we may assume that for 1 ≤ h ≤ t,

φ1(e1h) ≤ φ2(e2h) ≤ . . .

by restricting to an infinite subsequence. Also, we may assume that either each Pi is skeletal, or each
is near-skeletal. First, we assume they are all skeletal.

We may assume that E(Ω) contains no t-tuple (by replacing Ω by an isomorphic well-quasi-order.)
Let Ω′ be the well-quasi-order with

E(Ω′) = E(Ω) ∪ {(x1, . . . , xt) : xi = 0or 1 for 1 ≤ i ≤ t}

where for distinct a, b ∈ E(Ω′), a ≤ b in Ω′ if and only if a, b ∈ E(Ω) and a ≤ b in Ω. For each i ≥ 1
let P ′

i = (G′
i, µ

′
i,∆

′
i, φ

′
i) be an Ω′-patchwork defined as follows. Roughly, G′

i is obtained from Gi by
removing ei1, . . . , eit and adding |V (Gi)| new edges each with only one end, one at each vertex. More
precisely, let V (G′

i) = V (Gi), and

E(G′
i) = (E(Gi) \ {ei1, . . . , eit}) ∪ {ei(v) : v ∈ V (Gi)}

where the elements ei(v) are new and all distinct; and for v ∈ V (G′
i) and e ∈ E(G′

i), e is incident
with v in G′

i if and only if either e = ei(v), or e ∈ E(Gi) and e is incident with v in Gi. Let π(G′
i) = 0.

Let
dom(µ′i) = dom(µi) ∪ {ei(v) : v ∈ V (Gi)}

for e ∈ dom(µi) let µ′i(e) = µi(e), and let µ′i(ei(v)) = (v). Let P ′
i be free (this determines ∆′

i). For
e ∈ E(G′

i), let φ′i(e) = φi(e) if e ∈ E(Gi). For v ∈ V (Gi) let φ′i(ei(v)) = (x1, . . . , xt) where for
1 ≤ h ≤ t, xh = 1 if v ∈ V (eih) and otherwise xh = 0. Thus P ′

i is a skeletal Ω′-patchwork.
Let the sequence P ′

i (i = 1, 2, . . .) have shadow Σ′′. Then Ω∞(Σ′′) ≤ Ω∞(Σ), and since ξ 6∈
E(Ω∞(Σ′′)) it follows that Ω∞(Σ′′) < Ω∞(Σ). Hence Σ′′ < Σ. Since Σ is sharp, it follows that Σ′′ is
not evil, and so P ′

i (i = 1, 2, . . .) is not a bad sequence. Hence there exist j > i ≥ 1 such that P ′
i is

simulated in P ′
j .
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Let η′ be a realizable expansion of P ′
i in P ′

j . Define η by

η(v) = η′(v) (v ∈ V (Gi))

η(e) = η′(e) (e ∈ E(Gi) \ {ei1, . . . , eit})

η(eih) = ejh (1 ≤ h ≤ t) .

We claim that η is an expansion of Pi in Pj . This is mostly clear; let us check that for e ∈
E(Gi) \ dom(µi), if v is an end of e in Gi then η(v) contains an end of η(e) in Gj . If e 6= ei1, . . . , eit
this is true since η′ is an expansion. If e = eih say, then since v is incident with eih in Gi it follows that
φ′i(ei(v)) = (x1, . . . , xt) say where xh = 1. Let f = η′(ei(v)). Since (x1, . . . , xt) ≤ φj(f) it follows
that f = ej(w) for some w ∈ V (Gj), and φj(ej(w)) = (x1, . . . , xt) since φi(ei(v)) ≤ φj(ej(w)); and
so w is incident with ejh. Now since ei(v) is incident with v in Gi, it follows η′(ei(v)) is incident with
some vertex in η′(v), that is, w ∈ η′(v). This proves that ejh is incident with a vertex in η′(v), and
so η(v) contains an end of η(eih), as required.

Hence η is an expansion of Pi in Pj . Let H be a realization of P ′
j\η

′(E(Gi)) that realizes η′.
Then H is also a realization of Pj\η(E(Gi)), realizing η. Hence Pi is simulated in Pj .

Thus, if each Pi is skeletal then the result holds. Now we suppose that each Pi is near-skeletal, and
gi ∈ dom(µi) is such that every muscle {x, y} is a subset of V (φ−1

i (Γ)) ∪ V (gi). Since gi ∈ dom(µi)
and the sequence has a shadow Σ′, it follows that the sequence is limited. By restricting to an infinite
subsequence we may therefore assume that |V (gi)| = s for all i ≥ 1. Let γ1, . . . , γs ∈ Γ1 \ φ(E(G)),
and let Ω′ = Ω ∪ {γ1, . . . , γs}. For each i ≥ 1, let P ′

i = (G′
i, µ

′
i,∆

′
i, φ

′
i) be the Ω′-patchwork obtained

from Pi by tieing vh to γ for 1 ≤ h ≤ s, where µi(gi) = (v1, . . . vs).
Then P ′

i is a skeletal Ω′-patchwork, and the sequence P ′
i (i = 1, 2, . . .) has shadow Σ′′ say, where

Ω∞(Σ′′) ≤ Ω∞(Σ′) ≤ Ω∞(Σ). Hence, by the first assertion of the theorem, there exist j > i ≥ 1
such that P ′

i is simulated in P ′
j . But then by 5.1, Pi is simulated in Pj . This proves 6.1.

6.2 Let Ω be a proper well-quasi-order, and let S be a set of skeletal Ω-patchworks with shadow Σ,
where Σ is sharp. Let ξ ∈ E(Ω∞(Σ)), and let h ≥ 1 and t ≥ 0 be integers. Then there is a well-
behaved set C of proper partial Ω-patchworks with the following property. Let P = (G,µ,∆, φ) ∈ S,
let T be a tangle in G of order ≥ h that is (ξ, h, t)-restricted externally, and let λ be an edge-based
tie-breaker in G. There is a rooted location L in G which h-isolates T with respect to λ, such that
(P,L) has a heart in C.

Proof. Let C be the set of all proper partial Ω-patchworks P ′ = (G′, µ′,∆′, φ′) with the following
properties:

(i) for some P = (G,µ,∆, φ) ∈ S and some rooted location L in G,P ′ is a heart of (P,L)

(ii) P ′ is skeletal or near-skeletal

(iii) |µ̄′(e)| < h for all e ∈ E(G′) \ dom(φ′) (since P ′ is a heart, every such edge belongs to
dom(µ′))

(iv) there are at most t edges e ∈ E(G′) \ dom(µ′) such that ξ ≤ φ′(e).
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Since E(G′) \ dom(µ′) ⊆ dom(φ′), it follows that for every proper well-quasi-order Ω′′ with Ω ≤ Ω′′

and every set S ′′ of strict Ω′′-completions of members of C, the shadow Σ′′ of S ′′ exists and satisfies
Ω∞(Σ′′) ≤ Ω∞(Σ). Hence, from 6.1, there is no bad sequence of members of S ′′. Thus C is well-
behaved, by 5.2.

Now let P = (G,µ,∆, φ) ∈ S,T , λ be as in the theorem. We must find L as in the theorem. Let

F = {f ∈ E(G) \ dom(µ) : ξ ≤ φ(f)}.

Let F0 be the set of f ∈ F such that there exists X ⊆ V (f) with |X| = h, free relative to T . Since
T is (ξ, h, t)-restricted externally, |F0| ≤ t.

For each f ∈ F \ F0, there exists (A(f), B(f)) ∈ T of order < h with f ∈ E(A(f)). Choose
(A(f), B(f)) with minimum λ-order. Evidently it has order ≤ |V (f)|.

(1) For all distinct f1, f2 ∈ F \ F0, either

• A(f1) ⊆ A(f2) and B(f2) ⊆ B(f1), or

• A(f2) ⊆ A(f1) and B(f1) ⊆ B(f2), or

• A(f1) ⊆ B(f2) and A(f2) ⊆ B(f1).

Subproof. (A(f1) ∪ A(f2), B(f1) ∩ B(f2)) has λ-order at least that (A(f2), B(f2)), since otherwise
it belongs to T and f2 ∈ E(A(f1) ∪ A(f2)), contrary to the choice of (A(f2), B(f2)). Since λ is a
tie-breaker, it follows that (A(f1)∩A(f2), B(f1)∪B(f2)) has λ-order at most that of (A(f1), B(f1)).
Consequently, if f1 ∈ E(A(f2)) then A(f1) ∩ A(f2) = A(f1) and B(f1) ∪ B(f2) = B(f1), that is,
A(f1) ⊆ A(f2) and B(f2) ⊆ B(f1), as required. We may therefore assume that f1 6∈ E(A(f2)), and
similarly f2 6∈ E(A(f1)).

Now (A(f1)∩B(f2), B(f1)∪A(f2)) has λ-order at least that of (A(f1), B(f1)) since f1 ∈ E(A(f1)∩
B(f2)), and similarly (A(f1) ∪B(f2), B(f1) ∩A(f2)) has λ-order at least that of (A(f2), B(f2)). We
therefore have equality throughout; and so A(f1) ∩B(f2) = A(f1) and B(f1) ∪A(f2) = B(f1), that
is, A(f1) ⊆ B(f2) and B(f1) ⊆ A(f2), as required. This proves (1).

Choose a maximal subset F1 ⊆ F \ F0 such that

• the separations (A(f), B(f)) (f ∈ F1) are all distinct

• for each f ∈ F there is no f ′ ∈ F with (A(f ′), B(f ′)) 6= (A(f), B(f)) and A(f) ⊆ A(f ′) and
B(f ′) ⊆ B(f).

It follows from (1) and the maximality of F1 that

(2) For all distinct f, f ′ ∈ F1, A(f) ⊆ B(f ′); and for every f ∈ F \ F0 there exists f1 ∈ F1 with
A(f) ⊆ A(f1) and B(f1) ⊆ B(f).

For each f ∈ F1 let C(f) be a rooted hypergraph with C(f)− = A(f) and π̄(C(f)) = V (A(f)∩B(f)).
By (2), L = {C(f) : f ∈ F1} is a rooted location.

(3) L h-isolates T with respect to λ.
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Subproof. Certainly L− ⊆ T and has order < h. Moreover, each member of L− is λ-linked to
T , from the choice of (A(f), B(f)), so by theorem 7.1 of [5], L h-isolates T with respect to λ. This
proves (3).

Let P ′ = (G′, µ′,∆′, φ′) be a heart of (P,L). We must show that P ′ ∈ C; and to do so, we check
conditions (i)-(iv) in the definition of C. Now (i) is obvious, and (iv) holds since |F0| ≤ t and every
f ∈ F \F0 belongs to E(C(f1)) for some f1 ∈ F1, by (2). Also (iii) holds, since if e ∈ E(G′)\dom(φ′)
then µ′(e) = π(C(f)) for some f ∈ F1, and π(C(f)) has length |V (A(f) ∩B(f))| < h. It remains to
check (ii). Now P ′ is proper, since P is, and rootless; we must check that it is free, and verify the
condition about muscles.

(4) P ′ is free.

Subproof. Let f ∈ F1; we must show that every grouping with vertex set π̄(C(f)) is feasible in
P |C(f). Let k = |π̄(C(f))|. From the choice of (A(f), B(f)), there are k disjoint paths of sk(C(f−))
from π̄(C(f)) to V (f). But ∆(f) is free, and so the claim follows. This proves (4).

(5) P ′ is skeletal or near-skeletal.

Subproof. We recall that λ is edge-based; let λ be defined by g, ν say. If g ∈ E(A(f)) for some
(necessarily unique) edge f ∈ F1, let f∗ = f , and otherwise let f∗ be undefined. We shall show that
for every muscle {u, v} of P ′, if f∗ is defined then {u, v} ⊆ φ

′−1(Γ1) ∪ π̄(C(f∗)) (and hence P ′ is
near-skeletal), and if f∗ is not defined then {u, v} ⊆ φ

′−1(Γ1) (and hence P ′ is skeletal). Thus, let
{u, v} be a muscle of P ′. Suppose first that it is a muscle of P . Then {u, v} ⊆ V (φ−1(Γ1)) since P is
skeletal. Let e1, e2 ∈ φ−1(Γ1) such that e1 is incident with u and e2 with v in G. If e1 ∈ E(G′) then
u ∈ V (φ−1(Γ1)). If not, then e1 ∈ E(A(f)) for some f ∈ F1. Since f 6= e1 (because f 6∈ dom(µ))
it follows that f ∈ E(A′) where A′ = A(f)\e and B′ = B(f) + e (with the natural notation). Also,
(A′, B′) ∈ T , and so from the definition of (A(f), B(f)) it follows that (A′, B′) has λ-order at least
that of (A(f), B(f)). But their orders are the same, and so g ∈ E(A(f)); and hence f∗ is defined
and f = f∗, and u ∈ π̄(C(f∗)). Thus if {u, v} is a muscle of P then either {u, v} ⊆ φ

′−1(Γ1), or f∗

is defined and {u, v} ⊆ φ−1(Γ1)∪ π̄(C(f∗)), as required.
Now suppose that {u, v} is not a muscle of P . Then there exists e ∈ dom(µ) with V (e) = {u, v}.

Since {u, v} is a muscle of P ′, e 6∈ E(G′), and so e ∈ E(A(f)) for some f ∈ F1. Now f 6= e since
e ∈ dom(µ), and so as before f∗ is defined and f∗ = f ; and hence {u, v} ⊆ π̄(C(f∗)). This proves
(5).

Consequently, P ′ ∈ C. This proves 6.2.

7 A hypergraph lemma

Finally we need an analogue of 6.2 for internal restriction. This is more difficult, however, and needs
some preparation.

Let T be a tangle in a hypergraph G. Let (A,B) ∈ T , and let v ∈ V (A ∩ B). A separation
(A′, B′) ∈ T is called the T -successor of (A,B) via v if
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(i) v 6∈ V (B′), and A ⊆ A′ and B′ ⊆ B

(ii) subject to (i), (A′, B′) has minimum order

(iii) subject to (i) and (ii), B′ is minimal.

7.1 With T , A,B, v as above, there is at most one T -successor of (A,B) via v.

Proof. Suppose that (A′, B′) and (A′′, B′′) are both T -successors of (A,B) via v. By (ii) they both
have the same order, k say. Let (C,D) = (A′ ∩ A′′, B′ ∪ B′′); then (C,D) satisfies condition (i)
above, and (C,D) ∈ T , and so it has order ≥ k. Hence (A′ ∪A′′, B′ ∩B′′) has order ≤ k. From (iii),
B′ ⊆ B′ ∩ B′′ and B′′ ⊆ B′ ∩ B′′, that is, B′ = B′′. Consequently (A′ ∩ A′′, B′) satisfies (i), and so
has order ≥ k, and so A′ = A′′. Thus (A′, B′) = (A′′, B′′). This proves 7.1.

7.2 Let T be a tangle in a hypergraph G, and let W ⊆ V (G) be free relative to T , with |W | ≤ w.
Let h ≥ 1 be an integer, and let T have order ≥ (w + h)h+1 + h. Then there exists W ′ ⊆ V (G) with
W ⊆W ′ and |W ′| ≤ (w+h)h+1 such that for every (C,D) ∈ T of order < |W |+h with W ⊆ V (C),
there exists (A′, B′) ∈ T with W ′ ⊆ V (A′ ∩B′), |V (A′ ∩B′) \W ′| < h, C ⊆ A′ and E(B′) ⊆ E(D).

Proof. Let (A0, B0) be the separation of G with B0 = G and V (A0) = W and E(A0) = ∅. Then
(A0, B0) ∈ T . Let A0 = {(A0, B0)}. For 1 ≤ i ≤ h+ 1, let Ai be the set of all T -successors (A′, B′)
of members (A,B) of Ai−1 via some vertex in V (A∩B), such that (A′, B′) has order < |W |+h. By
7.1, |Ai| ≤ (|W | + h)|Ai−1|. Let

W ′ =
⋃

0≤i≤h

⋃
(V (A ∩B) : (A,B) ∈ Ai) .

Thus W ⊆W ′ and

|W ′| ≤ w + w(w + h) + w(w + h)2 + . . .+ w(w + h)h ≤ (w + h)h+1.

We claim that W ′ satisfies the theorem. For let (C,D) ∈ T of order < |W |+h with W ⊆ V (C). We
may assume that

(1) There is no (C ′,D′) ∈ T of order < |W | + h with (C ′,D′) 6= (C,D), C ⊆ C ′ and D′ ⊆ D.

Subproof. If there is such a (C ′,D′), then we can replace (C,D) by (C ′,D′), and continue until
(1) holds. This proves (1).

(2) For all i with 0 ≤ i ≤ h+ 1, every member of Ai has order ≥ |W | + i− 1.

Subproof. Every member of A0 has order |W |, and since W is free relative to T , all T -successors of
(A0, B0) have order ≥ |W |. Thus (2) holds for i = 0, 1. It follows in general by induction, since if
(A,B) ∈ Ai−1 where i ≥ 2 then all its T -successors have larger order. This proves (2).

Now A0 ⊆ C and D ⊆ B0; choose i with 0 ≤ i ≤ h maximum such that A ⊆ C and D ⊆ B for
some (A,B) ∈ Ai. We claim that
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(3) V (A ∩B) ⊆ V (C ∩D).

Subproof. Suppose that v ∈ V (A ∩ B) \ V (C ∩ D). Then v 6∈ V (D), since v ∈ V (A) ⊆ V (C);
and so there is a T -successor (A′, B′) of (A,B) via v, with order ≤ |V (C ∩D)| < |W | + h. Hence
Ai+1 has a member of order < |W | + h; and so by (2), i ≤ h − 1. From the maximality of i, it
is not the case that A′ ⊆ C and D ⊆ B′. Now (A′ ∩ C,D ∪ B′) ∈ T and v 6∈ V (D ∪ B′), and so
(A′ ∩ C,D ∪ B′) has order at least that of (A′, B′), since (A′, B′) is a T -successor of (A,B) via v.
Hence (A′ ∪ C,D ∩B′) has order at most that of (C,D), and so (A′ ∪ C,D ∩ B′) ∈ T . From (1) it
follows that C = A′ ∪C and D = D ∩B′, that is, A′ ⊆ C and D ⊆ B′, a contradiction. This proves
(3).

Now since W is free relative to T , it follows that (A,B) has order ≥ |W |; and so |V (C ∩
D) \ W ′| < h, by (3), since |V (C ∩ D)| < |W | + h and V (A ∩ B) ⊆ W ′. Let A′, B′ ⊆ G with
E(A′) = E(C), E(B′) = E(D), V (A′) = V (C) ∪W ′, and V (B′) = V (D) ∪W ′; then (A′, B′) ∈ T ,
since (A′, B′) has order < |W ′| + h and T has order ≥ (w + h)h+1 + h. Then (A′, B′) satisfies the
theorem. This proves 7.2.

Let G be a hypergraph. A location in G is a set {(A1, B1), . . . , (Ak, Bk)} of separations of G such
that Ai ⊆ Bj for all distinct i, j with 1 ≤ i, j ≤ k. Let G be a hypergraph, let T be a tangle in G,
and let J ⊆ E(G). A (J, h)-separator (X,L) consists of a subset X ⊆ V (G) and a location L ⊆ T
such that

• X ⊆ V (A ∩B) for all (A,B) ∈ L

• |V (A ∩B) \X| < h for all (A,B) ∈ L

• for each e ∈ J there exists (A,B) ∈ L with e ∈ E(A).

7.3 Let G,T , J be as above, and let (X0,L0) be a (J, h)-separator. Let λ be an edge-based tie-breaker
in G, defined by f, ν. There is a (J, h)-separator (X,L) such that

(i) |X| ≤ |X0|

(ii) L is λ-linked to T

(iii) for each (A,B) ∈ L there exists e ∈ J ∩E(A) such that there are |V (A∩B) \X| disjoint paths
of sk(A)\X between V (A ∩B) \X and V (e), and

(iv) there is at most one (A,B) ∈ T such that V (e) ⊆ V (A ∩B) for some e ∈ E(A) \ J .

Proof. We recall that λ is an edge-based tie-breaker, defined by f, ν. For a separation (A,B), its
λ-order is a triple, (λ1(A,B), λ2(A,B), λ3(A,B)) say. Thus, λ1(A,B) = |V (A∩B)|. Let λ0(A,B) =
(|E(G)| + 1)λ1(A,B). For a set L of separations, λi(L) denotes Σ(λi(A,B) : (A,B) ∈ L).

If (X1,L1), (X2,L2) are (J, h)-separators, we say the first is better than the second if |X1| ≤ |X2|
and either

• λ0(L1) < λ0(L2), or
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• λ0(L1) = λ0(L2) and λ2(L1) < λ2(L2).

The relation “better than” is transitive and irreflexive, and so since there is a (J, h)-separator
(X0,L0), there is a (J, h)-separator (X,L) with |X| ≤ |X0| such that no (J, h)-separator is bet-
ter. We shall show that (X,L) satisfies statements (i), (ii), (iii) of the theorem. Certainly it satisfies
statement (i).

To check (ii), let (A0, B0) ∈ L, and suppose that there exists (A′
0, B

′
0) ∈ T with A0 ⊆ A′

0 and
B′

0 ⊆ B0, and with λ-order less than that of (A0, B0). Then X ⊆ V (A′
0) since X ⊆ V (A0). Choose

(A′
0, B

′
0) with minimum order k say; then there are k disjoint paths Pv (v ∈ V (A′

0 ∩ B
′
0)) of sk(G)

from V (A′
0∩B

′
0) to V (A0∩B0), where each Pv has initial vertex v and has no other vertex in V (B′

0).
Let

X ′ = {v ∈ V (A′
0 ∩B

′
0) : Pv has last vertex in X}.

Let L = {(Ai, Bi) : 0 ≤ i ≤ n} say. For 1 ≤ i ≤ n, let A+
i be the subhypergraph of G with

E(A+
i ) = E(Ai) and V (A+

i ) = V (Ai) ∪X
′. Then (A+

i , Bi) is a separation of G. Let A′
i = A+

i ∩B′
0,

B′
i = Bi ∪A

′
0. Then (A′

i, B
′
i) is also a separation of G, and X ′ ⊆ V (A′

i ∩B
′
i).

(1) For 1 ≤ i ≤ n, |V (A′
i ∩B

′
i) \X

′| ≤ |V (Ai ∩Bi) \X|, and so |V (A′
i ∩B

′
i)| ≤ |V (Ai ∩Bi)|.

Subproof. Let Y = V (Ai ∩ Bi) \ V (A′
0). Then Y ⊆ V (Ai ∩ Bi) \ X and Y ⊆ V (A′

i ∩ B′
i) \ X

′,
and so it suffices for the first claim to show that

|V (A′
i ∩B

′
i) \ (X ′ ∪ Y )| ≤ |V (Ai ∩Bi) \ (X ∪ Y )|.

Let v ∈ V (A′
i ∩B

′
i) \ (X ′ ∪ Y ). Since

V (A′
i ∩B

′
i) ⊆ V (Ai ∩Bi) ∪X

′ ∪ V (A′
0) ⊆ Y ∪X ′ ∪ V (A′

0),

it follows that v ∈ V (A′
0), and so v ∈ V (A′

0 ∩ B′
0). We claim that some vertex of Pv is in V (Ai ∩

Bi) \ (X ∪ Y ). For since v 6∈ X ′ it follows that v ∈ V (Ai), and since the other end of Pv is in
V (A0 ∩ B0) ⊆ V (Bi), there is a vertex u of Pv in V (Ai ∩ Bi), and V (Pv) ∩X = ∅. But u ∈ V (A′

0)
since V (Pv) ⊆ V (A′

0), and so u 6∈ Y , and hence

u ∈ V (Ai ∩Bi) \ (X ∪ Y ).

Since u ∈ V (Pv) and the paths Pv are pairwise disjoint, it follows that

|V (A′
i ∩B

′
i) \ (X ′ ∪ Y )| ≤ |V (Ai ∩Bi) \ (X ∪ Y )|.

This proves the first claim. Since

|V (A′
i ∩B

′
i) ∩X

′| = |X ′| ≤ |X| = |V (Ai ∩Bi) ∩X|

the second claim follows. This proves (1).

Let L′ = {(A′
i, B

′
i) : 0 ≤ i ≤ n}.

(2) (X ′,L′) is a (J, h)-separator.
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Subproof. We have seen that X ′ ⊆ V (A′
i ∩B

′
i) (0 ≤ i ≤ n) and

|V (A′
i ∩B

′
i) \X

′| ≤ |V (Ai ∩Bi) \X| ≤ h

from (1); and for e ∈ J , if e ∈ E(Ai) then

e ∈ E(Ai) ⊆ E(A′
i) ∪ E(A′

0),

so it suffices to show that L′ is a location and L′ ⊆ T . For 1 ≤ i ≤ n, certainly A′
0 ⊆ B′

i and A′
i ⊆ B′

0,
so let 1 ≤ i < j ≤ n. Then Ai ⊆ Bj and Aj ⊆ Bi, and so

A′
i = A+

i ∩B′
0 ⊆ Bj ∪A

′
0 = B′

j

and similarly A′
j ⊆ B′

i. Thus, L′ is a location.
To show that L′ ⊆ T , certainly (A′

0, B
′
0) ∈ T . Let 1 ≤ i ≤ n and suppose that (A′

i, B
′
i) 6∈ T .

Since (Ai, Bi) ∈ T and by (1) (A′
i, B

′
i) has order at most that of (Ai, Bi), it follows that (B′

i, A
′
i) ∈ T .

But (A′
0, B

′
0), (Ai, Bi) ∈ T , and B′

i ∪A
′
0 ∪Ai = G since A′

i ⊆ Ai ∪A
′
0, contrary to the second tangle

axiom. Thus L′ ⊆ T . This proves (2).

(3) |X ′| = |X|, and |V (A′
i ∩B

′
i)| = |V (Ai ∩Bi)| for 0 ≤ i ≤ n.

Subproof. From (2) and the choice of (X,L) it follows that (X ′,L′) is not better than (X,L).
But certainly |X ′| ≤ |X|, from the definition of X ′; and so λ0(L

′) ≥ λ0(L). From (1) it follows that
|V (A′

i ∩B
′
i)| = |V (Ai ∩Bi)| for 0 ≤ i ≤ n. Consequently each vertex of V (A0 ∩B0) is an end of some

Pv, and so |X ′| = |X|. This proves (3).

(4) f ∈ E(A′
0).

Subproof. From (3), λ1(A
′
0, B

′
0) = λ1(A0, B0). Suppose that f ∈ E(B′

0). Since A0 ⊆ A′
0 and

B′
0 ⊆ B0, it follows that f ∈ B0, and hence λ2(A

′
0, B

′
0) ≥ λ2(A0, B0). Since (A′

0, B
′
0) has smaller

λ-order than (A0, B0) it follows that Z(B′
0) = Z(B0) and hence B′

0 = B0. Since A0 ⊆ A′
0 and

(A0, B0), (A
′
0, B

′
0) have the same order, it follows that A0 = A′

0, a contradiction. This proves (4).

(5) If i ≥ 0 then λ2(A
′
i, B

′
i) ≤ λ2(Ai, Bi).

Subproof. If i = 0 this follows from (4), since B′
0 ⊆ B0. We assume i ≥ 1, and then there are

two cases. First, let f 6∈ E(Ai). Then since f 6∈ E(A′
i), we have

λ2(A
′
i, B

′
i) = Σ(ν(x) : x ∈ Z(G) \ Z(B′

i))

λ2(Ai, Bi) = Σ(ν(x) : x ∈ Z(G) \ Z(Bi)) .

Since Bi ⊆ B′
i and hence Z(Bi) ⊆ Z(B′

i), it follows that

λ2(A
′
i, B

′
i) ≤ λ2(Ai, Bi)

as required.
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Now let f ∈ E(Ai), and suppose that the desired inequality is false. Then

Σ(ν(x) : x ∈ Z(G) \ Z(B′
i)) > Σ(ν(x) : x ∈ Z(G) \ Z(Ai)) .

Since (A′
0, B

′
0) has λ-order less than that of (A0, B0), and f ∈ E(A′

0 ∩ Ai) ⊆ E(A′
0 ∩ B0), it follows

that
Σ(ν(x) : x ∈ Z(G) \ Z(B0)) ≥ Σ(ν(x) : x ∈ Z(G) \ Z(A′

0)) .

In other words,
Σ(ν(x) : x ∈ Z(B′

i)) < Σ(ν(x) : x ∈ Z(Ai))

and
Σ(ν(x) : x ∈ Z(B0)) ≤ Σ(ν(x) : x ∈ Z(A′

0)) .

But Z(A′
0) ⊆ Z(B′

i) and Z(Ai) ⊆ Z(B0), which is impossible. This proves (5).

From (5) it follows that λ2(L
′) ≤ λ2(L); and so we have equality, from (3) and the choice of

(X,L). Hence, in particular, λ2(A
′
0, B

′
0) = λ2(A0, B0), and from (3) we deduce that B0 = B′

0. Since
A0 ⊆ A′

0 and the two separations have the same order, it follows that A0 = A′
0, contradicting that

(A′
0, B

′
0) has smaller λ-order than (A0, B0). We have proved therefore that there is no such (A0, B0),

and so L is λ-linked to T . Hence statement (ii) of the theorem holds.
Now we verify (iii). Let (A0, B0) ∈ L, and let |V (A0 ∩ B0) \X| = t. Let J0 = J ∩ E(A0), and

suppose that for each e ∈ J0 there is a separation (Ae, Be) of A0 of order < t+ |X| with e ∈ E(Ae),
V (A0 ∩ B0) ⊆ V (Be) and X ⊆ V (Ae ∩ Be). For each e, choose (Ae, Be) of minimum order, and
subject to that with Ae minimal.

(6) If e, e′ ∈ J0 are distinct then either Ae ⊆ Ae′ and Be′ ⊆ Be, or Ae′ ⊆ Ae and Be ⊆ Be′, or
Ae ⊆ Be′ and Ae′ ⊆ Be.

Subproof. Now (Ae ∪Ae′ , Be ∩Be′) has order at least that of (Ae′ , Be′) from the choice of (Ae′ , Be′);
and so (Ae ∩ Ae′ , Be ∪ Be′) has order at most that of (Ae, Be). If e ∈ E(Ae′), it follows from the
minimality of Ae that Ae = Ae ∩Ae′ , that is, Ae ⊆ Ae′ ; and so since (Ae ∩Ae′ , Be ∪Be′) and (Ae, Be)
have the same order, it follows that Be′ ⊆ Be, as required. We may assume then that e 6∈ E(Ae′), and
similarly e′ 6∈ E(Ae). Then e ∈ E(Ae ∩Be′), and e′ ∈ E(Ae′ ∩Be). Consequently, (Ae ∩Be′ , Be∪Ae′)
has order at least that of (Ae, Be), and (Ae′ ∩Be, Be′ ∪Ae) has order at least that of (Ae′ , Be′). We
therefore have equality throughout, and so Ae ∩Be′ = Ae by the minimality of Ae, that is, Ae ⊆ Be′ ;
and similarly Ae′ ⊆ Be, as required. This proves (6).

Let L0 be the set of all members (A,B) of {(Ae, Be) : e ∈ J0} with Ae maximal and Be minimal.
By (6), L0 is a location, and hence so is

L′ = {(A,B ∪B0) : (A,B) ∈ L0} ∪ (L \ {(A0, B0)}).

It follows that (X,L′) is a (J, h)-separator. For each (A,B) ∈ L0, (A,B ∪B0) has the same order as
(A,B), and hence has order < |X| + t; and since |L0| ≤ |E(G)|, it follows that

λ0({(A,B ∪B0) : (A,B) ∈ L0}) < λ0(A0, B0) .
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Hence λ0(L
′) < λ0(L), contrary to the choice of (X,L). It follows that for some e ∈ J0 there is no

such (Ae, Be), and hence statement (iii) of the theorem holds.
Now let us choose (X,L) satisfying (i)-(iii) of the theorem, with

⋃
(A : (A,B) ∈ L) minimal. We

claim that (X,L) also satisfies (iv). For let (A,B) ∈ L, and let e ∈ E(A) \ J with V (e) ⊆ V (A∩B).
Let A′ = A\e,B′ = B + e, and L′ = (L \ {(A,B)}) ∪ {(A′, B′)}. Then (X,L) is a (J, h)-separator,
since e 6∈ J , and it satisfies (i) and (iii) of the theorem. From the minimality of

⋃
(A : (A,B) ∈ L), it

does not satisfy (ii), and so (A′, B′) is not λ-linked to T . Hence there exists (C,D) ∈ T with A′ ⊆ C
and D ⊆ B′, with λ-order less than that of (A′, B′).

Suppose that (C,D) has λ-order less than that of (A,B). Since (A,B) is λ-linked to T , it is not
the case that A ⊆ C and D ⊆ B, and so e ∈ E(D), and A ∩ C = A′ and B ∪D = B′. Now since λ
is a tie-breaker, either (A∪C,B ∩D) has λ-order less than that of (A,B) (which is impossible since
(A,B) is λ-linked to T ) or (A ∩ C,B ∪D) has λ-order at most that of (C,D) (which is impossible
since (A ∩C,B ∪D) = (A′, B′)). Thus (C,D) has λ-order at least that of (A,B), and so (A,B) has
λ-order less than that of (A′, B′). Since they have the same order and Z(A′) ⊂ Z(A), it follows that
f∗ ∈ E(A), where λ is defined by f∗, ν say, and therefore A is unique. Hence (iv) holds. This proves
7.3.

By combining 7.2 and 7.3, we obtain:

7.4 Let T be a tangle in a hypergraph G, and let W ⊆ V (G), free relative to T . Let w ≥ 0, h ≥ 1
be integers, such that |W | ≤ w and T has order ≥ (w+h)h+1 +h. Let λ be an edge-based tie-breaker
in G, and let J ⊆ E(G) such that for each e ∈ J , |V (e)| = h and either V (e) ∩W 6= ∅ or W ∪ V (e)
is not free relative to T . Then there is a (J, h)-separator (X,L) such that |X| ≤ (w + h)h+1, L is
λ-linked to T , and for each (A,B) ∈ L there exists e ∈ J ∩E(A) such that there are |V (A ∩B) \X|
disjoint paths of sk(A)\X between V (A∩B)\X and V (e); and there is at most one (A,B) ∈ L such
that V (e) ⊆ V (A ∩B) for some e ∈ E(A) \ J .

Proof. Let W ′ be as in 7.2. For each e ∈ J , there is by hypothesis a separation (A,B) ∈ T of order
< |W | + h with e ∈ E(A). Hence, since W ′ satisfies 7.2, there is a separation (A(e), B(e)) ∈ T
with W ′ ⊆ V (A(e) ∩B(e)), |V (A(e) ∩B(e)) \W ′| < h, and e ∈ E(A(e)). Choose such a separation
(A(e), B(e)) with minimum λ-order.

(1) For all distinct e1, e2 ∈ J , either

• A(e1) ⊆ A(e2) and B(e2) ⊆ B(e1), or

• A(e2) ⊆ A(e1) and B(e1) ⊆ B(e2), or

• A(e1) ⊆ B(e2) and A(e2) ⊆ B(e1).

Subproof. This is the same as the proof of (1) in 6.2, and we omit it.

As in 6.2, by (1) there exists J ′ ⊆ J such that

• (A(e1), B(e1)) 6= (A(e2), B(e2)) and A(e1) ⊆ B(e2) for all distinct e1, e2 ∈ J ′, and

• for all e ∈ J there exists e′ ∈ J ′ such that A(e) ⊆ A(e′) and B(e′) ⊆ B(e).

Hence (W ′, {(A(e), B(e)) : e ∈ J ′}) is a (J, h)-separator. By 7.3, there is a (J, h)-separator satisfying
the theorem. This proves 7.4.

24



8 Internal restriction

With the aid of 7.4 we can prove an analogue of 6.2 for internal restriction, to handle the failure of
the fifth condition of 4.2. We begin with the following.

8.1 Let Ω be a proper well-quasi-order, and let Σ be a sharp shadow. Let h ≥ 1, w ≥ 0 be integers,
and let ξ ∈ E(Ωh(Σ)). Let C be a set of rootless proper partial Ω-patchworks with shadow ≤ Σ, such
that for each P = (G,µ,∆, φ) ∈ C there exists k with 0 ≤ k ≤ w and distinct vertices w1, . . . , wk of
G with the following properties:

(i) for every edge e ∈ E(G) \ dom(φ), |V (e)| < h+ k, e ∈ dom(µ), w1, . . . wk are the first k terms
of µ(e), and ∆(e) contains every grouping with vertex set V (e) in which w1, . . . , wk all have
degree 0

(ii) ∆(e) is free for all e ∈ dom(φ)

(iii) there is no e ∈ dom(µ) ∩ dom(φ) with |V (e)| = h and ξ ≤ φ(e)

(iv) if dom(φ) 6= E(G) then there exists g ∈ dom(µ) \ dom(φ) such that either

(a) V (φ−1(Γ1)) ∪ V (g) includes every muscle of P , or

(b) h = 2, and for each e ∈ E(G)\dom(φ) there is a subgraph Fe of KV (e) with V (Fe) = V (e)
satisfying

1. for every muscle {u, v} not included in V (φ−1(Γ1)) ∪ V (g) there exists e ∈ E(G) \
dom(φ) such that u, v are adjacent in Fe

2. for each e ∈ E(G) \ dom(φ), ∆(e) contains every grouping δ with V (δ) = V (e),
|E(δ)| = 1 and E(δ) ⊆ E(Fe)

3. for each e ∈ E(G) \ dom(φ), every edge of Fe has an end (and hence exactly one end,
since |V (e) \ {w1, . . . , wk}| < h = 2) in V (e) \ V (g).

Then C is well-behaved.

Proof. Let Ω′ be a proper well-quasi-order with Ω ≤ Ω′ and E(Ω′)∩ (Γ1 ∪ Γ2) ⊆ E(Ω); and for each
i ≥ 1 let P ′

i = (Gi, µi,∆i, φ
′
i) be a strict Ω′-completion of Pi = (Gi, µi,∆i, φi) ∈ S. By 5.2, it suffices

to show that P ′
i (i = 1, 2, . . .) is not a bad sequence.

By restricting to a subsequence, we may assume that either dom(φi) = E(Gi) for all i ≥ 1, or
dom(φi) 6= E(Gi) for all i ≥ 1. In the first case, each Pi is a skeletal Ω-patchwork, and P ′

i = Pi. Let
Pi (i = 1, 2, . . .) have shadow Σ′ ≤ Σ; then Σ′ 6= Σ, since ξ 6∈ Ωh(Σ′) by condition (iii). Thus Σ′ is
not evil, and so Pi (i = 1, 2, . . .) is not bad, as required.

We may therefore assume that dom(φi) 6= E(Gi) for all i ≥ 1. By condition (iv), for each i ≥ 1
there exists gi ∈ dom(µi) \ dom(φi) as in (iv). Since there are only finitely many possibilities for
|π̄(gi)|, we may assume they are all equal, to some integer s say, and also, that the number called
k in the statement of the theorem is the same for all Pi. Thus, for each i ≥ 1 there are distinct
wi1, . . . , wik ∈ V (G) such that wi1, . . . , wik are the first k terms of µi(e) for each e ∈ E(Gi)\dom(φi).

Let C have shadow Σ′. Let Ω∗ be an isomorphic copy of Ω′ with E(Ω∗) ∩ E(Ω′) = ∅, and
E(Ω∗) ∩ (Γ1 ∪ Γ2) = ∅, and let E(Ω∗) = {x∗ : x ∈ E(Ω′)}, such that for x, y ∈ E(Ω′), x ≤ y in Ω if
and only if x∗ ≤ y∗ in Ω∗. Let γ1, . . . γs ∈ Γ1 \R1(Σ

′) be distinct.
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We assume first that h 6= 2. Let Ω′′ be the well-quasi-order with E(Ω′′) = E(Ω′) ∪ E(Ω∗)
∪{γ1, . . . , γs}, where for distinct x, y ∈ E(Ω′′), x ≤ y in Ω′′ if and only if either x, y ∈ E(Ω′) and
x ≤ y in Ω′, or x, y ∈ E(Ω∗) and x ≤ y in Ω∗. For each i ≥ 1, let µi(gi) = (wi1, . . . , wis) say, and let
P ′′

i = (G′′
i , µ

′′
i ,∆

′′
i , φ

′′
i ) be the Ω′′-patchwork defined as follows:

• V (G′′
i ) = V (Gi), E(G′′

i ) = E(Gi)∪ {ei1, . . . , eis}, where ei1, . . . , eis are new elements, π(G′′
i ) =

0, and for v ∈ V (G′′
i ) and e ∈ E(G′′

i ), e is incident with v in G′′
i if and only if either

– e ∈ dom(φi) and e is incident with v in Gi, or

– e ∈ E(Gi) \ dom(φi) and e is incident with v in Gi and v 6= wi1, . . . , wik, or

– e ∈ {ei1, . . . , eis}, e = eij say, and v = wij

• for e ∈ dom(φi), µ
′′
i (e) = µi(e); for e ∈ E(Gi) \ dom(φi), µ

′′
i (e) is obtained from µi(e) by

removing the first k terms; and for 1 ≤ j ≤ s, µ′′i (eij) = (wij)

• P ′′
i is free (this determines ∆′′

i )

• for e ∈ dom(φi), φ
′′
i (e) = φ′i(e); for e ∈ E(Gi) \ dom(φi), φ

′′
i (e) = (φ′i(e))

∗; and for 1 ≤ j ≤ s,
φ′′i (eij) = γj.

Then P ′′
i is a skeletal Ω′′-patchwork (since h 6= 2). Let the sequence P ′′

i (i = 1, 2, . . .) have shadow
Σ′′ say. Since C has shadow Σ′ ≤ Σ, and ξ ∈ E(Ωh(Σ)), and for all i ≥ 1 there is no edge
e ∈ dom(µ′′i )∩ dom(φ′′i ) with |V (e)| = h and ξ ≤ φ′′i (e), and every edge e ∈ E(G′′

i ) \ dom(φi) satisfies
e ∈ dom(µ′′i ) and |V (e)| < h, it follows that Σ′′ < Σ, and so Σ′′ is not evil. Hence there exist
j > i ≥ 1 such that P ′′

i is simulated in P ′′
j . But then it follows easily that P ′

i is simulated in P ′
j , as

required.
Now we assume that h = 2. Let γ2

1 , . . . , γ
2
k ∈ Γ2 \ R2(Σ

′) be distinct, and let Ω′′ be the well-
quasi-order with

E(Ω′′) = E(Ω′) ∪E(Ω∗) ∪ {γ1
1 , . . . , γ

1
s , γ

2
1 , . . . , γ

2
k}

where for distinct x, y ∈ E(Ω′′), x ≤ y in Ω′′ if and only if either x, y ∈ E(Ω′) and x ≤ y in Ω′,
or x, y ∈ E(Ω∗) and x ≤ y in Ω∗. For each i ≥ 1, and each e ∈ E(Gi) \ dom(φi), let Fe,i be
the subgraph called Fe in statement (iv) of the theorem. Let Fi be the union of all the subgraphs
Fe,i (e ∈ E(Gi) \ dom(φi)); thus, Fi ⊆ KV (Gi). We may assume without loss of generality that
E(Fi) ∩E(Gi) = ∅ (by replacing Gi by an isomorphic hypergraph). For µi(gi) be (wi1, . . . , wis) say.
Let P ′′

i = (G′′
i , µ

′′
i ,∆

′′
i , φ

′′
i ) be the Ω′′-patchwork defined as follows:

• V (G′′
i ) = V (Gi), E(G′′

i ) = E(Gi)∪ {ei1, . . . eis} ∪ E(Fi), where ei1, . . . , eis are new elements,
π(G′′

i ) = ∅, and for v ∈ V (G′′
i ) and e ∈ E(G′′

i ), e is incident with v in G′′
i if and only if either

– e ∈ dom(φi) and e is incident with v in Gi, or

– e ∈ E(Gi) \ dom(φi) and e is incident with v in Gi and v 6= wi1, . . . , wik, or

– e ∈ {ei1, . . . , eis}, e = eij say, and v = wij , or

– e ∈ E(Fi), and v is incident with e in Fi.

• for e ∈ dom(φi), µ
′′
i (e) = µi(e); for e ∈ E(Gi) \ dom(φi), µ

′′
i (e) is obtained from µi(e) by

removing the first k terms; for 1 ≤ j ≤ s, µ′′i (eij) = (wij); and for e ∈ E(Fi), µ
′′
i (e) = (u, v)

where u, v are the ends of e in Fi, and u ∈ {wi1, . . . , wik} and v 6∈ {wi1, . . . , wik}
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• P ′′
i is free (this determines ∆′′

i )

• for e ∈ dom(φi), φ
′′
i (e) = φ′i(e); for e ∈ E(Gi) \ dom(φi), φ

′′
i (e) = (φ′(e))∗; for 1 ≤ j ≤ s,

φ′′i (eij) = γ1
j ; and for 1 ≤ j ≤ k and e ∈ Fi incident with wij , φ

′′
i (e) = γ2

j .

We claim that P ′′
i is skeletal. For it is free, rootless and proper; let {u, v} be a muscle of P ′′

i , and

suppose that {u, v} 6⊆ V (φ
′′−1
i (Γ1)). Thus, {u, v} 6⊆ V (φ−1

i (Γ1)) ∪ V (g), and so by statement (iv) of
the theorem, there exists e ∈ E(Gi) \ dom(φi) such that u, v are adjacent in Fi,e. But then there is
an edge of Fi incident with u and v, contradicting that {u, v} is a muscle of P ′′

i . This proves that
P ′′

i is skeletal.
Let the sequence P ′′

i (i = 1, 2, . . .) have shadow Σ′′. We claim that Σ′′ < Σ. For Σ′ ≤ Σ, and
Ω∞(Σ′′) ≤ Ω∞(Σ′) and m(Σ′′) ≤ m(Σ′), so we may assume that m(Σ′′) = m(Σ′). For 2 ≤ j ≤ m(Σ′),
Ωj(Σ

′′) ≤ Ωj(Σ), since the only edges of P ′′
i which are “new” have either ≤ 1 end in G′′

i or have two

ends and belong to φ
′′−1
i (Γ2). Since ξ 6∈ E(Ω2(Σ

′′)) and ξ ∈ E(Ω2(Σ)) it follows that Σ′′ < Σ, as
claimed.

Thus Σ′′ is not evil, and so there exist j > i ≥ 1 and a realizable expansion η of P ′′
i in P ′′

j . For
each e ∈ E(G′′

j ) \ η(E(G′′
i )) let δ′′e ∈ ∆′′

j (e), such that for each v ∈ V (G′′
i ), η(v) is the vertex set of a

connected component of

H = N(G′′
j ) ∪

⋃
(δ′′e : e ∈ E(G′′

j ) \ η(E(G′′
i ))) .

For each e ∈ E(Gj)\dom(φj) we define δe ∈ ∆j(e) as follows. V (δe) is the set of vertices incident
with e in Gj . If there is no f ∈ E(Fj,e) \ η(E(G′′

i )) with E(δ′′f ) 6= ∅, we take E(δe) = ∅. If there is

some such edge, it is necessarily unique, for otherwise two distinct members of V (φ−1
j ({γ1

1 , . . . , γ
1
s}))

would belong to the same component of H, contradicting that η is an expansion of P ′′
i in P ′′

j . Thus,
if f is such an edge we define E(δe) = {f} (we recall that f ∈ E(KV (e))). From statement (iv) of
the theorem, in both cases δe ∈ ∆j(e).

We claim that if e ∈ E(Gj) \ dom(φj) and E(δe) 6= ∅, then e 6∈ η(E(G′′
i )). For suppose that

e = η(e0) say, where e0 ∈ E(G′′
i ). Since φ′′i (e0) ≤ φ′′j (e) ∈ E(Ω∗), it follows that φ′′i (e0) ∈ E(Ω∗) and

so e0 ∈ E(Gi) \ dom(φi). Consequently, none of wi1, . . . , wik are incident with e0 in G′′
i ; and hence

(since wjt ∈ η(wit) for 1 ≤ t ≤ k) it follows that none of wj1, . . . , wjk are in the same component of
H as any end of e in G′′

j . Hence there is no f ∈ E(Fj,e)\η(E(G′′
i )) with E(δ′′f ) 6= ∅, and so E(δe) = ∅,

as claimed.
It follows that, if we define δe = δ′′e for e ∈ E(Gj) ∩ E(G′′

j ) \ η(E(G′′
i )), then

H = N(Gj) ∪
⋃

(δe : e ∈ E(Gj) \ η(E(G′′
i ))) ,

for the edges of G′′
j with only one end that are missing in Gj contribute nothing to H. Hence, the

restriction of η to V (Gi) ∪E(Gi) provides a realizable expansion of P ′
i in P ′

j . This proves 8.1.

Our analogue of 5.3 is the following.

8.2 Let Ω be a proper well-quasi-order, and let S be a set of skeletal Ω-patchworks with shadow Σ.
Let Σ be sharp. Let w ≥ 0, h ≥ 1 be integers and let ξ ∈ E(Ωh(Σ)). Then there is a well-behaved
set C of proper partial Ω-patchworks with the following property. Let P = (G,µ,∆, φ) ∈ S, and let
T be a tangle in G of order ≥ (w + h)h+1 + h that is (ξ, h,w)-restricted internally, and let λ be an
edge-based tie-breaker in G. There is a rooted location L in G which ((w+h)h+1 +h)-isolates T with
respect to λ such that (P,L) has a heart in C.
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Proof. Let C be the set of all rootless proper partial Ω-patchworks P = (G,µ,∆, φ) satisfying
conditions (i)-(iv) of 8.1, such that P is a heart of (P ′,L′) for some P ′ = (G′, µ′,∆′, φ′) ∈ S and
some rooted location L in G. Since S has shadow Σ, it follows that C has shadow ≤ Σ, and so by
8.1, C is well-behaved.

We claim that C satisfies the theorem. Let P = (G,µ,∆, φ) ∈ S and let T be a tangle in G of
order ≥ (w + h)h+1 + h that is (ξ, h,w)-restricted internally, and let λ be an edge-based tie-breaker
in G. Let

J = {e ∈ dom(µ) : |V (e)| = h and ξ ≤ φ(e)} .

Since T is (ξ, h,w)-restricted internally, there exists W ⊆ V (G) with |W | ≤ w, free relative to T ,
such that for every e ∈ J , either V (e) ∩W 6= ∅ or W ∪ V (e) is not free relative to T . By 7.4, there
is a (J, h)-separator (X,L) such that |X| ≤ (w + h)h+1, L is λ-linked to T , and for each (A,B) ∈ L
there exists e ∈ J ∩ E(A) such that there are |V (A ∩ B) \ X| disjoint paths of sk(A)\X between
V (A ∩ B) \X and V (e), and there is at most one (A,B) ∈ L such that V (e) ⊆ V (A ∩B) for some
e ∈ E(A) \ J .

Let X = {w1, . . . , wk}, say. Let L′ be a rooted location in G such that L
′− = L, and for each

A ∈ L′ the first k terms of π(A) are w1, . . . , wk. Then L′ ((w+h)h+1 +h)-isolates T with respect to
λ, by theorem 7.1 of [5].

Let the heart of (P,L′) be P ′ = (G′, µ′,∆′, φ′). We wish to show that P ′ ∈ C, and therefore it
suffices to check conditions (i)-(iv) of 8.1. For condition (i), let A ∈ L′; then there exists e ∈ J∩E(A)
and |π̄(A) \ X| disjoint paths of sk(A−)\X between π̄(A) \ X and V (e), and since ∆(e) is free it
follows that every grouping with vertex set π̄(A) in which w1, . . . , wk all have degree 0 is feasible in
P |A. Thus condition (i) of 8.1 is satisfied. Condition (ii) holds since P is free, and condition (iii)
since each e ∈ J belongs to some member of L′.

It remains to check condition (iv). We may therefore assume that dom(φ′) 6= E(G′). From the
choice of X,L there is at most one (A,B) ∈ L such that V (e) ⊆ V (A∩B) for some e ∈ E(A)\J ; and
hence, since dom(φ′) 6= E(G′), we may choose g ∈ E(G′)\dom(φ′) ⊆ dom(µ′) such that V (e) ⊆ V ′(g)
for every edge e of G not in J that satisfies V (e) ⊆ V (G′) and e 6∈ E(G′). (To disambiguate V (e)
we shall henceforth in this proof use V (e) to denote the set of ends of e in G, and V ′(e) to denote
its ends in G′.)

If V (φ
′−1(Γ1)) ∪ V

′(g) includes every muscle of P ′ then 8.1(iv) holds and we are done. Thus, let
{u, v} be a muscle of P ′ not included in V (φ

′−1(Γ1))∪V
′(g). We may assume that v 6∈ V (φ

′−1(Γ1))∪
V ′(g). Suppose first that v ∈ V (φ−1(Γ1)), and let e ∈ E(G) with V (e) = {v} and φ(e) ∈ Γ1. Since
v 6∈ V (φ

′−1(Γ1)) it follows that e 6∈ E(G′), and so either e ∈ J or v ∈ V ′(g). The first is impossible
since φ(e) ∈ Γ1, and the second since v 6∈ V ′(g). Thus, v 6∈ V (φ−1(Γ1)). Hence {u, v} is not a muscle
of P , and so there exists e0 ∈ dom(µ) with V (e0) = {u, v}. Since e0 6∈ E(G′), and V (e0) ⊆ V (G′)
and V (e0) 6⊆ V ′(g), it follows from the choice of g that e0 ∈ J . Hence h = 2.

For each e ∈ E(G′) \ dom(φ′), let A be the corresponding member of L′, and let Fe be the
subgraph of KV ′(e) in which distinct u, v are adjacent if {u, v} 6⊆ V ′(g) and V (e0) = {u, v} for some
e0 ∈ E(A) ∩ dom(µ). It follows that 8.1(iv)(b) (1)-(3) hold. Hence P ′ ∈ C. This proves 8.2.

9 Completing the proof

Let us combine the results of sections 5, 6 and 8 with those of sections 2 and 4 to prove the following,
which implies 2.1 as we saw in section 3.
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9.1 There is no sharp shadow.

Proof. Suppose that Σ is a sharp shadow. Let Ω be a proper well-quasi-order such that there is a bad
sequence Pi (i = 0, 1, 2, . . .) of skeletal Ω-patchworks with shadow Σ. Let Pi = (Gi, µi,∆i, φi) (i ≥ 0).

(1) We may assume that V (e) 6= ∅ for all i ≥ 0 and all e ∈ E(Gi).

Subproof. Let (Ai, Bi) be a separation of Gi, where π̄(Ai) = ∅ = π̄(Bi), every edge of Bi has ≥ 1 end,
and every edge of Ai has no ends. Since the Ω-patchworks Pi|Ai are well-quasi-ordered by simulation,
we may assume that Pi|Ai is simulated in Pj |Aj for all j > i ≥ 0. But then Pi|Bi (i = 0, 1, . . .) is a
bad sequence with shadow ≤ Σ, in which V (e) 6= ∅ for every edge. This proves (1).

By restricting to a subsequence, we may assume from 5.3 that there exist Γ∗
1 ⊆ Γ1 and Γ∗

2 ⊆ Γ2

such that for all i ≥ 1,

Γ1 ∩ φi(E(Gi)) = Γ∗
1

Γ2 ∩ φi(E(Gi)) = Γ∗
2

|V (φ−1
i (Γ1))| = |φ−1

i (Γ1)|

and
V (φ−1

i (Γ1)) ∩ V (φ−1
i (Γ2)) = ∅.

Let Γ∗
2 = {γ1, . . . , γk} say. For i ≥ 1, φ−2

i (γ1), . . . , φ
−2
i (γk) need not all be distinct; but by restricting

to a subsequence, we can assume that

(2) For all i ≥ 1, and all a, b with 1 ≤ a < b ≤ k, φ−2
i (γa) = φ−2

i (γb) if and only if φ−2
0 (γa) =

φ−2
0 (γb).

Let S = {Pi : i ≥ 0}. Let C1 be such that setting C = C1 satisfies 5.5. Let n be an integer
with n ≥ 3

2 |V (G0)| (|E(G0)|+ 2). For each γ ∈ Γ∗
2, let C2(γ) be such that setting C = C2(γ) satisfies

5.7. Let C2 =
⋃

(C2(γ) : γ ∈ Γ∗
2).

For each e ∈ E(G0) = dom(µ0), let C3(e) be such that setting h = n, t = |E(G0)|, ξ = φ0(e) and
C = C3(e) satisfies 6.2. Let C3 =

⋃
(C3(e) : e ∈ E(G0) \ dom(µ0)).

For each e ∈ dom(µ0), let C4(e) be such that setting w = n, h = |V (e)|, ξ = φ0(e) and C = C4(e)
satisfies 8.2. Let C4 =

⋃
(C4(e) : e ∈ dom(µ0)).

Since all these sets are well-behaved, their union C = C1∪ C2 ∪ C3 ∪ C4 is also well-behaved.
Let θ = (2n)|V (G0)|+1. Let i ≥ 1, let λ be an edge-based tie-breaker in Gi, and let T be a tangle

in Gi of order ≥ θ controlling a Kn-minor of sk(G−
i ). We claim that there is a rooted location L in

Gi that θ-isolates T with respect to λ, such that (Pi,L) has heart in C. For P0 is not simulated in
Pi, and so by (1) and 4.2, one of the five conditions of 4.2 is false. In each case (by (2), 5.5, 5.7, 6.2
and 8.2) it follows that the required L exists.

By 2.2, there exist j > i ≥ 1 such that Pi is simulated in Pj , a contradiction. This proves 9.1.
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