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Abstract

In the algorithm for the disjoint paths problem given in Graph Minors XIII, we used without proof
a lemma that, in solving such a problem, a vertex which was sufficiently “insulated” from the rest of
the graph by a large planar piece of the graph was irrelevant, and could be deleted without changing
the problem. In this paper we prove the lemma.



1 Introduction

Let Γ be a graph drawn in a plane, let v be a vertex of Γ, and suppose that there are many (h,
say) vertex-disjoint circuits of Γ, all surrounding v. Suppose also that Γ is a subgraph of a larger
graph G, which is not necessarily planar, and the only vertices of Γ incident with edges of G not in
Γ lie in the plane outside the outermost of the h circuits. Finally, suppose that s1, t1, . . . , sp, tp are
vertices of G but not of Γ, and we are concerned with the existence of p disjoint paths P1, . . . , Pp

of G, where Pi has ends si and ti (1 ≤ i ≤ p). It is intuitively plausible, and indeed true, that if h
is large enough as a function of p, then if P1, . . . , Pp exist at all they can be chosen so that none of
them uses v. This fact, and a generalization of it, was used in theorem (10.2) of [5] as a lemma to
prove the correctness of an algorithm to decide whether P1, . . . , Pp do exist. However, the proof of
that lemma was postponed to the present, because it seems to need some of the main results of this
series. Proving the lemma is the main goal of this paper.

We shall derive it from the result about “vital linkages” proved in [7]. A linkage in a graph G is
a subgraph of G, every component of which is a path. (Paths have at least one vertex, and have no
“repeated” vertices.) If L is a linkage in G, a vertex v ∈ V (G) is a terminal of L if v ∈ V (L) and
v has degree at most one in L. We say a linkage L is a p-linkage if it has at most p terminals. The
pattern of a linkage L is the partition of its set of terminals determined by the components of L; that
is, two terminals belong to the same block of the pattern if and only if they are the ends of some
component of L. W say a linkage L in G is vital if V (L) = V (G) and there is no linkage L ′ 6= L in
G with the same pattern as L.

A tree-decomposition of a graph G is a pair (T,W ), where T is a tree and W = (Wt : t ∈ V (T ))
is a family of subgraphs of G, such that

1.
⋃

(Wt : t ∈ V (T )) = G, and

2. if t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′ then Wt ∩Wt′′ ⊆Wt′ .

Its width is max(|V (Wt)| − 1 : t ∈ V (T )), and the tree-width of G is the minimum width of a tree-
decomposition of G. The following is theorem (1.1) of [7], and in this paper we derive the unproved
lemma of [5] from it.

1.1 For every integer p ≥ 0 there exists w ≥ 0 such that every graph with a vital p-linkage has
tree-width ≤ w.

2 Vital subgraphs

We need to extend (1.1) from linkages to general subgraphs. If L is a subgraph of G we write L ⊆ G.
If also Z ⊆ V (G), we define the effect of L on Z to be the partition of V (L)∩Z in which two vertices
belong to the same block if and only if they belong to the same component of L. If two subgraphs
L1, L2 have the same effect on Z then necessarily V (L1) ∩ Z = V (L2) ∩ Z. We say that a subgraph
L is vital for Z in G if Z ⊆ V (L) and no subgraph L′ 6= L in G has the same effect on Z as L. We
shall show

2.1 For every integer p ≥ 0, there exists w ≥ 0 such that, if a graph G has a subgraph which is vital
for some Z ⊆ V (G) with |Z| ≤ p, then G has tree-width ≤ w.
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We begin with the following.

2.2 If L is a subgraph of G, and L is vital for Z ⊆ V (G), then L is a forest, V (L) = V (G), and
every vertex of L not in Z has degree at least 2 in L.

Proof. If L has a circuit C, let e ∈ E(C); then L and L \ {e} have the same effect on Z, a
contradiction. Thus L is a forest. If v ∈ V (G) \ V (L), then v 6∈ Z since Z ⊆ V (L); let L ′ be the
forest obtained from L by adding v. Then L and L′ have the same effect on Z, a contradiction. Thus
V (L) = V (G). If v ∈ V (L) \ Z has degree at most 1 in L, then L \ {v} has the same effect on Z as
L, again a contradiction. The result follows.

Secondly, we need

2.3 Let L be a forest, and for each v ∈ V (L) let d(v) be the degree of v in L. Suppose that there
are at most p vertices of L with d(v) ≤ 1. Then for all Y ⊆ V (L),

∑
y∈Y d(y) ≤ 2|Y | + p.

Proof. Let L1, . . . , Lt be the components of L, for 1 ≤ i ≤ t let Li have pi vertices of degree at
most one, and let Yi = Y ∩ V (Li).

(1) For 1 ≤ i ≤ t,
∑

y∈Yi
d(y) ≤ 2|Yi| + pi.

Subproof. This is true if |V (Li)| = 1, and so we may assume that d(v) ≥ 1 for each v ∈ V (Li). Since
Li is a tree,

0 ≤ 2|V (Li)| − 2|E(Li)| =
∑

v∈V (Li)

(2 − d(v)) =
∑

v∈Yi

(2 − d(v)) +
∑

v∈V (Li)\Yi

(2 − d(v)).

But 2 − d(v) ≤ 1 for all v ∈ V (Li) \ Yi, with equality for at most pi vertices v; and so the last term
above is at most pi. Hence

∑
v∈Yi

(2 − d(v)) + pi ≥ 0 and so (1) holds.

From (1), the result follows by summing over i (1 ≤ i ≤ t).

We also need the following, and we leave its proof to the reader.

2.4 Let L be a subgraph of G, vital for Z ⊆ V (G), and let e ∈ E(L) with both ends in Z. Then
L \ {e} is vital for Z in G.

Proof of (2.1). Choose w ≥ 0 so that (1.1) is satisfied with p replaced by 7p. We claim that w
satisfies (2.1). For let L be a subgraph of a graph G, vital for Z ⊆ V (G), where |Z| ≤ p. From (2.2),
L is a forest, V (L) = V (G) and every vertex of L not in Z has degree at least 2 in L. Consequently,
L has ≤ p vertices with degree at most 1. Let Y be the set of vertices of L with degree at least 3.
From (2.3),

3|Y | ≤
∑

y∈Y

d(y) ≤ 2|Y | + p
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where d(y) denotes the degree of y in L; and hence |Y | ≤ p. Let X = Y ∪ Z; then |X| ≤ 2p, and so
from (2.3) again, ∑

y∈X

d(y) ≤ 2|X| + p ≤ 5p.

Let Z ′ be the set of all vertices in X and all their neighbours in L. Then

|Z ′| ≤ |X| +
∑

y∈X

d(y) ≤ 7p.

Since Z ⊆ Z ′ it follows that L is vital for Z ′ in G. Let F be the set of all edges in L with both ends
in Z ′. Then by (2.4), L \ F is vital for Z ′ in G.

(1) L \ F is a linkage in G with set of terminals Z ′.

Subproof. If v ∈ V (L) has degree at least 3 in L then v ∈ Y ⊆ X and so all edges of L inci-
dent with v are in F ; and hence v has degree 0 in L \ F . Consequently, every vertex of L \ F has
degree at most 2. If v ∈ Z ′, then either v ∈ X and hence v has degree 0 in L \ F , or v 6∈ X and v
has a neighbour in X in L, which implies that v has degree at least 2 in L and at most 1 in L \ F .
Thus each vertex in Z ′ is a terminal of L \ F . Conversely, let v ∈ V (G) \ Z ′. Then v 6∈ X = Y ∪ Z,
and so v has degree 2 in L (for by (2.2), Z contains every vertex of L with degree at most 1). Since
v 6∈ X, no edge incident with v is in F , and so v has degree 2 in L \ F , and hence is not a terminal
of L \ F . This proves (1).

It follows from (1) that L \ F is a vital 7p-linkage in G. By (1.1), G has tree-width ≤ w, as
required.

If G is a graph and Z ⊆ V (G), a Z-division of G is a set {A1, . . . , Ak} of subgraphs of G, such
that A1 ∪ · · · ∪ Ak = G, and E(Ai ∩ Aj) = ∅ and V (Ai ∩ Aj) ⊆ Z for 1 ≤ i < j ≤ k. If L ⊆ G, we
say u, v ∈ V (G) are L-connected if u, v ∈ V (L) and u, v belong to the same component of L.

2.5 Let L be a subgraph of a graph G, let Z ⊆ V (G), and let {A1, . . . , Ak} be a Z-division of G.
Let G′ be a graph, let Z ′ ⊆ V (G′), and let {A′

1, . . . , A
′
k} be a Z ′-division of G′. Let α : Z ′ → Z be a

function, and for 1 ≤ i ≤ k let L′
i ⊆ A′

i, such that

(a) for 1 ≤ i ≤ k, α maps Z ′ ∩ V (A′
i) onto Z ∩ V (Ai), and

(b) if u, v ∈ Z ′ are distinct and α(u) = α(v) then u, v ∈ V (A′
i) for some i (1 ≤ i ≤ k)

(c) for 1 ≤ i ≤ k, u, v ∈ Z ′∩V (A′
i) are L′

i-connected if and only if α(u), α(v) are L∩Ai-connected.

Let L′ = L′
1 ∪ · · · ∪ L′

k. Then L′
i = L′ ∩A′

i for 1 ≤ i ≤ k, and u, v ∈ Z ′ are L′-connected if and only
if α(u), α(v) are L-connected.

Proof. For 1 ≤ i ≤ k, let Zi = Z ∩ V (Ai) and Z ′
i = Z ′ ∩ V (A′

i). Hypothesis (c) implies (taking
u = v) that
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(1) For 1 ≤ i ≤ k, if v ∈ Z ′
i, then v ∈ V (L′

i) if and only if α(v) ∈ V (L).

(2) For 1 ≤ i ≤ k, L′
i = L′ ∩A′

i.

Subproof. Certainly E(L′
i) = E(L′ ∩ A′

i) and V (L′
i) ⊆ V (L′ ∩ A′

i). Suppose that v ∈ V (L′ ∩ A′
i).

Since v ∈ V (L′) there exists j with 1 ≤ j ≤ k so that v ∈ V (L′
j). If j = i then v ∈ V (L′

i) as required,
and so we assume that j 6= i. Since L′

j ⊆ A′
j it follows that v ∈ V (A′

i ∩ A
′
j) ⊆ Z ′. Since v ∈ V (L′

j)
and v ∈ Z ′

j , it follows from (1) that α(v) ∈ V (L). Since v ∈ Z ′
i, it follows from (1) that v ∈ V (L′

i).
This proves (2).

(3) If u, v ∈ Z ′ are L′-connected then α(u) and α(v) are L-connected.

Subproof. Let P be a path of L′ with ends u, v ∈ Z ′. Let us number the vertices of P in Z ′ as
v1, . . . , vn, in order on P , where u = v1 and v = vn. We may assume that n > 1. Let 1 ≤ j < n,
and let Pj be the path in P with ends vj , vj+1. Since no internal vertex of Pj is in Z ′, there exists
i with 1 ≤ i ≤ k such that Pj ⊆ A′

i. Since Pj ⊆ P ∩ A′
i ⊆ L′ ∩ A′

i = L′
i, it follows that vj , vj+1 are

L′
i-connected. By hypothesis (c), α(vj) and α(vj+1) are L∩Ai-connected and hence L-connected. We

have proved then that for 1 ≤ j < n, α(vj) and α(vj+1) are L-connected. Consequently α(u) = α(v1)
and α(v) = α(vn) are L-connected. This proves (3).

(4) If u, v ∈ Z ′ and α(u) = α(v) ∈ V (L) then u, v are L′-connected.

Subproof. By hypothesis (b), there exists i (1 ≤ i ≤ k) such that u, v ∈ V (A′
i), and hence u, v ∈ Z ′

i,
and so α(u) = α(v) ∈ Zi ⊆ V (Ai) by hypothesis (a). Since α(u) = α(v) ∈ V (L ∩ Ai) and hence
α(u), α(v) are L ∩A-connected, it follows from hypothesis (c) that u, v are L ′

i-connected and hence
L′-connected. This proves (4).

(5) If u, v ∈ Z ′ and there is a path P of L with ends α(u), α(v) and with no internal vertex in
Z, then u, v are L′-connected.

Subproof. Since no internal vertex of P is in Z, and V (Ai ∩ Aj) ⊆ Z for 1 ≤ i < j ≤ k, it fol-
lows that P ⊆ Ai for some i, and α(u), α(v) ∈ Zi. By hypothesis (a), there exist u′, v′ ∈ Z ′

i such
that α(u) = α(u′) and α(v) = α(v′). By hypothesis (c), u′ and v′ are L′

i-connected and hence L′-
connected, and by (4) so are u and u′, and so are v and v′. Consequently u and v are L′-connected.
This proves (5).

(6) If u, v ∈ Z ′ and α(u), α(v) are L-connected then u, v are L′-connected.

Subproof. Let P be a path of L with ends α(u), α(v), and let V (P ) ∩ Z = {z1, . . . , zn} in or-
der, where z1 = α(u) and zn = α(v). For 1 ≤ i ≤ n, choose vi ∈ Z ′ with α(vi) = zi, with v1 = u and
vn = v. (This is possible by hypothesis (a).) By (5), for 1 ≤ i < n, vi and vi+1 are L′-connected.
Hence u, v are L′-connected. This proves (6).

From (2), (3) and (6), the result follows. This completes the proof of (2.5).
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Here is a corollary of (2.5). A separation of G is a pair (A,B) of subgraphs with A ∪B = G and
E(A ∩B) = ∅.

2.6 Let (A,B) be a separation of a graph G, let Z ⊆ V (G) with V (A∩B) ⊆ Z, and let L ⊆ G. Let
L′ ⊆ A with the same effect on Z ∩ V (A) as L ∩ A. Then L′ ∪ (L ∩ B) ⊆ G has the same effect on
Z as L.

Proof. Let A1 = A′
1 = A,A2 = A′

2 = B,G = G′, and Z = Z ′, and let α : Z ′ → Z be the identity.
Let L1 = L ∩A,L′

1 = L′, L2 = L′
2 = L ∩B. The result follows from (2.5).

From (2.6) we deduce

2.7 Let L be a subgraph of G, vital for Z ⊆ V (G), and let (A,B) be a separation of G. Then L∩A
is vital for (Z ∩ V (A)) ∪ V (A ∩B) in A.

Proof. Let Z ′ = Z ∪ V (A ∩ B). Then L is vital for Z ′ in G, and so by (2.6), L ∩ A is vital for Z ′

in A, as required.

3 Drawings in a disc

In this section we prove the result outlined in the first paragraph of section 1. A surface is a connected
compact 2-manifold, possibly with boundary. If Σ is a surface, a subset X ⊆ Σ is an O-arc if it is
homeomorphic to a circle, and a line if it is homeomorphic to the unit interval [0, 1]. The boundary
of Σ is denoted by bd(Σ), and the components of bd(Σ) are called the cuffs of Σ; each cuff is an
O-arc. If X ⊆ Σ, its topological closure is denoted by X̄.

A drawing in Σ is a pair (U, V ), where U ⊆ Σ is closed, V ⊆ U is finite, U ∩ bd(Σ) ⊆ V , U \ V
has only finitely many arc-wise connected components, called edges, and for each edge e, either ē is
an O-arc and |ē ∩ V | = 1, or ē is a line and ē ∩ V is the set of ends of ē. If Γ = (U, V ) is a drawing
in Σ, we write U(Γ) = U and V (Γ) = V . We use graph-theoretic terminology for drawings in the
natural way. If Γ is a drawing in Σ, we say X ⊆ Σ is Γ-normal if X ∩ U(Γ) ⊆ V (Γ). The regions of
Γ in Σ are the components of Σ \ U(Γ). Note that in this paper, we do not insist that V (Γ) meets
every cuff.

If Γ is a drawing in Σ, and T ⊆ Σ has the property that either e ∩ T = ∅ or ē ⊆ T for every
e ∈ E(Γ), we define Γ ∩ T to be the subdrawing (U(Γ) ∩ T, V (Γ) ∩ T ) of Γ. Let Γ be a drawing in a
surface Σ, and let Y ⊆ Σ. We say x ∈ Σ is h-insulated (in Σ) from Y (by Γ) if there are h disjoint
circuits of Γ, all bounding discs in Σ containing x in their interiors and with no point of Y in their
interiors; or more precisely, there are h closed discs ∆1, . . . ,∆h ⊆ Σ such that

• x ∈ ∆h \ bd(∆h), and Y ∩ ∆1 = ∅

• for 1 ≤ i < h, ∆i+1 ⊆ ∆i \ bd(∆i)

• for 1 ≤ i ≤ h, bd(∆i) ⊆ U(Γ).

The main result of this section is the following.
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3.1 For every integer p ≥ 0 there exists h ≥ 1 with the following property. Let Γ,K be subgraphs
of a graph G, and let Γ be a drawing in a surface Σ. Let v ∈ V (Γ) be h-insulated from V (Γ ∩K) by
Γ, let Z ⊆ V (K) with |Z| ≤ p, and let L ⊆ G. Then there is a subgraph L′ of G \ {v} with the same
effect on Z as L and with L′ ∩K ⊆ L.

To prove (3.1) we need two lemmas.

3.2 Let C1, . . . , Ch be mutually vertex-disjoint connected subgraphs of a graph G, and also let
D1, . . . , Dh be mutually vertex-disjoint connected subgraphs of G. Suppose that Ci ∩Dj is non-null
for 1 ≤ i, j ≤ h. Then G has tree-width at least h− 1.

Proof. For each X ⊆ V (G) with |X| < h, there exists i with 1 ≤ i ≤ h such that X∩V (Ci) = ∅, and
hence there is a component H of G \X with Ci ⊆ H. Since Ci ∩Dj is non-null for each j, it follows
that Dj ⊆ H for every j with X ∩ V (Dj) = ∅, and there is such a j. By the same argument, H
includes every one of C1, . . . , Ch which is disjoint from X. Define β(X) = V (H). Then β(X) ⊆ β(Y )
if Y ⊆ X ⊆ V (G) and |X| < h, that is, β is a “haven of order h in G” in the terminology of [8], and
by theorem (1.4) of [8], G has tree-width at least h− 1, as required.

A line F in a surface Σ is proper if its ends are in bd(Σ) and no other point of F is in bd(Σ). The
second lemma we need is as follows.

3.3 Let Γ be a drawing in a closed disc ∆, and let L ⊆ Γ with V (Γ) ∩ bd(∆) ⊆ V (L). Let
v ∈ V (Γ)\bd(∆), and suppose that there is no subgraph of Γ\{v} with the same effect on V (Γ)∩bd(∆)
as L. Then there is a Γ-normal proper line F ⊆ ∆ with v ∈ F ∩ V (Γ), such that there are F ∩ V (Γ)
components of L with a vertex in F ∩ V (Γ).

Proof. Let the effect of L on V (Γ) ∩ bd(∆) be {Zi : 1 ≤ i ≤ k} say. By theorem (3.6) of [1], there
is a (Γ \ {v})-normal proper line F ⊆ ∆ such that

|F ∩ V (Γ \ {v})| < |{i : 1 ≤ i ≤ k, F1 ∩ Zi 6= ∅ 6= F2 ∩ Zi}|

where F1 and F2 are the two lines in bd(∆) with the same ends as F . Let r be the region of Γ \ {v}
containing v. We may choose F so that it is Γ-normal; for if F ∩ r = ∅ then F is already Γ-normal,
and if F ∩ r 6= ∅, choose a maximal line F ′ ⊆ F with both ends in r̄, and replace F ′ in F by a
Γ-normal line in r̄, with no point in r̄ except its ends.

Let us renumber Z1, . . . , Zk so that for 1 ≤ i ≤ k, Zi meets both F1 and F2 if and only if i ≤ j.
For 1 ≤ i ≤ k, let Li be the component of L with V (Li) ∩ bd(∆) = Zi. Since for 1 ≤ i ≤ j,
U(Li) meets both F1 and F2, it follows that F ∩ U(Li) = ∅, and since F is Γ-normal, there exists
vi ∈ F ∩ V (Li). Now L1, . . . , Lj are mutually vertex-disjoint, and so v1, . . . , vj are all distinct. But

{v1, . . . , vj} ⊆ F ∩ V (Γ) ⊆ (F ∩ V (Γ \ {v})) ∪ {v}

and |F ∩ V (Γ \ {v})| < j, from the choice of j. Consequently, we have equality throughout, and so
v ∈ F ∩ V (Γ), and j = |F ∩ V (Γ)|, and L1, . . . , Lj all have a vertex in F . The result follows.
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Proof of (3.1). Let w be as in (2.1), and let h = d5w/4e + 2. We claim that h satisfies (3.1). For
suppose not; then we can choose a graph G satisfying (1) and (2) below.

(1) For some Γ,K, v, Z, L as in the theorem, with Γ ∪ K ⊆ G, no subgraph L′ of G \ {v} with
L′ ∩K ⊆ L has the same effect on Z as L.

(2) Subject to (1), |V (G)| + |E(G)| is minimum.

Choose Γ,K, v, Z, L as in (1), and let ∆1, . . . ,∆h be as in the definition of “h-insulated”. Then
we see that

(3) V (K) ∩ ∆1 = ∅ and hence Z ∩ ∆1 = ∅.

It follows that

(4) Z ⊆ V (L), and K ⊆ L; and no subgraph of G \ {v} has the same effect on Z as L.

Subproof. If there exists z ∈ Z \ V (L), let G′ = G \ {z}, and let Γ′ = Γ \ {z} if z ∈ V (Γ) and
Γ′ = Γ otherwise; then L,Γ′ ⊆ G′ and Z ′ ⊆ V (G′) where Z ′ = Z \ {z}, and no subgraph of G′ \ {v}
has the same effect on Z ′ as L, contrary to (2). Thus Z ⊆ V (L). Suppose next that there exists
e ∈ E(K) \ E(L). If e ∈ E(Γ) then e ∩ ∆1 = ∅, and moreover L,Γ′ ⊆ G \ {e} (where Γ′ = Γ \ {e} if
e ∈ E(Γ), and Γ′ = Γ otherwise), contrary to (2). Thus E(K) ⊆ E(L), and similarly V (K) ⊆ V (L).
The last claim follows from (1). This proves (4).

Let Ci be the circuit of Γ with U(Ci) = bd(∆i) (1 ≤ i ≤ h). Let C1 ∪ · · · ∪ Ch = M .

(5) |E(Ci)| ≥ 2 for 1 ≤ i ≤ h.

Subproof. If |E(Ci)| = 1, let X = V (L) ∩ (∆i \ bd∆i); then L \ X has the same effect on Z as
L, and v 6∈ V (L \X), contrary to (1). This proves (5).

(6) L is vital for Z in G.

Subproof. Let L′ ⊆ G have the same effect on Z as L. By (2), L′ ∪ M = G. Suppose that
there exists e ∈ E(L′ ∩M). By (5), e is not a loop, and e is not incident with v, since v 6∈ V (M).
No end of e is in Z, by (3). Hence no subgraph of (G/e) \ {v} has the same effect on Z as L/e (we
denote the contraction operation by /), if we interpret Z as a subset of V (G/e) in the natural way.
But this contradicts (2). Consequently E(L′ ∩M) = ∅, and so E(L′) = E(G) \ E(M). Since the
same holds for L, we deduce that E(L′) = E(L).

Suppose that there exists u ∈ V (G) \ V (L′). Since L′ ∪M = G, it follows that u ∈ V (M), and
by (5), there is a non-loop edge e of M incident with u. Let L′′ be obtained from L′ by adding e
and its ends u, u′ say. Now u, u′ 6∈ Z by (3), and so L′′ has the same effect on Z as L′ and hence as
L. Yet E(L′′ ∩M) 6= ∅, contrary to what we just proved. This shows that V (L′) = V (G), and hence
L′ = L, and therefore L is vital. This proves (6).
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Let Γ1 = Γ ∩ ∆1.

(7) At most 1
2(w + 1) components of L ∩ Γ1 meet ∆w+3.

Subproof. Let L1, . . . , Lt be components of L ∩ Γ1 meeting ∆w+3, and for 1 ≤ i ≤ t let vi ∈
V (Li) ∩ ∆w+3. Let 1 ≤ i ≤ t. Since L is a forest there is a path of L passing through vi with both
ends of degree at most 1 in L, and hence with both ends in Z, by (6) and (2.2). Since Z ⊆ V (K), it
follows that there is a path P of L∩Γ1 with vi ∈ V (P ) and with both ends in V (C1). Since both sub-
paths of P from vi to its ends meet V (Cw+2), P contains two vertex-disjoint paths between V (Cw+2)
and V (C1). Since this holds for all i with 1 ≤ i ≤ t, there are 2t mutually vertex-disjoint paths of
L ∩ Γ1, each meeting V (Cw+2) and V (C1) and hence meeting all of V (C1), V (C2), . . . , V (Cw+2). If
2t ≥ w+ 2 then by (3.2) G has tree-width ≥ w+ 1 contrary to (6) and (4.1). Thus 2t ≤ ω+ 1. This
proves (7).

Let ∆ ⊆ Σ be a closed disc with ∆1 ⊆ ∆, U(Γ) ∩ ∆1 = U(Γ) ∩ ∆, and U(Γ) ∩ bd(∆) = V (C1).

(8) If F is a Γ-normal proper line in ∆ with v ∈ F ∩ V (Γ), there are fewer than |F ∩ V (Γ)|
components of L ∩ Γ1 which meet F ∩ V (Γ).

Subproof. Suppose that there are |F ∩ V (Γ)| such components. Then each vertex of F ∩ V (Γ)
belongs to a different component of L ∩ Γ1. But there are ≥ 2h − 3 − 2w ≥ 1

2w + 1 vertices of
F ∩ V (Γ) in ∆w+3, because v ∈ F ∩ V (Γ) ∩ ∆w+3, and

|V (Ci) ∩ (F ∩ V (Γ) ∩ ∆w+3)| = |F ∩ U(Ci)| ≥ 2

for w + 3 ≤ i ≤ h. Hence there are ≥ 1
2w + 1 components of L ∩ Γ1 meeting ∆w+3, contrary to (7).

This proves (8).

Now Γ1 is a drawing in ∆, and L ∩ Γ1 ⊆ Γ1 with V (Γ1) ∩ bd(∆) ⊆ V (L ∩ Γ1). By (3.3) and
(8), there is a subgraph L′′ of Γ1 \ {v} with the same effect on V (Γ1) ∩ bd(∆) = V (C1) as L ∩ Γ1.
Consequently L ∩ Γ1 is not vital for V (C1) in Γ1, because L′′ 6= L ∩ Γ1 since v ∈ V (L ∩ Γ1) by (6).

Let Γ2 be the drawing formed by the edges of Γ not in ∆1, and the vertices of Γ not in ∆1\bd(∆1).
Then (Γ1,Γ2) is a separation of Γ with V (Γ1 ∩ Γ2) = V (C1). Let K1 = Γ2 ∪K. Since V (Γ ∩K) ⊆
V (Γ2), it follows that (Γ1,K1) is a separation of G, and V (Γ1 ∩K1) = V (C1). But Z ⊆ V (K1), and
L is vital for Z in G, and L ∩ Γ1 is not vital for (Z ∪ V (Γ1)) ∪ V (Γ1 ∩K1) = V (C1) in Γ1, contrary
to (2.7). The result follows.

4 Changing the drawing

(3.1) allows us to delete vertices of Γ without changing whether a subgraph exists with a desired
effect on Z. But it can also be used in reverse, for it allows us to introduce new vertices into Γ
without changing whether the desired subgraph exists. By doing both, we can replace parts of Γ by
completely different drawings. This is quite powerful, as we shall see in this section and the next.

We have a pair of subgraphs Γ,K of a graph G with Γ∪K = G, where Γ is a drawing in a surface
Σ; and we wish to consider the effect of replacing Γ by a new drawing Γ′ in Σ with Γ ∩K ⊆ Γ′. We
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would like there to be a graph G′ with Γ′,K ⊆ G′ and with Γ′ ∩K = Γ ∩ K, and if this is so we
write Γ′ ∩K = Γ ∩K for brevity.

Let Γ and Γ′ be drawings in a surface Σ, and let T ⊆ Σ. We say that Γ′ is a T -variant of Γ in Σ
if

• V (Γ) \ T = V (Γ′) \ T and

• if e ∈ E(Γ) \ E(Γ′) or e ∈ E(Γ′) \ E(Γ), then ē ⊆ T .

From (3.1) we deduce the following.

4.1 For every integer p ≥ 0 there exists h ≥ 1 with the following property. Let Γ,K be subgraphs
of a graph Γ ∪K, let Γ be a drawing in a surface Σ and let T be the set of all points of Σ that are
h-insulated from V (Γ∩K) by Γ. Let Γ′ be a T -variant of Γ in Σ with Γ′∩K = Γ∩K, let L′ ⊆ Γ′∪K,
and let Z ⊆ V (K) with |Z| ≤ p. Then there exists a subgraph L of Γ ∪K with the same effect on Z
as L′, with L ∩K ⊆ L′.

Proof. Now T is open, for it is the union of the interiors of finitely many closed discs (namely,
those discs bounded by circuits of Γ which are “surrounded” by h− 1 other circuits). For each edge
e′ ∈ E(Γ′) \ E(Γ) we may therefore perturb e′ slightly (since ē′ ⊆ T ) so that e′ ∩ U(Γ) is finite,
preserving the property that Γ′ ∩K = Γ∩K. Consequently, we may assume that there is a drawing
Γ∗ in Σ with Γ∗ ∩ K = Γ ∩ K, which is a T -variant of Γ such that U(Γ∗) = U(Γ) ∪ U(Γ′) and
V (Γ) ∪ V (Γ′) ⊆ V (Γ∗). (The second inclusion may not be an equality since to make Γ∗ a drawing
it must have a vertex wherever an edge e of Γ meets an edge e′ 6= e of Γ′.) Let L∗ ⊆ Γ∗ with
U(L∗) = U(Γ′ ∩ L′). Then by (2.6), (K ∩ L) ∪ L∗ ⊆ K ∪ Γ∗ has the same effect on Z as L′. Conse-
quently, Γ∗ has all the defining properties of Γ′, and we may therefore assume that Γ∗ = Γ′, that is,

(1) U(Γ) ⊆ U(Γ′) and V (Γ) ⊆ V (Γ′).

Under condition (1), we proceed by induction on |V (Γ′)| + |E(Γ′)|. Suppose first that U(Γ′) =
U(Γ). Since V (Γ) ⊆ V (Γ′) it follows from (2.6) (as above) that there is a subgraph L ⊆ Γ ∪K with
U(L ∩ Γ) = U(L′ ∩ Γ′) and L ∩K = L′ ∩K, with the same effect on Z as L′; but then the theorem
is true.

We may therefore assume that U(Γ′) 6= U(Γ). Choose x ∈ U(Γ′) \ U(Γ). Choose v ∈ V (Γ′) so
that x = v if x ∈ V (Γ′), and v is an end of e if x ∈ e for some e ∈ E(Γ′). We claim that v ∈ T . For
x ∈ T , so if x = v this is true. If x ∈ e ∈ E(Γ′) and v is an end of e, then e 6∈ E(Γ) since x 6∈ U(Γ),
and v ∈ ē ⊆ T since Γ′ is a T -variant of Γ. This proves that v ∈ T , and hence v is h-insulated
by Γ and hence by Γ′ from V (Γ ∩ K) = V (Γ′ ∩ K). By (3.1) with Γ replaced by Γ′, there exists
L′′ ⊆ Γ′ ∪K with v 6∈ V (L) and L′′ ∩K ⊆ L′ ∩K, such that L′′ has the same effect on Z as L′. Let
Γ′′ be the T -variant of Γ′ (and hence of Γ) obtained from Γ′ by deleting x if x ∈ V (Γ′), and deleting
e if x ∈ e ∈ E(Γ′); then U(Γ) ⊆ U(Γ′′), V (Γ) ⊆ V (Γ′′), and

|V (Γ′′)| + |E(Γ′′)| < |V (Γ′)| + |E(Γ′)|.

Moreover, L′′ ⊆ Γ′′ ∪K, and so from the inductive hypothesis, there exists L ⊆ Γ∪K with the same
effect on Z as L′′ and hence as L′, and with L ∩K ⊆ L′′ ∩K ⊆ L′ ∩K, as required.
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Let Σ be a surface. We denote by Σ̂ the surface obtained from Σ by pasting an open disc onto
each cuff of Σ. Let Γ be a drawing in Σ. If C is a cuff of Σ, a sleeve for C in Γ is a closed disc ∆ ⊆ Σ̂
such that

• bd(∆) ⊆ U(Γ)

• ∆ includes the open disc pasted onto C in forming Σ̂

• ∆ ∩ bd(Σ) = C.

4.2 For every integer p ≥ 0 there exists h ≥ 1 with the following property. Let Γ,K be subgraphs of
a graph Γ∪K, let Γ be a drawing in a surface Σ, and let Z ⊆ V (K)∪ (V (Γ)∩ bd(Σ)), with |Z| ≤ p.
For each cuff C of Σ let S(C) be a sleeve for C in Γ, so that S(C1)∩S(C2) = ∅ for all distinct cuffs
C1, C2. Let S be the union of Σ ∩ S(C) over all cuffs C, and let T be the set of all points of Σ that
are h-insulated in Σ̂ from V (Γ ∩K) ∪ (V (Γ) ∩ bd(Σ)) by Γ. Suppose that

(i) for each cuff C there are |V (Γ) ∩C| mutually vertex-disjoint paths of Γ between V (Γ)∩C and
V (Γ) ∩ bd(S(C))

(ii) for each cuff C, bd(S(C)) ⊆ T and S(C) ∩ V (Γ ∩K) = ∅

(iii) Γ′ is an (S ∪ T )-variant of Γ with Γ′ ∩ K = Γ ∩ K and V (Γ′) ∩ bd(Σ) = V (Γ) ∩ bd(Σ), and
L′ ⊆ Γ′ ∪K.

Then there exists L ⊆ Γ ∪K with the same effect on Z as L′, with L ∩K ⊆ L′.

Proof. Let h be as in (4.1), and let Γ,K etc. be as in the theorem. Since Γ′ ∩K = Γ ∩K, we may
assume for convenience that V (K) ∩ Σ ⊆ V (Γ). Let C1, . . . , Cr be the cuffs of Σ. For 1 ≤ i ≤ r, let
C ′

i be the circuit of Γ with U(C ′
i) = bd(S(Ci)), let |V (Γ)∩Ci| = ki, and let Mi be a minimal linkage

in Γ with ki components, each with one end in V (Γ) ∩ Ci and the other end in V (C ′
i). For each

component P of Mi, let the ends of P be s(P ) ∈ V (Γ)∩Ci and s′(P ) ⊆ V (C ′
i). From the minimality

of Mi it follows that U(Mi) ⊆ S(Ci), and for each component P of Mi, U(P )∩ bd(S(Ci)) = {s′(P )}.
Let Σ0 be the surface obtained from Σ by deleting Σ∩(S(C)\bd(S(C))), for each cuff C. Then Σ0

is homeomorphic to Σ. Since T is open and bd(S(C)) ⊆ T for each cuff C, there is a homeomorphism
α : Σ → Σ0 fixing Σ \ (S ∪ T ) pointwise, such that for 1 ≤ i ≤ r, α maps U(Ci) onto U(C ′

i), and for
each component P of Mi, α maps s(P ) to s′(P ). Let Γ0 be the image of Γ′ under α. Then Γ0 is a
drawing in Σ0. Since Γ′ is an (S ∪ T )-variant of Γ and α fixes Σ \ (S ∪ T ) pointwise, it follows that
Γ0 is an (S ∪ T )-variant of Γ. Moreover, for 1 ≤ i ≤ r,

U(Γ0) ∩ U(C ′
i) = V (Γ0) ∩ U(C ′

i) = V (Mi ∩ C
′
i).

Let Γ′′ = Γ0∪
⋃

(Γ∩S(Ci) : 1 ≤ i ≤ r). Then Γ′′ is a drawing in Σ, and V (Γ′′)∩bd(Σ) = V (Γ)∩bd(Σ).
Moreover, Γ′′ is a T -variant of Γ, for it is an (S ∪ T )-variant of Γ (since Γ0 is) and for each cuff C,
Γ′′ ∩ S(C) = Γ ∩ S(C).

(1) V (Γ′′ ∩K) = V (Γ ∩K) ⊆ Σ \ (S ∪ T ).

Subproof. Certainly V (Γ′′∩K) ⊆ V (Γ∩K), since V (K)∩Σ ⊂ V (Γ). Let v ∈ V (Γ∩K). Since v 6∈ T
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by definition of T , and v ∈ V (Γ), it follows that v ∈ V (Γ′′), and so v ∈ V (Γ′′ ∩K). Also, v 6∈ S, by
hypothesis (ii), and so v ∈ Σ \ (S ∪ T ). This proves (1).

For 1 ≤ i ≤ r, let M ′
i be the union of the components P of Mi such that s(P ) ∈ V (L′). Let L0

be the image of L′ ∩ Γ′ under α, and let L′′ = L0 ∪M
′
1 ∪ · · · ∪M ′

r. Then L′′ ⊆ Γ′′, with the same
effect on V (Γ ∩K) ∪ (V (Γ) ∩ bd(Σ)) as L′ ∩ Γ′, since α(v) = v for each v ∈ V (Γ ∩K) by (1). By
(2.6), L′′ ∪ (L′ ∩K) ⊆ Γ′′ ∪K has the same effect on Z as L′. By (4.1) applied to Σ̂, there exists
L ⊆ Γ ∪K with the same effect on Z as L′′ ∪ (L′ ∪K) and hence as L′, and with

L ∩K ⊆ (L′′ ∪ (L′ ∩K)) ∩K ⊆ L′,

as required.

For our applications of (4.2) in this paper, we only really need (4.2) when Σ̂ is a sphere. But
for general surfaces it is still of some interest. For instance, the special case of (4.2) when K is null,
Z = V (Γ) ∩ bd(Σ) and S ∪ T = Σ is still powerful, for it readily implies the main theorem of [2],
indeed in a strengthened form (it shows that the lower bound on α(G) discussed in theorem (7.5)
of [2] can be replaced by one independent of the surface). This would therefore give a new and
virtually painless proof of the result of [2], if only an easy proof of (1.1) could be found.

5 Tangles

If (A,B) is a separation of G, its order is |V (A ∩B)|. A tangle of order θ ≥ 1 in a graph G is a set
T of separations of G, all of order < θ, such that

• for every separation (A,B) of G of order < θ, T contains one of (A,B), (B,A)

• if (Ai, Bi) ∈ T (i = 1, 2, 3) then A1 ∪A2 ∪A3 6= G

• if (A,B) ∈ T then V (A) 6= V (G).

We write ord(T ) = θ. If Γ is a drawing in a surface Σ with bd(Σ) = ∅, a tangle T in Γ is respectful
if for every Γ-normal O-arc F ⊆ Σ with |F ∩ V (Γ)| < ord(T ) there is a closed disc ∆ ⊆ Σ bounded
by F with

(Γ ∩ ∆,Σ ∩ Σ \ ∆) ∈ T .

In this case, we write ∆ = ins(F ). We say Γ is 2-cell if every region is homeomorphic to an open
disc. Every connected drawing with a respectful tangle is 2-cell. The atoms of Γ are sets r where r
is a region of Σ in Σ, the sets e ∈ E(Γ) and the sets {v} where v ∈ V (Γ). The set of atoms of Γ
is denoted by A(Γ). If Γ is 2-cell, and T is a respectful tangle in Γ, we define a metric on A(Γ) as
discussed in [4]; this is called the metric of T , and denoted by d. If X,Y ⊆ Σ, we define d(X,Y ) to be
the minimum of d(a, b), taken over all atoms a, b with a∩X 6= ∅ and b∩Y 6= ∅, or d(X,Y ) = ord(T )
if one of X,Y is empty. We need the following, from theorem (9.2) of [6].

5.1 Let Γ be a 2-cell drawing in a surface Σ with bd(Σ) = ∅, and let T be a respectful tangle in Γ,
with metric d. Let z ∈ A(H), and let κ be an integer with 2 ≤ κ ≤ ord(T ) − 3. Then there is a
closed disc ∆ ⊆ Σ satisfying
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(i) bd(∆) ⊆ U(Γ)

(ii) d(z, x) ≤ κ+ 2 for all x ∈ A(Γ) with x ∩ ∆ 6= ∅

(iii) d(z, x) ≥ κ for all x ∈ A(Γ) with x 6⊆ ∆ \ bd(∆) (and in particular, z ⊆ ∆ \ bd(∆)).

We deduce

5.2 Let h ≥ 1 be an integer, let Γ be a 2-cell drawing in a surface Σ with bd(Σ) = ∅, and let T be
a respectful tangle in Γ of order ≥ 2h + 5, with metric d. Let x ∈ Σ, and let Y be the union of all
atoms y ∈ A(Γ) with d(y, z) ≥ 2h + 5, where z is the atom of Γ with x ∈ z. Then x is h-insulated
from Y by Γ.

Proof. Let κ = 2h+ 2, and let ∆ be as in (5.1).

(1) If r1, . . . , rt is a sequence of regions of Γ with z ⊆ r̄1, r̄t ∩ bd(∆) 6= ∅, and r̄i ∩ r̄i+1 6= ∅ for
1 ≤ i < t, then t ≥ h.

Subproof. Let z′ ∈ A(Γ) with r̄t ∩ bd(∆) ∩ z′ 6= ∅. Then

d(z, z′) ≤ d(z, r1) +
∑

1≤i≤t−1

d(ri, ri+1) + d(rt, z
′);

but d(z, r1) ≤ 2, d(ri, ri+1) ≤ 2 for 1 ≤ i ≤ t− 1, and d(rt, z
′) ≤ 2, and so d(z, z′) ≤ 2t+2. But from

(5.1)(iii), d(z, z′) ≥ 2h+ 2 since z′ 6⊆ ∆ \ bd(∆). Hence h ≤ t. This proves (1).

Let C1 be the circuit of Γ with U(C1) = bd(∆). From (1) and theorem (5.5) of [6], there are
circuits C2, . . . , Ch of Γ, mutually vertex-disjoint and with U(Ci) ⊆ ∆ \ bd(∆) (2 ≤ i ≤ h), such
that ∆2 ⊇ ∆3 ⊇ · · · ⊇ ∆h and z ⊆ ∆h \ bd(∆h), where ∆i is the closed disc in ∆ bounded by
U(Ci) (2 ≤ i ≤ h). But if y ∈ A(Γ) with y∩∆ 6= ∅, then y ⊆ ∆; and so by (5.1)(ii), d(z, y) ≤ 2h+4.
Consequently, Y ∩ ∆ = ∅, and so x is h-insulated from Y by Γ, as required.

The main result of this section is the following.

5.3 For every integer p ≥ 0 there exists θ > p with the following property. Let Γ,K be subgraphs
of a graph Γ ∪K, let Γ be a 2-cell drawing in a surface Σ with bd(Σ) = ∅, and let T be a respectful
tangle in Γ of order ≥ θ, with metric d. Let Z ⊆ V (Γ ∪ K) with |Z| ≤ p, and let F1, . . . , Ft be
Γ-normal O-arcs, such that

(F1 ∪ · · · ∪ Ft) ∩ V (Γ) ⊆ Z ⊆ ((F1 ∪ · · · ∪ Ft) ∩ V (Γ)) ∪ V (K)

and ins(F1), . . . , ins(Ft) are mutually disjoint. Suppose that

(i) for 1 ≤ i ≤ t, there is no Γ-normal O-arc F ⊆ Σ with |F ∩ V (Γ)| < |Fi ∩ V (Γ)| and ins(Fi) ⊆
ins(F )

(ii) for 1 ≤ i < j ≤ t, d(ins(Fi), ins(Fj)) ≥ θ
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(iii) for 1 ≤ i ≤ k, d(ins(Fi), v) ≥ θ for every v ∈ V (Γ ∩K).

Let R be the union of all atoms z of Γ with d(z, v) ≥ θ for all v ∈ V (Γ ∩K), and let

Σ′ = Σ \
⋃

1≤i≤t

(ins(Fi) \ Fi).

Let Γ′ be an (R∩Σ′)-variant of Γ in Σ with Γ′∩K = Γ∩K and with Γ∩ ins(Fi) = Γ′∩ ins(Fi) (1 ≤
i ≤ t), and let L′ ⊆ (Γ′ ∩ Σ′) ∪K. Then there exists L ⊆ (Γ ∩ Σ′) ∪K with the same effect on Z as
L′, such that L ∩K ⊆ L′.

Proof. Let h ≥ 1 be as in (4.2), and let θ = 2p + 4h + 15. We claim that θ satisfies the theorem.
For let Γ,K etc. be as in the theorem. Let ri be a region of Γ in Σ with ri ∩ Fi 6= ∅, for 1 ≤ i ≤ t.
Since |Fi ∩ V (Γ)| ≤ |Z| ≤ p, we have

(1) For 1 ≤ i ≤ t, if z ∈ A(Γ) and z ∩ ins(Fi) 6= ∅ then d(z, ri) ≤ p.

By (5.1), we deduce

(2) For 1 ≤ i ≤ t there is a closed disc Si ⊆ Σ such that

(i) bd(Si) ⊆ U(Γ),

(ii) d(ri, x) ≤ p+ 2h+ 7 for all x ∈ A(Γ) with x ∩ Si 6= ∅, and

(iii) d(ri, x) ≥ p+ 2h+ 5 for all x ∈ A(Γ) with x 6⊆ Si \ bd(Si).

(3) For 1 ≤ i < j ≤ t, Si ∩ Sj = ∅.

Subproof. If x is an atom with x ∩ S(Ci) ∩ S(Cj) 6= ∅, then by (2)(ii), d(ri, x), d(rj , x) ≤ p+ 2h+ 7,
and so d(ri, rj) ≤ 2p + 4h + 14 < θ. Consequently, d(ins(Fi), ins(Fj)) < θ contrary to hypothesis
(ii). This proves (3).

(4) For 1 ≤ i ≤ t, Si ∩ V (Γ ∩K) = ∅ and ins(Fi) ⊆ Si.

Subproof. If v ∈ V (Γ ∩K) then d(v, ins(Fi)) ≥ θ by hypothesis (iii), and in particular d(v, ri) ≥ θ.
Consequently, v 6∈ Si by (2)(ii), and so Si ∩ V (Γ ∩K) = ∅. Let z be an atom with z ⊆ ins(Fi). By
(1), d(ri, z) ≤ p, and so z ⊆ Si by (2)(iii). This proves (4).

(5) For 1 ≤ i ≤ t there are |Fi ∩ V (Γ)| mutually disjoint paths of Γ ∩ Σ′ between V (Γ) ∩ Fi and
V (Γ) ∩ bd(Si).

Subproof. If not, then by a form of Menger’s theorem applied to Γ ∩ Si, there is a Γ-normal O-
arc F ⊆ Σ with |F ∩ V (Γ)| < |Fi ∩ V (Γ)|, bounding a closed disc ∆ ⊆ Si with Fi ⊆ ∆. By theorem
(7.5) of [6], with H,Σ, θ, λ replaced by Γ,Σ, ord(T ), p+ 2h + 7, it follows that ∆ = ins(F ), since

2|F ∩ V (Γ)| < 2|Fi ∩ V (Γ)| ≤ 2p ≤ 2(ord(T ) − (2h + 8)).
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This contradicts hypothesis (i), and therefore proves (5).

Let X = V (Γ∩K)∪ ins(F1)∪ · · · ∪ ins(Ft). Let S = (S1 ∪ · · · ∪ St)∩Σ′, and let T be the set of
all points of Σ′ that are h-insulated in Σ from X by Γ ∩ Σ′.

(6) R ∩ Σ′ ⊆ S ∪ T .

Subproof. Let z ∈ A(Γ) such that d(z, v) ≥ θ for all v ∈ V (Γ ∩ K). If d(z, ins(Fi)) ≤ 2h + 4
for some i (1 ≤ i ≤ t) then d(z, ri) ≤ 2h + 4 + p by (1), and so z ⊆ Si by (2)(iii). We assume then
that d(z, ins(Fi)) ≥ 2h + 5 for 1 ≤ i ≤ t. Hence d(z,X) ≥ 2h + 5, since θ ≥ 2h + 5. By (5.2), v
is h-insulated in Σ from X by Γ and hence by Γ∩Σ′ (since Σ\Σ′ ⊆ X), and so z ⊆ T . This proves (6).

(7) For 1 ≤ i ≤ t, bd(Si) ⊆ T .

Subproof. Let z ∈ A(Γ) with z ⊆ bd(Si). By (1)(i) and (1)(ii),

p+ 2h+ 5 ≤ d(ri, z) ≤ p+ 2h+ 7.

We claim that d(z,X) ≥ 2h+ 5. For let x ∈ A(Γ) with x ∩X 6= ∅. If x ∩ ins(Fi) 6= ∅, then by (1),

p+ 2h+ 5 ≤ d(ri, z) ≤ d(ri, x) + d(x, z) ≤ p+ d(x, z)

and so d(x, z) ≥ 2h+ 5. If x ∩ ins(Fj) 6= ∅ for some j 6= i with 1 ≤ j ≤ t, then by hypothesis (ii),

θ ≤ d(ins(Fi), ins(Fj)) ≤ d(x, ri) ≤ d(x, z) + d(ri, z) ≤ d(x, z) + p+ 2h+ 7

and so d(x, z) ≥ 2h+ 5. Finally, if x ∈ V (Γ ∩K), then by hypothesis (iii),

θ ≤ d(ins(Fi), x) ≤ d(ri, x) ≤ d(ri, z) + d(x, z) ≤ d(x, z) + p+ 2h+ 7

and again d(x, z) ≥ 2h + 5. This proves that d(z,X) ≥ 2h + 5. Consequently z is h-insulated in Σ
from X by Γ and hence by Γ ∩ Σ′, and so z ⊆ T . This proves (7).

From (5), Γ′∩Σ′ is an (S∪T )-variant of Γ∩Σ′. By (2), (3), (5), (7) and (4.2) (applied to Γ′∩Σ′),
the result follows.

We observe that the special case of (5.3) when K is null is precisely theorem (3.2) of [4], except
that now θ does not depend on Σ.

6 Rooted digraphs

A digraph is a directed graph. When without explanation we use graph-theoretic terms for digraphs,
such as “connected”, “path”, “separation”, “subgraph”, these should be taken to refer to the undi-
rected graph underlying the digraph.

A rooted digraph (G, u1, . . . , uq) consists of a digraph G and a sequence u1, . . . , uq of vertices of G,
not necessarily distinct. A rooted digraph (G, u1, . . . , uq) has detail ≤ δ, where δ ≥ 0 is an integer,
if |E(G)| ≤ δ and |V (G) \ {u, . . . , uq}| ≤ δ. If (G, u1, . . . , uq) and (H, v1, . . . , vq) are rooted digraphs,
both with q roots, a model of the second in the first is a function φ with domain V (H)∪E(H), such
that
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(i) for each v ∈ V (H), φ(v) is a non-null connected subgraph of G; for all distinct v, v ′ ∈ V (H),
φ(v) ∩ φ(v′) is null; and for 1 ≤ i ≤ q, ui ∈ V (φ(vi))

(ii) for each e ∈ E(H), φ(e) is an edge of G; for all distinct e, e′ ∈ E(H), φ(e) 6= φ(e′); for all
e ∈ E(H) and v ∈ V (H), φ(e) 6∈ E(φ(v)); and if e ∈ E(H) has head v ∈ V (H) and tail
v′ ∈ V (H) then φ(e) has head in V (φ(v)) and tail in V (φ(v ′)).

For δ ≥ 0, the δ-folio of (G, u1, . . . , uq) is the class of all rooted digraphs with detail ≤ δ of which
there is a model in (G, u1, . . . , uq). In [5] we gave an algorithm to compute the δ-folio of a rooted
digraph (G, u1, . . . , uq); it had running time O(|V (G)|3) for fixed q and δ. However, the proof of its
correctness used a result (theorem (10.2) of [5]) which was not proved in [5], and proving it is the
objective of this paper.

Let φ be a model of (H, v1, . . . , vq) in (G, u1, . . . , uq). A basis for φ is a subset Z ⊆ V (G) such
that u1, . . . , uq ∈ Z, both ends of φ(e) belong to Z for every e ∈ E(H), and Z ∩ V (φ(v)) 6= ∅ for
every v ∈ V (H). (The third condition is implied by the first two except for vertices v of H different
from v1, . . . , vq and not incident with any edge of H.) We observe that, obviously,

6.1 If H has detail ≤ δ, every basis for φ includes a basis of cardinality ≤ q + 3δ.

6.2 Let φ be a model of (H, v1, . . . , vq) in (G, u1, . . . , uq), let Z be a basis for φ, let L =
⋃

(φ(v) : v ∈
V (H)), and let L′ ⊆ G \ φ(E(H)) with the same effect on Z as L. Define φ′(e) = φ(e) (e ∈ E(H)),
and for v ∈ V (H) let φ′(v) be the component T of L′ with V (T ) ∩ Z = V (φ(v)) ∩ Z. Then φ′ is a
model of (H, v1, . . . , vq) in (G, u1, . . . , uq).

Proof. For distinct v1, v2 ∈ V (H), there is a vertex z of Z in V (φ(v1)) and hence not in V (φ(v2))
since Z is a basis; consequently, z ∈ V (φ′(v1)) \ V (φ′(v2)), and so φ′(v1) 6= φ′(v2). Since φ′(v1) and
φ′(v2) are both components of L′ it follows that φ′(v1)∩φ

′(v2) is null. For 1 ≤ i ≤ q, ui ∈ Z∩V (φ(vi)),
and hence ui ∈ V (φ′(vi)). This proves condition (i) in the definition of “model”.

For condition (ii), the first three statements are clear. For the fourth, let e ∈ E(H) have head v
and tail v′, and let φ(e) have head u and tail u′. Then u, u′ ∈ Z, and u ∈ V (φ(v)), and u′ ∈ V (φ(v′)).
Consequently, u ∈ V (φ′(v)) and u′ ∈ V (φ′(v′)). This proves (ii), and so completes the proof of
(6.1).

If G is a digraph and Z ⊆ V (G), a Z-division of G is a set {A1, . . . , Ak} of subdigraphs of G such
that A1∪· · ·∪Ak = G, and E(Ai∩Aj) = ∅ and V (Ai∩Aj) ⊆ Z for 1 ≤ i < j ≤ k. If X is a finite set,
an ordering of X is a sequence x1, . . . , xn such that x1, . . . , xn are all distinct and X = {x1, . . . , xn}.
We shall need the following lemma.

6.3 Suppose that the following hold:

• (G, u1, . . . , uq), (G′, u′1, . . . , u
′
q) and (H, v1, . . . , vq) are rooted digraphs;

• Z ⊆ V (G) with u1, . . . , uq ∈ Z; {A0, A1, . . . , Ak} is a Z-division of G with Z ⊆ V (A0), and for
1 ≤ i ≤ k, πi is an ordering of Z ∩ V (Ai);

• Z ′ ⊆ V (G′) with u′1, . . . , u
′
q ∈ Z ′; {A′

0, A
′
1, . . . , A

′
k} is a Z ′-division of G′ with Z ′ ⊆ V (A′

0); and
for 1 ≤ i ≤ k, π′i is an ordering of Z ′ ∩ V (A′

i);
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• δ ≥ 0 is an integer such that (H, v1, . . . , vq) has detail ≤ δ, and for 1 ≤ i ≤ k, (A′
i, π

′
i) has the

same δ-folio as (Ai, πi);

• α : Z ′ → Z is a function mapping Z ′ onto Z and for 1 ≤ i ≤ k mapping π′
i to πi;

• φ is a model of (H, v1, . . . , vq) in (G, u1, . . . , uq) such that φ(E(H)) ⊆ E(A1 ∪ · · · ∪ Ak) and
φ(v) ∩ (A1 ∪ · · · ∪Ak) is non-null for each v ∈ V (H);

• L ⊆ G is minimal such that Z ⊆ V (L) and φ(v) ⊆ L for each v ∈ V (H); and

• L′
0 ⊆ A′

0 is such that u, v ∈ Z ′ are L′
0-connected if and only if α(u), α(v) are (L∩A0)-connected.

Then there is a model φ′ of (H, v1, . . . , vq) in (G′, u′1, . . . , u
′
q) such that φ′(E(H)) ⊆ E(A′

1 ∪ · · · ∪A′
k)

and φ′(v) ∩ (A′
1 ∪ · · · ∪A′

k) is non-null for each v ∈ V (H).

Proof. For 0 ≤ i ≤ k, let Li = L ∩ Ai, let Zi = Z ∩ V (Ai), and let Z ′
i = Z ′ ∩ V (A′

i). From the
definition of L, we see

(1) For each v ∈ V (H), φ(v) is a component of L, and every other component of L is an isolated
vertex in Z.

For the moment, fix i with 1 ≤ i ≤ k. Let J be the digraph with vertex set the set of components
of Li, and edge set φ(E(H))∩E(Ai), where for e ∈ φ(E(H))∩E(Ai), if in Ai, e has head (respectively,
tail) u, then in J , e has head (respectively, tail) the component of Li containing u. This exists, for
if e = φ(f) where f ∈ E(H) and f has head (respectively, tail) v, then u ∈ V (φ(v)) ⊆ V (L). Let πi

be the sequence p1, . . . , pt, and for 1 ≤ j ≤ t let Pi be the component of Li with pi ∈ V (Pi). (This
exists since p1, . . . , pt ∈ Z ⊆ V (L).) Then (J, P1, . . . , Pt) is a rooted digraph.

(2) (J, P1, . . . , Pt) has detail ≤ δ, and there is a model of it in (Ai, πi).

Subproof. Certainly

|E(J)| = |φ(E(H)) ∩E(Ai)| ≤ |φ(E(H))| = |E(H)| ≤ δ.

If P ∈ V (J) and P 6= P1, . . . , Pt, then p1, . . . , pt 6∈ V (P ), and so V (P ) ∩ Z = ∅. Consequently, every
edge of G incident with a vertex in P is an edge of Ai, since V (Ai ∩Aj) ⊆ Z for j 6= i, and so every
edge of L incident with a vertex in P is an edge of Li, and hence belongs to E(P ). We deduce that
P is a component of L with u1, . . . , uq 6∈ V (P ). Let v ∈ V (H) with P = φ(v); then v 6= v1, . . . , vq,
since u1, . . . , uq 6∈ V (P ). But since (H, v1, . . . , vq) has detail at most δ, there are at most δ such
vertices v in H, and consequently at most δ such vertices P of J . This proves that (J, P1, . . . , Pt)
has detail at most δ. Define ψ(e) = e for e ∈ E(J), and ψ(P ) = P for P ∈ V (J); then ψ is a model
of (J, P1, . . . , Pt) in (Ai, πi). This proves (2).

Since (A′
i, π

′
i) has the same δ-folio as (Ai, πi), it follows from (2) that there is a model of

(J, P1, . . . , Pt) in (A′
i, π

′
i). In other words,

(3) For each component P of Li there is a non-null connected subgraph ψi(P ) ⊆ A′
i, and for each

e ∈ φ(E(H)) ∩E(Ai) there is an edge ψi(e) ∈ E(A′
i), with the following properties:
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• for distinct components P1, P2 of Li, ψi(P1) ∩ ψi(P2) is null; and if P is a component of Li,
then P contains the jth term of πi if and only if ψi(P ) contains the jth term of π′

i

• for distinct edges e1, e2 ∈ φ(E(H)) ∩E(Ai), ψi(e) 6= ψi(e
′); for e ∈ φ(E(H)) ∩ E(Ai), ψi(e) 6∈

E(ψi(P )) for each component P of Li; and if in Ai, e ∈ φ(E(H))∩E(Ai) has head (respectively,
tail) u, then in A′

i, ψi(e) has head (respectively, tail) in V (ψi(P )), where P is the component
of Li containing u.

For each e ∈ E(H), let φ′(e) = ψi(φ(e)), where φ(e) ∈ E(Ai) and 1 ≤ i ≤ k (such an i exists and
is unique, from the hypothesis). For 1 ≤ i ≤ k, let

L′
i =

⋃
(ψi(P ) : P is a component of Li).

Then L′
i is a subgraph of A′

i. Let L′ = L′
0 ∪ L

′
1 ∪ · · · ∪ L′

k, where L′
0 is as in the theorem.

(4) For 0 ≤ i ≤ k, Zi ⊆ V (Li) and Z ′
i ⊆ V (L′

i).

Subproof. From the choice of L it follows that Z0 = Z ⊆ V (L0). If u′ ∈ Z ′
0 = Z ′, then

α(u′) ∈ Z0 ⊆ V (L0), and so u′ ∈ V (L′
0) from the hypothesis about L′

0 (with u = v). Thus (4)
holds if i = 0, and we assume that i ≥ 1. Again Zi ⊆ V (Li) since Z ⊆ V (L). If u′ ∈ Z ′

i, let u′ be the
jth term of π′i, let u be the jth term of πi, and let P be the component of Li with u ∈ V (P ). By
(3)(i), u′ ∈ V (ψi(P )) ⊆ V (L′). Hence Z ′

i ⊆ V (L′
i), as required. This proves (4).

(5) For 0 ≤ i ≤ k, u, v ∈ Z ′
i are L′

i-connected if and only if α(u), α(v) are Li-connected.

Subproof. For i = 0 this is a hypothesis of the theorem, and so we assume that 1 ≤ i ≤ k.
Let u, v ∈ Z ′

i. Let πi be the sequence p1, . . . , pt, let π′i be p′1, . . . , p
′
t, and for 1 ≤ j ≤ t let Pi be the

component of Li containing pi. Let u = p′r, v = p′s say. Now ψi(Pr) is the component of L′
i containing

p′r, by (3)(i), and so u, v are L′
i-connected if and only if ψi(Pr) = ψi(Ps). By (3)(i), ψi(Pr) = ψi(Ps)

if and only if Pr = Ps. But Pr = Ps if and only if α(u), α(v) are Li-connected, for α(u) = pr ∈ V (Pr)
and α(v) = ps ∈ V (Ps). This proves (5).

(6) L′
i = L′ ∩ A′

i for 0 ≤ i ≤ k, and u, v ∈ Z ′ are L′-connected if and only if α(u), α(v) are L-
connected.

Subproof. This follows from (5) and (2.5).

For v ∈ V (H) we define φ′(v) to be a component of L′, as follows. If V (φ(v)) ∩ Z 6= ∅, choose
z′ ∈ Z ′ such that α(z′) ∈ V (φ(v)) ∩ Z, and let φ′(v) be the component of L containing z ′. (This
exists, by (4).) If V (φ(v)) ∩Z = ∅, then since φ(v) ∩ (A1 ∪ · · · ∪Ak) is non-null by hypothesis, there
is a unique i (1 ≤ i ≤ k) with φ(v) ⊆ Ai. Then φ(v) is a component of Li; let φ′(v) = ψi(φ(v)).
Since φ′(v) ⊆ A′

i and by (3)(i), V (φ′(v)) ∩ Z ′
i = ∅, it follows that φ′(v) is a component of L′.

(7) For v ∈ V (H), if z ∈ Z ′, then z ∈ V (φ′(v)) if and only if α(z) ∈ V (φ(v)).
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Subproof. Suppose that z ∈ Z ′ and α(z) ∈ V (φ(v)). Then V (φ(v)) ∩ Z 6= ∅, and so there ex-
ists z′ ∈ Z ′ with α(z′) ∈ V (φ(v)), such that z ′ ∈ V (φ′(v)). Thus α(z) and α(z ′) are L-connected,
and so by (6), z and z′ are L′-connected, that is, z ∈ V (φ′(v)), as required. Conversely, suppose that
z ∈ Z ′ ∩ V (φ′(v)). If V (φ(v)) ∩ Z = ∅ then V (φ′(v)) ∩ Z ′ = ∅ from the definition of φ′(v), a contra-
diction. Thus V (φ(v)) ∩ Z 6= ∅, and so there exists z ′ ∈ V (φ′(v)) ∩ Z ′ such that α(z′) ∈ V (φ(v)).
Then z and z′ are L′-connected, and so by (6), α(z) and α(z ′) are L-connected, that is, by (1),
α(z) ∈ V (φ(v)). This proves (7).

(8) If v1, v2 ∈ V (H) are distinct then φ′(v1) ∩ φ
′(v2) is null.

Subproof. Suppose that φ′(v1) ∩ φ′(v2) is non-null. Since φ′(v1) and φ′(v2) are both components
of L′, it follows that φ′(v1) = φ′(v2). If V (φ′(v1)) ∩ Z

′ = ∅, then V (φ(v1)) ∩ Z = ∅ = V (φ(v2) ∩ Z),
and so there exists i with 1 ≤ i ≤ k such that φ′(v1) ⊆ A′

i \ Z
′
i; and hence φ(v1), φ(v2) ⊆ Ai. Then

ψi(φ(v1)) = φ′(v1) = φ′(v2) = ψi(φ(v2))

and so by (3)(i), φ(v1) = φ(v2); and hence v1 = v2 since φ is a model. This is a contradiction.
It follows that there exists z ∈ V (φ′(v1)) ∩ Z ′ = V (φ′(v2)) ∩ Z

′. By (7), α(z) ∈ V (φ(v1) and
α(z) ∈ V (φ(v2)), and so φ(v1) = φ(v2) and v1 = v2, again a contradiction. This proves (8).

(9) For 1 ≤ i ≤ q, u′i ∈ V (φ′(vi)).

Subproof. For u′i ∈ Z ′ and α(u′i) = ui ∈ V (φ(vi)), and so by (7), u′i ∈ V (φ′(vi)), as required.
This proves (9).

(10) If e ∈ E(H) has head (respectively, tail) v ∈ V (H), then φ′(e) has head (respectively, tail)
in V (φ′(v)).

Subproof. We assume without loss of generality that v is the head of e. Choose i with 1 ≤ i ≤ k
such that φ(e) ∈ E(Ai), and let u be the head of φ(e) in Ai. Then u ∈ V (φ(v)). Let u′ be the
head of φ′(e) in A′

i; we must show that u′ ∈ V (φ′(v)). Let P be the component of Li containing
u. By (3)(ii), u′ ∈ V (ψi(P )). Since by (1), φ(v) is the component of L containing u, it follows that
P ⊆ φ(v). Now there are two cases. If V (P ) ∩ Zi = ∅, then P is a component of L, and so by (1),
P = φ(v) and

u′ ∈ V (ψi(P )) = V (ψi(φ(v))) = V (φ′(v))

as required. If V (P ) ∩ Zi 6= ∅, choose z ∈ Z ′
i with α(z) ∈ V (P ) ∩ Zi. By (3)(i), z ∈ V (ψi(P ))

since α maps π′i to πi. But α(z) ∈ V (P ) ⊆ V (φ(v)), and so z ∈ V (φ′(v)) by (7). Since ψi(P ) is a
connected subgraph of L′, and φ′(v) is a component of L′, and ψi(P ) ∩ φ′(v) is non-null, it follows
that ψi(P ) ⊆ φ′(v), and hence

u′ ∈ V (ψi(P )) ⊆ V (φ′(v))

as required. This proves (10).

Since L′ ⊆ G′ \ φ′(E(H)), it follows from (8), (9), (10) that φ′ is a model of (H, v1, . . . , vq) in
(G′, u′1, . . . , u

′
q). Since φ′(E(H)) ⊆ E(A′

1 ∪ · · · ∪A′
k) by the definition of φ′, it remains to show that
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if v ∈ V (H) then φ′(v) ∩ (A′
1 ∪ · · · ∪ A′

k) is non-null. Let v ∈ V (H), and choose i ≥ 1 so that
φ(v) ∩ Ai is non-null. If V (φ(v)) ∩ Zi = ∅ then φ′(v) = ψi(φ(v)) and so φ′(v) ∩ (A′

1 ∪ · · · ∪ A′
k) is

non-null. If z ∈ V (φ(v)) ∩Zi, choose z′ ∈ Z ′
i with α(z′) = z; then z′ ∈ V (φ′(v)) by (7), and so again

φ′(v) ∩ (A′
1 ∪ · · · ∪A′

k) is non-null. This completes the proof.

7 A generalization

As we said, the objective of this paper is to prove theorem (10.2) of [5]. Now (3.1) is already a
rudimentary version of what we need, but it has to be “bootstrapped” up into a more general, and
unfortunately much more complicated, result. That is the goal of this section. We need several
results about a system of subgraphs of a graph with the following properties (J1)–(J6).

(J1) (G,ω) is a rooted digraph where ω is the sequence w1, . . . , wq; w1, . . . , wq are all distinct and
W = {w1, . . . , wq}; and NW is the graph with vertex set W and no edges.

(J2) A is a set of subdigraphs of G; for all distinct A,A′ ∈ A, E(A ∩ A′) = ∅; for all A ∈ A,
W ⊆ V (A) and π(A) is a sequence of distinct vertices of A not in W , with one, two or three
terms, and π̄(A) is the set of terms of π(A); and for all distinct A,A′ ∈ A,

V (A ∩A′) = (π̄(A) ∩ π̄(A′)) ∪W.

(J3) Γ ⊆ G \W is a directed 2-cell drawing in a sphere Σ; an orientation of Σ is specified, called
“clockwise”; T is a tangle in Γ of order ≥ θ ≥ 4, ins is defined by T , and d is the metric of T .

(J4) For each A ∈ A, D(A) ⊆ Σ is a closed disc such that bd(D(A)) is Γ-normal, D(A) =
ins(bd(D(A))), Γ∩D(A) = Γ∩A, π̄(A) = bd(D(A)) ∩ V (G), and if |π̄(A)| = 3 then π(A) enu-
merates π̄(A) in clockwise order around D(A); and for all distinct A,A′ ∈ A, D(A)∩D(A′) =
π̄(A) ∩ π̄(A′).

(J5) N = Γ ∪ NW ∪
⋃

(A : A ∈ A); (N,K) is a separation of G and W ⊆ V (N ∩K); ∆ ⊆ Σ is a
closed disc with bd(∆) ⊆ U(Γ); d(v,Σ \ ∆) ≥ θ for all v ∈ V (Γ ∩K); d(D(A),Σ \ ∆) ≥ θ for
all A ∈ A with A ∩K 6= NW ; and v∗ ∈ V (Γ) with v∗ 6∈ ∆.

(J6) δ ≥ 0 is an integer; (H,χ) is a rooted digraph with detail ≤ δ; φ is a model of (H,χ) in
(G,ω); for each v ∈ V (H), φ(v) ∩ (K ∪

⋃
(A : A ∈ A)) is non-null; and for each e ∈ E(H),

φ(e) ∈ E(K ∪
⋃

(A : A ∈ A)).

There are (at least) two points that need clarification. First, Γ is a drawing, but it is also a subgraph
of the digraph G, and so its edges inherit directions from G. We therefore regard Γ both as a drawing
and as a digraph. Secondly, in general there are vertices of G in Σ that are not in V (Γ), for (J4)
implies that π̄(A) ⊆ Σ for each A ∈ A, and yet π̄(A) is not necessarily a subset of V (Γ).

7.1 Let (J1)–(J6) hold, and let K1 = K ∪
⋃

(A ∈ A : d(D(A),Σ \ ∆) ≥ θ). Then

(i) d(V (Γ ∩K1),Σ \ ∆) ≥ θ

(ii) for A ∈ A, if d(D(A),Σ \ ∆) < θ then E(A ∩K1) = ∅ and V (A ∩K1) ⊆ π̄(A) ∪W
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(iii) for A ∈ A, if d(D(A),Σ \ ∆) < θ − 3 then A ∩K1 = NW .

Proof. To prove (i), let v ∈ V (Γ ∩K1). If v ∈ V (K), then v ∈ V (Γ ∩K), and so d(v,Σ \ ∆) ≥ θ
by (J5). If v 6∈ V (K), then v ∈ V (A) for some A ∈ A with d(D(A),Σ \ ∆) ≥ θ; but then
v ∈ V (A ∩ Γ) ⊆ D(A) by (J4), and so

d(v,Σ \ ∆) ≥ d(D(A),Σ \ ∆) ≥ θ

as required. This proves (i).
For (ii), let A ∈ A with d(D(A),Σ \ ∆) < θ. By (J5), A ∩ K = NW ; and for all A′ ∈ A with

d(D(A),Σ\∆) ≥ θ, since A 6= A′ it follows from (J2) that E(A∩A′) = ∅ and V (A∩A′) ⊆ π̄(A)∪W .
This proves (ii).

For (iii), let A ∈ A with d(D(A),Σ\∆) < θ−3, and suppose that A∩K1 6= NW . By the argument
of (ii), A ∩K is null, and so there exists A′ ∈ A with d(D(A′),Σ \ ∆) ≥ θ such that A ∩ A′ 6= NW .
Since A 6= A′, by (J2), π̄(A) ∩ π̄(A′) 6= ∅. By (J4), D(A) ∩ D(A′) 6= ∅. Choose z ∈ Z(Γ) with
D(A) ∩D(A′) ∩ z 6= ∅. Since d(D(A),Σ \ ∆) < θ − 3, there exists y ∈ A(Γ) with y ∩D(A) 6= ∅ such
that d(y,Σ \ ∆) < θ − 3. Now y, z both intersect D(A), and bd(D(A)) is a Γ-normal O-arc with
|bd(D(A)) ∩ V (Γ)| ≤ 3 and ins(D(A))) = D(A), by (J4). Consequently d(y, z) ≤ 3. But

θ ≤ d(D(A′),Σ \ ∆) ≤ d(z,Σ \ ∆) ≤ d(y, z) + d(y,Σ \ ∆) ≤ 3 + (θ − 4),

a contradiction. This proves (iii).

Let (J1)–(J6) hold, and let φ′ be a model of (H,χ) in (G,ω). We say that A′ ⊆ A is adequate
for φ′ if

(i) for each v ∈ V (H) and A ∈ A, if A ∩ φ′(v) 6⊆ Γ ∪NW then A ∈ A′

(ii) for each v ∈ V (H), φ′(v) ∩ (K ∪
⋃

(A : A ∈ A′)) is non-null,

(iii) for each e ∈ E(H), φ′(e) ∈ E(K ∪
⋃

(A : A ∈ A′)), and

(iv) for each A ∈ A, if A ∩K 6= NW then A ∈ A′.

This implies that, if we define N ′ = Γ ∪ NW ∪
⋃

(A : A ∈ A′) and G′ = N ′ ∪K, then (J1)–(J6)
remain true with G,A, N, φ replaced by G′,A′, N ′, φ′ respectively.

7.2 For all q, δ ≥ 0 there exists θ ≥ 4 with the following property. Let (J1)–(J6) hold, and let
A′ ⊆ A be adequate for some model φ′ of (H,χ) in (G,ω), where d(v∗, D(A)) ≥ θ for all A ∈ A′.
Then there is a model of (H,χ) in (G \ {v∗}, ω).

Proof. Let p = q+3δ, choose h ≥ 1 so that (3.1) holds, and let θ = 2h+5. We claim that θ satisfies
(7.2). For let the hypotheses of (7.2) hold. Let K ′ = K ∪

⋃
(A : A ∈ A′).

(1) v∗ is h-insulated from V (Γ ∩K ′) by Γ.

Subproof. Let v ∈ V (Γ ∩ K ′); we claim that d(v∗, v) ≥ θ. If v ∈ V (K) this follows from (J5).
If v 6∈ V (K) then v ∈ V (A) for some A ∈ A′; but then v ∈ V (A ∩ Γ) ⊆ D(A) by (J4), and so
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d(v∗, v) ≥ d(v∗, D(A)) ≥ θ. This proves that d(v∗, V (Γ ∩K ′)) ≥ θ. By (5.2), this proves (1).

(2) There is a basis Z for φ′ with Z ⊆ V (K ′).

Subproof. For W ⊆ V (K) ⊆ V (K ′), and φ(e) ∈ E(K ′) for each e ∈ E(H), by statement (iii)
in the definition of “adequate”; and φ′(v) ∩K ′ is non-null for each v ∈ V (H), by statement (ii) in
the definition of “adequate”. This proves (2).

Choose Z as in (2), minimal. Then |Z| ≤ q + 3δ = p, by (6.1). Let L =
⋃

(φ′(v) : v ∈ V (H)).
Since |Z| ≤ p and Z ⊆ V (K ′), it follows from (1) and (3.1) (with K, v replaced by K ′, v∗) that
there exists L′ ⊆ (Γ ∪ K ′) \ {v∗} with the same effect on Z as L, such that L′ ∩ K ′ ⊆ L. Now
φ′(E(H)) ⊆ E(K ′), and φ′(E(H)) ∩E(L) = ∅, and so φ′(E(H)) ∩E(L′) = ∅, since L′ ∩K ′ ⊆ L. By
(6.2), there is a model of (H,χ) in (G \ {v∗}, ω), as required.

If π and ω are the finite sequences v1, . . . , vp and w1, . . . , wq, we denote their concatenation
v1, . . . , vp, w1, . . . , wq by π + ω.

7.3 For all integers q, δ, τ ≥ 0 there exists θ ≥ 5 with the following property. Let (J1)–(J6) hold,
and let B ⊆ A be adequate for φ. Let A1, . . . , At ∈ B where t ≤ τ , and let d(D(A),Σ \ ∆) ≥ θ for
every A ∈ B \ {A1, . . . , At}. Let A′

1, . . . , A
′
t ∈ A, and suppose that

(i) for 1 ≤ i ≤ t, (A′
i, π(A′

i) + ω) has the same δ-folio as (Ai, π(Ai) + ω)

(ii) for 1 ≤ i ≤ t, D(Ai) ∩ ∆ = ∅

(iii) for 1 ≤ i ≤ t, d(v∗, D(A′
i)) ≥ θ and D(A′

i) ∩ ∆ = ∅

(iv) for 1 ≤ i < j ≤ t, d(D(A′
i), D(A′

j)) ≥ θ

(v) for 1 ≤ i ≤ t, there is no Γ-normal O-arc F ⊆ Σ with |F ∩ V (Γ)| < |π̄(A′
i)| and with D(A′

i) ⊆
ins(F ).

Then there is a model of (H,χ) in (G \ {v∗}, ω).

Proof. Let p = q+ 3δ + 3τ . Choose θ′ ≥ max(p, 4) so that (7.2) holds with θ replaced by θ ′ and so
that (5.3) holds with θ replaced by θ ′. Let θ = θ′ + 3. We claim that θ satisfies (7.3). For let the
hypothesis of (7.3) hold. Let

K1 = K ∪
⋃

(A ∈ A : d(D(A),Σ \ ∆) ≥ θ).

Let L ⊆ G be minimal such that φ(v) ⊆ L for each v ∈ V (H) and π̄(Ai) ⊆ V (L) for 1 ≤ i ≤ t.

(1) L ⊆ Γ ∪K1 ∪A1 ∪ · · · ∪At, and φ(E(H)) ⊆ E(K1 ∪A1 ∪ · · · ∪At).

Subproof. Now φ(v) ⊆ Γ ∪ K1 ∪ A1 ∪ · · · ∪ At for all v ∈ V (H) since B is adequate for φ; and
π̄(Ai) ⊆ V (Ai) for 1 ≤ i ≤ t. Hence the first inclusion holds, and the second also holds since B is
adequate for φ. This proves (1).
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(2) We may assume that d(V (K1) ∩ Σ,Σ \ ∆) ≥ θ.

Subproof. We may assume that no vertex of G is in Σ except for the vertices of Γ and the ver-
tices of

⋃
(π̄(A) : A ∈ A). Let v ∈ V (K1) ∩ Σ. If v ∈ V (Γ) then by (7.1)(i), d(v,Σ \ ∆) ≥ θ

as required. We assume then that v ∈ V (A) for some A ∈ A with d(D(A),Σ \ ∆) ≥ θ. Since
v ∈ Σ ∩ V (G) and v 6∈ V (Γ), there exists A′ ∈ A with v ∈ π̄(A′), by our assumption. We claim
that v ∈ π̄(A); for if A = A′ this is true since v ∈ π̄(A′), and if A 6= A′ it follows from (J2). Thus
v ∈ π̄(A) ⊆ D(A), and so

d(v,Σ \ ∆) ≥ d(D(A),Σ \ ∆) ≥ θ

as required. This proves (2).

For 1 ≤ i ≤ t, let bd(D(A′
i)) = Fi.

(3) For 1 ≤ i ≤ t, Fi ∩ V (Γ) = π̄(A′
i)

Subproof. By hypothesis (v), |F ∩ V (Γ)| ≥ |π̄(A′
i)|. But F ∩ V (Γ) ⊆ π̄(A′

i) by (J4), and so there is
equality. This proves (3).

For 1 ≤ i ≤ t, let Di ⊆ D(Ai) \ bd(D(Ai)) be a closed disc.

(4) There is a homeomorphism β : Σ → Σ fixing ∆ pointwise and mapping Di to D(A′
i) for 1 ≤ i ≤ t.

Subproof. For D(A1), . . . , D(At) are disjoint from ∆ by hypothesis (ii). Hence D1, . . . , Dt,∆ are
mutually disjoint closed discs. But D(A′

1), . . . , D(A′
t) are also disjoint from ∆, by hypothesis (iii),

and from each other, also by (iii). This proves (4).

For 1 ≤ i ≤ t, let πi be the sequence of points of bd(Di) mapped by β to π(A′
i) and let π̄i be the

set of terms of πi.

(5) For 1 ≤ i ≤ t, |π̄i| = |π̄(Ai)| = |π̄(A′
i)|.

Subproof. Since β is a homeomorphism, it follows that |π̄i| = |π̄(A′
i)|. But |π̄(Ai)| = |π̄(A′

i)| since
(Ai, π(Ai) + ω) and (A′

i, π(A′
i) + ω) have the same δ-folio. This proves (5).

For 1 ≤ i ≤ t, let Mi be a drawing in D(Ai) with vertex set π̄(Ai) ∪ π̄i and with |πi| edges
ej (1 ≤ j ≤ |πi|), where ej has ends the jth term of π(Ai) and the jth term of πi, and ej ∩Di = ∅.
This exists, because |π̄i| ≤ 3 by (J2), and if |π̄i| = 3 then the circular orders of πi around Di and
π(Ai) around D(Ai) agree (by (J4), and since β preserves the orientation of Σ, because it fixes ∆
pointwise). Let

Γ0 = Γ ∩ (Σ \
⋃

(D(Ai) \ bd(D(Ai)) : 1 ≤ i ≤ t));

then Γ0 is a drawing in Σ. Let Γ1 = Γ0 ∪M1 ∪ · · · ∪Mt; this is a drawing in Σ. Let Γ2 be the image
of Γ1 under β, and let Γ3 be the union of Γ2 and Γ∩ ins(Fi) for 1 ≤ i ≤ t. Let R be the union of all
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z ∈ A(Γ) with d(z, v) ≥ θ′ for all v ∈ V (Γ ∩K1). Let

Σ′ = Σ \
⋃

(ins(Fi) \ Fi : 1 ≤ i ≤ t).

Thus, Γ2 = Γ3 ∩ Σ′.

(6) Γ3 is a (Σ \∆)-variant of Γ, and hence an (R∩Σ′)-variant of Γ, and Γ∩ ins(Fi) = Γ3 ∩ ins(Fi)
for 1 ≤ i ≤ t.

Subproof. Now Γ3,Γ2,Γ1,Γ0,Γ each differ from the next only in Σ \ ∆, by hypotheses (ii) and
(iii), and since β fixes ∆ pointwise. Thus Γ3 is a (Σ \ ∆)-variant of Γ. Since Σ \ ∆ ⊆ R by (2), it
follows that Γ3 is an R-variant of Γ. For 1 ≤ i ≤ t, Γ∩ ins(Fi) = Γ3 ∩ ins(Fi), and the result follows.
This proves (6).

(7) We may assume that Γ3 ∩K1 = Γ ∩K1.

Subproof. For we may assume that no edge of G is in Σ except for the edges of Γ. Now Γ ∩K1 is a
subgraph of Γ3 by (6) and (2), and so it suffices to show that

V (Γ3) ∩ V (K1) ⊆ V (Γ)

E(Γ3) ∩E(K1) ⊆ E(Γ).

The second inclusion is true since E(Γ3)∩E(G) ⊆ E(Γ). For the first inclusion, let v ∈ V (Γ3)∩V (K1).
By (2), v ∈ ∆, and since Γ3 is a (Σ \ ∆)-variant of Γ, it follows that v ∈ V (Γ) as required. This
proves (7).

Let L0 = L ∩ Γ0, let L1 = L0 ∪M1 ∪ · · · ∪Mt, and let L2 be the image of L1 under β. Then
L2 ∩K1 = L ∩K1, by (2) and the argument used to prove (6); and L2 ∪ (L ∩K1) is a subgraph of
Γ2 ∪K1. Choose Y1 ⊆ V (K1), minimal such that Y1 ∩ V (φ(v)) 6= ∅ for every v ∈ V (H) with

V (φ(v)) ∩ (W ∪ V (A1 ∪ · · · ∪At)) = ∅.

This is possible by (J6), and |Y1| ≤ δ since there are ≤ δ such vertices v ∈ V (H). Let Y2 be the set of
all vertices of G incident with an edge f ∈ φ(E(H)) where f ∈ E(Γ0∪K1); then |Y2| ≤ 2|E(H)| ≤ 2δ.
Let Z0 = Y1 ∪ Y2 ∪W ; then |Z0| ≤ q + 3δ, and Z0 ⊆ V (K1). Let

Z ′ = Z0 ∪ π̄(A′
1) ∪ · · · ∪ π̄(A′

t).

Then Z ′ ≤ q + 3δ + 3τ = p, and Z ′ ⊆ V (Γ ∪K1).

(8) There is a subgraph L′
0 of (Γ ∩ Σ′) ∪ K1 with the same effect on Z ′ as L2 ∪ (L ∩ K1) and

with E(L′
0) ∩ φ(E(H)) ⊆ E(A1 ∪ · · · ∪At).

Subproof. Let us apply (5.3), with

p, θ,Γ,K,Σ, T , d, Z, F1, . . . , Ft, R,Σ
′,Γ′, L′
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replaced by
p, θ′,Γ,K1,Σ, T , d, Z

′, F1, . . . , Ft, R,Σ
′,Γ3, L2 ∪ (L ∩K1)

respectively. We recall that θ′ was chosen so that (5.3) holds with p, θ replaced by p, θ ′. To verify the
hypotheses of (5.3) is straightforward. (5.3)(i) follows from (7.3)(v); (5.3)(ii) from (7.3)(iv); (5.3)(iii)
from (2); and the other hypotheses follow from (6) and (7). Consequently, by (5.3), there exists
L′

0 ⊆ (Γ ∩ Σ′) ∪K1 with the same effect on Z ′ as L2 ∪ (L ∩K1) and with L′
0 ∩K1 ⊆ L2 ∪ (L ∩K1).

Now L2 ∩K1 = L∩K1, and so L′
0 ∩K1 ⊆ L. Let f ∈ φ(E(H))∩E(L′

0). Since φ(E(H))∩E(L) = ∅,
it follows that f 6∈ E(L), and hence f 6∈ E(K1). By (1), f ∈ E(A1 ∪ · · · ∪At). Consequently,

φ(E(H)) ∩E(L′
0) ⊆ E(A1 ∪ · · · ∪At).

This proves (8).

Let Z = Z0 ∪ π̄(A1) ∪ · · · ∪ π̄(At), and define α : Z ′ → Z as follows: if v ∈ Z0, let α(v) = v, and
if v ∈ π̄(A′

i) where 1 ≤ i ≤ t, and v is the jth term of π(A′
i) say where 1 ≤ j ≤ |π̄i|, let α(v) be the

jth term of π(Ai). This defines a function since the sets Z0, π̄(A′
1), . . . , π̄(A′

t) are mutually disjoint.
Similarly, for v ∈ Z ′ define µ(v) = v if v ∈ Z0, and if v is the jth term of π(A′

i) let µ(v) be the jth
term of πi. Thus, if v ∈ π̄(A′

i), β(µ(v)) = v.

(9) u, v ∈ Z ′ are L′
0-connected if and only if α(u), α(v) are L0 ∪ (L ∩K1)-connected.

Subproof. To show this we make a sequence of equivalent statements, starting with:

(a) α(u), α(v) are L0 ∪ (L ∩K1)-connected.

Since α(u), α(v) ∈ Z ⊆ V (L0), (a) is equivalent to

(b) α(u), α(v) are L1 ∪ (L ∩K1)-connected,

because L1 ∪ (L ∩ K1) is obtained from L0 ∪ (L ∩ K1) by adding vertices of degree 1. Now α(u)
and µ(u) are either equal or are adjacent in L1; and similarly for α(v), µ(v). Consequently, (b) is
equivalent to

(c) µ(u), µ(v) are L1 ∪ (L ∩K1)-connected.

There is an isomorphism between L1∪(L∩K1) and L2∪(L∩K1) (since β fixes U(L1∩(L∩K1)) point-
wise), mapping each vertex x to β(x) if x ∈ Σ and mapping x to itself otherwise. Since β(µ(v)) = v
for v ∈ π̄(A′

1) ∪ · · · ∪ π̄(A′
t), this isomorphism maps µ(u) to u and µ(v) to v. Consequently, (c) is

equivalent to

(d) u, v are L2 ∪ (L ∩K1)-connected.

But by (8), (d) is equivalent to
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(e) u, v are L′
0-connected.

Hence (a) is equivalent to (e). This proves (9).

Let At+1 be the subdigraph of G with vertex set Z0 and edge set φ(E(H)) ∩E(K1), let π(At+1)
be some ordering of Z0 \W and let π̄(At+1) = Z0 \W . Let A0 = (Γ0 ∪K1) \ (φ(E(H)) ∩E(K1)).

(10) {A0, A1, . . . , At+1} is a Z-division of Γ ∪ K1 ∪ A1 ∪ · · · ∪ At, and Z ⊆ V (A0), and for 1 ≤
i ≤ t+ 1, π(Ai) + ω is an ordering of Z ∩ V (Ai).

Subproof. Now A0 ∪At+1 = Γ ∪K1, and so

A0 ∪A1 ∪ · · · ∪At+1 = Γ ∪K1 ∪A1 ∪ · · · ∪At.

Let 0 ≤ i < j ≤ t+ 1; we must show that V (Ai ∩Aj) ⊆ Z and E(Ai ∩Aj) = ∅. If 1 ≤ i < j ≤ t, this
follows from (J2). If 0 = i < j ≤ t it follows from (6.1) and the definition of Γ0. If 1 ≤ i < j = t+1 it
follows since Ai∩At+1 = NW by (7.1)(iii). Finally if i = 0 and j = t+1, then clearly E(Ai∩Aj) = ∅,
and V (Ai ∩Aj) ⊆ V (At+1) = Z0 ⊆ Z. This proves (10).

Let A′
t+1 = At+1, π(A′

t+1) = π(At+1), and π̄(A′
t+1) = π̄(At+1). Let

A′
0 = ((Γ ∩ Σ′) ∪K1) \ (φ(E(H)) ∩E(K1)).

(11) {A′
0, A

′
1, . . . , A

′
t+1} is a Z ′-division of Γ ∪K1 ∪ A

′
1 ∪ · · · ∪ A′

t, and for 1 ≤ i ≤ t+ 1, π(A′
i) + ω

is an ordering of Z ′ ∩ V (A′
i).

The proof is similar to that of (10).

(12) There is a model φ′ of (H,χ) in (Γ∪K1∪A
′
1∪· · ·∪A

′
t, ω) such that φ′(E(H)) ⊆ E(A′

1∪· · ·∪A
′
t+1)

and φ′(v) ∩ (A′
1 ∪ · · · ∪A′

t+1) is non-null for each v ∈ V (H).

Subproof. Let χ be x1, . . . , xq. Let us apply (6.3), with

G, u1, . . . , uq, G
′, u′1, . . . , u

′
q,H, v1, . . . , vq

replaced by

Γ ∪K1 ∪A1 ∪ · · · ∪At, w1, . . . , wq,Γ ∪K1 ∪A
′
1 ∪ · · · ∪A′

t, w1, . . . , wq,H, x1, . . . , xq

and with
δ, Z, k,A0 , A1, . . . , Ak, πi, Z

′, A′
0, A

′
1, . . . , A

′
k, π

′
i, α, φ, L, L

′
0

replaced by

δ, Z, t + 1, A0, A1, . . . , At+1, π(Ai), Z
′, A′

0, A
′
1, . . . , A

′
t+1, π(A′

i), α, φ, L, L
′
0
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respectively. We must verify the hypotheses of (6.3); let us do them in order as in the statement of
(6.3). The first ones are obvious, or follow from (10) and (11). For 1 ≤ i ≤ t+1, (Ai, π(Ai) +ω) has
the same δ-folio as (A′

i, π(A′
i) +ω), trivially if i = t+ 1, and by hypothesis (i) of (7.3) if i ≤ t. From

the definition of α, it maps Z ′ onto Z, and maps π(A′
i) to π(Ai) for 1 ≤ i ≤ t+ 1. By (1),

φ(E(H)) ⊆ E(K1 ∪A1 ∪ · · · ∪At),

and φ(E(H)) ∩E(K1) ⊆ E(At+1), and so φ(E(H)) ⊆ E(A1 ∪ · · · ∪At+1). For each v ∈ V (H), if

V (φ(v)) ∩ (W ∪ V (A1 ∪ · · · ∪At)) 6= ∅

then φ(v) ∩A1 ∪ · · · ∪At+1 is non-null since W ⊆ V (At+1), and if

V (φ(v)) ∩ (W ∩ V (A1 ∪ · · · ∪At)) = ∅

then Y1 ∩ V (φ(v)) 6= ∅ by definition of Y1, and so again φ(v) ∩ A1 ∩ · · · ∩ At+1 is non-null, since
Y1 ⊆ V (At+1). Next, L ⊆ Γ ∪ K1 ∪ A1 ∪ · · · ∪ At by (1), and L is minimal with Z ⊆ V (L) and
φ(v) ⊆ L for each v ∈ V (H) by its definition. By (8), L′

0 ⊆ (Γ ∩ Σ′) ∪ K1, and by (8) again,
E(L′

0)∩φ(E(H)) ⊆ E(A1 ∪ · · · ∪At), and so E(L′
0)∩φ(E(H))∩E(K1) = ∅. Consequently L′

0 ⊆ A′
0.

By (9), u, v ∈ Z ′ are L′
0-connected if and only if α(u), α(v) are L0 ∪ (L ∩K1)-connected, and

L ∩A0 = L ∩ (Γ0 ∪K1) = L0 ∪ (L ∩K1)

since φ(E(H))∩E(L) = ∅ and L0 = L∩Γ0. Thus all the hypotheses of (6.3) hold. This proves (12).

Let A′ = {A ∈ A : d(v∗, D(A)) ≥ θ′}.

(13) A′ is adequate for φ′.

Subproof. Let us verify the four conditions in the definition of “adequate”. For (i), let v ∈ V (H)
and A ∈ A \ A′; we must show that A ∩ φ′(v) ⊆ Γ ∪ NW . Now trivially A ∩ Γ ⊆ Γ ∪ NW . Since
A 6∈ A′ it follows from (7.1)(iii) that A ∩K1 is null. For 1 ≤ i ≤ t, A 6= A′

i since A 6∈ A′, and so
A ∩A′

i ⊆ Γ ∪NW by (J2) and (3). Consequently,

A ∩ φ′(v) ⊆ A ∩ (Γ ∪K1 ∪A
′
1 ∪ · · · ∪A′

t) ⊆ Γ ∪NW .

This proves (i).
For (ii), let v ∈ V (H). Now

A′
1 ∪ · · · ∪A′

t+1 ⊆ K ∪
⋃

(A : A ∈ A′),

since A′
1, . . . , A

′
t ∈ A′ and A′

t+1 ⊆ K1 ⊆ K ∪
⋃

(A : A ∈ A′). But by (12), φ′(v) ∩ (A′
1 ∪ · · · ∪A′

t+1)
is non-null, and (ii) follows.

For (iii), let e ∈ E(H). By (12),

φ′(e) ∈ E(A′
1 ∪ · · · ∪A′

t+1) ⊆ E(K ∪
⋃

(A : A ∈ A′)).

This proves (iii).
For (iv), let A ∈ A with A ∩K 6= NW . By (J5), d(v∗, D(A)) ≥ θ, and so A ∈ A′. This proves

(iv), and hence proves (13).

From (13), hypotheses (iii) and (7.2), the result follows.
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Now we need to relax the definition of “adequate” a little. If (J1)–(J6) hold and A ′ ⊆ A, and φ′

is a model of (H,χ) in (G,ω), we say that A′ is sufficient for φ′ if

• for each v ∈ V (H) and each A ∈ A, if some edge of A ∩ φ′(v) is incident with a vertex in W
then A ∈ A′

• for each v ∈ V (H), φ′(v) ∩ (K ∪
⋃

(A : A ∈ A′)) is non-null,

• for each e ∈ E(H), φ′(e) ⊆ E(K ∪
⋃

(A : A ∈ A′)), and

• for each A ∈ A, if A ∩K 6= NW then A ∈ A′.

Thus, if A′ is adequate for φ′ then it is sufficient for φ′.
Also, let us introduce another condition, the following.

(J7) For each A ∈ A, if u, v ∈ π̄(A) there is a path of A with ends u, v and with no internal vertex
in π̄(A) ∪W ; for each A ∈ A, there is no separation (C,D) of G \W with order < |π̄(A)| such
that A \W ⊆ C and (C ∩ Γ, D ∩ Γ) ∈ T ; and for each A ∈ A, either

• V (Γ ∩A) ⊆ π̄(A) and E(Γ ∩A) = ∅, or

• Γ ∩A is a path with both ends in π̄(A), or

• |π̄(A)| = 3, π̄(A) ⊆ V (Γ), some v ∈ π̄(A) has degree 0 in Γ ∩ A, and (Γ ∩ A) \ {v} is a
path with both ends in π̄(A), or

• |π̄(A)| = 3, π̄(A) ⊆ V (Γ), and for all u, v ∈ π̄(A) there is a path of Γ ∩ A with ends u, v
and with no internal vertex in π̄(A).

Then (7.3) can be modified as follows.

7.4 For all integers q, δ, τ ≥ 0 there exists θ ≥ 4 with the following property. Let (J1)–(J7) hold,
and let B ⊆ A be sufficient for φ. Let A1, . . . , At ∈ B where t ≤ τ , and let d(D(A),Σ \ ∆) ≥ θ for
every A ∈ B \ {A1, . . . , At}. Let A′

1, . . . , A
′
t ∈ A, and suppose that

(i) for 1 ≤ i ≤ t, (A′
i, π(A′

i) + ω) has the same δ-folio as (Ai, π(Ai) + ω)

(ii) for 1 ≤ i ≤ t, D(Ai) ∩ ∆ = ∅

(iii) for 1 ≤ i ≤ t, d(v∗, D(A′
i)) ≥ θ and D(A′

i) ∩ ∆ = ∅

(iv) for 1 ≤ i < j ≤ t, d(D(A′
i), D(A′

j)) ≥ θ.

Then there is a model of (H,χ) in (G \ {v∗}, ω).

Proof. Choose θ so that (7.3) is satisfied. We claim that (7.4) is satisfied. For let the hypotheses
of (7.4) hold, and suppose the conclusion does not hold for some G. For the given graph G, let us
choose the counterexample such that

(1) |E(Γ)| is maximum;

subject to (1), such that
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(2) Γ ∪ V (φ(v) : v ∈ V (H)) is minimal;

and, subject to (1) and (2), such that

(3)
⋃

(φ(v) : v ∈ V (H)) is minimal.

Let K1 = K ∪
⋃

(A ∈ A : d(D(A),Σ \ ∆) ≥ θ). Let us say A ∈ A is good if π̄(A) ⊆ V (Γ) and
for all u, v ∈ π̄(A) there is a path of Γ ∩ A with ends u, v and with no internal vertex in π̄(A). We
say A ∈ A is bad if it is not good.

(4) If A ∈ A is bad then either d(D(A),Σ \ ∆) ≥ θ, or D(A) ∩ U(Γ) = ∅.

Subproof. Suppose that D(A)∩U(Γ) 6= ∅ and d(D(A),Σ \ ∆) < θ. Since bd(D(A)) is Γ-normal and
D(A) = ins(bd(D(A))) and Γ is 2-cell, it follows that bd(D(A)) ∩ V (Γ) 6= ∅. Now by (J7), since A is
bad, either

• V (Γ ∩A) ⊆ π̄(A) and E(Γ ∩A) = ∅, or

• |π̄(A)| = 3, π̄(A) ⊆ V (Γ), some v ∈ π̄(A) has degree 0 in Γ ∩ A, and (Γ ∩ A) \ {v} is a path
with both ends in π̄(A), or

• |π̄(A)| = 3 and Γ ∩ A is a path with both ends in π̄(A), possibly with an internal vertex in
π̄(A).

In each case, there exist distinct u, v ∈ π̄(A) such that there is no path of Γ ∩A with ends u, v and
with no internal vertex in π̄(A), and since π̄(A) ∩ V (Γ) 6= ∅, we may choose such a pair u, v with
u ∈ V (Γ). But by (J7), there is a path of A \W with ends u, v and with no internal vertex in π̄(A);
let us choose Q ⊆ A \W minimal such that (Γ ∩ A) ∪ Q includes such a path. It follows that Q
is a path with distinct ends both in V (Γ ∩ A) ∪ {v}, with no internal vertex in V (Γ ∩ A) ∪ π̄(A).
By (i) and (ii) above, it follows that there is a line I in D(A) with ends the ends of Q and with no
internal point in U(Γ) ∪ bd(D(A)). We may assume that Q is a drawing in Σ and U(Q) = I. Let
Γ′ = Γ ∪ Q; then Γ′ is 2-cell, since Γ is 2-cell and at least one end of I is in V (Γ). Let T ′ be the
set of all separations (C,D) of Γ′ of order < θ such that (C ∩ Γ, D ∩ Γ) ∈ T ; then T ′ is a respectful
tangle in Γ′ of order θ. Let d′ be its metric; then if a, b ∈ A(Γ) and a′, b′ ∈ A(Γ′) and a′ ⊆ a and
b′ ⊆ b, then d′(a′, b′) ≥ d(a, b). If we replace Γ by Γ′ and d and d′ then (J1)–(J6) remain satisfied, as
is easily seen. Also, (J7) remains satisfied, as we see as follows. Let A0 ∈ A, and suppose that (C,D)
is a separation of G \W with order < |π̄(A0)| such that A0 \W ⊆ C and (C ∩Γ′, D∩Γ′) ∈ T ′. Then
(C∩Γ, D∩Γ) ∈ T , since (D∩Γ, C∩Γ) 6∈ T by definition of T ′; and this contradicts the truth of (J7)
for Γ, T . Thus there is no such A0, C,D. Now let A0 ∈ A. If A0 6= A then E(A0 ∩ Γ′) = E(A0 ∩ Γ),
and

V (A0 ∩ Γ) ⊆ V (A0 ∩ Γ′) ⊆ V (A0 ∩ Γ) ∪ π̄(A0)

and so A0 ∩ Γ′ satisfies (J7); while if A = A0 then again A0 ∩ Γ′ satisfies (J7) by the choice of Q.
This proves that (J7) remains satisfied. Now B remains sufficient for φ, since that does not depend
on Γ or T ; and since all distances are increased by replacing Γ by Γ′ and T by T ′ (more precisely,
d′(a′, b′) ≥ d(a, b) as we said above), the hypotheses of (7.4) remain satisfied. But this contradicts
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(1), and therefore proves (4).

(5) If F ⊆ Σ is an O-arc with F∩U(Γ) = ∅ and F∩D(A) = ∅ for each A ∈ A, then ins(F )∩U(Γ) = ∅
and ins(F ) ∩D(A) = ∅ for all A ∈ A with d(D(A),Σ \ ∆) < θ.

Subproof. Now Γ is connected since it is 2-cell, and U(Γ) 6⊆ ins(F ) by the third axiom for tan-
gles. Consequently ins(F ) ∩ U(Γ) = ∅. Suppose that D(A0) ⊆ ins(F ) for some A0 ∈ A with
d(D(A0),Σ\∆) < θ. Let C be the union of A\W over all A ∈ A with D(A) ⊆ ins(F ), and let D be
the union of K \W,Γ and A\W over all A ∈ A with D(A) 6⊆ ins(F ). Let z ∈ A(Γ) with F ⊆ z; then
D(A0) ⊆ z, and so d(z,Σ\∆) = d(D(A0),Σ\∆) < θ. Consequently d(D(A),Σ\∆) = d(z,Σ\∆) < θ
for all A ∈ A with D(A) ⊆ ins(F ), and by hypothesis, A ∩ K = NW for every such A. Since
V (A ∩ A′) = (π̄(A) ∩ π̄(A′)) ∪W = W if A,A′ ∈ A and D(A) ⊆ ins(F ) and D(A′) 6⊆ ins(F ), it
follows that C ∩D is null. But (C ∩Γ, D∩Γ) ∈ T since C ∩Γ is null, and this contradicts (J7) since
|π̄(A0)| ≥ 1 by (J2). Hence (5) holds.

(6) Every A ∈ A with d(D(A),Σ \ ∆) < θ is good.

Subproof. Suppose that A ∈ A is bad and d(D(A),Σ \ ∆) < θ. By (4), D(A) ∩ U(Γ) = ∅; let
r be the region of Γ with D(A) ⊆ r. Since d(D(A),Σ\∆) < θ, it follows that d(r,Σ\∆) < θ. By (5),
there is a sequence A1, A2, . . . , Ak of members of A such that A1 = A, D(Ak) ∩ U(Γ) 6= ∅, and for
1 ≤ i < k,D(Ai)∩D(Ai+1) 6= ∅. By choosing k minimum, we may assume that D(A1), . . . , D(Ak−1)
are all disjoint from U(Γ), and hence D(Ai) ∩ r 6= ∅ for 1 ≤ i ≤ k. Consequently,

d(D(Ai),Σ \ ∆) ≤ d(r,Σ \ ∆) < θ

for 1 ≤ i ≤ k. Choose i with 1 ≤ i ≤ k maximum so that Ai is bad. Since Ak is good by (4), it
follows that i < k, and Ai+1 is good, and so π̄(Ai+1) ⊆ V (Γ). But

∅ 6= D(Ai) ∩D(Ai+1) = π̄(Ai) ∩ π̄(Ai+1) ⊆ V (Γ)

and so D(Ai) ∩ V (Γ) 6= ∅, a contradiction. This proves (6).

Let Z be a basis for φ with Z ⊆ V (K ∪
⋃

(A : A ∈ B)); this exists, since B is sufficient for φ. Let
L =

⋃
(φ(v) : v ∈ V (H)).

(7) If L′ is a subgraph of L ∪ Γ with φ(E(H)) ∩ E(L′) = ∅ and with the same effect on Z as L,
then L′ ∪ Γ = L ∪ Γ, and if L′ ⊆ L then L′ = L.

Subproof. By (6.2) there is a model φ′ of (H,χ) in (G,ω) such that φ′(e) = φ(e) for all e ∈ E(H)
and

⋃
(φ′(v) : v ∈ V (H)) ⊆ L′. Now B is sufficient for φ′, from the choice of Z; and (J1)–(J7) and

the other hypotheses of (7.4) remain satisfied if we replace φ by φ′. From (2), L′ ∪ Γ = L ∪ Γ, and
from (3), if L′ ⊆ L then L′ = L. This proves (7).

(8) L is a forest, and every vertex of L with degree at most 1 belongs to Z.

Subproof. This follows from the second assertion of (7).

29



(9) If A ∈ A \ B, then L ∩A ⊆ Γ ∪NW .

Subproof. Since A 6∈ B, it follows that d(D(A),Σ \ ∆) < θ. Since A ∈ A, we deduce from (6)
that A is good, and therefore π̄(A) ⊆ V (Γ), and for all u, v ∈ π̄(A) there is a path of Γ ∩ A with
ends u, v and with no internal vertex in π̄(A). Since no edge of L ∩ A has an end in W (because
A 6∈ B) there is a subgraph L′ of (Γ ∩ A) ∪ NW with the same effect in π̄(A) ∪W as L ∩ A. Since
d(D(A),Σ \∆) < θ, it follows that A∩K is null, and so there is a subgraph B of G such that (A,B)
is a separation and V (A ∩ B) = π̄(A) ∪W . Since Z ⊆ V (B), it follows from (2.6) (with Z replaced
by Z ∪ π̄(A)) that L′ ∪ (L∩B) has the same effect on Z as L. Now L′ ⊆ (Γ∩A)∪Nw ⊆ Γ∪L, and

φ(E(H)) ∩E(L′) ⊆ φ(E(H)) ∩E(A) = ∅

since A 6∈ B and B is sufficient for φ. Consequently, L′ ∪ (L ∩ B) ⊆ Γ ∪ L, and φ(E(H)) ∩ E(L′ ∪
(L ∪B)) = ∅. By (8),

L′ ∪ (L ∩B) ∪ Γ = L ∪ Γ,

and so

L ∩A ⊆ (L ∪ Γ) ∩A = (L′ ∪ (L ∩B) ∪ Γ) ∩A = (L′ ∩A) ∪ (L ∩A ∩B) ∪ (Γ ∩A).

But L′∩A ⊆ (Γ∩A)∪NW , and L∩A∩B has no edges and has vertex set π̄(A)∪W ⊆ V (Γ∩A)∪W .
Consequently,

L ∩A ⊆ (Γ ∩A) ∪NW ⊆ Γ ∪NW

as required. This proves (9).

(10) B is adequate for φ.

Subproof. Let v ∈ V (H) and A ∈ A; we must show that if A ∩ φ(v) 6⊆ Γ ∪ NW then A ∈ B.
But φ(v) ⊆ L, so this follows from (9).

(11) For 1 ≤ i ≤ t, there is no separation (C,D) of G with W ⊆ V (C ∩D) such that

• A′
i ⊆ C

• K ⊆ D, and A ⊆ D for all A ∈ A with d(D(A),Σ \ ∆) ≥ θ, and

• (Γ ∩C,Γ ∩D) ∈ T and has order < |π̄(A′
i)|.

Subproof. Suppose there is such a separation (C,D), and choose it of minimum order. Suppose first
that it has order ≥ |π̄(A′

i)|+ |W |. Then V (C ∩D) 6⊆ V (Γ)∪W ; choose v ∈ V (C ∩D) \ (V (Γ)∪W ).
If there is no A ∈ A with v ∈ V (A) such that d(D(A),Σ \ ∆) < θ, then every edge of G incident
with v belongs to E(D) and v 6∈ V (A′

i); but then (C \ {v}, D) is a separation of G contrary to the
minimality of |V (C ∩D)|. Thus there exists A ∈ A with v ∈ V (A) such that d(D(A),Σ \ ∆) < θ.
Let B ⊆ G be such that (A,B) is a separation of G and V (A ∩B) = π̄(A) ∪W . (This exists, since
d(D(A),Σ\∆) < θ and so A∩K = NW , from the hypothesis.) Now (A∪C,B∩D) is a separation of
G. Moreover, W ⊆ V ((A∪C)∩B∩D) and A′

i ⊆ A∪C, and K ⊆ B∩D (because A∩K = NW ⊆ B),
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and A′ ⊆ B∩D for each A′ ∈ A with d(D(A′),Σ\∆) ≥ θ, since A′ 6= A. The separation (Γ∩(A∪C),
Γ ∩ (B ∩D)) has order at most

|V (Γ ∩ C ∩D)| + |V (Γ ∩A ∩B)| ≤ |π̄(A′
i)| + |π̄(A)| − 1 ≤ 5 ≤ θ

and so (Γ∩ (A∪C),Γ∩ (B ∩D)) ∈ T . Since (A∪C,B ∩D) does not contradict the choice of (C,D),
it follows that either

|V ((A ∪ C) ∩B ∩D ∩ Γ)| > |V (C ∩D ∩ Γ)|

or
|V ((A ∪ C) ∩B ∩D)| > |V (C ∩D)|.

Consequently, either

|V (B ∩ C ∩D ∩ Γ)| + |V (A ∩B ∩ Γ) \ V (C)| > |V (B ∩ C ∩D ∩ Γ)| + |V (C ∩D ∩ Γ) \ V (B)|,

that is,
|V (A ∩B ∩ Γ) \ V (C)| > |V (C ∩D ∩ Γ) \ V (B)|,

or
|V (A ∩B) \ V (C)| > |V (C ∩D) \ V (B)|.

Since |V (A ∩B) \ V (C)| ≥ |V (A ∩B ∩ Γ) \ V (C)| and

|V (capC ∩D) \ V (B)| > |V (C ∩D ∩ Γ) \ V (B)|,

it follows that, in either case,

|V (A ∩B) \ V (C)| > |V (C ∩D ∩ Γ) \ V (B)|.

In particular, A 6⊆ C, and so A 6= A′
i. A similar argument, using that the separation (B ∩C,A ∪D)

does not violate the choice of (C,D), yields that

|V (A ∩B) \ V (D)| > |V (C ∩D ∩ Γ) \ V (B)|.

But
|V (A ∩B) \ V (C)| + |V (A ∩B) \ V (D)| ≤ |V (A ∩B) \W | = |π̄(A)| ≤ 3,

and so |V (C ∩ D ∩ Γ) \ V (B)| = 0, that is, C ∩ D ∩ Γ ⊆ B. Since |V (A ∩ B) \ V (C)| > 0 and
|V (A ∩ B) \ V (D)| > 0, there exist u, v ∈ V (A ∩ B) with u ∈ V (C) \ V (D) and v ∈ V (D) \ V (C).
Since W ⊆ V (C ∩D) and V (A∩B) = π̄(A)∪W,u and v both belong to π̄(A). But A is good by (6)
since d(D(A),Σ \∆) < θ, and so there is a path of Γ∩A with ends u, v and with no internal vertex
in π̄(A). Consequently, it has no internal vertex in V (B), but it has one in V (C ∩D) since (C,D)
is a separation. Hence C ∩D ∩ Γ 6⊆ B, a contradiction.

Our assumption that (C,D) has order ≥ |π̄(A′
i)|+|W | is therefore false. Consequently, (C\W,D\

W ) is a separation of G\W of order < |π̄(A′
i)|, and A′

i\W ⊆ C\W , and ((C\W )∩Γ, (D\W )∩Γ) ∈ T ,
contrary to (J7). This proves (11).

(12) For 1 ≤ i ≤ t there is no Γ-normal O-arc F ⊆ Σ with |F ∩ V (Γ)| < |π̄(A′
i)| and with

D(A′
i) ⊆ ins(F ).
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Subproof. Suppose that F is such an O-arc. Let K2 = A′
i∪(Γ∩ins(F )). By (7.1)(iii), K1∩A

′
i = NW .

Suppose that v ∈ V (K1 ∩ (Γ ∩ ins(F ))). Since D(A′
i) ⊆ ins(F ) it follows that d(v,D(A′

i)) ≤ 3 and
hence d(v,Σ\∆) ≤ 3, contrary to (7.1)(i). We deduce that there is no such v, and so K1∩K2 = NW .

It follows that there is a separation (C,D) of G with C ∩Γ = Γ∩ ins(F ) and D∩Γ = Γ∩Σ \ ∆1,
where ∆1 = ins(F ), such that K2 ⊆ C and K1 ⊆ D. But this contradicts (11). Consequently (12)
holds.

From (10), (12) and (7.3), the result follows.

8 Homogeneity

The advantage of using “sufficient” instead of “adequate” is that the following is true.

8.1 Let (J1)–(J6) hold. Then there exists A′ ⊆ A, sufficient for some model of (H,χ) in (G,ω),
such that d(D(A),Σ \ ∆) < θ for at most 3q + 5δ members A of A′.

Proof. Let Z be a basis for φ with Z ⊆ V (K ∪
⋃

(A : A ∈ A)) and |Z| ≤ q + 3δ; this exists, from
(6.1) and (J6). Choose a model φ′ of (H,χ) in (G,ω) such that φ′(e) = φ(e) for all e ∈ E(H), and

⋃
(φ′(v) : v ∈ V (H)) ⊆

⋃
(φ(v) : v ∈ V (H)),

with
⋃

(φ′(v) : v ∈ V (H)) minimal. Let L =
⋃

(φ′(v) : v ∈ V (H)). It follows that L is a forest, and
Z contains every vertex of L with degree at most 1. For v ∈ V (L), let d(v) be its degree in L. By
(2.3) ∑

y∈W

d(y) ≤ 2|W | + |Z| ≤ 3q + 3δ.

Let A1 be the set of all A ∈ A such that some edge of A∩L has an end in W . Since the members of
A are edge-disjoint, it follows that |A1| ≤ 3q + 3δ. Since φ′(v) ∩ (K ∪

⋃
(A : A ∈ A)) is non-null for

each v ∈ V (H), and φ′(v) ∩K is non-null if v is a root of (H,ω), there exists A2 ⊆ A with |A2| ≤ δ
such that φ(v) ∩ (K ∪

⋃
(A : A ∈ A2)) is non-null for each v ∈ V (H). Let

A3 = {A ∈ A : E(A) ∩ φ′(E(H)) 6= ∅};

then |A3| ≤ |E(H)| ≤ δ. Finally, let

A4 = {A ∈ A : d(D(A),Σ \ ∆) ≥ θ}.

Let A′ = A1 ∪A2 ∪A3 ∪A4. Then A′ is sufficient for φ′, and satisfies the theorem.

8.2 For all integers q, δ, η ≥ 0 there exists θ ≥ 4 with the following property. Let (J1)–(J7) hold,
and suppose that for every A ∈ A with D(A) ∩ ∆ = ∅ and every v ∈ V (Γ) with v 6∈ ∆, there exists
A′ ∈ A with d(v,D(A′)) ≤ η such that (A′, π(A′)+ω) has the same δ-folio as (A, π(A)+ω). Suppose
also that d(v∗,∆) ≥ θ. Then there is a model of (H,χ) in (G \ {v∗}, ω).
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Proof. Let τ = 3q + 5δ. Choose θ′ ≥ 4 so that (7.4) holds with θ replaced by θ ′, and let θ =
2(τ + 1)(θ′ + 2η + 7) + 3. We claim that θ satisfies (8.2). For let the hypotheses of (8.2) hold. By
(8.1) we may assume (by replacing φ by the model of (8.1)) that B ⊆ A is sufficient for φ, and
d(D(A),Σ \ ∆) < θ for at most τ members A of B. Let

A′ = {A ∈ B : d(D(A),Σ \ ∆) < θ}.

Then |A′| ≤ τ .

(1) For 3 ≤ n ≤ θ − 3, there is a closed disc ∆n ⊆ Σ such that v∗ 6∈ ∆n,∆ ⊆ ∆n, bd(∆n) ⊆ U(Γ),
d(v∗,∆n) ≥ n, and d(v∗, x) ≤ n+ 2 for every x ∈ A(Γ) with x 6⊆ ∆n \ bd(∆n).

Subproof. By (5.1) with z, κ replaced by v∗, n, there is a closed disc ∆′ ⊆ Σ satisfying (5.1)(i),
(ii), (iii) (with ∆ replaced by ∆′). Since d(v∗,∆) ≥ θ ≥ n + 3 it follows that ∆ ∩ ∆′ = ∅. Let
∆n = Σ \ ∆′; then it satisfies (1).

(2) There is a closed disc ∆′ ⊆ Σ such that v∗ 6∈ ∆′, ∆ ⊆ ∆′, bd(∆′) ⊆ U(Γ), d(v∗,∆′) ≥
(θ′ + 2η + 7)(τ + 1), and for each A ∈ B, either D(A) ∩ ∆′ = ∅ or d(D(A),Σ \ ∆′) ≥ θ′.

Subproof. For i = 0, 1, . . . , τ + 1, define n(i) = (τ + i+ 1)(θ ′ + 2η + 7), and let

Ai = {A ∈ B : D(A) ∩ ∆n(i) = ∅}.

Since ∆ ⊆ ∆n(τ+1), it follows that Aτ+1 ⊆ A′ and so |Aτ+1| < τ + 1. Choose i with 0 ≤ i ≤ τ + 1
minimum such that |Ai| < i. It follows that i ≥ 1, and |Ai−1| ≥ i − 1. But Ai−1 ⊆ Ai since
∆n(i) ⊆ ∆n(i − 1) by (1). Consequently Ai = Ai−1. Let ∆′ = ∆n(i − 1); we claim it satisfies (2).
Certainly v∗ 6∈ ∆′, ∆ ⊆ ∆′, and bd(∆′) ⊆ U(Γ) from (1). Also from (1), since i ≥ 1,

d(v∗,∆′) ≥ n(i− 1) = (τ + i)(θ′ + 2η + 7) ≥ (τ + 1)(θ′ + 2η + 7).

Let A ∈ B. If A 6∈ Ai, then D(A) ∩ ∆n(i) 6= ∅, and since |bd(D(A)) ∩ V (Γ)| ≤ 3 and d(v∗,∆n(i)) ≥
n(i), it follows that d(v∗, D(A)) ≥ n(i) − 3. But then for each z ∈ A(Γ) with z ⊆ Σ \ ∆′,

d(D(A), z) ≥ d(v∗, D(A)) − d(z, v∗) ≥ n(i) − 3 − (n(i− 1) + 2) ≥ θ′.

Thus if A ∈ B and A 6∈ Ai then d(D(A),Σ \∆′) ≥ θ′. On the other hand, if A ∈ B and A ∈ Ai, then
A ∈ Ai−1 and so D(A) ∩ ∆′ = ∅. This proves (2).

Let ∆′ be as in (2).

(3) There are vertices v1, . . . , vτ of Γ such that

(i) for 1 ≤ i ≤ τ, d(v∗, vi) ≥ θ′ + η + 3,

(ii) for 1 ≤ i ≤ τ, d(vi,∆
′) ≥ η + 4, and

(iii) for 1 ≤ i < j ≤ τ, d(vi, vj) ≥ θ′ + 2η + 6.
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Subproof. For let P be a path of Γ from v∗ to V (Γ)∩ bd(∆′). For 1 ≤ i ≤ τ , let vi be the first vertex
of P such that

d(v∗, vi) ≥ (θ′ + 2η + 7)i;

this exists, for the last vertex, u say, of P belongs to bd(∆′) and hence satisfies d(v∗, u) ≥ (θ′ + 2η+
7)(τ + 1). We claim that v1, . . . , vτ satisfy (3). Certainly (i) holds.

Let 1 ≤ i ≤ τ . Since d(v∗, v∗) = 0 it follows that vi 6= v∗, and so there is a vertex v say of P
immediately preceding vi in P . From the definition of vi, d(v

∗, v) < (θ′ + 2η + 7)i, and since v is
adjacent to vi, d(v, vi) ≤ 2; consequently,

d(v∗, vi) ≤ d(v∗, v) + d(v, vi−1) ≤ (θ′ + 2η + 7)i+ 1.

It follows that

(θ′ + 2η + 7)(τ + 1) ≤ d(v∗,∆′) ≤ d(v∗, vi) + d(vi,∆
′) ≤ (θ′ + 2η + 7)i+ 1 + d(vi,∆

′),

and since i ≤ τ , we deduce that d(vi,∆
′) ≥ θ′ + 2η + 6 ≥ η + 4. Hence (ii) holds.

For (iii), let 1 ≤ i < j ≤ τ . Then

(θ′ + 2η + 7)j ≤ d(v∗, vj) ≤ d(v∗, vi) + d(vi, vj) ≤ (θ′ + 2η + 7)i+ 1 + d(vi, vj),

and since j ≥ i+ 1, we deduce that d(vi, vj) ≥ θ′ + 2η + 6. Hence (iii) holds. This proves (3).

Let v1, . . . , vτ be as in (3), and let {A ∈ B : D(A)∩∆′ = ∅} = {A1, . . . , At}. ThenA1, . . . , At ∈ A′,
and so t ≤ τ . For 1 ≤ i ≤ t, choose A′

i ∈ A with d(vi, D(A′
i)) ≤ η such that (A′

i, π(A′
i)) has the

same δ-folio as (Ai, π(Ai)) (this is possible from the hypothesis). Then for 1 ≤ i ≤ t, there exists
zi ∈ A(Γ) such that d(vi, zi) ≤ η and zi ∩D(A′

i) 6= ∅.

(4) The following hold:

(i) For 1 ≤ i ≤ t, d(v∗, D(A′
i)) ≥ θ′.

(ii) For 1 ≤ i ≤ t, D(A′
i) ∩ ∆ = ∅.

(iii) For 1 ≤ i < j ≤ t, d(D(A′
i), D(A′

j)) ≥ θ′.

Subproof. To see (i), let z ∈ A(Γ) with z∩D(A′
i) 6= ∅. Then d(z, zi) ≤ 3 since z and zi both intersect

D(A′
i), and so by (3)(i),

θ′ + η + 3 ≤ d(v∗, vi) ≤ d(v∗, z) + d(z, zi) + d(vi, zi) ≤ d(v∗, z) + 3 + η.

Thus d(v∗, z) ≥ θ′, and so d(v∗, D(A′
i)) ≥ θ′. Hence (i) holds.

To see (ii), suppose that z ∈ A(Γ) and z ∩D(A′
i) ∩ ∆ 6= ∅. Then d(z, zi) ≤ 3, and so by (3)(iii),

η + 4 ≤ d(vi,∆
′) ≤ d(vi, z) ≤ d(vi, zi) + d(zi, z) ≤ η + 3

a contradiction. Thus (ii) holds.
To see (iii), let y, z ∈ A(Γ) with y ∩D(A′

i) 6= ∅ and z ∩D(A′
j) 6= ∅. Then by (3)(ii),

θ′ + 2η + 6 ≤ d(vi, vj) ≤ d(vi, zi) + d(zi, y) + d(y, z) + d(z, zj) + d(vj , zj) ≤ η + 3 + d(y, z) + 3 + η
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and so d(y, z) ≥ θ′. This proves (iii), and completes the proof of (4).

Let us apply (7.4), with ∆, θ replaced by ∆′, θ′ and with no other replacements. We recall that
θ′ was chosen to satisfy (7.4). Let us verify the hypothesis of (7.4). Now (J1)–(J4) and (J6), (J7)
obviously still hold. For (J5), let v ∈ V (Γ ∩K); then

d(v,Σ \ ∆′) ≥ d(v,Σ \ ∆) ≥ θ ≥ θ′

since ∆ ⊆ ∆′, and similarly d(D(A),Σ \ ∆) ≥ θ′ for all A ∈ A with A ∩ K 6= NW . Hence (J5)
holds. B is sufficient for φ, and A1, . . . , At ∈ B. If A ∈ B \ {A1, . . . , At}, then d(D(A),Σ \ ∆′) ≥ θ′

by (2). Finally, hypothesis (i) of (7.4) is true by the choice of A′
i; (ii) of (7.4) holds by definition of

A1, . . . , At; and (iii) and (iv) of (7.4) hold because of (4). Thus, all the hypotheses of (7.4) hold, and
the result follows from (7.4).

At last we are able to formulate and prove a statement that implies theorem (10.2) of [5]. To
understand the motivation of the various hypotheses of the next result, it might help to read the
final paragraph of this section before the next proof.

8.3 For all q, δ ≥ 0 and h ≥ 4, there exists θ ≥ h with the following property. Let G be a digraph,
let W ⊆ V (G) with |W | = q, and let ω be an ordering of W . Let Γ ⊆ G \W satisfying the following.

(i) Γ is a drawing in a sphere Σ, and Γ is a subdivision of a simple 3-connected graph, and there
is an orientation of Σ called clockwise.

(ii) C0 is a circuit of Γ, and U(C0) bounds a region of Γ.

(iii) Π ⊆ V (C0) with |Π| = 4.

(iv) T is a tangle in Γ of order ≥ θ, and there is no (A,B) ∈ T with order ≤ 3 such that Π ⊆ V (A);
d is the metric of T .

(v) J ⊆ G has vertex set the union of W,V (Γ), and the vertex sets of all components of G\(V (C0)∪
W ) which meet V (Γ), and edge set all edges of G with both ends in V (J).

(vi) Z ⊆ V (J) \W with Π ⊆ Z, and A is a (Z ∪W )-division of J , such that W ⊆ V (A) for all
A ∈ A.

(vii) For each A ∈ A, Z ∩ V (A) = π̄(A), and |π̄(A)| ≤ 3, and π(A) is a linear order of π̄(A).

(viii) For each A ∈ A, there are π̄(A) mutually vertex-disjoint paths of J \ W between π̄(A) and
Π, and if |π̄(A)| = 3 and π(A) is s1, s2, s3 say, these three paths can be chosen with ends
si, ti (i = 1, 2, 3) so that t1, t2, t3 occur in clockwise order in the boundary of the disc containing
U(Γ) bounded by U(C0).

(ix) For each A ∈ A, if u, v ∈ π̄(A) there is a path of A\W between u and v with no internal vertex
in π̄(A).

(x) Let G′ be the bipartite graph with vertex set Z ∪A, in which z ∈ Z and A ∈ A are adjacent if
z ∈ V (A); then G′ is planar, and can be drawn in a closed disc with the vertices of Π in the
boundary of the disc, in the same order in which they occur in U(C0).
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(xi) For each A ∈ A, there is a vertex v(A) ∈ V (Γ) such that there is a path of G \W between v(A)
and a vertex of π̄(A), with no vertex in V (Γ) except v(A).

(xii) D ⊆ Σ is a closed disc with bd(D) ⊆ U(Γ) including the region of Γ bounded by U(C0).

(xiii) If A ∈ A and v(A) ∈ Σ \ D then for every v ∈ V (Γ) \ D, either d(v,D) ≤ h or there exists
A′ ∈ A such that d(v, v(A′)) ≤ h and (A′, π(A′) + ω) has the same δ-folio as (A, π(A) + ω).

(xiv) v∗ ∈ V (Γ) \D, and d(v∗, D) ≥ θ.

Then (G \ {v∗}, ω) has the same δ-folio as (G,ω).

Proof. Let η = h+1, and choose θ′ ≥ 4 so that (8.2) holds with θ replaced by θ ′. Let θ = 2θ′+h+14.
We shall show that θ satisfies (8.3).

Our method is to apply (8.2), and we must find suitable choices for A′,K ′, N ′ etc. so that (J1)-
(J7) are satisfied. Let ω be w1, . . . , wq and let NW be defined as in (J1); then (J1) is satisfied. Let
A′ be the set of all A ∈ A such that d(v(A), V (C0)) ≥ 5. Then (J2) holds with A replaced by A′, by
(vi), (viii) and (xi) ((xi) implies that π̄(A) 6= ∅). Also, (J3) holds with Γ and T as given, and with θ
replaced by θ′, since θ ≥ θ′.

For (J4) we need several lemmas. The first is the following. Let ∆0 ⊆ Σ be a closed disc such
that U(Γ) ⊆ ∆0 and bd(∆0) ∩ U(Γ) = Π, obtained by deleting a suitable open disc from the region
of Γ bounded by U(C0).

(1) For each v ∈ Z there exists α(v) ∈ ∆0, and for each A ∈ A there exists a closed disc D(A) ⊆ ∆0,
such that

• α(v) = v for all v ∈ Π

• for each A ∈ A and v ∈ π̄(A), α(v) ∈ bd(D(A)); and for each v ∈ Z and A ∈ A, if α(v) ∈ D(A)
then v ∈ π̄(A)

• for all distinct A,A′ ∈ A, D(A) ∩D(A′) = {α(v) : v ∈ π̄(A) ∩ π̄(A′)}

• for all A ∈ A, D(A) ∩ bd(∆0) = {α(v) : v ∈ π̄(A) ∩ Π}

• for all distinct v, v′ ∈ Z, α(v) 6= α(v′).

Subproof. The graph G′ of hypothesis (x) can be drawn in some closed disc with the vertices from
Π in the boundary and in the right order; and hence it can be drawn in ∆0 with each vertex in Π
represented by itself, and with no other vertex in bd(∆0). Each vertex A ∈ A of G′ has degree ≤ 3
in G′, and we may replace it by a suitable closed disc D(A) in its neighbourhood to satisfy (1).

(2) We may choose the function α and the discs D(A) (A ∈ A) to satisfy (1) and in addition
such that

• α(v) = v for each v ∈ Z ∩ V (Γ), and

• for each A ∈ A, bd(D(A)) is Γ-normal, and Γ ∩D(A) = Γ∩A, and bd(D(A)) ∩ V (Γ) = π̄(A).
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Subproof. By hypothesis (i), G is a subdivision of a simple 3-connected graph, and hence for every
closed disc ∆ ⊆ ∆0 with bd(∆) Γ-normal and |bd(∆) ∩ V (Γ)| ≤ 2, either E(Γ ∩ ∆) = ∅ and
V (Γ∩∆) ⊆ bd(∆) or Γ∩∆ is a path with both ends in bd(∆). Hence (2) follows from theorem (6.5)
of [6].

To simplify notation we assume (for instance, by replacing G by an isomorphic digraph) that
α(v) = v for each v ∈ Z. Then (1) and (2) can be summarized as follows:

(3) Z ⊆ ∆0 and Z ∩ bd(∆0) = Π; and for each A ∈ A there exists a closed disc D(A) ⊆ ∆0,
such that

• for each A ∈ A, bd(D(A)) is Γ-normal and bd(D(A)) ∩ bd(∆0) ⊆ Π

• for each A ∈ A, Γ ∩D(A) = Γ ∩A, and bd(D(A)) ∩ V (Γ) = π̄(A)

• for all distinct A,A′ ∈ A, D(A) ∩D(A′) = π̄(A) ∩ π̄(A′).

To complete the verification of (J4), we need

(4) For each A ∈ A, if |π̄(A)| = 3 and π(A) is s1, s2, s3 say, then s1, s2, s3 determine the clock-
wise orientation of D(A).

Subproof. From hypothesis (viii), there are mutually vertex-disjoint paths P1, P2, P3 of J \W with
ends si, ti (1 ≤ i ≤ 3), such that t1, t2, t3 ∈ Π and t1, t2, t3 occur in clockwise order in the boundary
of ∆0. Let L = P1 ∪ P2 ∪ P3, and for each A′ ∈ A with E(P ∩A′) 6= ∅, choose a line F (A′) ⊆ D(A′)
with ends the two vertices in π̄(A′) with degree 1 in P ∩A′, and with no other point in bd(D(A′)).
Let M be the union of F (A′) over all such A′ ∈ A. Then M is the union of three mutually disjoint
lines in ∆0 with ends si, ti (1 ≤ i ≤ 3), and M ∩D(A) = {s1, s2, s3}. Since t1, t2, t3 occur in clockwise
order in bd(∆0), it follows that s1, s2, s3 occur in clockwise order in bd(D(A)). This proves (4).

(5) For each A ∈ A, D(A) = ins(bd(D(A))).

Subproof. Let F = bd(D(A)). Since |F ∩ V (Γ)| ≤ 3 < θ, it follows that ins(F ) exists. But
Π 6⊆ ins(F ) by hypothesis (iv), and if D is the closed disc in Σ bounded by F with D 6= D(A), then
Π ⊆ bd(∆0) ⊆ D. Consequently, D 6= ins(F ), and so D(A) = ins(F ). This proves (5).

From (3), (4) and (5) we see that (J4) holds.

(6) For each A ∈ A, there is a region of Γ incident with v(A) having non-empty intersection with
D(A).

Subproof. If v(A) ∈ V (A) then v(A) ∈ V (A ∩ Γ) ⊆ D(A) and the claim is true. We assume
then that v(A) 6∈ V (A). Let P be a path of G \ W between v(A) and a vertex of π̄(A) with no
vertex in V (Γ) except v(A). By hypothesis (v), the only vertices of J \W incident in G with edges
not in J belong to V (C0), and no vertex of P belongs to V (C0) ⊆ V (Γ) except possibly v(A). Since
both ends of P belong to V (J \W ), it follows that P ⊆ J \W . Let the vertices of P in Z ∪ {v} be
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v0, v1, . . . , vk in order in P , where v0 ∈ π̄(A) and vk = v. For 1 ≤ i ≤ k, let Pi be the subpath of P
between vi−1 and vi. For 0 ≤ i ≤ k − 1 let ri be the region of Γ in Σ containing vi; this exists since
vi ∈ Z ⊆ Σ and vi 6∈ U(Γ). For 1 ≤ i ≤ k, since no internal vertex of Pi belongs to Z and A is a
Z-division of J , there exists Ai ∈ A such that Pi ⊆ Ai. For 1 ≤ i < k, both vi−1 and vi belong to Z
and hence to Z ∩ V (Ai) = π̄(Ai). Consequently, vi−1 and vi are ends of a line in bd(D(Ai)) with no
internal point in V (Γ), and hence ri−1 = ri. Similarly, if vk ∈ Z then rk−1 is incident with vk = v,
and since r0 = r1 = . . . = rk−1 the result is true. We assume then that vk 6∈ Z, and so vk 6∈ π̄(Ak).
Consequently, vk−1 ∈ π̄(Ak), and since vk−1 6∈ V (Γ) we deduce that |π̄(Ak) ∩ V (Γ)| ≤ 2, and so
|bd(D(Ak)) ∩ V (Γ)| ≤ 2. Since V (Γ ∩D(Ak)) 6⊆ bd(D(Ak)), Γ ∩D(Ak) is a path with both ends in
bd(D(Ak)), and so r0 = r1 = . . . = rk−1 is incident with v = vk ∈ V (Γ ∩D(Ak)). This proves (6).

Let K0 ⊆ G be such that (J,K0) is a separation of G with V (J ∩K0) = V (C0) ∪W ; this exists,
from the definition of J .

(7) A ∩K0 = NW for all A ∈ A′.

Subproof. Suppose that A ∈ A and A ∩ K0 6= NW . Since A ⊆ J and E(J ∩ K0) = ∅ and
V (J ∩K0) = V (C0) ∪W , it follows that V (A ∩ C0) 6= ∅. Hence d(v(A), V (C0)) ≤ 3 by (6), and so
A 6∈ A′. This proves (7).

Let N = Γ ∪NW ∪
⋃

(A : A ∈ A′), and let K = K0 ∪
⋃

(A \ E(A ∩ Γ) : A ∈ A \ A′).

(8) (N,K) is a separation of G and W ⊆ V (K), and if v ∈ V (K ∩ N) \ W then v ∈ Σ and
d(v,Σ \ ∆0) ≤ 7.

Subproof. Now

Γ ∪
⋃

(A \ E(A ∩ Γ) : A ∈ A \ A′) ∪
⋃

(A : A ∈ A′) =
⋃

(A : A ∈ A) = J

and J∪K0 = G, and so N∪K = G. If e ∈ E(K∩N), then e 6∈ E(K0) since N ⊆ J and E(J∩K0) = ∅,
and so e ∈ E(A \ E(A ∩ Γ)) for some A ∈ A \ A′; but then e 6∈ E(Γ), and e 6∈ E(

⋃
(A : A ∈ A′))

by hypothesis (vi), and so e 6∈ E(N), a contradiction. Thus (N,K) is a separation of G, and
W ⊆ V (K0) ⊆ V (K). Let v ∈ V (K ∩N) \W . If v ∈ V (K0) then

v ∈ V (K0 ∩N) ⊆ V (K0 ∩ J) = V (C0) ∪W

and so (v,Σ \ ∆0) ≤ 1 as required. If v 6∈ V (K0), let v ∈ V (A ∩ N) where A ∈ A \ A′. Either
v ∈ V (Γ), or v ∈ V (A′) for some A′ ∈ A′ and hence v ∈ π̄(A), and since V (Γ ∩ A) ⊆ D(A) and
π̄(A) ⊆ D(A) it follows that v ∈ D(A). By (5) and (6), d(v, v(A)) ≤ 3 (for either v(A) ∈ V (A) or
π̄(A) 6⊆ V (Γ)). But d(v(A),Σ \ ∆0) ≤ 4 since A 6∈ A′, and so d(v,Σ \ ∆0) ≤ 7. This proves (8).

(9) There is a closed disc ∆ ⊆ Σ with bd(∆) ⊆ U(Γ) and v∗ 6∈ ∆ and Σ \ ∆0 ⊆ ∆, such that
d(v∗,∆) ≥ θ′ and d(v∗, x) ≤ θ′ + 2 for every x ∈ A(Γ) with x 6⊆ ∆ \ bd(∆).

Subproof. This follows by (5.1) (with κ, z replaced by θ ′, v∗), and taking the closure of the comple-
ment of the disc given by (5.1).
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(10) d(D,Σ \ ∆) ≥ θ − θ′ − 2, and in particular, D ⊆ ∆.

Subproof. Let x ∈ Σ \ ∆. By (8), d(v∗, x) ≤ θ′ + 2, and by hypothesis (xiv), d(v∗, D) ≥ θ, and
so

θ ≤ d(v∗, D) ≤ d(v∗, x) + d(x,D) ≤ θ′ + 2 + d(x,D).

This proves (10).

(11) d(v,Σ\∆) ≥ θ′ for all v ∈ V (Γ∩K), and d(D(A),Σ\∆) ≥ θ ′ for all A ∈ A′ with A∩K 6= NW .

Subproof. If v ∈ V (Γ ∩ K), then by (7), d(v,Σ \ ∆0) ≤ 7. Since Σ \ ∆0 ⊆ D, it follows that
d(v,D) ≤ 7, and so by (9),

θ − θ′ − 2 ≤ d(D,Σ \ ∆) ≤ d(D, v) + d(v,Σ \ ∆) ≤ 7 + d(v,Σ \ ∆)

and so d(v,Σ \ ∆) ≥ θ − θ′ − 9 ≥ θ′ as required. Secondly, let A ∈ A′ with A ∩K 6= NW , and let
z ∈ A(Γ) with z∩D(A) 6= ∅. By (7), A∩K0 = NW , and so there exists A′ ∈ A\A′ with A∩A′ 6= NW .
Hence D(A) ∩ D(A′) 6= ∅, and so by (5) and (6), d(z, v(A′)) ≤ 7. But d(v(A′),Σ \ ∆0) ≤ 4 since
A′ 6∈ A′, and so d(z,Σ \ ∆0) ≤ 11. Since Σ \ ∆0 ⊆ D, it follows that d(z,D) ≤ 11. Hence by (10),

θ − θ′ − 2 ≤ d(D,Σ \ ∆) ≤ d(z,D) + d(z,Σ \ ∆) ≤ 11 + d(z,Σ \ ∆),

and so d(z,Σ \ ∆) ≥ θ − θ′ − 13 ≥ θ′. This proves (11).

From (8)–(11), we see that (J5) holds with A, θ replaced by A′, θ′. Let (H,χ) belong to the δ-folio
of (G,ω), and let φ be a model of (H,χ) in (G,ω). Then (J6) is satisfied with A replaced by A ′,
since K ∪

⋃
(A : A ∈ A′) = G.

(12) For each A ∈ A′ there is no separation (C,D) of G \W of order < |π̄(A)| such that A \W ⊆ C
and (C ∩ Γ, D ∩ Γ) ∈ T .

Subproof. Suppose that (C,D) is such a separation. By hypothesis (viii), there are |π̄(A)| mu-
tually vertex-disjoint paths of J \W between π̄(A) and Π, and therefore there is a path P of J \W
between π̄(A) and Π with V (P ) ⊆ V (C) \V (C ∩D). Since Π∩V (C) 6⊆ V (D) and Γ is a subdivision
of a 3-connected graph, and (C ∩ Γ, D ∩ Γ) has order ≤ |π̄(A)| − 1 ≤ 2, it follows that C ∩ Γ is a
path with both ends in V (C ∩D ∩ Γ). In particular, C ∩ Γ is connected, and |V (C ∩D)| = 2, and
v(A) ∈ V (C), and so there is a path of C ∩ Γ between v(A) and Π. Consequently d(v(A),Π) ≤ 4,
and so A 6∈ A′, a contradiction. This proves (12).

Now we verify (J7), with A replaced by A′. The first condition of (J7) follows from hypoth-
esis (ix), and the second from (12). For the third, let A ∈ A′. By (3), Γ ∩ A = Γ ∩ D(A). If
|bd(D(A)) ∩ V (Γ)| ≤ 2 then by hypothesis (i) and (5), Γ ∩D(A) is either a path with both ends in
bd(D(A)), or E(Γ ∩D(A)) = ∅ and V (Γ∩D(A)) ⊆ π̄(A), and (J7)(i) or (J7)(ii) is true, as required.
We assume then that |bd(D(A))∩V (Γ)| = 3, bd(D(A))∩V (Γ) = {s1, s2, s3} say, and assume (J7)(iv)
is false, and without loss of generality that every path of Γ ∩ A between s1 and s2 uses s3. Since
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Γ ∩ A is a drawing in D(A), and s1, s2, s3 ∈ bd(D(A)), there is a region of Γ ∩ A in D(A) incident
with s3 and including the open line segment in bd(D(A)) with ends s1, s2. Since Γ is a subdivision
of a 3-connected graph, it follows that (J7)(i), (J7)(ii) or (J7)(iii) is true, as required. Consequently
(J7) holds with A replaced by A′.

(13) For every A ∈ A′ with D(A) ∩ ∆ = ∅ and every v ∈ V (Γ) with v 6∈ ∆, there exists A′ ∈ A′ with
d(v,D(A′)) ≤ η such that (A′, π(A′) + ω) has the same δ-folio as (A, π(A) + ω).

Subproof. Since D(A) ∩ ∆ = ∅ and bd(∆) ⊆ U(Γ), it follows from (6) that v(A) 6∈ ∆ \ bd(∆),
and hence from (9), d(v∗, v(A)) ≤ θ′ + 2. Hence v(A) ∈ Σ \ D, because by hypothesis (xiv),
d(v∗, D) ≥ θ > θ′ + 2. Also, by (10), d(v,D) ≥ θ − θ′ − 2 > h. By hypothesis (xiii), there exists
A′ ∈ A such that d(v, v(A′)) ≤ h and (A′, π(A′) + ω) has the same δ-folio as (A, π(A) + ω). Hence,
by (6), d(v,D(A′)) ≤ h+ 1 = η. Finally,

θ − θ′ − 2 ≤ d(v,D) ≤ d(v, v(A′)) + d(v(A′), D) ≤ h+ d(v(A′), V (C0))

and so d(v(A′), V (C0)) ≥ θ − θ′ − 2 − h ≥ 5. Hence A′ ∈ A′. This proves (13).

Consequently, all the hypotheses of (8.2) hold with A and θ replaced by A′ and θ′, and it follows
from (8.2) that there is a model of (H,χ) in (G \ {v∗}, ω). We deduce that the δ-folio of (G,ω) is
a subset of the δ-folio of (G \ {v∗}, ω), and we therefore have equality, since the reverse inclusion is
trivial. The result follows.

Finally, a few words on deriving theorem (10.2) of [5] from (8.3). In the language of [5] we have a
wall with an h-homogeneous subwall of height θ (θ replaces the f(h) of [5]). Take Γ to be the original
wall, and let C0 be its perimeter. This wall has height at least θ since it has a subwall of height θ,
and hence it contains the θ× θ grid as a minor, and from theorems (6.1) and (7.3) of [3] it therefore
has a tangle T of order θ. Let Π be the set of corners of Γ, and let A be the set of graphs called Ã
in the final section of [5]. Let π(A) + ω be the “attachment sequence” of A in the language of [5].
Let D be the closed disc with boundary the perimeter of the h-homogeneous subwall including the
“infinite” region of Γ. Then hypotheses (i)–(xiv) all are satisfied (for (xiii), we use that the subwall
is h-homogeneous). Consequently, theorem (10.2) of [5] is true.
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