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Abstract

A linkage L in a graph G is a subgraph each component of which is a path, and it is vital if

V (L) = V (G) and there is no other linkage in G joining the same pairs of vertices. We show that,

if G has a vital linkage with p components, then G has tree-width bounded above by a function of

p. This is the major step in the proof of the unproved lemma from Graph Minors XIII, and it has a

number of other applications, including a constructive proof of the intertwining conjecture.



1 Introduction

A linkage in a graph G is a subgraph every component of which is a path. (All graphs in this paper

are finite and undirected, and may have loops or parallel edges. Paths have at least one vertex, and

have no “repeated” vertices or edges.) A vertex of G is a terminal of a linkage L in G if v ∈ V (L)

and v has degree ≤ 1 in L. The pattern of a linkage L is the partition of its terminals in which two

terminals are in the same block if and only if they belong to the same component of L. A linkage is a

p-linkage if it has ≤ p terminals, where p ≥ 0 is an integer. A linkage L in G is vital if V (L) = V (G),

and no linkage in G different from L has the same pattern as L.

A tree-decomposition of a graph G is a pair (T,W ), where T is a tree and W = (Wt : t ∈ V (T ))

is a family of subgraphs of G, satisfying

1.
⋃

(Wt : t ∈ V (T )) = G, and

2. if t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′, then Wt ∩ Wt′′ ⊆ Wt′ .

It has width ≤ w if |V (Wt)| ≤ w + 1 for every t ∈ V (T ), and G has tree-width ≤ w if some tree-

decomposition has width ≤ w.

The main objective of this paper is to prove the following.

1.1 For every integer p ≥ 0 there exists w ≥ 0 such that every graph with a vital p-linkage has

tree-width ≤ w.

This has a large number of applications. For instance, in section 11 we use it to obtain a

constructive proof of the intertwining conjecture, proved non-constructively in [11]. In the next

paper of this series we show that it implies theorem (10.2) of [8], which was left unproved in that

paper, and which is needed to justify the main algorithm for the p disjoint paths problem described

in that paper; and that it also implies, for example, the main theorem of [5].

Despite all these applications, it seems unlikely that such an apparently innocuous statement

should need the elaborate proof that we give in this paper; and perhaps (1.1) has an easy proof that

we have missed. If p ≤ 5 (1.1) is indeed easy, and in fact for p ≤ 5, every graph with a vital p-linkage

has path-width ≤ p. (Path-width is defined in the same way as tree-width except that the tree T is

required to be a path.) We shall not need this result, and so we omit its proof, but it follows easily

by induction from the following.
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1.2 If L is a vital 5-linkage in a simple graph G, then either some two terminals in different

components of L are adjacent in G, or some terminal has the same degree in G and in L, or G is

null.

This raises the question of whether (1.1) is true in general with tree-width replaced by path-width;

and indeed it is, as we shall show in section 12.

Our proof of (1.1) is as follows. From a theorem of [8] it follows immediately that every graph

with a vital p-linkage has no Kn minor, where n ≥ 5
2p + 1. Consequently we can apply the results

of [9, 10] concerning the structure of graphs excluding a fixed minor. They “almost” tell us that G

has bounded genus. The remainder of the proof falls into two main parts; first we prove it when G

really does have bounded genus, and then we fix the gaps implied by “almost”.

2 Some basic lemmas

In this section we establish some lemmas about vital linkages that we shall need repeatedly. We use

\ to denote the result of deletion; thus, G \ X is the graph obtained from G by deleting X.

2.1 If L is a vital p-linkage in G, and X ⊆ V (G), then L \X is a vital (p + 2|X|)-linkage in G \X.

The proof is clear.

A separation of G is a pair (A,B) of subgraphs of G with union G and with E(A ∩ B) = ∅; its

order is |V (A ∩ B)|.

2.2 If L is a linkage in G with set of terminals X, and (A,B) is a separation of G, then L ∩ B is

a linkage in B with set of terminals a subset of (X \ V (A)) ∪ V (A ∩ B).

Again, the proof is clear, as is the proof of the next lemma.

2.3 If L is a linkage in G, and (A,B) is a separation of G, and L′ is a linkage in B with the same

pattern as L∩B, then (L∩A)∪L′ is a linkage in G with the same pattern as L. In particular, if L

is a vital linkage in G then L ∩ B is a vital linkage in B.

We need the operation of “splitting” a vertex of a graph. (For the following to make sense, we

regard a graph as a triple consisting of a set of vertices, a set of edges, and an appropriate incidence

relation between them.) Let v be a vertex of a graph G, and let δ1, δ2 ⊆ E(G) with δ1 ∩ δ2 = ∅, so
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that δ1 ∪ δ2 is the set of all edges of G incident with v. Take two new elements v1, v2, and let G′ be

the graph with vertex set (V (G) \ {v}) ∪ {v1, v2} and edge set E(G), in which an edge e is incident

with a vertex u ∈ V (G′) if either u 6= v1, v2 and e is incident with u in G, or u = vi and e ∈ δi for

i = 1 or 2. We say that G′ is obtained from G by splitting v (according to δ1, δ2).

2.4 If G′ is obtained from G by splitting a vertex v, and G has a vital p-linkage, then G′ has a vital

(p + 2)-linkage.

Proof. Let L be a vital p-linkage in G. Let L′ be the subgraph of G′ with V (L′) = V (G′) and

E(L′) = E(L). Then L′ is a vital (p + 2)-linkage as is easily seen.

If A,B are graphs, we write A ⊆ B to denote that A is a subgraph of B.

2.5 Let p, k ≥ 0 and let n = (2p + 1)(p + k + 1)2(p+k) + 1. Let L be a vital p-linkage in a graph G,

and for 1 ≤ i ≤ n let (Ai, Bi) be a separation of G of order k, such that

1. Ai ⊆ Aj and Bj ⊆ Bi for 1 ≤ i < j ≤ n, and

2. for 1 ≤ i < n, there is a linkage Mi in Bi ∩ Ai+1 with k components, each with one end in

V (Ai ∩ Bi) and the other in V (Ai+1 ∩ Bi+1).

Then there exists i with 1 ≤ i < n such that L ∩ Bi ∩ Ai+1 = Mi.

Proof. Let Z be the set of terminals of L.

(1) At most 2p + 1 of the pairs (V (Ai) ∩ Z, V (Bi) ∩ Z) (1 ≤ i ≤ n) are distinct.

Subproof. Let ci = |V (Ai) ∩ Z| − |V (Bi) ∩ Z| (1 ≤ i ≤ n). Then −p ≤ ci ≤ p, and so at most

2p + 1 of the integers ci (1 ≤ i ≤ n) are mutually distinct. But if i < j, then V (Ai)∩Z ⊆ V (Aj)∩Z

and V (Bi) ∩ Z ⊇ V (Bj) ∩ Z, and so if ci = cj then

(V (Ai) ∩ Z, V (Bi) ∩ Z) = (V (Aj) ∩ Z, V (Bj) ∩ Z)

as required. This proves (1).

For 1 ≤ i ≤ n, let V (Ai ∩ Bi) = {v1
i , . . . , v

k
i }, numbered so that for 1 ≤ i < n, the pattern of Mi

is {{v1
i , v1

i+1}, . . . , {v
k
i , vk

i+1}}. Let Zi = V (Ai ∩ Bi) ∪ (Z ∩ V (Bi)), and let Li = L ∩ Bi. By (2.2),
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Zi contains every terminal of Li. Let πi be the pattern of Li, and let φi : Zi → Z1 be defined by

φi(v
t
i) = vt

1 (1 ≤ t ≤ k), and φi(z) = z for all z ∈ Zi \ V (Ai ∩ Bi). Now φi is an injection, and maps

πi to a partition of a subset of Z1 in which each block has cardinality 1 or 2. Since |Z1| ≤ p + k,

there are at most (p+k +1)2(p+k) such partitions. Since n > (2p+1)(p+k +1)2(p+k), it follows that

there exist distinct i, j with 1 ≤ i, j ≤ n, such that V (Ai)∩Z = V (Aj)∩Z, V (Bi)∩Z = V (Bj)∩Z,

and φi(πi) = φj(πj).

(2) For 1 ≤ t ≤ k, the degree of vt
i in Li equals the degree of vt

j in Lj; and if one of vt
i , v

t
j is in

Z then vt
i = vt

j.

Subproof. For the first claim, we observe that vt
i has degree 0, 1 or 2 in Li, depending where

{vt
i} is a block of πi, a proper subset of a block of πi, or not a subset of any block of πi respectively.

Since φi(v
t
i) = φj(v

t
j) and φi(πi) = φj(πj), the first claim follows. For the second, suppose that

vt
i ∈ Z. Since V (Ai) ∩ Z = V (Aj) ∩ Z it follows that vt

i ∈ V (Aj) and similarly vt
i ∈ V (Bj). Thus

vt
i = vt′

j for some t′. Now M1 ∪ . . . ∪ Mn−1 is a linkage with k components, and one of them meets

V (Ai ∩ Bi) in {vt
i} and meets V (Aj ∩ Bj) only in {vt

j}. Since vt
i = vt′

j ∈ V (Aj ∩ Bj) it follows that

t′ = t. This proves (2).

We may assume that i < j. Let M = Mi ∪ Mi+1 ∪ . . . ∪ Mj−1, and let the components of M be

P 1, . . . , P k, where P t has ends vt
i and vt

j (1 ≤ t ≤ k). Let

T = {t : 1 ≤ t ≤ k, and either vt
i = vt

j or vt
i has degree 1 in Li}.

Let M∗ be the subgraph of G formed by the vertices in V (Ai ∩Bi), the vertices in V (Aj ∩ Bj), and

all the paths Pt (t ∈ T ).

(3) M∗ ∪ Lj is a linkage in Bi.

Subproof. It is clearly a forest, and so it suffices to show that it has maximum degree at most

2. Let v ∈ V (M∗ ∪ Lj). Since M∗ and Lj both have maximum degree ≤ 2, we may assume that

v ∈ V (M∗ ∩ Lj), and v has degree ≥ 1 in both M∗ and Lj. Hence v ∈ V (Aj ∩ Bj), and so v has

degree 1 in M∗ and 1 in Lj , from the definition of M∗. This proves (3).

(4) If P is a component of Li with ends a and b, then there is a component of M∗ ∪ Lj with
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ends a and b.

Subproof. Since a is a terminal of Li, it follows that a ∈ V (Ai ∩ Bi) ∪ (Z \ V (Ai)), by (2.2).

Since Z ∩ V (Ai) = Z ∩ V (Aj) it follows that if a 6∈ V (Ai ∩ Bi) then a ∈ Z \ V (Aj). Similarly, either

b ∈ V (Ai ∩ Bi) or b ∈ Z \ V (Aj). If a ∈ Z \ V (Aj) let a′ = a, and if a ∈ V (Ai ∩ Bi), a = vt
i say, let

a′ = vt
j. Thus φj(a

′) = φi(a). Define b′ similarly. Now since φj(πj) = φi(πi) and φi, φj are injections,

and {a, b} is a block of πi, it follows that {a′, b′} is a block of πj , that is, there is a component P ′ of

Lj with ends a′, b′. There are five cases:

Case 1: a, b ∈ Z \ V (Aj).

Then a = a′ and b = b′. Now no internal vertex of P ′ has degree ≥ 1 in M∗, and a, b 6∈ V (M∗),

and so P ′ is a component of M∗ ∪ Lj satisfying (4).

Case 2: V (Ai ∩ Bi) contains exactly one of a, b, say a.

Then a 6= b, and so a′ 6= b′ = b. Let a = vt
i say; then a′ = vt

j , and vt
j has degree 1 in Lj since it

is an end of P ′ and E(P ′) 6= ∅. Consequently t ∈ T , and so Pt ∪ P ′ is a component of M∗ ∪ Lj with

ends a and b, as required.

Case 3: a 6= b, and a, b ∈ V (Ai ∩ Bi).

Then again a′ 6= b′. Let a = vs
i , b = vt

i ; then a′ = vs
j , b

′ = vt
j . Since a′ and b′ both have degree 1

in Lj it follows that s, t ∈ T , and so Ps ∪ Pt ∪ P ′ is a component of M∗ ∪ Lj with ends a and b.

Case 4: a = b ∈ V (Ai ∩ Bi) and a = a′.

Let a = b = vt
i . Then vt

i = a = a′ = vt
j , and so a has degree 0 in M∗. Moreover, since vt

i has

degree 0 in Li (because |V (P )| = 1) it follows from (2) that vt
j has degree 0 in Lj . Hence a = vt

j has

degree 0 in M∗ ∪ Lj , and so P is a component of M∗ ∪ Lj with ends a and b.

Case 5: a = b ∈ V (Ai ∩ Bi) and a 6= a′.

Let a = b = vt
i ; then a′ = vt

j 6= vt
i . Since vt

i has degree 0 in Li, it follows that t 6∈ T , and so a

has degree 0 in M∗. Since a 6∈ V (Lj) we deduce that a has degree 0 in M∗ ∪Lj, and so again P is a

component of M∗ ∪ Lj with ends a and b.

In each case we have found a component of M∗ ∪ Lj with ends a and b. This proves (4).
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(5) L ⊆ (L ∩ Ai) ∪ M∗ ∪ Lj.

Subproof. (4) implies that there is a linkage in M∗ ∪Lj with the same pattern as Li. From (2.3), it

follows that there is a linkage in (L∩Ai)∪M∗ ∪Lj with the same pattern as L. Since L is vital, we

deduce that L ⊆ (L ∩ Ai) ∪ M∗ ∪ Lj. This proves (5).

(6) T = {1, . . . , k}.

Subproof. Suppose that 1 ≤ t ≤ k and t 6∈ T . Then vt
i 6= vt

j , and vt
i has degree 0 or 2 in Li.

Suppose first that vt
i has degree 0 in Li. Then vt

j has degree 0 in Lj by (2), it has degree 0 in M∗

since t 6∈ T , and is not a vertex of L ∩ Ai. Consequently, vt
j has degree 0 in (L ∩ Ai) ∪ M∗ ∪ Lj .

Since V (L) \V (G), it follows from (5) that vt
j has degree 0 in L, and so vt

j ∈ Z, contrary to (2) since

vt
i 6= vt

j . It follows that vt
i does not have degree 0 in Li. Now vt

i has degree ≤ 1 in M∗ and is not a

vertex of Lj, since vt
i 6= vt

j. Consequently, vt
i has degree ≤ 1 in M∗∪Lj. But from (5), Li ⊆ M∗∪Lj,

and hence vt
i has degree ≤ 1 in Li, and hence t ∈ T , a contradiction. This proves (6).

From (6) it follows that M∗ = M .

(7) M is a subgraph of L.

Subproof. Let 1 ≤ t ≤ k; we claim that P t is a subgraph of L. If vt
i = vt

j this is clear, and so

we may assume that vt
i 6= vt

j. By (2), vt
i , v

t
j 6∈ Z. Moreover, since V (Ai) ∩ Z = V (Aj) ∩ Z and the

internal vertices of P t belong to V (Aj) \ V (Ai), it follows that no vertex of Pt is a terminal of L,

and so they all have degree 2 in L. From (6), vt
j has degree 1 in Lj, but it has degree 2 in L, and

so L contains the edge of P t incident with vt
j. From (5) it follows that L contains both edges of P t

incident with any internal vertex of P t. Consequently E(P t) ⊆ E(L). This proves (7).

From (5) and (7), L ∩ Bj ∩ Ai ⊆ M∗ = M ⊆ L ∩ Bj ∩ Ai. Consequently, L ∩ Bj ∩ Ai = M , and

so L ∩ Bi+1 ∩ Ai = Mi, as required.

Here is a slight strengthening of (2.5).

2.6 For all integers p, k ≥ 0 there exists n ≥ 0 with the following property. Let L be a vital p-linkage

in a graph G, and for 1 ≤ i ≤ n let (Ai, Bi) be a separation of G of order ≤ k, such that
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1. Ai ⊆ Aj and Bj ⊆ Bi, for 1 ≤ i < j ≤ n

2. if 1 ≤ i < i′ ≤ n, and |V (Ai ∩ Bi)| = |V (Ai′ ∩ Bi′)| = k′ say, and |V (Aj ∩ Bj)| > k′ for all j

with i < j < i′, then there is a linkage Mii′ in Bi ∩ Ai′ with k′ components, each with one end

in V (Ai ∩ Bi) and the other in V (Ai′ ∩ Bi′).

Then there exist i, i′ as in (ii) such that L ∩ Bi ∩ Ai′ = Mii′ .

Proof. For 0 ≤ k′ ≤ k let n(k′) = (2p + 1)(p + k′ + 1)2(p+k′) + 1, and for 0 ≤ k′ ≤ k let

m(k′) = n(0)n(1)n(2) . . . n(k′).

Let n = m(k); we shall show it satisfies the theorem. For let G,L and (Ai, Bi) (1 ≤ i ≤ n) and

the Mii′ be as in the theorem. Since there are at least m(k) values of i with 1 ≤ i ≤ n such that

|V (Ai ∩ Bi)| ≤ k, there exists k′ ≤ k minimum such that

|{i : 1 ≤ i ≤ n, |V (Ai ∩ Bi)| ≤ k′}| ≥ m(k′).

If k′ = 0, then from (2.5) (with k replaced by 0) applied to the sequence of all (Ai, Bi) of order 0, we

find the desired Mii′ , as required. We assume then that k′ > 0. From the minimality of k′, it follows

that

|{i : 1 ≤ i ≤ n, |V (Ai ∩ Bi)| ≤ k′ − 1}| ≤ m(k′ − 1) − 1,

and so

|{i : 1 ≤ i ≤ n, |V (Ai ∩ Bi)| ≤ k′}| ≥ n(k′)(|{i : 1 ≤ i ≤ n, |V (Ai ∩ Bi)| ≤ k′ − 1}| + 1).

By examining the intervals between consecutive members of the second set, it follows that there exist

i1, i2 with 1 ≤ i1 < i2 ≤ n, such that

|{i : i1 ≤ i ≤ i2, |V (Ai ∩ Bi)| = k′}| ≥ n(k′)

{i : i1 ≤ i ≤ i2, |V (Ai ∩ Bi)| < k′} = ∅.

Then the result follows, from (2.5) applied to the sequence (Ai, Bi) (i1 ≤ i ≤ i2, |V (Ai ∩ Bi)| =

k′).

Similarly, we have
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2.7 For all integers p, k ≥ 0 there exists n ≥ 0 with the following property. Let L,L′ be vital p-

linkages in a graph G, and for 1 ≤ i ≤ n let (Ai, Bi) be as in (2.6), satisfying (2.6)(i) and (ii). Then

there exist i, i′ as in (ii) such that L ∩ Bi ∩ Ai′ = L′ ∩ Bi ∩ Ai′ = Mii′ .

Proof. First we prove an analogous version of (2.5) for two linkages L,L′ instead of one. We let Z

be the terminals of either L or L′, and then follow the proof of (2.5), taking

n = (4p + 1)(2p + k + 1)2(2p+k) + 1.

Statement (1) in the proof of (2.5) holds with 2p + 1 replaced by 4p + 1, since |Z| ≤ 2p. We find

distinct i, j with 1 ≤ i, j ≤ n such that V (Ai) ∩ Z = V (Aj) ∩ Z, V (Bi) ∩ Z = V (Bj) ∩ Z, φi(πi) =

φj(πj), and φi(π
′

i) = φj(π
′

j), where π′

i is the pattern of L′ ∩ Bi. Then the proof of (2.5) yields that

L ∩ Bi ∩ Ai+1 = Mi and L′ ∩ Bi ∩ Ai+1 = Mi, as required.

Now we use this modified version of (2.5) to prove (2.7), by modifying the proof of (2.6) in the

obvious way.

3 Tangles

A tangle of order θ ≥ 1 in a graph G is a set T of separations of G, all of order < θ, such that

(i) one of (A,B), (B,A) belongs to T , for every separation (A,B) of G of order < θ

(ii) if (Ai, Bi) ∈ T (1 ≤ i ≤ 3) then A1 ∪ A2 ∪ A3 6= G

(iii) if (A,B) ∈ T then V (A) 6= V (G).

We write ord(T ) = θ. Tangles were introduced in [6]. We shall need several lemmas about tangles,

which we establish in this section. First, the following was shown in theorem (5.2) of [6].

3.1 If a graph G has tree-width w, then G has a tangle of order ≥ 2
3 (w + 1), and has no tangle of

order > w + 1.

If T is a tangle of order θ in a graph G, and W ⊆ V (G) with |W | < θ, we denote

{(A \ W,B \ W ) : (A,B) ∈ T ,W ⊆ V (A ∩ B)}

by T \ W . The following is theorem (8.5) of [6].
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3.2 With T , θ,G,W as above, T \ W is a tangle of order θ − |W | in G \ W .

[13, theorem (2.9)] asserts

3.3 Let T be a tangle in a graph G, and let (C,D) ∈ T of order 0. Let

T ′ = {(A ∩ D,B ∩ D) : (A,B) ∈ T }.

Then T ′ is a tangle in B of the same order as T .

From [13, theorem (2.3)] or theorem (6.1) of [6] we have

3.4 Let G′ be a subgraph of G, and let T ′ be a tangle in G′. Let T be the set of all separations

(A,B) of G of order < ord(T ′) such that (A ∩ G′, B ∩ G′) ∈ T ′. Then T is a tangle in G of order

ord(T ′).

We also need the following.

3.5 Let T be a tangle in G and let (A0, B0) ∈ T . Then there is a tangle T0 in B0 of order ord(T )−

|V (A0∩B0)|, such that (A∩B0, B∩B0) ∈ T0 for every (A,B) ∈ T of order < ord(T )−|V (A0∩B0)|.

Proof. Let ord(T ) = θ, and let V (A0 ∩B0) = W , where |W | < θ. Then T \W is a tangle in G \W

of order θ − |W |, by (3.2), and (A0 \ W,B0 \ W ) ∈ T \ W , and has order 0. Let

T1 = {(A ∩ (B0 \ W ), B ∩ (B0 \ W ) : (A,B) ∈ T \ W}.

By [13, theorem (2.9)], T1 is a tangle in B0 \ W of order θ − |W |. Let T0 be the tangle of order

θ − |W | in B0 induced by T1; this exists, by (3.4). We claim that T0 satisfies the theorem.

For let (A,B) ∈ T with order < θ − |W |. Let A′ be the subgraph of G with E(A′) = E(A) and

V (A′) = V (A) ∪ W , and define B′ similarly. Then (A′, B′) has order < θ, and so (A′, B′) ∈ T , by

theorem (2.9) of [6]. Consequently, (A′ \ W,B′ \ W ) ∈ T \ W . From the definition of T1,

((A′ \ W ) ∩ (B0 \ W ), (B′ \ W ) ∩ (B0 \ W )) ∈ T1.

But (A′ \ W ) ∩ (B0 \ W ) = (A ∩ B0) \ W , and (B′ \ W ) ∩ (B0 \ W ) = (B ∩ B0) \ W , and so

((A ∩ B0) \ W, (B ∩ B0) \ W ) ∈ T1, that is,

((A ∩ B0) ∩ (B0 \ W ), (B ∩ B0) ∩ (B0 \ W )) ∈ T1.

Since (A ∩B0, B ∩B0) is a separation of B0 of order < θ − |W |, we deduce from the definition of T0

that (A ∩ B0, B ∩ B0) ∈ T0, as required.
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3.6 If G′ can be obtained from G by splitting a vertex, and T is a tangle in G of order ≥ 2, there

is a tangle in G′ of order ord(T ) − 1.

Proof. Let G′ be obtained by splitting v ∈ V (G). By (3.2), G \ v has a tangle of order ord(T )− 1,

and hence by (3.4), so does G′, since G \ v is a subgraph of G′.

Let us mention also the obvious

3.7 If T is a tangle in G, and θ is an integer with 1 ≤ θ ≤ ord(T ), then the set of all members of

T of order < θ is a tangle in G of order θ.

We call this tangle the θ-truncation of T .

4 Surfaces

A surface is a connected compact 2-manifold, possibly with boundary. The boundary of a surface Σ

is denoted by bd(Σ). The components of bd(Σ) are called the cuffs of Σ; each cuff is homeomorphic to

a circle. An 0-arc in Σ is a subset homeomorphic to a circle, and a line is a subset homeomorphic to

the closed interval [0, 1]. The ends of a line are defined in the natural way. If X ⊆ Σ, its topological

closure is denoted by X . The surface obtained from Σ by pasting a closed disc onto every cuff is

denoted by Σ̂.

If Σ1 and Σ2 are surfaces with null boundary, we say that Σ1 is simpler than Σ2 if Σ2 can be

obtained from Σ1 by adding handles or crosscaps (at least one). For a general surface Σ we denote

the number of cuffs of Σ by c(Σ). In this paper we shall prove several different statements about

surfaces Σ by a double induction; we assume that the statement is true for all surfaces Σ′ with Σ̂′

simpler than Σ̂, and we assume it is true for all Σ′ with Σ̂′ homeomorphic to Σ̂ and with c(Σ′) < c(Σ).

To accomplish this, we shall need to consider cutting surfaces along certain lines and 0-arcs. A

line in Σ is proper if its ends are in bd(Σ) and it has no internal point in bd(Σ). The operations we

need are: cutting along a proper line, and cutting a surface with null boundary along an O-arc. In

both cases we shall only use the operation when it results in another (connected) surface. What we

mean by these operations is clear, but the notation is a little tricky. To simplify matters as far as

possible, we postulate that cutting along a line or O-arc F in Σ as described above results in another

surface Σ′ with Σ∩Σ′ = Σ \F , such that for every point of F there correspond two points of Σ′ \Σ,

both in bd(Σ′), in the natural way. We observe:
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4.1 Let Σ be a surface, and let Σ′ be obtained by cutting along F ⊆ Σ.

1. If F is a proper line with ends in different cuffs then Σ̂′ is homeomorphic to Σ̂ and c(Σ̂′) =

c(Σ̂) − 1.

2. If F is a proper line with ends in the same cuff and Σ′ is connected then Σ̂′ is simpler than Σ̂.

3. If bd(Σ) = ∅ and F is an O-arc and Σ′ is connected then Σ̂′ is simpler than Σ.

The proof is straightforward, and we omit it. We shall also have to deal with line and O-arcs

F which separate Σ (that is, such that Σ \ F is disconnected), but in these cases there are surfaces

Σ1,Σ2 ⊆ Σ with Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = F , and we can get away with using these subsurfaces.

In these cases, therefore, no cutting is needed, which is convenient for purposes of notation. The

corresponding results are:

4.2 Let Σ be a surface, and let Σ1,Σ2 ⊆ Σ be surfaces with Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = F .

1. If F is a proper line in Σ with both ends in the same cuff, then either Σ̂2 is simpler than Σ̂ or

Σ̂1 is a sphere.

2. If F is a proper line in Σ with both ends in the same cuff, and Σ̂1 is a sphere, then Σ̂2 is

homeomorphic to Σ̂; and either c(Σ2) < c(Σ), or c(Σ2) = c(Σ) and there is a closed disc

∆ ⊆ Σ with F ⊆ bd(∆) ⊆ F ∪ bd(Σ).

3. If bd(Σ) = ∅ and F is an O-arc in Σ, then either Σ̂2 is simpler than Σ̂ or Σ1 is a closed disc.

A drawing in a surface Σ is a pair (U, V ) where U ⊆ Σ is closed, V ⊆ U is finite, U ∩ bd(Σ) ⊆

V,U \ V has only finitely many connected components, called edges, and for each edge e, either

1. its closure e is an O-arc with |e ∩ V | = 1, or

2. its closure is a line meeting V in precisely its ends.

If Γ = (U, V ) is a drawing we write U(Γ) = U and V (Γ) = V . A drawing Γ is therefore a

graph with vertex set V (Γ), and we use graph-theoretic terminology for drawings without further

explanation.

If Γ is a drawing in Σ, and F ⊆ Σ, we say that F is Γ-normal if F ∩ U(Γ) ⊆ V (Γ). If F is

a Γ-normal O-arc or line which does not separate Σ, and Σ′ is obtained by cutting along Σ, then
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by splitting the vertices of Γ which lie in F in the natural way we obtain a new drawing Γ′ in Σ′.

Provided that Γ is loopless, this definition agrees with the definition of splitting a vertex discussed

for general graphs in section 2.

If bd(Σ) = ∅, a drawing Γ in Σ is 2-cell if every region of Γ in Σ is homeomorphic to an open

disc. We need the following two well-known lemmas.

4.3 If bd(Σ) = ∅, a drawing Γ in Σ is 2-cell if and only if V (Γ) 6= ∅,Γ is connected, and for every

O-arc F ⊆ Σ with F ∩ U(Γ) = ∅, there is a closed disc ∆ ⊆ Σ with bd(∆) = F .

Proof. The “only if” direction is obvious. For “if”, let r be a region of Γ in Σ. Since V (Γ) 6= ∅ it

follows that r is not a sphere. If every O-arc F ⊆ r bounds a closed disc in r, then r is an open disc

by [5, theorem (4.2)]. Suppose that F ⊆ r is an O-arc which bounds no closed disc in r. From the

hypothesis, F bounds a closed disc ∆ ⊆ Σ, but ∆ 6⊆ r, and so ∆ ∩ V (Γ) 6= ∅. Since F ∩ U(Γ) = ∅

and Γ is connected it follows that U(Γ) ⊆ ∆. If Σ is not a sphere, there is a non-null-homotopic

O-arc F ′ ⊆ Σ, and it can be chosen with F ′ ∩ ∆ = ∅ since ∆ is a disc; but then F ′ ⊆ r contrary

to the hypothesis. If Σ is a sphere, let ∆′ be the disc different from ∆ bounded by F ; then ∆′ ⊆ r,

contrary to our assumption. In either case we have a contradiction, and so there is no such F , as

required.

We remind the reader of the following basic fact [1, theorem (1.7)].

4.4 If bd(Σ) = ∅, an O-arc F ⊆ Σ bounds a closed disc in Σ if and only if F is null-homotopic in

Σ.

Let Γ be a drawing in Σ, and let T be a tangle in Γ. We say that T is respectful if Γ is connected

and every Γ-normal O-arc F ⊆ Σ̂ with |F ∩ V (Γ)| < ord(T ) bounds a disc ∆ ⊆ Σ̂ such that

(Γ ∩ ∆,Γ ∩ Σ̂ \ ∆) ∈ T .

(If Σ′ ⊆ Σ is a surface, and bd(Σ′) is Γ-normal, we denote the drawing (U(Γ) ∩ Σ′, V (Γ) ∩ Σ′) in Σ′

by Γ ∩ Σ′.) If ∆ is related to F as above we write ∆ = ins(F ). If there is a respectful tangle in a

drawing Γ in Σ, then Γ is automatically 2-cell in Σ̂, by (4.3).

The main result of this section is the following.

4.5 For every surface Σ with bd(Σ) = ∅ and every integer θ′ ≥ 1 there is an integer θ ≥ 1 such

that, if Γ is a drawing in Σ with a tangle of order ≥ θ, and Γ′ is obtained from Γ by deleting some

vertices and edges, all incident with one region of Γ in Σ, then Γ′ has a tangle of order ≥ θ′.
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Proof. We proceed by induction on Σ, and assume inductively that the result holds for every surface

with null boundary simpler than Σ. Consequently,

(1) For every φ ≥ 1 there exists f(φ) ≥ φ such that for every surface Σ′ with bd(Σ′) = ∅ sim-

pler than Σ, if Γ is a drawing in Σ′ with a tangle of order ≥ f(φ), and Γ′ is obtained from Γ by

deleting some vertices and edges, all incident with one region, then Γ′ has a tangle of order ≥ φ.

Given θ′ ≥ 1, let θ = θ′ + 6 + f(f(θ′)); we shall show that θ satisfies the theorem. Let Γ be a

drawing in Σ, let T be a tangle in Γ of order ≥ θ, let r be a region of Γ in Σ, and let Γ′ be a drawing

obtained from Γ by deleting some vertices and edges of Γ all incident with r.

There exists (Γ1,Γ2) ∈ T of order 0 such that Γ2 is connected, by theorem (2.8) of [6] applied to

the 1-truncation of T . By (3.3) there is a tangle in Γ2 of order ≥ θ, and Γ′ ∩ Γ2 is obtained from

Γ2 by deleting some vertices and edges all on one region of Γ2 in Σ. If Γ′ ∩ Γ2 has a tangle of order

≥ θ′, then so does Γ′ by (3.4). Consequently it suffices to prove the theorem for Γ2; in other words,

we may assume that Γ is connected.

Let T1 be the (θ′ + 6)-truncation of T . If T1 is respectful, then by theorem (7.8) of [7] (with

k = 3), there is a tangle in Γ′ of order θ′, since θ′ + 6 ≥ 9, as required. We may assume therefore

that T1 is not respectful. Since Γ is connected, we deduce

(2) There is a Γ-normal O-arc F ⊆ Σ with |F ∩ V (Γ)| < θ′ + 6, such that there is no closed

disc ∆ ⊆ Σ bounded by F with (Γ ∩ ∆,Γ ∩ Σ \ ∆) ∈ T .

It follows that Σ is not a sphere. There are two cases, depending on whether F separates Σ or

not. We assume first that it does not. Let Σ′ be obtained from Σ by cutting along F . Then Σ̂′ is

simpler than Σ by (4.1)(iii). Let Γ′′ be obtained from Γ by deleting all vertices in F ∩ V (Γ). By

(3.2), Γ′′ has a tangle of order

ord(T ) − |F ∩ V (Γ)| ≥ θ − (θ′ + 6) = f(f(θ′)).

Now Γ′′ is a drawing in Σ̂′ and there are one or two regions of Γ′′ in Σ̂′, say r1 and r2 where possibly

r1 = r2, such that Γ′ ∩ Γ′′ is obtained from Γ′′ by deleting some vertices and edges incident with

either r1 or r2. By two applications of (1), we deduce that Γ′ ∩ Γ′′ has a tangle of order ≥ θ′, and

hence so does Γ′ by (3.4), as required.
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In the second case, we assume that F separates Σ. Let Σ1,Σ2 ⊆ Σ be surfaces with Σ1 ∪ Σ2 =

Σ and Σ1 ∩ Σ2 = F . Let Γi = Γ ∩ Σi (i = 1, 2). Since (Γ1,Γ2) is a separation of Γ of order

< θ′ + 6 ≤ ord(T ) (by (2)) we may assume from the symmetry that (Γ1,Γ2) ∈ T . From (2), Σ1 is

not a disc, and so from (4.2)(iii), Σ̂2 is simpler that Σ. From (3.5) there is a tangle in Γ2 of order

≥ ord(T ) − |F ∩ V (Γ)| ≥ f(f(θ′)) ≥ f(θ′).

Now Γ2 ∩Γ′ is obtained from Γ2 by deleting some vertices and edges all incident with one region

of Γ2 in Σ̂2, and so from (1), Γ2 ∩Γ′ has a tangle of order ≥ θ′. By (3.4), so does Γ′, as required.

By ρ repeated applications of (4.5), we deduce

4.6 For any surface Σ with bd(Σ) = ∅, and all integers θ′ ≥ 1 and ρ ≥ 0, there exists θ ≥ 1 such

that, if Γ is a drawing in Σ with a tangle of order ≥ θ, and r1, . . . , rρ are regions of Γ in Σ, and Γ′

is obtained from Γ by deleting some vertices and edges each incident with one of r1, . . . , rρ, then Γ′

has a tangle of order ≥ θ′.

5 Linkages on surfaces

In this section we prove (1.1) for graphs which can be drawn on a fixed surface. We need some

further definitions.

If C is a cuff of Σ and Γ is a drawing in Σ, there is a unique region of Γ in Σ̂ which includes

C \ V (Γ), and we call it the cuff region of Γ in Σ̂ corresponding to C. An atom of a drawing Γ in

a surface Σ is either a region of Γ in Σ̂, or an edge of Γ, or a set {v} where v is a vertex. The set

of atoms is denoted by A(Γ), or AΣ(Γ) in cases of ambiguity. If Γ is a drawing in Σ and T is a

respectful tangle in Γ, then, as discussed in [7], T defines a metric on A(Γ), defined as follows. Let

K be a drawing in Γ such that V (Γ) ⊆ V (K), every region of Γ includes a unique vertex of K, and

U(Γ) ∩ U(K) = V (Γ) ∩ V (K); and so that for every region r of Γ, the vertex of K it contains is

adjacent in K to every vertex v of Γ incident with r, by multiple edges if r is incident with v more

than once, in the natural sense. For a closed walk W of K of length < 2 ord(T ), let ins(W ) be the

union of the atoms of K in W together with all sets ins(U(C)) where C is a circuit of K whose

edges all occur in W . For atoms a, b of Γ, let a′, b′ be the corresponding atoms of K in the natural

sense; we say d(a, b) = 0 if a = b, d(a, b) = ord(T ) if a 6= b and there is no closed walk W of length

< 2 ord(T ) with a′, b′ ∈ ins(W ), and otherwise d(a, b) is half the minimum length of such a walk.

(See [7] for further discussion.) If {v} is an atom of Γ we often write d(v, a) for d({v}, a). We call d

the metric of T .
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We need the following lemma.

5.1 For every surface Σ and integer p ≥ 0, there exists θ > p with the following property. Let Γ be

a drawing in Σ with |V (Γ) ∩ bd(Σ)| = p, and let T be a respectful tangle in Γ of order ≥ θ. Suppose

that

(i) there is no Γ-normal O-arc F ⊆ Σ such that |F ∩V (Γ)| < |C∩V (Γ)| and C ⊆ ins(F ) for some

cuff C of Σ, and

(ii) for every two cuffs C1, C2, the corresponding cuff regions r1, r2 satisfy d(r1, r2) ≥ θ where d is

the metric of T .

Then there is no vital linkage in Γ with set of terminals V (Γ) ∩ bd(Σ).

Proof. Choose θ′ so that theorem (3.2) of [7] holds, with Σ, t, z, and θ replaced by Σ̂, c(Σ), p and

θ′ respectively. We may assume that θ′ ≥ p + 9, by increasing θ′ if necessary. Let θ = 2θ′ + 1. We

claim that θ satisfies (5.1). For let Γ,T be as in (5.1), satisfying (i) and (ii). Let d be the metric of

T . Now Γ is 2-cell in Σ̂ since T is respectful.

(1) There is a vertex v of Γ such that d(v, r) ≥ θ′ for every cuff region r.

Subproof. We may assume that there is at least one cuff region r1 say. By [4, theorem (8.9)],

there is an edge e of Γ so that d(e, r1) = ord(T ). Let v1, . . . , vn be a sequence of vertices of Γ such

that v1 is incident with r1, vn is incident with e, and for 1 ≤ i < n some region of Γ in Σ̂ is incident

with vi and vi + 1. Then d(r1, v1) ≤ 1, d(e, vn) ≤ 2, and d(vi, vi + 1) ≤ 2 for 1 ≤ i < n. Since

d(r1, e) = ord(T ), it follows (since d is a metric) that d(r1, vn) ≥ ord(T ) − 2 ≥ θ′. Consequently we

may choose i with 1 ≤ i ≤ n minimum such that d(r1, vi) ≥ θ′. Since d(r1, v1) ≤ 1 and θ′ ≥ 2 it

follows that i ≥ 2. From the minimality of i, d(r1, vi−1) < θ′. Since d(vi−1, vi) ≤ 2 it follows that

d(r1, vi) ≤ θ′ + 1. For any cuff region r2 6= r1,

θ ≤ d(r1, r2) ≤ d(r1, vi) + d(r2, vi) ≤ θ′ + 1 + d(r2, vi)

by (ii), and so d(r2, vi) ≥ θ − θ′ − 1 = θ′. Thus setting v = vi satisfies (1). This proves (1).

Let v be as in (1).
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(2) If Γ \ v is not 2-cell in Σ̂ then there is no vital linkage in Γ with set of terminals V (Γ) ∩ bd(Σ).

Subproof. Suppose that L is a vital linkage in Γ with set of terminals V (Γ) ∩ bd(Σ), and that r

is a region of Γ \ v in Σ̂ which is not homeomorphic to an open disc. Consequently v ∈ r. Since r

is not homeomorphic to an open disc there is by [5, theorem (4.2)] an O-arc F ⊆ r which bounds

no disc in r; and it can be chosen so that F ∩ U(Γ) = {v}. Since |F ∩ V (Γ)| ≤ 1 it follows that

ins(F ) exists, and ins(F ) 6⊆ r. Consequently, ins(F ) ∩ U(Γ \ v) 6= ∅. Since L is vital there exists a

component of P of L with V (P ) ∩ ins(F ) 6⊆ F , and it follows that one end s of P is in ins(F ) \ F ,

since V (P ) ∩ F ⊆ {v}. Let r1 be the cuff region with s ∈ r1. Then r1 ∩ (ins(F ) \ F ) 6= ∅, and so

d(r1, v) ≤ 1, contrary to (1). This proves (2).

Let Γ′ = Γ \ v. By (2), we may assume that Γ is 2-cell in Σ̂. Since d({v}, e) ≤ 2 for every edge e

of Γ not in Γ′, and ord(T ) ≥ θ′ ≥ 7, it follows from theorem (7.8) of [7] that

(3) There is a respectful tangle T ′ in Γ′ of order ord(T ) − 4, such that

(i) (A ∩ Γ′, B ∩ Γ′) ∈ T ′ for every (A,B) ∈ T of order < ord(T ) − 4, and

(ii) if a, b ∈ A(Γ, Σ̂) and a′, b′ ∈ A(Γ′, Σ̂) satisfy a ⊆ a′ and b ⊆ b′, then

d(a, b) ≥ d′(a′, b′) ≥ d(a, b) − 8,

where d′ is the metric of T ′.

Let ins′ be the function derived from T ′ analogous to ins.

(4) If F ⊆ Σ is a Γ′-normal O-arc with |F ∩V (Γ′)| < |C∩V (Γ′)| for some cuff C, then C 6⊆ ins′(F ).

Subproof. Let r1 be the cuff region of Γ in Σ̂ corresponding to C. Since d(r1, v) ≥ 2 it follows

that v is not incident with r1 and so r1 is also the cuff region of Γ′ in Σ̂ corresponding to C. Let r

be the region of Γ′ with v ∈ r. If F ∩ r 6= ∅, then

d′(r, r1) ≤ |F ∩ V (Γ′)| < |C ∩ V (Γ′)| ≤ |bd(Σ) ∩ V (Γ)| = p

and so by (3)(ii), d(v, r1) ≤ p+8, contrary to (1) since θ′ ≥ p+9. Consequently F ∩r = ∅, and so F is

Γ-normal, and |F ∩V (Γ)| < |C ∩V (Γ)|. From (i) it follows that C 6⊆ ins(F ). Let ∆ = ins(F ). Then
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(Γ ∩ ∆,Γ ∩ Σ \ ∆) ∈ T , and has order < k ≤ ord(T ) − 4 and so by (3)(i), (Γ′ ∩ ∆,Γ′ ∩ Σ \ ∆) ∈ T ′.

Consequently, ∆ = ins′(F ). This proves (4).

(5) For every two distinct cuffs C1, C2, the corresponding cuff regions r1, r2 of Γ′ in Σ̂ are dis-

tinct and satisfy d′(r1, r2) ≥ θ′.

Subproof. As we saw in (4), r1 and r2 are cuff regions of Γ in Σ̂. Since d(r1, r2) ≥ θ by hypothesis,

it follows that r1 6= r2. By (3)(ii),

d′(r1, r2) ≥ d(r1, r2) − 8 ≥ θ − 8 ≥ θ′.

This proves (5).

Suppose that L is a linkage in Γ with set of terminals V (Γ) ∩ bd(Σ). From (4), (5) and theorem

(3.2) of [7], there is a linkage in Γ \ v with the same pattern as L, from the choice of θ′. But then L

is not vital. The result follows.

The main result of this section is the following.

5.2 For every surface Σ with bd(Σ) = ∅ and every integer p ≥ 0 there exists θ ≥ 1 such that every

drawing in Σ with a tangle of order ≥ θ has no vital p-linkage.

Proof. Let Σ0 be a surface with bd(Σ0) = ∅, and assume that the result holds for all pairs Σ′, p′

where Σ′ is simpler than Σ0. We shall prove that it holds for Σ0 and all p. By cutting at most p

small holes in Σ0, one at each terminal, we deduce that it suffices to prove the following.

(∗) For every surface Σ with Σ̂ homeomorphic to Σ0 and every integer p ≥ 0, there exists θ ≥ 1

such that every drawing Γ in Σ with |V (Γ) ∩ bd(Σ)| ≤ p and with a tangle of order ≥ θ has no vital

linkage with all its terminals in bd(Σ).

We shall prove (∗) for all p by induction on c(Σ), and then, with c(Σ) fixed, by induction on p.

Our three inductive hypothesis may be summarized as follows.

(1) For all p′ ≥ 0 there exists θ1(p
′) ≥ 1 such that for every surface Σ′ with bd(Σ′) = ∅ which

is simpler than Σ0, every drawing in Σ′ with a tangle of order ≥ θ1(p
′) has no vital p′-linkage.
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(2) For all p′ ≥ 0 there exists θ2(p
′) ≥ 1 such that for every surface Σ′ with Σ̂′ homeomorphic

to Σ0 and c(Σ′) < c(Σ), every drawing Γ′ in Σ′ with |V (Γ′) ∩ bd(Σ′)| ≤ p′ with a tangle of order

≥ θ2(p
′) has no vital linkage with all its terminals in bd(Σ′).

(3) There exists θ3 ≥ 1 such that for every surface Σ′ homeomorphic to Σ, every drawing Γ′ in

Σ′ with |V (Γ′) ∩ bd(Σ′)| < p with a tangle of order ≥ θ3 has no vital linkage with all its terminals in

bd(Σ′).

Choose θ4 > p such that (5.1) holds (with θ replaced by θ4). Let

θ = 2θ4 + max(θ1(p + 3θ4), θ2(p + 3θ4), θ3).

We claim that θ satisfies (∗). For suppose not, and let Γ be a drawing in Σ with |V (Γ)∩bd(Σ)| ≤ p,

let T be a tangle in Γ of order ≥ θ, and let L be a vital linkage in Γ with all its terminals in bd(Σ).

Choose Γ,T , L so that Γ is minimal.

(4) Γ is connected and loopless.

Subproof. If Γ is not connected, there exists (Γ1,Γ2) ∈ T of order 0 with Γ2 6= Γ. By (3.3), Γ2

has a tangle of order ≥ θ, and |V (Γ2) ∩ bd(Σ)| ≤ p, and L ∩ Γ2 is a vital linkage in Γ2 with all its

terminals in bd(Σ). This contradicts the minimality of Γ. Thus, Γ is connected, and by theorem

(8.4) of [6] and the minimality of Γ it is also loopless. This proves (4).

(5) Suppose that (A,B) ∈ T has order ≤ θ4, and Γ′ is a drawing in a surface Σ′, such that Γ′

can be obtained from B by splitting ≤ θ4 vertices of B. Then Σ̂′ is not simpler than Σ0.

Subproof. From (3.3), B has a tangle of order ≥ θ − θ4, and so Γ′ has a tangle of order ≥ θ − 2θ4.

But from (2.2) and (2.3), B has a vital (p + θ4)-linkage, and so from (2.4), Γ′ has a vital (p + 3θ4)-

linkage. Since θ−2θ4 ≥ θ1(p+3θ4), it follows from (1) that Σ̂′ is not simpler than Σ0. This proves (5).

(6) Suppose that (A,B) ∈ T has order ≤ θ4, and Γ′ is a drawing in a surface Σ′, such that Γ′

can be obtained from B by splitting ≤ θ4 vertices of B. Suppose, moreover, that
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(a) Σ̂′ is homeomorphic to Σ0, and

(b) for v ∈ V (Γ′), v ∈ bd(Σ′) if and only if either v ∈ V (A∩B), or v ∈ V (Γ)∩ bd(Σ), or v 6∈ V (Γ)

(that is, v is a new vertex produced by splitting).

Then c(Σ′) ≥ c(Σ), and if equality holds then |V (Γ′) ∩ bd(Σ′)| ≥ p.

Subproof. As in (5), Γ′ has a tangle of order ≥ θ − 2θ4, and has a vital linkage with all its ter-

minals in bd(Σ′) (from (b)). But

|V (Γ′) ∩ bd(Σ′)| ≤ |V (A ∩ B)| + |V (Γ) ∩ bd(Σ)| + 2θ4 ≤ p + 3θ4

and θ − 2θ4 ≥ θ2(p + 3θ4), and so from (2) and (a), c(Σ′) ≥ c(Σ). If equality holds then Σ′ is

homeomorphic to Σ, and since θ−2θ4 ≥ θ3 it follows that |V (Γ′)∩ bd(Σ′)| ≥ p, from (3). This proves

(6).

(7) There is no Γ-normal proper line F ⊆ Σ with ends in different cuffs such that |F ∩ V (Γ)| ≤ θ4.

Subproof. If there is such an F , let A be null and B = Γ; let Σ′ be obtained from Σ by cut-

ting along F , and let Γ′ be obtained from Γ by splitting appropriately the vertices of Γ in F . (Since

Γ is loopless we can do so.) By (4.1)(i), Σ̂′ is homeomorphic to Σ0 and c(Σ′) = c(Σ)− 1, contrary to

(6). This proves (7).

Let T1 be the θ4-truncation of T .

(8) T1 is respectful.

Subproof. Certainly Γ is connected, by (4). Let F ⊆ Σ̂ be a Γ-normal O-arc with |F ∩ V (Γ)| < θ4.

Suppose first that F does not separate Σ̂, let Σ′ be obtained from Σ̂ by cutting along F , and let Γ′

be the drawing in Σ′ obtained from Γ by splitting appropriately the vertices of Γ in F . By (4.1)(iii)

Σ̂′ is simpler than Σ0, contrary to (5). Thus F separates Σ̂. Let Σ1,Σ2 ⊆ Σ̂ be surfaces such that

Σ1 ∪Σ2 = Σ̂ and Σ1 ∩Σ2 = F . Let Γi = Γ∩Σi (i = 1, 2). Since (Γ1,Γ2) is a separation of Γ of order

< θ4, we may assume that (Γ1,Γ2) ∈ T1 ⊆ T . By (5), Σ̂2 is not simpler than Σ0, and so by (4.2)(iii),

Σ1 is a disc. This proves (8).
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If F ⊆ Σ̂ is a Γ-normal O-arc with |F ∩ V (Γ)| < θ4, we define ins(F ) as usual.

(9) If F ⊆ Σ̂ is a Γ-normal O-arc with |F ∩ V (Γ)| < θ4, then C ∩ ins(F ) 6= ∅ for at most one

cuff C.

Subproof. Let A = Γ ∩ ins(F ) and choose B ⊆ Γ so that (A,B) is a separation of Γ and

V (A ∩ B) = V (Γ) ∩ F . If C ∩ ins(F ) 6= ∅ for ≥ 2 cuffs C, then by splitting ≤ 2 vertices of B, we

can obtain from B a drawing Γ′ in a surface Σ′ with Σ̂′ homeomorphic to Σ0 and with c(Σ′) < c(Σ),

satisfying (6)(b), contrary to (6). This proves (9).

Let d1 be the metric of T1.

(10) If r1, r2 are the cuff regions corresponding to distinct cuffs C1, C2 then d1(r1, r2) ≥ θ4.

Subproof. Suppose not. From (7), (9) and the definition of the metric, and exchanging C1 and C2 if

necessary, there is a Γ-normal O-arc F1 ⊆ Σ\bd(Σ) with |F1∩V (Γ)| < θ4, and with r1 ⊆ ins(F1)\F1,

such that ins(F1) ∩ bd(Σ) = C1. Moreover, there is also either

(i) a Γ-normal line F0 ⊆ Σ with one end in F1, the other end in C2, and with no internal point in

bd(Σ) ∪ ins(F1), with |(F0 ∪ F1) ∩ V (Γ)| < θ4, or

(ii) a Γ-normal O-arc F2 ⊆ Σ \ bd(Σ) with |(F1 ∪F2)∩V (Γ)| < θ4 and with r2 ⊆ ins(F2) \F2, such

that ins(F2) ∩ bd(Σ) = C2 and |ins(F1) ∩ ins(F2)| = 1, or

(iii) a Γ-normal O-arc F2 ⊆ Σ\bd(Σ) and a Γ-normal line F0 ⊆ Σ\bd(Σ) with |(F0∪F1∪F2)∩V (Γ)| <

θ4, such that r2 ⊆ ins(F2) \ F2, ins(F2) ∩ bd(Σ) = C2, ins(F1) ∩ ins(F2) = ∅, one end of F0 is

in F1, the other end is in F2, and no internal point of F0 is in ins(F1) or ins(F2).

If (i) holds, let A = Γ ∩ ins(F1), and let (A,B) ∈ T where V (A ∩ B) = F ∩ V (Γ); then (6) is

contradicted, by splitting all the vertices of B in F0. If (ii) or (iii) holds, let

A = (Γ ∩ ins(F1)) ∪ (Γ ∩ ins(F2))

and let (A,B) ∈ T where V (A ∩ B) = (F1 ∪ F2) ∩ V (Γ); then again (6) is contradicted, in (ii) by

splitting the vertex of B in F1 ∩F2 if there is one, and in (iii) by splitting all the vertices of B in F0.

This proves (10).
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(11) If F ⊆ Σ is a Γ-normal O-arc with |F ∩ V (Γ)| < θ4, and ins(F ) includes a unique cuff C,

then |F ∩ V (Γ)| ≥ |C ∩ V (Γ)|.

Subproof. By (9), ins(F ) ∩ bd(Σ) = C. Let A = Γ ∩ ins(F ), and let (A,B) ∈ T where V (A ∩ B) =

F ∩ V (Γ). Let Σ′ be obtained from Σ by deleting Σ∩ (ins(F ) \ F ). Then Σ′ is homeomorphic to Σ,

and so by (6),

|V (B) ∩ bd(Σ′)| ≥ p ≥ |V (Γ) ∩ bd(Σ)|.

Consequently |F ∩ V (Γ)| ≥ |C ∩ V (Γ)|. This proves (11).

(12) Every vertex in V (Γ) ∩ bd(Σ) is a terminal of L.

Subproof. If v ∈ bd(Σ) \ V (Γ) is not a terminal of L, let Σ′ be obtained from Σ by slightly en-

larging Σ in the neighbourhood of v. Then |V (Γ) ∩ bd(Σ′)| < p, contrary to (3). This proves (12).

But (8), (10), (11) and (12) contradict (5.1). Thus our assumption that θ does not satisfy (∗)

was false, and the proof is complete.

6 Presentations

If Γ is a drawing in a surface Σ such that |V (Γ) ∩ C| ≥ 2 for every cuff C, we call the connected

components of bd(Σ) \ V (Γ) the spaces of Γ in Σ. For every space s there are two vertices u, v such

that s ∪ {u, v} is a line; we call u, v the ends of s. A support of Γ in Σ is either a set {v} where

v ∈ V (Γ) ∩ bd(Σ), or a line F ⊆ bd(Σ) with both ends in V (Γ) (where possibly some internal points

of F belong to V (Γ)). The ends of a support F are a and b, where a = b = v if F = {v}, and a and

b are the ends of the line F if F is a line.

Let Γ, as above, be a subgraph of some graph G, which is not required to be a drawing. Let

F ∗

1 , . . . , F ∗

r be mutually disjoint supports of Γ in Σ with V (Γ)∩ bd(Σ) ⊆ F ∗

1 ∪· · ·∪F ∗

r . For 1 ≤ j ≤ r,

let Hj ⊆ G, so that

(V1) H1 ∪ . . .∪Hr ∪Γ = G; H1, . . . ,Hr are mutually vertex-disjoint; and for 1 ≤ j ≤ r, V (Hj ∩Γ) =

V (Γ) ∩ F ∗

j , and E(Hj ∩ Γ) = ∅.
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For 1 ≤ j ≤ r, let qj ≥ 1 be an integer; for each u ∈ V (Γ)∩F ∗

j let µ(u) be an edge-less subgraph

of Hj with qj vertices and with V (µ(u) ∩ Γ) = {u}; and for each space s with s ⊆ F ∗

j , let µ(s) be a

subgraph of Hj, satisfying the following. (For a support F of Γ in Σ, µ(F ) denotes the union of µ(s)

over all spaces s ⊆ F and µ(u) over all u ∈ F ∩ V (Γ).)

(V2) For 1 ≤ j ≤ r,Hj = µ(F ∗

j ).

(V3) For 1 ≤ j ≤ r, if s ⊆ F ∗

j is a space with ends u1, u2, then V (µ(s) ∩ Γ) = {u1, u2}, and

µ(u1), µ(u2) ⊆ µ(s) and there are qj mutually vertex-disjoint paths of µ(s) between V (µ(u1))

and V (µ(u2)).

(V4) For 1 ≤ j ≤ r, if s1, s2 ⊆ F ∗

j are spaces, and u ∈ F ∗

j ∩ V (Γ) lies between them in F ∗

j , then

µ(s1) ∩ µ(s2) ⊆ µ(u) (and consequently E(µ(s1) ∩ µ(s2)) = ∅).

In these circumstances, we call Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ a presentation of G in Σ, with defect

r. Its depth is max(qj : 1 ≤ j ≤ r), or 0 if r = 0 (which implies bd(Σ) = ∅). Our next goal is to prove

a form of (1.1) for graphs with presentations with given defect and depth, in a fixed surface. We use

the following lemma.

6.1 Let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of G in Σ. Let a, b, a′, b′ ∈ F ∗

1 ∩ V (Γ) be in

order and let I, I ′ ⊆ F ∗

1 be the supports with ends a, b and a′, b′ respectively. Let |µ(a)| = q; let

P1, . . . , Pq be mutually vertex-disjoint paths of µ(I) between V (µ(a)) and V (µ(b)); and let P ′

1, . . . , P
′

q

be mutually vertex-disjoint paths of µ(I ′) between V (µ(a′)) and V (µ(b′)).

(i) For 1 ≤ i, i′ ≤ q, if v ∈ V (Pi ∩ P ′

i′), then v ∈ V (µ(b) ∩ µ(a′)) and v is an end of Pi and of P ′

i′ .

(ii) If a′ = b, then P1, . . . , Pq can be renumbered so that P1 ∪ P ′

1, . . . , Pq ∪ P ′

q are mutually vertex-

disjoint paths of µ(I ∪ I ′) between V (µ(a)) and V (µ(b′)).

(iii) If |µ(a) ∪ µ(b′)| = |µ(a′) ∪ µ(b)| = k say, then {P1, . . . , Pq, P
′

1, . . . , P
′

q} has cardinality k, and

its members are k mutually vertex-disjoint paths of µ(I) ∪ µ(I ′) between V (µ(a) ∪ µ(b′)) and

V (µ(b) ∪ µ(a′)).

Proof. First we prove (i). Let v ∈ V (Pi ∩ P ′

i′), where 1 ≤ i, i′ ≤ q. We claim that v ∈ V (µ(b)). If

a = b this is clear since

v ∈ V (Pi) ⊆ V (µ(I)) = V (µ(b))
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and so we assume that a 6= b. Consequently there is a space s ⊆ I with v ∈ V (µ(s)). Let J ⊆ F ∗

1 be

the support with ends b and b′. Since I ′ ⊆ J it follows that v ∈ V (µ(J)). If b = b′ then v ∈ V (µ(b))

by the same argument as above applied to J instead of I, and so we may assume that b 6= b′. Hence

there is a space s′ ⊆ J with v ∈ V (µ(s′)). Now b lies in F ∗

1 between s and s′, and so v ∈ V (µ(b)) by

(V4). This proves our claim that v ∈ V (µ(b)).

Now since |V (µ(b))| = q and each of P1, . . . , Pq has an end in V (µ(b)), it follows that each vertex

of µ(b) is an end of one of P1, . . . , Pq, and in particular, v is an end of one of P1, . . . , Pq. Since

v ∈ V (Pi) and P1, . . . , Pq are mutually vertex-disjoint, it follows that v is an end of Pi. Similarly,

v ∈ V (µ(a′)) and v is an end of P ′

i′ . This proves (i).

For (ii), let P1, . . . , Pq and P ′

1, . . . , P
′

q be numbered so that for 1 ≤ i ≤ q, Pi and P ′

i have a common

end in V (µ(b)). For 1 ≤ i, i′ ≤ q, if i 6= i′ it follows from (i) that Pi is vertex-disjoint from P ′

i′ ; and

so P1 ∪ P ′

1, . . . , Pq ∪ P ′

q are mutually vertex-disjoint paths satisfying (ii).

For (iii), let µ(a) = {a1, . . . , aq}, µ(b) = {b1, . . . , bq}, µ(a′) = {a′1, . . . , a
′

q}, µ(b′) = {b′1, . . . , b
′

q},

numbered so that for 1 ≤ i ≤ q, Pi has ends ai and bi, and P ′

i has ends a′i and b′i, and for 1 ≤ i, i′ ≤ q,

if i 6= i′ then bi 6= a′i′ . Suppose that 1 ≤ i, i′ ≤ q and ai = b′i′ . By (i), i = i′ and ai = bi = a′i = b′i,

and so Pi = P ′

i′ . In particular, for 1 ≤ i, i′ ≤ q, if i 6= i′ then Pi and P ′

i′ are vertex-disjoint. Thus

{i : 1 ≤ i ≤ q, ai = b′i′} ⊆ {i : 1 ≤ i ≤ q, Pi = P ′

i}

⊆ {i : 1 ≤ i ≤ q, V (Pi ∩ P ′

i ) 6= ∅} = {i : 1 ≤ i ≤ q, a′i = bi}.

But from the hypothesis of (iii), |µ(a) ∪ µ(b′)| = |µ(a′) ∪ µ(b)|, and so

|{i : 1 ≤ i ≤ q, ai = b′i}| = |{i : 1 ≤ i ≤ q, a′i = bi}|.

We therefore have equality throughout, and in particular for 1 ≤ i ≤ q, if Pi meets P ′

i then Pi = P ′

i .

Then (iii) follows.

6.2 Let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of a graph G in some surface Σ. Let I ⊆ F ∗

1

be a support with ends a, b. Then there are |V (µ(a))| mutually vertex-disjoint paths of µ(I) between

V (µ(a)) and V (µ(b)).

Proof. This follows by induction on the number of spaces included in I, applying (6.1)(ii) if I has

an internal point in V (Γ), and applying (V3) otherwise.
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Let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of G in Σ, and let L be a vital linkage in G.

If Γ ⊆ L and every terminal of L is in one of H1, . . . ,Hr, we say that L is exhaustive (for the

presentation). If L is exhaustive then it follows that Γ is a forest and every vertex of Γ not in bd(Σ)

has degree 2 in Γ. Let us say a Σ-jump is a path in Γ with distinct ends both in bd(Σ) and with no

internal vertex in bd(Σ). If L is exhaustive, then every edge of Γ is in a unique Σ-jump, and any two

Σ-jumps have no common vertices except possibly one end. The main result of this section is the

following.

6.3 For every surface Σ and all integers p, r ≥ 0 and q ≥ 1, there exists λ ≥ 0 such that, if G is a

graph with a presentation in Σ of depth ≤ q and defect ≤ r, and there is an exhaustive vital p-linkage

in G, then there are at most λ Σ-jumps.

The most difficult step in the proof of (6.3) is where Σ is a disc and r = 1. Then the cases when

Σ is a disc and r = 2, 3 and at least 4 are successively easier, and finally the case when Σ is not a

disc is also quite easy.

6.4 For all integers p ≥ 0 and q ≥ 1 there exists λ ≥ 0 such that, if G has a presentation in a disc

Σ of depth ≤ q and defect 1, and there is an exhaustive vital p-linkage in G, then there are at most

λ Σ-jumps.

Proof. Choose n so that (2.6) holds, with k replaced by 2q. Let λ = nn. We claim that (6.2) is

satisfied. For let Γ, F ∗,H, µ be a presentation of G in a disc Σ with depth ≤ q and let L be a vital

p-linkage which is exhaustive for the presentation.

A line F ⊆ Σ is good if it is proper, both its ends are in V (Γ), and no internal point is in U(Γ). If

F is a good line, there are two lines J(F ),K(F ) ⊆ bd(Σ) with the same ends as F , where K(F ) ⊆ F ∗.

Let ∆(F ) be the closed disc in Σ bounded by F ∪ K(F ). Define

A(F ) = (Γ ∩ Σ \ ∆(F )) ∪ µ(J(F ))

B(F ) = (Γ ∩ ∆(F )) ∪ µ(K(F ))

X(F ) = V (A(F ) ∩ B(F )).

(1) (A(F ), B(F )) is a separation of G, and X(F ) = V (µ(u1) ∪ µ(u2)) where F has ends u1, u2.

The proof is similar to that of theorem (2.1) of [10] and we omit it.
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Let F,F ′ be good lines with ∆(F ′) ⊆ ∆(F ). Let F have ends u1, u2, and let F ′ have ends u′

1, u
′

2,

so that u1, u
′

1, u
′

2, u2 are in order in F ∗.

(2) A(F ) ⊆ A(F ′) and B(F ′) ⊆ B(F ).

This is immediate since ∆(F ′) ⊆ ∆(F ).

Let I1 ⊆ F ∗ be the support with ends u1, u
′

1, and let I2 ⊆ F ∗ have ends u′

2, u2. From (6.2), there

are q1 mutually vertex-disjoint paths of µ(I1) between V (µ(u1)) and V (µ(u′

1)), and similarly for I2,

where the presentation has depth q1. From (6.1)(iii), we deduce that

(3) If |X(F )| = |X(F ′)| there are |X(F )| mutually vertex-disjoint paths of B(F ) ∩ A(F ′) between

X(F ) and X(F ′), each using no edge of Γ.

(4) If F1, . . . , Fn is a sequence of good lines such that ∆(Fi+1) ⊆ ∆(Fi) for 1 ≤ i < n, there ex-

ists i with 1 ≤ i < n such that every edge of Γ ∩ ∆(Fi) is an edge of Γ ∩ ∆(Fi+1).

Subproof. From (1), (2), (3) and (2.6) (with k replaced by 2q), we deduce that there exists i, i′

with 1 ≤ i < i′ ≤ n, such that |Xi| = |Xi′ | and L ∩ Bi ∩ Ai′ uses no edge of Γ. But every edge of

Bi ∩ Ai′ which is in Γ is also in L, since L is exhaustive, and so E(Γ ∩ Bi ∩ Ai′) = ∅. Then every

edge of Γ ∩ ∆(Fi) is also an edge of Γ ∩ ∆(Fi′) and hence of Γ ∩ ∆(Fi+1). This proves (4).

Let us say that two distinct regions r1, r2 of Γ in Σ touch if there is an edge e of Γ with e ⊆ r1∩r2.

It follows that if r1, r2 touch then r1 ∩ r2 = U(J) for some Σ-jump J , and if they do not touch then

|r1 ∩ r2| ≤ 1. In particular, the touching relation defines a graph T with vertex set the set of regions

of Γ in Σ, and it is a tree. From (4), every vertex of T has degree at most n, and every path of T has

at most n vertices. Hence |E(T )| ≤ nn = λ. But E(T ) is in 1-1 correspondence with the Σ-jumps,

and the result follows.

6.5 For all integers p ≥ 0 and q ≥ 1 there exists λ ≥ 0 such that, if G has a presentation in a disc

Σ of depth ≤ q and defect 2, and there is an exhaustive vital p-linkage in G, then there are at most

λ Σ-jumps.
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Proof. Choose n ≥ 0 as in (2.5) with k replaced by 2q. Choose λ′ so that (6.4) holds, with p, q, λ

replaced by p+2q, q, λ′. Let λ = n(2λ′+1). We claim that λ satisfies (6.5). For let Γ, F ∗

1 , F ∗

2 ,H1,H2, µ

be a presentation of G in the disc Σ, of depth ≤ q, and let L be an exhaustive vital p-linkage. Let

the two spaces not included in F ∗

1 ∪ F ∗

2 be s∗1 and s∗2. Let r1, . . . , rt be all the regions of Γ in Σ

which are incident both with a vertex in F ∗

1 and with a vertex in F ∗

2 , numbered in order, so that for

1 ≤ i < t, ri lies between s∗1 and ri+1, in the natural sense. For 1 ≤ i ≤ t, choose ai ∈ V (Γ)∩F ∗

1 and

bi ∈ V (Γ)∩F ∗

2 so that ri is incident with ai and bi; and let Fi be a good line with ends ai, bi and with

interior in ri. Let Ji and Ki be the two lines in bd(Σ) with ends ai and bi, where s∗1 ⊆ Ji and s∗2 ⊆ Ki.

Then J1 ⊆ J2 ⊆ . . . ⊆ Jt and Kt ⊆ Kt−1 ⊆ . . . ⊆ K1. Let Ai be the union of µ(Ji) and Γ ∩ ∆,

where ∆ ⊆ Σ is the disc bounded by Fi ∪ Ji; and define Bi similarly using Ki instead of Ji. Then

(Ai, Bi) is a separation of G, and Ai ∩ Bi = µ(ai) ∪ µ(bi), as is easily seen. Since µ(ai) ∩ µ(bi) = ∅,

it follows that |V (Ai ∩Bi)| = q1 + q2, where |µ(a)| = qj for all a ∈ F ∗

j ∩ V (Γ) (j = 1, 2). From (6.2),

for 1 ≤ i < t, there are qj mutually vertex-disjoint paths of Hj ∩ Bi ∩ Ai+1 between V (Ai ∩ Bi) and

V (Ai+1 ∩ Bi+1) for j = 1 and 2, and since H1 and H2 are disjoint, it follows that there are q1 + q2

mutually vertex-disjoint paths of (H1 ∪ H2) ∩ Bi ∩ Ai+1 between V (Ai ∩ Bi) and V (Ai+1 ∩ Bi+1).

But for 1 ≤ i < t,Γ∩Bi ∩Ai+1 has an edge since ri 6= ri+1 and it belongs to L since L is exhaustive,

and so L ∩ Bi ∩ Ai+1 6⊆ H1 ∪ H2. From (2.5), it follows that t ≤ n.

For 1 ≤ i < t, let Pi be the Σ-jump with ri ∩ ri + 1 = U(Pi), and let Γ′ = P1 ∪ · · · ∪ Pt−1. Let

R1, . . . , Rt be the regions of Γ′ in Σ, where ri ⊆ Ri (1 ≤ i ≤ t). Now let us fix i with 1 ≤ i ≤ t.

We claim that there are at most 2λ′ Σ-jumps J with U(J) ⊆ Ri. For j = 1, 2, let Ij ⊆ F ∗

j be the

support ri ∩ F ∗

j ; then rj is a closed disc bounded by I1 ∪ U(Pi−1) ∪ I2 ∪ U(Pi) (replacing U(Pi−1)

by s∗1 if i = 1, and replacing U(Pi) by s∗2 if i = t). For j = 1, 2, let Γj be the drawing in Σ formed

by all the vertices in V (Γ) ∩ Ij and all the Σ-jumps J with U(J) ⊆ Ri ∪ I1 ∪ I2 with both ends in

Ij. We claim that Γj includes at most λ′ Σ-jumps. For if |Ij | = 1 this is trivial, since Γj includes no

Σ-jumps. If |Ij | 6= 1 then Γj, Ij , µ(Ij), and the restriction of µ to Ij, is a presentation of Γj ∪ µ(Ij)

in a disc with depth ≤ q and defect 1; and L ∩ (Γj ∪ µ(Ij)) is an exhaustive vital (p + 2q)-linkage,

and so by (6.4) it has at most λ′ Σ-jumps. This proves our claim that Γ1 and Γ2 both include at

most λ′ Σ-jumps. Since every Σ-jump J with U(J) ⊆ Ri ∪ I1 ∪ I2 either has both ends in I1 or has

both ends in I2 (because ri is the only region of Γ included in Ri incident with both F ∗

1 and F ∗

2 ) it

follows that Ri includes at most 2λ′ Σ-jumps. Counting P1, . . . , Pt−1, and using the fact that t ≤ n,

we deduce that there are at most 2λ′t + t − 1 ≤ λ Σ-jumps altogether, as required.
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6.6 For all integers p ≥ 0 and q ≥ 1 there exists λ ≥ 0 such that, if G has a presentation in a disc

Σ of depth ≤ q and defect 3, and there is an exhaustive vital p-linkage G, then there are at most λ

Σ-jumps.

Proof. Choose λ′ ≥ 0 so that (6.5) holds with p, q, λ replaced by p + 2q, q, λ′, and let λ = 3λ′. We

claim that λ satisfies (6.6). For let Γ, F ∗

1 , F ∗

2 , F ∗

3 ,H1,H2,H2, µ be a presentation of G in the disc Σ,

of depth ≤ q, and let there be an exhaustive vital p-linkage. For i = 1, 2, 3, choose vi ∈ V (Γ) ∩ F ∗

i

such that there is a region r of Γ in Σ incident with v1, v2 and v3. (It is an easy exercise to prove that

this choice is possible, since V (Γ)∩ bd(Σ) ⊆ F ∗

1 ∪F ∗

2 ∪F ∗

3 .) Choose v0 ∈ r \ bd(Σ), and for i = 1, 2, 3

let Fi ⊆ r ∪ {vi} be a line with ends v0 and vi, so that F1, F2 and F3 are mutually disjoint except

for v0, and Fi ∩ bd(Σ) = {vi} (i = 1, 2, 3). For i = 1, 2, 3 let Ji ⊆ bd(Σ) be the support with ends

{v1, v2, v3} \ {vi} which does not include F ∗

i . Let ∆1 ⊆ Σ be the closed disc bounded by J1 ∪F2 ∪F3

and define ∆2,∆3 similarly. Now

Γ ∩ ∆1, F
∗

2 ∩ J1, F
∗

3 ∩ J1, µ(F ∗

2 ∩ J1), µ(F ∗

3 ∩ J1)

and the restriction of µ to (F ∗

2 ∪ F ∗

3 ) ∩ J1, is a presentation of Γ ∩ ∆1 ∪ µ(F ∗

2 ∪ J1) ∪ µ(F ∗

3 ∪ J1) of

depth ≤ q and defect 2, and this graph has an exhaustive vital (p + 2q)-linkage. Consequently, ∆1

includes at most λ′ Σ-jumps. Similarly so do ∆2 and ∆3, and since every Σ-jump belongs to one of

these discs, it follows that there are at most 3λ′ = λ Σ-jumps altogether, as required.

6.7 For all integers p, r ≥ 0 and q ≥ 1 there exists λ ≥ 0 such that, if G has a presentation in a

disc Σ of depth ≤ q and defect ≤ r, and there is an exhaustive vital p-linkage in G, then there are at

most λ Σ-jumps.

Proof. We prove the result for all p and q by induction on r. By (6.4), (6.5), (6.6) we may assume

that r ≥ 4, and for all p′ ≥ 0 and q′ ≥ 1 there exists λ(p′, q′) ≥ 0 such that, if G has a presentation

in a disc Σ of depth ≤ q′ and defect < r, and there is an exhaustive vital p′-linkage in G, then

there are at most λ(p′, q′) Σ-jumps. Let λ = 2λ(p + 2q, q). We claim that λ satisfies (6.7). For

let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of G in the disc Σ of depth ≤ q and let there be

an exhaustive vital p-linkage in G. Choose a region r incident with vertices in at least three of

F ∗

1 , . . . , F ∗

r , as in the proof of (6.6). Since two of these three are non-consecutive, because r ≥ 4, it

follows that there is a proper line F ⊆ Σ with ends a, b ∈ V (Γ), and with F ∩ U(Γ) = {a, b}, such

that both of the lines J1, J2 ⊆ bd(Σ) with ends a and b are disjoint from at least one of F ∗

1 , . . . , F ∗

r .
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For i = 1, 2 let ∆i ⊆ Σ be the closed disc bounded by F ∪Ji. Now (Γ∩∆j)∪µ(Ji) has a presentation

in Σ with depth ≤ q and defect < r, and it has an exhaustive vital (p + 2q)-linkage, and so ∆j

includes at most λ(p + 2q, q) Σ-jumps, from the inductive hypothesis. But every Σ-jump belongs to

one of ∆1,∆2, and so there are at most 2λ(p + 2q, q) = λ Σ-jumps altogether, as required.

Proof of (6.3). We proceed by induction on Σ and by (6.3), we may assume that Σ is not a disc.

We make the inductive hypothesis that

(1) For all integers p, r ≥ 0 and q ≥ 1 there exists λ(p, q, r) ≥ 0 such that for every surface Σ′,

if either Σ̂′ is simpler then Σ̂, or Σ̂′ is homeomorphic to Σ̂ and c(Σ′) < c(Σ), the following is true.

If G′ is a graph with a presentation in Σ′ of depth ≤ q and defect ≤ r, and there is an exhaustive

vital p-linkage in G′, then there are at most λ(p, q, r) Σ′-jumps.

Let λ = max(λ(p + 4q, q, r + 2), 2λ(p + 2q, q, r + 1)). We claim that λ satisfies the theorem. For let

Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of a graph G in Σ, with depth ≤ q.

(2) We may assume that every proper line F ⊆ Σ with ends in V (Γ) and with no internal point

in U(Γ) separates Σ.

Subproof. Suppose that F ⊆ Σ is a proper line with ends a, b ∈ V (Γ) and with no internal point in

U(Γ), and F does not separate Σ. Let Σ′ be obtained from Σ by cutting along F . By (4.1)(i) and

(4.1)(ii), either Σ̂′ is simpler than Σ̂, or Σ̂′ is homeomorphic to Σ̂ and c(Σ′) < c(Σ). Let Γ′ be the

drawing in Σ′ obtained from Γ by splitting appropriately the vertices of Γ in F . Let a ∈ F ∗

1 , b ∈ F ∗

2

say. Let F ∗

1 have ends u1, u2, and let Ii ⊆ F ∗

1 be the support with ends u1, a. For each v ∈ V (µ(a)),

let δi(v) be the set of edges of µ(Ii) incident with v (i = 1, 2). By splitting v according to δ1(v), δ2(v),

for each v ∈ V (µ(a)), and similarly splitting each v ∈ V (µ(b)), we obtain a graph G′ which has a

presentation in Σ′ (using the drawing Γ′) of depth ≤ q and defect ≤ r + 2. But by (2.4), it follows

that G′ has an exhaustive vital (p + 4q)-linkage, and so by (1), Γ′ has at most λ(p + 4q, q, r + 2)

Σ′-jumps. But these Σ′-jumps are in 1-1 correspondence with the Σ-jumps of Γ, and so Γ has at

most λ(p + 4q, q, r + 2) ≤ λ Σ-jumps, as required. This proves (2).

(3) c(Σ) = 1.
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Subproof. Since r ≥ 4, it follows that c(Σ) ≥ 1. If c(Σ) ≥ 2 then there is a region of Γ incident with

vertices in two different cuffs, and so there is a proper line F with ends vertices of Γ in different cuffs,

and with no internal point in U(Γ). But then F does not separate Σ, contrary to (2). This proves (3).

(4) We may assume that for every proper line F ⊆ Σ with ends in V (Γ) and with no internal

point in U(Γ), there is a closed disc ∆ ⊆ Σ with F ⊆ bd(∆) ⊆ F ∪ bd(Σ).

Subproof. By (2), F separates Σ. Let Σ1,Σ2 ⊆ Σ be surfaces with Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = F .

For i = 1, 2 let Γi = Γ ∩ Σi, and let Gi = Γ ∪ µ(bd(Σ) ∩ Σi). Now for i = 1, 2, there is a presen-

tation of Gi in Σi of depth ≤ q and defect ≤ r + 1, using Γi; and L ∩ Gi is an exhaustive vital

(p + 2q)-linkage. If both Σ1 and Σ2 are not discs, then by (4.2)(i) and (4.2)(ii), either Σ̂i is simpler

than Σ̂, or Σ̂i is homeomorphic to Σ̂ and c(Σi) < c(Σ) for i = 1, 2. But then from (1), there are

≤ λ(p + 2q, q, r + 1) Σi-jumps in Γi for i = 1, 2, and hence ≤ 2λ(p + 2q, q, r + 1) ≤ λ Σ-jumps in Γ,

as required. Consequently we may assume that one of Σ1,Σ2 is a disc. This proves (4).

From (4), it follows in particular that every Σ-jump J is homotopic in Σ̂ to the lines in bd(Σ)

joining the ends of J . Let R be the closure in Σ̂ of Σ̂ \ Σ; thus R ∩ Σ is the unique cuff of Σ. It

follows that every O-arc in R ∪ U(Γ) is null-homotopic in Σ̂. By theorem (11.10) of [5] there is a

closed disc ∆ ⊆ Σ̂ with R∪U(Γ) ⊆ ∆. By extending ∆ to a sphere and removing R \ bd(R) from it,

we deduce that G has a presentation in a disc Σ′, with depth ≤ q and defect ≤ r. Then the result

follows from (1), since λ ≥ λ(p + 4q, q, r + 2) ≥ λ(p, q, r) and Σ is not a disc.

7 Presentations and tree-width

If T is a tangle in a graph G, a subgraph A of G is small (with respect to T ) if there exists B ⊆ G

such that (A,B) ∈ T . An easy consequence of theorem (2.9) of [6] is the following (we omit the

proof).

7.1 If T is a tangle in G, and A ⊆ G, then the following are equivalent:

(i) A is small with respect to T ;

(ii) if X denotes the set of vertices of A incident with edges of G not A, then |X| < ord(T ), and

(A,B) ∈ T where V (B) = (V (G) \ V (A)) ∪ X and E(B) = E(G) \ E(A);
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(iii) there is a separation (A,B) of order < ord(T ), and T contains every such separation.

If Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ is a presentation of G in Σ, and T is a tangle in G, we say that

the presentation surrounds T if µ(s) is small for every space s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r .

If Γ is a drawing in a surface Σ such that |V (Γ) ∩ C| ≥ 2 for every cuff C, we define Γ+ to be

the drawing in Σ̂ with U(Γ+) = U(Γ) ∪ bd(Σ) and V (Γ+) = V (Γ).

7.2 Let θ ≥ 1, and let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of a graph G in a surface Σ,

of depth ≤ q, and surrounding a tangle of order ≥ qθ. Then Γ+ has a tangle of order ≥ θ.

Proof. Γ+ has the same vertex set as Γ, and its edges are the edges and spaces of Γ. Let S(Γ) be

the set of spaces of Γ. For any subgraph A of Γ+ we define σ(A) to be the union of A ∩ Γ with all

the graphs µ(v) (v ∈ V (A) ∩ bd(Σ)) and µ(s) (s ∈ E(A) ∩ S(Γ)).

(1) If (A,B) is a separation of Γ+ then (σ(A), σ(B)) is a separation of G of order ≤ q|V (A ∩ B)|.

Subproof. Clearly σ(A) ∪ σ(B) = G. No edge of G belongs to both σ(A) and σ(B), by (V1)

and (V4), and so (σ(A), σ(B)) is a separation of G. We claim that

V (σ(A) ∩ σ(B)) ⊆ V (A ∩ B) ∪
⋃

(µ(u) : u ∈ V (A ∩ B) ∩ bd(Σ)).

For let v ∈ V (σ(A) ∩ σ(B)) \ V (A ∩ B). Since σ(A) ∩ Γ = A and σ(B) ∩ Γ = B, it follows that

v 6∈ V (Γ); let v ∈ V (H1) say. There exists x such that v ∈ V (µ(x)), and either x ∈ V (A) ∩ F ∗

1 or

x ∈ E(A) ∩ S(Γ) and x ⊆ F ∗

1 ; and similarly there exists y (with B instead of A). Choose x and

y as close together in F ∗

1 as possible, in the natural sense. If z lies in F ∗

1 between x and y, and

z ∈ V (Γ) ∪ S(Γ), and z 6= x, y, then z belongs to one of A,B, and v ∈ V (µ(z)) by (V3) and (V4),

contrary to our choice of x and y. If x ∈ V (Γ) and y ∈ S(Γ) with one end x, then x ∈ V (A∩B) and

v ∈ V (µ(x)) as required. Finally, if x = y ∈ V (Γ) then again x ∈ V (A ∩ B) and v ∈ V (µ(x)); while

if x = y ∈ S(Γ) then u ∈ V (A∩B) and v ∈ V (µ(u)), where u is one end of x. This proves our claim

that

V (σ(A) ∩ σ(B)) ⊆ V (A ∩ B) ∪
⋃

(µ(u) : u ∈ V (A ∩ B) ∩ bd(Σ)).

Consequently, |V (σ(A) ∩ σ(B))| ≤ q|V (A ∩ B)|. This proves (1).

Let T be a tangle in G of order ≥ qθ, surrounded by the presentation. Let T ′ be the set of all

separations (A,B) of Γ+ of order < θ such that (σ(A), σ(B)) ∈ T . We claim that T ′ is a tangle in

Γ+ of order θ. Let us verify the three axioms for a tangle.
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For the first axiom, let (A,B) be a separation of Γ+ of order < θ. Then (σ(A), σ(B)) has

order < qθ ≤ ord(T ) by (1), and so one of (σ(A), σ(B)), (σ(B), σ(A)) belongs to T . Hence one of

(A,B), (B,A) belongs to T ′. This verifies the first axiom.

For the second, let (Ai, Bi) ∈ T ′ (i = 1, 2, 3). Then (σ(Ai), σ(Bi)) ∈ T (i = 1, 2, 3), and so

σ(A1) ∪ σ(A2) ∪ σ(A3) 6= G. But

σ(A1) ∪ σ(A2) ∪ σ(A3) = σ(A1 ∪ A2 ∪ A3)

and σ(Γ+) = G, and so A1 ∪ A2 ∪ A3 6= Γ+. This verifies the second axiom.

For the third, it suffices by [3, theorem (2.7)] to show that if e ∈ E(Γ+) and Ke denotes the graph

consisting of e and its ends, then (Γ+ \ e,Ke) 6∈ T ′, that is, (σ(Γ+ \ e), σ(Ke)) 6∈ T . If e ∈ E(Γ), or

if e ∈ S(Γ) and e 6⊆ F ∗

1 ∪ . . .∪F ∗

r then V (σ(Γ+ \ e)) = V (G), and so (σ(Γ+ \ e), σ(Ke)) ∈ T , since T

satisfies the third axiom. We assume then that e ∈ S(Γ), and e ⊆ F ∗

1 ∪ . . .∪F ∗

r . Then σ(Ke) = µ(e),

and so (σ(Γ+ \ e), σ(Ke)) 6∈ T by (7.1) since µ(e) is small. This verifies the third axiom.

Hence T ′ is a tangle in Γ+ of order θ, as required.

The main result of this section is the following.

7.3 For every surface Σ and all integers p, r ≥ 0 and q ≥ 1, there exists θ ≥ 1 such that, if a graph

G has a presentation in Σ of depth ≤ q, and defect ≤ r which surrounds a tangle of order ≥ θ, then

G has no vital p-linkage.

Proof. Choose λ so that (6.3) holds. Choose θ1 so that (5.2) holds with Σ, p, θ replaced by Σ̂, 2(p+

λ), θ1. Choose θ2 so that (4.6) holds, with Σ, θ′, c, θ replaced by Σ̂, θ1, c(Σ), θ2. Let θ = qθ2. We

claim that θ satisfies (7.3). For let Γ, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ be a presentation of G in Σ, of depth

≤ q (we may assume its defect is exactly r), surrounding a tangle of order ≥ θ. Suppose that L is a

vital p-linkage in G. Let Γ′ be the union of all paths in L∩Γ with both ends in bd(Σ) and no internal

vertex in bd(Σ) (including one-vertex paths). Then Γ′, F ∗

1 , . . . , F ∗

r ,H1, . . . ,Hr, µ is a presentation of

G′ = Γ′ ∪ H1 ∪ . . . ∪ Hr in Σ, of depth ≤ q. Moreover, L ∩ G′ is a vital linkage in G′, by (2.3),

and it is a p-linkage since each component of L includes at most one component of L ∩ G′, and it is

exhaustive. From (6.3), there are at most λ Σ-jumps in Γ′. Let X be the set of all v ∈ V (Γ)∩ bd(Σ)

such that {v} is the vertex set of a component of L ∩ Γ. Every other component of L ∩ Γ either

is a Σ-jump in Γ′, or has an end some vertex v ∈ V (Γ) \ bd(Σ) which is a terminal of L, by (2.2).

Consequently, L∩ (Γ \X) has at most λ + p components, and so is a vital 2(λ + p)-linkage in Γ \X.

From (5.2), Γ \ X has no tangle of order ≥ θ1. Now Γ \ X is obtained from Γ+ by deleting some
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vertices and edges of Γ+, all incident with one of c(Σ) regions of Γ+ in Σ̂. From (4.6), Γ+ has no

tangle of order ≥ θ2. From (7.2), the presentation of G captures no tangle of order ≥ qθ2 = θ, a

contradiction. Thus L is not a a vital p-linkage in G, as required.

8 Pseudo-presentations

In a presentation, the graphs H1, . . . ,Hr are disjoint. Now we want to consider a slightly more

general object, in which the “last” vertices of each Hi may equal some of the “first” vertices of the

next one of H1, . . . ,Hr on the same cuff. More precisely, a pseudo-presentation of a graph G in a

surface Σ is defined as follows. Let Γ ⊆ G be a drawing in Σ such that |V (Γ) ∩ C| ≥ 2 for each

cuff C. Let F ∗

1 , . . . , F ∗

r be mutually disjoint supports of Γ in Σ with V (Γ) ∩ bd(Σ) ⊆ F ∗

1 ∪ . . . ∪ F ∗

r .

For 1 ≤ j ≤ r let qj ≥ 1 be an integer; for each u ∈ V (Γ) ∩ F ∗

j let µ(u) be an edge-less subgraph

of G with qj vertices and with V (µ(u) ∩ Γ) = {u}; and for each space s with s ⊆ F ∗

j let µ(s) ⊆ G,

satisfying (P1)–(P4) below. A unit is either a vertex in V (Γ) ∩ bd(Σ) or a space in F ∗

1 ∪ . . . ∪ F ∗

r .

(P1) G = Γ ∪
⋃

(µ(F ∗

j ) : 1 ≤ j ≤ r); Γ and all the graphs µ(s) for s ∈ S(Γ) and s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r

are mutually edge-disjoint; and if x1, x2 are units in different cuffs then µ(x1) and µ(x2) are

mutually vertex-disjoint.

(P2) For 1 ≤ j ≤ r, if s ⊆ F ∗

j is a space with ends u1, u2 then V (µ(s) ∩ Γ) = {u1, u2} and

µ(u1), µ(u2) ⊆ µ(s), and there are qj mutually vertex-disjoint paths of µ(s) between V (µ(u1))

and V (µ(u2)).

(P3) For each cuff C, if x1 and x2 are units in C and u1, u2 ∈ C ∩ V (Γ) are such that x1, u1, x2, u2

occur in order in C, then µ(x1) ∩ µ(x2) ⊆ µ(u1) ∪ µ(u2).

(P4) For each cuff C,⋓(µ(u) : u ∈ V (Γ) ∩ C) is null.

Then we say that Γ, F ∗

1 , . . . , F ∗

4 , µ is a pseudo-presentation of G in Σ. Its depth is max(qj : 1 ≤ j ≤ r),

or 0 if r = 0, and its defect is r. We say that the pseudo-presentation is disjointed if for each space

s with ends u1, u2 such that s 6⊆ F ∗

1 ∪ . . . ∪ F ∗

r , the graphs µ(u1) and µ(u2) are vertex-disjoint.

8.1 Let Γ, F ∗

1 , . . . , F ∗

r , µ be a disjointed pseudo-presentation of a graph G in a surface Σ. Then

Γ, F ∗

1 , . . . , F ∗

r , µ(F ∗

1 ), . . . , µ(F ∗

r ), µ is a presentation of G in Σ.
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Proof. Let Hj = µ(F ∗

j ) (1 ≤ j ≤ r). We must check that (V1)–(V4) hold (and that µ(s) ⊆ Hj if

s ⊆ F ∗

j is a space, which is obvious). For (V1),

G = Γ ∪
⋃

(µ(F ∗

j ) : 1 ≤ j ≤ r) = Γ ∪ H1 ∪ . . . ∪ Hr

from (P1). To see that H1, . . . ,Hr are mutually disjoint, suppose that v ∈ V (Hj1 ∩ Hj2) say. For

i = 1, 2 let xi be a unit in F ∗

ji
with v ∈ V (µ(xi)). From (P1), x1 and x2 belong to the same cuff C.

We may assume that k ≤ r, and that for 1 ≤ j ≤ r, F ∗

j ⊆ C if and only if j ≤ k, and that F ∗

1 , . . . , F ∗

k

occur in order around C. Let s∗1, . . . , s
∗

k be the spaces in C not in F ∗

1 ∪ . . .∪F ∗

r , numbered so that if

k > 1 then s∗j has one end in F ∗

j and one in F ∗

j+1 for 1 ≤ j < k, and s∗k has one end in F ∗

k and one in

F ∗

1 . For 1 ≤ j ≤ k, let F ∗

j have ends aj , bj , where aj is an end of s∗j and bj is an end of s∗j−1 (or of

s∗k, if j = 1). Let us write bk+1 = b1 and a0 = ak. Now since the pseudo-presentation is disjointed, v

does not belong to both µ(aj1−1) and µ(bj1); choose u1 ∈ {aj1−1, bj1} so that v 6∈ V (µ(u1)). Similarly

choose u2 ∈ {aj1 , bj1+1} with v 6∈ V (µ(u2)). Now x1, u1, x2, u2 occur in C in order, contrary to (P3),

since v ∈ V (µ(x1) ∩ µ(x2)) and v 6∈ V (µ(u1) ∪ µ(u2)).

This proves that H1, . . . ,Hr are disjoint. To complete the proof of (V1), we must check that for

1 ≤ j ≤ r, V (Hj ∩ Γ) = V (Γ) ∩ F ∗

j , and E(Hj ∩ Γ) = ∅. Now V (Γ) ∩ F ∗

j ⊆ V (µ(F ∗

j )) = V (Hj),

because u ∈ V (µ(u)) for each u ∈ V (Γ) ∩ F ∗

j . Conversely, let u ∈ V (Hj ∩ Γ). Let x be a unit in F ∗

j

with u ∈ V (µ(x)). Since V (µ(x) ∩ Γ) = {x} if x is a vertex, and V (µ(x) ∩ Γ) is the set of ends of x

by (P2) if x is a space, it follows that either v ∈ V (Γ) ∩ F ∗

j or v is an end of some space in F ∗

j ; and

so in either case, v ∈ V (Γ) ∩ F ∗

j . This proves that V (Hj ∩ Γ) = V (Γ) ∩ F ∗

j . Finally, E(Hj ∩ Γ) = ∅

because E(Γ ∩ µ(S)) = ∅ for each space s ⊆ F ∗

j , by (P1). This proves (V1).

Now (V2) holds by definition, and (V3) is the same as (P2), and so it only remains to verify

(V4). Let 1 ≤ j ≤ r, and let s1, s2 ⊆ F ∗

j be spaces, and let u ∈ F ∗

j ∩ V (Γ) lie in F ∗

j between s1

and s2. Let s0 be a space with s0 6⊆ F ∗

1 ∪ . . . ∪ F ∗

r , in the same cuff C as F ∗

j . (This exists since

|V (Γ) ∩ C| ≥ 2.) Let s0 have ends a0 and b0. Now a0, s1, u, s2 occur in order in C, and so by (P3),

µ(s1) ∩ µ(s2) ⊆ µ(a0) ∪ µ(s2). Similarly, µ(s1) ∩ µ(s2) ⊆ µ(b0) ∪ µ(s2), and so

µ(s1) ∩ µ(s2) ⊆ (µ(a0) ∩ µ(b0)) ∩ µ(s2) = µ(s2).

This proves (V4), as required.

Secondly, we wish to discuss splitting vertices in a pseudo-presentation, in order to make it

disjointed. More precisely, let Γ, F ∗

1 , . . . , F ∗

r , µ be a pseudo-presentation of G in Σ. Let s∗ be a space

with s∗ 6⊆ F ∗

1 ∪. . .∪F ∗

r , with ends u1, u2 say. Let C be the cuff including s∗. Let v ∈ V (µ(u1)∩µ(u2)).
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From (P4), there exists u∗ ∈ V (Γ) ∩ C with v 6∈ V (µ(u∗)). Let Fi be the support in C with ends ui

and u∗ which does not include s∗ (i = 1, 2). For i = 1, 2 let δi be the set of all edges e incident with

v such that e ∈ E(µ(s)) for some space s ⊆ Fi ∩ (F ∗

1 ∪ . . .∪F ∗

r ). Then δ1 ∩ δ2 = ∅, for by (P2) there

is only one space s ⊆ C with e ∈ E(µ(s)); and δ1 ∪ δ2 is the set of all edges of G incident with v,

because by (P1) e is an edge of µ(s) for some space s ⊆ C ∩ (F ∗

1 ∪ . . .∪F ∗

r ). Let G′ be obtained from

G by splitting v according to δ1, δ2, and let the two new vertices of G′ be v1, v2 where the edges in δi

are incident with vi (i = 1, 2). For i = 1, 2, and for each subgraph A of G with v ∈ V (A), let σi(A)

be the graph with the same set of edges as A, and with vertex set (V (A) \{v})∪{vi}, with the same

incidence relation as A except that the edges of A that are incident with v in A are incident with vi

in σi(A). Then σi(A) is a subgraph of G′ provided that δi contains all edges of A incident with v.

Define µ′ by:

µ′(u) = µ(u) if v ∈ V (Γ) ∩ bd(Σ) and v 6∈ V (µ(u))

µ′(u) = σi(µ(u)) if v ∈ V (Γ) ∩ Fi and v ∈ V (µ(u)) (i = 1, 2)

µ′(s) = µ(s) if s is a space with s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r and v 6∈ V (µ(s))

µ′(s) = σi(µ(s)) if s is a space with s ⊆ (F ∗

1 ∪ . . . ∪ F ∗

r ) ∩ Fi and v ∈ V (µ(s)) (i = 1, 2).

8.2 Σ, F ∗

1 , . . . , F ∗

r , µ′ is a pseudo-presentation of G′.

Proof. Since v ∈ V (µ(u1) ∩ µ(u2)) it follows that v 6= u1, u2, and so v 6∈ V (Γ). Consequently

Γ ⊆ G′. Let us check that µ′(x) ⊆ G′, for each unit x. If x is a vertex this is clear, so let x be a

space with x ⊆ F ∗

1 ∪ . . . ∪ F ∗

r . If v 6∈ V (µ(x)) then µ′(x) = µ(x) ⊆ G′ as required. We assume then

that v ∈ V (µ(x)), and x ⊆ F1 say. Then µ′(x) = σ1(µ(x)), and every edge of µ(x) incident with v

belongs to δ1, by definition of δ1. Consequently µ′(x) ⊆ G′, as required.

We must verify (P1)-(P4). For (P1), we observe that

E(G′) = E(G) = E(Γ ∪
⋃

(µ(F ∗

j ) : 1 ≤ j ≤ r)) = E(Γ ∪
⋃

(µ′(F ∗

j ) : 1 ≤ j ≤ r))

and

V (G′) = (V (G) \ {v}) ∪ {v1, v2} = (V (Γ ∪
⋃

(µ(F ∗

j ) : 1 ≤ j ≤ r)) \ {v}) ∪ {v1, v2}

⊆ V (Γ) ∪
⋃

(µ′(F ∗

j ) : 1 ≤ j ≤ r)

since v1 ∈ µ′(F ∗

1 ) and v2 ∈ µ′(F ∗

2 ). The remainder of (P1) is clear and so (P1) holds.
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For (P2), let s ⊆ F ∗

j be a space with ends a, b say. Certainly V (µ′(s)∩Γ) = V (µ(s)∩Γ) = {a, b}.

To see that µ′(a) ⊆ µ′(s) we argue as follows. If v 6∈ V (µ(a)) then

µ′(a) = µ(a) ⊆ µ(s) \ v = µ′(s) \ v ⊆ µ′(s)

as required. We assume then that v ∈ V (µ(a)), and hence v ∈ V (µ(s)). Thus s ⊆ F1 or s ⊆ F2, say

s ⊆ F1; and so a ∈ F1. Hence

µ′(a) = σ1(µ(a)) ⊆ σ1(µ(s)) = µ′(s)

as required. This verifies the second assertion of (P2). The third assertion follows because there is

an isomorphism from µ(s) to µ′(s) mapping µ(a) to µ′(a) and µ(b) to µ′(b).

For (P3), let x1, a, x2, b be units of a cuff C in order, where a, b ∈ V (Γ). We must show that

µ′(x1) ∩ µ′(x2) ⊆ µ′(a) ∪ µ′(b).

Since

E(µ′(x1) ∩ µ′(x2)) = E(µ(x1) ∩ µ(x2)) ⊆ E(µ(a) ∪ µ(b)) = E(µ′(a) ∪ µ′(b)),

it suffices to show that every vertex of µ′(x1)∩µ′(x2) is a vertex of µ′(a)∪µ′(b). Let w ∈ V (µ′(x1)∩

µ′(x2)). If w 6= v1, v2 then

w ∈ V (µ(x1) ∩ µ(x2)) ⊆ V (µ(a) ∪ µ(b))

and since w 6= v it follows that w ∈ V (µ′(a)∪µ′(b)) as required. We may assume then that w = v1 say.

Thus v1 ∈ V (µ′(x1)∩µ′(x2)). From the definition of µ′(x1) and µ′(x2) it follows that v ∈ µ(x1)∩µ(x2)

and x1, x2 belong to F1. Since x1, a, x2, b occur in order in C we may assume that a ∈ F1 and lies in

F1 between x1 and x2. Since x1, a, x2, u
∗ occur in order in C, it follows that

v ∈ V (µ(x1) ∩ µ(x2)) ⊆ V (µ(a) ∪ µ(u∗))

and since v 6∈ V (µ(u∗)) we deduce that v ∈ V (µ(a)). But a ∈ F1, and µ′(a) = σ1(µ(a)), and so

v1 ∈ V (µ′(a)), as required. This proves (P3).

For (P4), suppose that w ∈ V (µ′(u)) for every u ∈ V (Γ)∩C ′ for some cuff C ′. If w 6= v1, v2 then

w ∈ µ(a) for all u ∈ V (Γ) ∩ C ′, and so w ∈
⋂

(µ(u) : u ∈ V (Γ) ∩ C ′), contrary to the truth of (P4)

for µ. Thus we may assume that w = v1 say, and hence C ′ = C. But v1 6∈ V (µ(u∗)) = V (µ′(u∗)), a

contradiction. This proves (P4), and therefore completes the proof of (8.2).
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Now let Γ, F ∗

1 , . . . , F ∗

r , µ be a pseudo-presentation of G, and let T be a tangle in G. We say the

pseudo-presentation surrounds T if µ(s) is small for every space s ∈ F ∗

1 ∪ . . . ∪ F ∗

r .

8.3 With notation as in (8.2), suppose that Γ, F ∗

1 , . . . , F ∗

r , µ is a pseudo-presentation of depth ≤ q,

and surrounds a tangle T in G of order θ ≥ 2q + 3. Then Γ, F ∗

1 , . . . , F ∗

r , µ′ surrounds a tangle in G′

of order θ − 1.

Proof. Let T ′ be the tangle of order θ − 1 in G′ induced by T \ {v}. (This exists, from (3.2)

and (3.4).) Let s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r be a space, and choose B ⊆ G minimal such that (µ(s), B) is a

separation of G. By (7.1), (µ(s), B) ∈ T since µ(s) is small. Let w ∈ V (µ(s) ∩ B); we claim that

w ∈ V (µ(a)∪µ(b)), where s has ends a and b. For if w = a or b this is true, and we assume not. By

(P2), w 6∈ V (Γ). Since u ∈ V (B) it follows from the minimality of B that some edge e of G not in

µ(s) is incident with w, and e 6∈ E(Γ) since w 6∈ V (Γ). Choose a space s′ with e ∈ E(µ(s′)). Then

s′ 6= s, and so s, a, s′, b are in order in the cuff containing them (this exists, by (P1)). By (P3),

w ∈ V (µ(s) ∩ µ(s′)) ⊆ V (µ(a) ∪ µ(b))

as claimed. We have proved then that V (µ(s) ∩ B) ⊆ V (µ(a) ∪ µ(b)). Hence (µ(s), B) has order

≤ 2q ≤ θ − 2.

Let A1 be the subgraph of G with vertex set V (µ(s))∪{v} and edge set E(µ(s)); and let B1 have

vertex set V (B) ∪ {v} and edge set E(B). By theorem (2.9)(iii) of [6], (A1, B1) ∈ T , since (µ(s), B)

has order ≤ θ − 2. Hence (A1 \ v,B1 \ v) ∈ T \ v. Let A2 = µ′(s), and let B2 ⊆ G′ be minimal such

that (A2, B2) is a separation of G′. Then (A2, B2) has order ≤ 2q. But A2 ∩ (G \ v) = A1 \ v, and

so (A2 ∩ (G \ v), B2 ∩ (G \ v)) ∈ T \ v by theorem (2.9)(iii) of [6], since (A1 \ v,B1 \ v) ∈ T \ v and

T \ v has order ≥ 2. From the definition of T ′ it follows that (A2, B2) ∈ T ′, and so µ′(s) is small

with respect to T ′, as required.

The main result of this section is the following.

8.4 For every surface Σ and all integers p, r ≥ 0 and q ≥ 1, there exists θ ≥ 1 such that, if a graph

G has a pseudo-presentation in Σ of depth ≤ q and defect ≤ r which surrounds a tangle of order

≥ θ, then G has no vital p-linkage.

Proof. Choose θ′ ≥ 2q + 2 so that (7.3) holds, with Σ, p, q, r replaced by Σ, p + 2qr, q, r. Let

θ = θ′ + qr. We claim that θ satisfies (8.4). For suppose that G has a pseudo-presentation in Σ of
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depth ≤ q and defect ≤ r which surrounds a tangle of order ≥ θ. For each space s 6⊆ F ∗

1 ∪ . . . ∪ F ∗

r

with ends u1, u2 and for each v ∈ V (µ(u1) ∩ µ(u2)), split v as discussed earlier in this section. After

at most qr splittings we obtain a graph G′ with a disjointed pseudo-presentation in Σ of depth ≤ q

and defect ≤ r, which by (8.3) surrounds a tangle of order ≥ θ − qr = θ′, since θ′ + 1 ≥ 2q + 3.

By (8.1), G′ has a presentation in Σ of depth ≤ q and defect ≤ r which surrounds a tangle of order

≥ θ′. By (7.3), G′ has no vital (p + 2qr)-linkage, from the choice of θ′. But G′ is obtained from G

by splitting ≤ qr vertices, and so by (2.4) G has no vital p-linkage, as required.

9 Paintings and portraits

In this section we derive a modification of (8.4) appropriate for applying the results of [9, 10]. A

painting Γ in a surface Σ is a pair (U, V ), where U ⊆ Σ is closed and V ⊆ U is finite, satisfying

(i) U \ V has only finitely many connected components, called cells

(ii) for each cell c, its closure c is a closed disc, and c̃ ⊆ bd(c) (where c̃ denotes c \ c) and |c̃| = 2

or 3

(iii) bd(Σ) ⊆ U

(iv) for each cell c, if c ∩ bd(Σ) 6= ∅ (that is, c is a border cell) then |c̃| = 2 and c ∩ bd(Σ) is a line

with ends the two members of c̃.

(This differs very slightly from the definition in [10]. In that paper it was convenient to allow cells

c with |c̃| = 0 or 1, but we no longer need such cells.) The set of cells of Γ is denoted by C(Γ), and

we write U = U(Γ), V = V (Γ). A cell which is not a border cell is called an internal cell.

Let G be a graph. We say that a pair Γ, α is a portrait of G in Σ (this is closely connected with

the “portrayal” of [10]) if

(R1) Γ is a painting in Σ and V (Γ) ⊆ V (G), and α is a function with domain (V (Γ)∩bd(Σ))∪C(Γ).

(R2) For each c of Γ, α(c) ⊆ G and V (α(c)) ∩ V (Γ) = c̃.

(R3) G =
⋃

(α(c) : c ∈ C(Γ)), and E(α(c1) ∩ α(c2)) = ∅ for all distinct cells c1, c2.

(R4) For each v ∈ V (Γ) ∩ bd(Σ), α(v) is an edge-less subgraph of G and V (α(v) ∩ V (Γ) = {v}.

(R5) For each cuff C there is an integer q(C) ≥ 1 such that |V (α(v))| = q(C) for all v ∈ V (Γ) ∩ C.
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(R6) For each border cell c with c̃ = {u, v}, α(u) and α(v) are subgraphs of α(c), and either

(i) there are |V (α(u))| mutually vertex-disjoint paths of α(c) between V (α(u)) and V (α(v)),

that is, c is “linked”, or

(ii) there is a cell c′ with |c̃′| = 3 and u, v ∈ c̃′.

(R7) If c1, c2 ∈ C(Γ) are distinct, then V (α(c) ∩ α(c′)) = c̃1 ∩ c̃2 unless c1 and c2 border the same

cuff (that is, unless c1 ∩ C 6= ∅ 6= c2 ∩ C for some cuff C).

(R8) If c1, c2 ∈ C(Γ) border a cuff C, and u1, u2 ∈ V (Γ) ∩ C and c1, u1, c2, u2 are in order around

C, then α(c1) ∩ α(c2) ⊆ α(u1) ∪ α(u2).

(R9) If c ∈ C(Γ) and |c̃| = 3, then α(c) cannot be drawn in a disc so that the three members of c̃ are

drawn in the boundary of the disc.

(R10) For each cuff C,
⋂

(α(u) : u ∈ V (Γ) ∩ C) is null.

Its depth is the maximum of q(C), taken over all cuffs C (or 0 if bd(Σ) = ∅).)

9.1 If Γ, α is a portrait in a surface Σ of a graph G, and L is a vital linkage in G, then for every

cell c of Γ which is not a border cell, either V (α(c)) \ c̃ contains a terminal of L, or α(c) can be

drawn in a disc with the members of c̃ drawn in the boundary.

Proof. Let c ∈ C(Γ) be an internal cell such that V (α(c)) \ c̃ contains no terminal of L. We must

prove that α(c) can be drawn in a disc with c̃ in the boundary. If V (α(c)) = c̃ this is clear, and we

therefore may assume that V (α(c)) 6= c̃. Since by (R2) c̃ ⊆ V (α(c)), there is a vertex in V (α(c)) \ c̃.

Since V (L) = V (G), there is a component P of L with V (P ∩ (α(c))) 6⊆ c̃. Since V (α(c)) \ c̃ contains

no end of P , and c is internal, it follows from (R7) that |V (P )∩c̃| ≥ 2; and so P is the only component

of L with a vertex in V (α(c)) \ c̃, since |c̃| ≤ 3. Consequently, V (α(c)) \ c̃ ⊆ V (P ). But L is vital,

and so any two vertices of P ∩ α(c) that are adjacent in α(c) are also adjacent in P . Hence either

α(c) is a path with both ends in c̃, or α(c) \ v is a path with both ends in c̃, for some v ∈ c̃. In either

case α(c) can be drawn in a disc with all the members of c̃ drawn in the boundary, as required.

If T is a tangle in G, a portrait Γ, α of G in Σ surrounds T if α(c) is small for each c ∈ C(Γ).

9.2 For every surface Σ, and all integers p ≥ 0 and q ≥ 1, there exists θ ≥ 1 such that, if a graph G

has a portrait in Σ of depth ≤ q which surrounds a tangle of order ≥ θ, then G has no vital p-linkage.
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Proof. Let n = 3p + 2q(3p + c(Σ)). Choose θ′ > 2q so that (8.4) holds, with Σ, p, q, r, θ replaced by

Σ, p + n, q, r, θ′. Let θ = θ′ + n. We claim that θ satisfies (9.2). For let Γ, α be a portrait in Σ of a

graph G, with depth ≤ q, surrounding a tangle T of order ≥ θ. Suppose that L is a vital p-linkage

in G. Let A1 be the set of all internal cells c such that V (α(c)) \ c̃ contains a terminal of L. Since

the sets V (α(c)) \ c̃ (c ∈ A1) are mutually disjoint, by (R7), it follows that |A1| ≤ p. By (9.1) and

(R9), A1 contains every cell of Γ with |c̃| = 3. By (R6), there are ≤ 3|A1| border cells that are not

linked. Let A2 ⊆ C(Γ) be minimal such that A2 contains all border cells that are not linked, and

contains at least one cell bordering each cuff. Thus, |A2| ≤ 3p + c(Σ).

For each internal cell c ∈ C(Γ) \ A1, there is a drawing of α(c) in the closed disc c with the

vertices in c̃ representing themselves, by (9.1), and this drawing can be chosen so that it meets bd(c)

only in c̃. We may therefore assume, to simplify the notation, that α(c) is such a drawing in c for

each internal cell c ∈ C(Γ)\A1. Let Γ′ be the drawing formed by the vertices in V (Γ) and the union

of the drawings α(c) over all internal c ∈ C(Γ) \ A1. Then Γ′ is a drawing in Σ, and there is a 1-1

correspondence between the spaces of Γ′ and the border cells of Γ.

Let G′ be the subgraph of G formed by the vertices in V (Γ), the graphs α(u) (u ∈ V (Γ′)∩ bd(Σ))

and the graphs α(c) (c ∈ C(Γ) \ (A1 ∪ A2)). Then Γ′ ⊆ G′. Now V (Γ′) ∩ bd(Σ) = V (Γ) ∩ bd(Σ);

define µ(u) = α(u) for each u ∈ V (Γ′) ∩ bd(Σ). Let F ∗

1 , . . . , F ∗

r be the connected components of

bd(Σ) \
⋃

(c : c ∈ A2). Then F ∗

1 , . . . , F ∗

r are all supports of Γ′ since A2 contains at least one cell

bordering each cuff; they are mutually disjoint, and V (Γ′) ∩ bd(Σ) ⊆ F ∗

1 ∪ . . . ∪ F ∗

r . Moreover,

r = |A2| ≤ 3p + c(Σ). For each space s of Γ′ with s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r , let µ(s) = α(c), where c is the

cell of Γ with c ∩ bd(Σ) = s.

(1) Γ′, F ∗

1 , . . . , F ∗

r , µ is a pseudo-presentation of G′.

Subproof. Certainly |V (Γ′) ∩C| ≥ 2 for each cuff C, because Γ is a painting and V (Γ) ⊆ V (Γ′). We

must verify (P1)–(P4). First let us verify (P1). Now

G′ = Γ′ ∪
⋃

(α(c) : c ∈ C(Γ) \ A2 and c is a border cell ) ∪
⋃

(α(u) : u ∈ V (Γ′) ∩ bd(Σ))

= Γ′ ∪ µ(F ∗

1 ) ∪ . . . ∪ µ(F ∗

r ).

By (R3), E(µ(s) ∩ µ(s′)) = ∅ if s and s′ are distinct spaces, since each border cell of Γ includes only

one space of Γ′. Since each edge of Γ′ is an edge of α(c) for some internal cell c, it follows from (R3)

again that E(Γ′ ∩ µ(s)) = ∅ for each space s ⊆ F ∗

1 ∪ . . . ∪ F ∗

r . Finally, let x1, x2 be units of Γ in
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different cuffs. Then there are border cells c1, c2 of Γ bordering different cuffs with µ(xi) ⊆ α(ci),

by (R6) and condition (iii) in the definition of a painting. By condition (iv) in the definition of a

painting, c̃ ∩ c̃′ = ∅, and so by (R7), α(c1) ∩ α(c2) is null. Consequently, µ(x1) ∩ µ(x2) is null. This

proves (P1).

For (P2), let 1 ≤ j ≤ r and let s ⊆ F ∗

j be a space of Γ′, with ends u1, u2. Let c be the cell of

Γ with c ∩ bd(Σ) = s; then c̃ = {u1, u2}. Since s ⊆ F ∗

j it follows that c 6∈ A2, and so c is linked.

Consequently, (P2) holds, taking qj = q(C) where C is the cuff including F ∗

j and (see (R5)) q(C) is

the common cardinality of all the sets V (α(v)) (v ∈ V (Γ) ∩ C).

For (P3), let C be a cuff, let x1, x2 be units of Γ′ in C, and let u1, u2 ∈ C ∩ V (Γ) so that

x1, u1, x2, u2 are in order in C. We must show that µ(x1) ∩ µ(x2) ⊆ µ(u1) ∪ µ(u2). If one of x1, x2

equals one of u1, u2 then the inclusion is trivial, and so we assume that x1, x2 6= u1, u2. For i = 1, 2,

let ci be a border cell of Γ with ci ∩ bd(Σ) = xi if xi is a space of Γ′, and xi ∈ c̃i if xi ∈ V (Γ′). By

(R6),

µ(xi) = α(xi) ⊆ α(ci) (i = 1, 2)

and so µ(x1) ∩ µ(x2) ⊆ α(c1) ∩ α(c2). But c1, u1, c2, u2 are in order, and so by (R8),

α(c1) ∩ α(c2) ⊆ α(u1) ∪ α(u2) = µ(u1) ∪ µ(u2).

This proves (P3).

But (P4) is immediate from (R10). This completes the proof of (1).

For each internal c ∈ C(Γ), let B(c) ⊆ G be such that (α(c), B(c)) is a separation of G and

V (α(c) ∩ B(c)) = c̃. (This is possible by (R7).) For each border cell c, let B(c) ⊆ G be such that

(α(c), B(c)) is a separation of G and α(c) ∩ B(c) = µ(u1) ∪ µ(u2), where c̃ = {u1, u2}. (This is

possible by (R7) and (R8).)

(2) G′ = G ∩
⋂

(B(c) : c ∈ A1 ∪ A2).

Subproof. Certainly G′ ⊆ B(c) for each c ∈ A1 ∪ A2. For the converse inclusion, if e ∈ E(G)

is an edge of B(c) for all c ∈ A1∪A2, then by (R3) e is an edge of α(c) for some c ∈ C(Γ)\(A1∪A2),

and so e ∈ E(G′). If v ∈ V (G) is a vertex of B(c) for all c ∈ A1 ∪ A2, choose c ∈ C(Γ) with

v ∈ V (α(c)). If c ∈ C(Γ) \ A1 ∪ A2 then v ∈ V (G′) as required. If c ∈ A1 then v ∈ c̃ because

v ∈ V (B(c) ∩ α(c)) = c̃, and so v ∈ V (Γ) ⊆ V (G′) as required. If c ∈ A2, then v ∈ V (µ(u1) ∪ µ(u2))

where c̃ = {u1, u2} for the same reason, and so again v ∈ V (G′). This proves (2).
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Let A0 =
⋃

(α(c) : c ∈ A1 ∪ A2). From (2), (A0, G
′) is a separation of G. Since every vertex of

V (A0 ∩ G′) belongs to V (α(c) ∩ B(c)) for some c ∈ A1 ∪ A2, it follows that (A0, G
′) has order

≤ 3|A1| + 2q|A2| ≤ 3p + 2q(3p + c(Σ)) = n.

We deduce from (3.5) that

(3) There is a tangle T ′ in G′ of order ≥ θ − n = θ′, such that (A ∩ G′, B ∩ G′) ∈ T ′ for every

(A,B) ∈ T of order < θ′.

(4) The pseudo-presentation Γ′, F ∗

1 , . . . , F ∗

r , µ of G′ surrounds T ′.

Subproof. Let s be a space of Γ′ in Σ with s ⊆ F ∗

1 ∪. . .∪F ∗

r , and let c ∈ C(Γ) with c∩bd(Σ) = s. Then

c is a border cell, and c 6∈ A2 by definition of F ∗

1 ∪ . . .∪F ∗

r . Now (α(c), B(c)) ∈ T by (7.1) since it has

order ≤ 2q < ord(T ) and α(c) is small with respect to T . By (3), (α(c) ∩ G′, B(c) ∩ G′) ∈ T ′ since

(α(c), B(c)) has order ≤ 2q < θ′. Hence α(c) ∩ G′ is small with respect to T ′. But α(c) ⊆ G′ since

c ∈ C(Γ)\(A1∪A2), and α(c) = µ(s). Consequently µ(s) is small with respect to T ′. This proves (4).

(5) There is no vital (p + n)-linkage in G′.

Subproof. This follows from (1), (4) and (8.4), because of the choice of θ′.

Since (A0, G
′) is a separation of G of order ≤ n, it follows from (5) and (2.4) that there is no

vital p-linkage in G, as required.

10 The main proof

Finally we are able to apply the theorems of [10]. Theorems (8.2), (8.4), (9.8) and particularly (13.4)

of [10] imply the following. (A Kn-minor of G is a minor isomorphic to Kn.)

10.1 For every integer n ≥ 0 there exist ρ, ξ ≥ 0, q ≥ 1 and θ > ξ such that, if a graph G has no

Kn-minor, and T is a tangle in G of order ≥ θ, then there exists a surface Σ such that c(Σ) ≤ ρ

and Kn cannot be drawn in Σ, and there exists Z ⊆ V (G) with |Z| ≤ ξ such that there is a portrait

of G \ Z in Σ with depth ≤ q, surrounding T \ Z.
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We deduce

10.2 For all integers n, p ≥ 0 there exists θ ≥ 1 such that, if a graph G has a tangle of order ≥ θ

and has no Kn-minor then G has no vital p-linkage.

Proof. Choose ρ, ξ ≥ 0, q ≥ 1 and θ1 > ξ so that (10.1) holds with θ replaced by θ1. Choose θ2 ≥ 1

so that for all surfaces Σ with c(Σ) ≤ ρ in which Kn cannot be drawn, (9.2) holds, with Σ, p, q, θ

replaced by Σ, p + 2ζ, q, θ2. Let θ = max(θ1, ξ + θ2). We claim that θ satisfies (10.2). For let G have

a tangle T of order ≥ θ, and have no Kn-minor. By (10.1), since θ ≥ θ1, there is a surface Σ with

c(Σ) ≤ ρ in which Kn cannot be drawn, and there exists Z ⊆ V (G) with |Z| ≤ ξ such that there is

a portrait of G \Z in Σ with depth ≤ q, surrounding T \Z. Since T \Z has order ≥ θ− |Z| ≥ θ2, it

follows from (9.2) that G \Z has no vital (p + 2ξ)-linkage. Hence by (2.1), G has no vital p-linkage,

as required.

10.3 For every integer p ≥ 0, no graph with a Kn-minor has a vital p-linkage, where n = ⌊5
2p⌋+ 1.

Proof. Suppose that L is a vital p-linkage in a graph G with a Kn-minor. Let Z be the set of

terminals of L. By theorem (6.1) of [8], there exists v ∈ V (G) \ Z such that, in the language of [8],

G and G \ v have the same 0-folio relative to Z. In particular, there is a linkage in G \ v with the

same pattern as L, a contradiction since L is vital. The result follows.

From (10.2) and (10.3) we deduce the following, which in view of (3.1) implies our main result

(1.1).

10.4 For every integer p ≥ 0 there exists θ ≥ 1 such that, if a graph G has a tangle of order ≥ θ

then G has no vital p-linkage.

Proof. Let n be as in (10.3), and choose θ so that (10.2) is satisfied. Let G be a graph with a tangle

of order ≥ θ. If G has no Kn-minor then by (10.2) G has no vital p-linkage. If G has a Kn-minor

then by (10.3) G has no vital p-linkage. The result follows.

11 Intertwinings

The “intertwining conjecture”, of Lovász [2] and of Milgram and Ungar [3], states that for every

two graphs G1 and G2, there is a finite list H1, . . . ,Hn of graphs, such that a graph G topologically
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contains both G1 and G2 if and only if it topologically contains one of H1, . . . ,Hn. (G topologically

contains H if some subgraph of G is isomorphic to a subdivision of H.) This conjecture was proved

in [11] by well-quasi-ordering methods. Our object here is to give a different proof of the intertwining

conjecture, one that is “constructive” in the sense that it yields an algorithm which, given G1 and

G2, computes H1, . . . ,Hn as above.

Poljak and Turzik [4] showed that the intertwining conjecture is (constructively) implied by

another conjecture, (11.1) below, and we shall give a constructive proof of (11.1). Let L1 and L2 be

linkages in a graph G. We say that G is an intertwining of L1 and L2 if L′

1 ∪L′

2 = G for all linkages

L′

1, L
′

2 in G such that L′

i has the same pattern as Li (i = 1, 2). Let us say a graph G has rank

|E(G)| − |V (G)| + κ(G),

where κ(G) denotes the number of components of G. Poljak and Turzik essentially reduced proving

the intertwining conjecture to proving the following.

11.1 For every integer p ≥ 0 there exists r(p) such that every intertwining of two p-linkages has

rank ≤ r(p).

We shall derive (11.1) from (1.1), and the proof will be constructive in the sense that it yields

an algorithm to compute a value for r(p) given a numerical value for p. Our thanks to A. Gupta

and R. Impagliazzo, who proved (11.1) constructively for planar intertwinings (unpublished) and

brought the general problem to our attention. Thanks also to R. Thomas, who collaborated with us

in discovering a constructive proof of (11.1) (not exactly the one given here).

Let (T,W ) be a tree-decomposition of a graph G. If S is a subtree of T , we define W (S) =
⋃

(W (t) : t ∈ V (S)). If e is an edge of T , and T1, T2 are the two components of T \e and ti is the end

of e in Ti (i = 1, 2), then (W (T1),W (T2)) is a separation of G and W (T1)∩W (T2) = W (t1)∩W (t2).

We define W (e) = V (W (T1) ∩ W (T2)).

We say that a tree-decomposition (T,W ) of G is linked if for all e1, e2 ∈ E(T ) such that |W (e1)| =

|W (e2)| = k say, and |W (e)| ≥ k for all edges e of the path of T between e1 and e2, there are k

mutually vertex-disjoint paths of G between W (e1) and W (e2). We need the following lemma.

11.2 Let G be a graph of tree-width ≤ w. Then there is a linked tree-decomposition (T,W ) of G,

with width ≤ w, such that every vertex of T has degree ≤ 3.
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Proof. By the main result of [14], there is a linked tree-decomposition (T,W ) of G, with width

≤ w. Choose it such that Σ(d(t) − 3) is minimum, where d(t) is the degree of t in T and the sum

is over all t ∈ V (T ) with degree ≥ 3. Suppose that some t0 ∈ V (T ) has degree ≥ 4. Then we

may assume that there is a tree T ′ with an edge e0 with ends t1, t2, such that T is obtained from

T ′ by contracting e0, and t0 results from identifying t1 and t2, and such that t1 and t2 both have

degree ≥ 3. Let W ′(t) = W (t) if t ∈ V (T ′) \ {t1, t2}, and let W ′(t1),W
′(t2) be graphs both with

vertex set W (t0), so that W ′(t1) ∪ W ′(t2) = W (t0) and E(W ′(t1) ∩ W ′(t2)) = ∅. Then (T ′,W ′) is

a tree-decomposition of G with width ≤ w, and W ′(e0) = V (W (t0)), and if e ∈ E(T ′) \ {e0} then

e ∈ E(T ) and W ′(e) = W (e). Let e1, e2 ∈ E(T ′) with |W ′(e1)| = |W ′(e2)| = k say, and |W ′(e)| ≥ k

for all edges e of the path of T ′ between e1 and e2. We claim that there are k mutually vertex-disjoint

paths between W ′(e1) and W ′(e2). If e1, e2 6= e0, then e1, e2 ∈ E(T ) and the claim therefore holds,

since W ′(e2) = W (ei) (i = 1, 2) and (T,W ) is linked. If e1 = e2 = e0 the claim is trivial. If e1 = e0

and e2 6= e0, let e3 be the edge of T different from e1, between e1 and e2 with a common end t1 say

with e1. Then |W (e3)| ≥ k, but

W (e3) ⊆ V (W (t1)) = W (e0)

and |W (e0)| = k; and so W (e0) = W (e3). Since there are k mutually disjoint paths of G between

W (e3) = W (e0) and W (e2), the claim follows. Consequently (T ′,W ′) is linked, contrary to the choice

of (T,W ). We deduce that there is no such t0, and so (i) holds, as required.

Secondly, we need the following.

11.3 Let (T,W ) be a tree-decomposition of G, and let e1, e2 ∈ E(T ) be distinct. Let T0, T1, T2 be

the three components of T \ e1, e2, where ei has an end in V (T0) and in V (Ti) (i = 1, 2). Suppose

that W (T0) ⊆ W (T1)∩W (T2). Let T ′ be the tree obtained from T1∪T2 by adding an edge joining the

end of e1 in T1 to the end of e2 in T2; and let W ′ be the restriction of W to V (T ′). Then (T ′,W ′)

is a tree-decomposition of G, and if (T,W ) is linked then so is (T ′,W ′).

Proof. It is straightforward to check that (T ′,W ′) is a tree-decomposition of G. Let X = V (W (T1)∩

W (T2)). Since W (T0) ⊆ W (T1) ∩ W (T2) it follows that W (e) = X for every edge e of the path of T

between e1 and e2, and now the second claim follows easily.

Proof of (11.1). Choose w ≥ 0 so that (1.1) is satisfied. Choose n ≥ 0 so that (2.7) is satisfied

with k replaced by w + 1, and let r(p) = 2n−1w(w + 1). We claim that (11.1) holds. For we prove
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by induction on |V (G)|+ |E(G)| that if G is an intertwining of two p-linkages L1 and L2 then G has

rank ≤ r(p).

(1) We may assume that G has no isolated vertices.

Subproof. Suppose that v ∈ V (G) has degree 0. For i = 1, 2, let L′

i = Li if v 6∈ V (Li), and

L′

i = Li \ v if v ∈ V (Li). Then G \ v is an intertwining of the p-linkages L′

i and L′

2, and from our

inductive hypothesis G \ v has rank ≤ r(p). But G and G \ v have the same rank, and the result

follows. This proves (1).

(2) We may assume that V (L1) = V (L2) = V (G).

Subproof. Suppose that v ∈ V (G) \ V (L2) say. By (1) there is an edge e of G incident with v,

and since L1 ∪ L2 = G it follows that e ∈ E(L1). The graph G/e (that is, obtained from G by

contracting e) is an intertwining of L1/e and L2, if we regard L2 as a subgraph of G/e in the obvious

way; and L1/e and L2 are both p-linkages. From the inductive hypothesis, G/e has rank ≤ r(p);

but it has the same rank as G (for e is not a loop since e ∈ E(L1)) and so G has rank ≤ r(p)) as

required. This proves (2).

(3) We may assume that L1 and L2 are vital, and E(L1 ∩ L2) = ∅.

Subproof. Suppose that there is a linkage L′

1 in G with the same pattern as L1, with E(L′

1∩L2) 6= ∅.

Let e ∈ E(L′

1 ∩ L2); then G/e is an intertwining of the p-linkages L′

1/e and L2/e, and the result

follows from the inductive hypothesis. We may therefore assume that there is no such L′

1. Since

L′

1∪L2 = G for every linkage L′

1 with the same pattern as L′

1, it follows that E(L′

1) = E(G)\E(L2),

and in particular E(L1) = E(G) \E(L2). Since E(L′

1) = E(L1) and hence L′

1 = L1 for every linkage

L′

1 with the same pattern as L1, it follows from (2) that L1 is vital, and similarly we may assume

that L2 is vital. This proves (3).

From (1.1) and (3), G has tree-width ≤ w. From (11.2) there is a linked tree-decomposition

(T,W ) of G of width ≤ w, such that every vertex of T has degree ≤ 3. From (11.3) we deduce
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(4) If e1, e2 ∈ E(T ) are distinct, and T0, T1, T2 are the three components of T \ e1, e2 as in (11.3),

then W (T0) 6⊆ W (T1) ∩ W (T2).

(5) Every path of T has < n edges.

Subproof. Otherwise there is one with exactly n edges, say e1, . . . , en in order. For 1 ≤ i ≤ n, let ei

have ends ti−1, ti, and let the two components of T \ ei be Si, Ti, where ti−1 ∈ V (Si) and ti ∈ V (Ti).

Let Ai = W (Si) and Bi = W (Ti). Since (T,W ) is linked, it follows that there are linkages Mii′ as in

(2.7), with k replaced by w + 1. (Each (Ai, Bi) has order ≤ w + 1 since each |V (W (ti))| ≤ w + 1.)

By (2.7), there exist i, i′ with 1 ≤ i < i′ ≤ n, such that |V (Ai ∩ Bi)| = |V (Ai′ ∩ Bi′)| = k say, and

|V (Aj ∩ Bj)| > k for i < j < i′, and

L1 ∩ Bi ∩ Ai′ = L2 ∩ Bi ∩ Ai′ = M

say, where M is a linkage with k components, each with one end in V (Ai ∩ Bi) and the other in

V (Ai′ ∩Bi′). From (3), E(L1 ∩L2) = ∅, and so E(M) = ∅, and consequently V (M) = V (Ai ∩Bi) =

V (Ai′ ∩Bi′). Hence M ⊆ W (Si) ∩ W (Ti′). But every vertex and edge of W (Ti ∩ Si′) belongs to one

of L1, L2 since L1 ∪ L2 = G, and hence belongs to M . Consequently,

W (Ti ∩ Si′) = M ⊆ W (Si) ∩ W (Ti′).

But this contradicts (4). Hence there is no such path, and (5) holds.

From (5) and since T has maximum degree ≤ 3, it follows that |V (T )| ≤ 2n. But from (3), G has

no parallel edges, for if e1, e2 are parallel and e1 ∈ E(L1) then L1 is not vital. Consequently, each

Wt has ≤ 1
2w(w + 1) edges, since |V (Wt)| ≤ w + 1. Since G = W (T ), it follows that

|E(G)| ≤ 2n ·
1

2
w(w + 1) = r(p),

and hence the rank of G is also at most r(p), as required.

There is some question of whether this proof is really constructive. Certainly it is, if our proof

of (1.1) is constructive; but that proof uses several complicated results from earlier papers in this

series, and it is necessary to check back through all these proofs and verify that they are indeed

constructive in the sense we require. But they are.
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12 Path-width

We recall that a path-decomposition of G is a tree-decomposition (T,W ) of G such that T is a path,

and the path-width of G is the minimum width of all path-decompositions of G. We saw in (1.2)

that for p ≤ 5, every graph with a vital p-linkage has path-width ≤ p, and our next objective is to

show that (1.1) holds in general with tree-width replaced by path-width. This result is not needed

for anything, and is included only as a curiosity.

First, we need the following lemma.

12.1 Let (A,B), (A′, B′) be separations of a graph, both of order k and with A ⊆ A′ and B′ ⊆ B.

Suppose that in B ∩ A′ there is a unique set of k mutually vertex-disjoint paths between V (A ∩ B)

and V (A′ ∩ B′), and every vertex of B ∩ A′ belongs to one of these paths. Then there is a path-

decomposition (P,W ) of G where |V (P )| ≥ 2 with the following properties:

(i) P has ends s, s′ where W (s) = A,W (P \ s) = B,W (P \ s′) = A′ and W (s′) = B′

(ii) |W (e)| = k for every edge e of P

(iii) for each t ∈ V (P ) with t 6= s, s′, |E(W (t))| = 1 and if e, e′ are the two edges of P incident with

t, then either

(a) W (e) = W (e′) = V (W (t)), or

(b) W (e)∩W (e′) = X say where |X| = k−1, and the unique edge of W (t) has ends v, v′ say,

where W (e) = X ∪ {v} and W (e′) = X ∪ {v′}.

Proof. We proceed by induction on |E(B ∩ A′)|. Let V (A ∩ B) = Z and V (A′ ∩ B′) = Z ′.

(1) We may assume that no edge of B ∩ A′ has both ends in Z.

Subproof. If some edge e of B ∩ A′ has both ends in Z, let A1 be obtained from A by adding

the edge e, and let B1 = B \ e. Then A1 ⊆ A′ and B′ ⊆ B1, and in B ∩ A′ there is a unique

set of k disjoint paths between V (A1 ∩ B1) and V (A′ ∩ B′), so from the inductive hypothesis there

is a path-decomposition (P1,W1) of B ∩ A1 as in the theorem. Let P1 have ends s1, s
′

1 where

W1(s1) = A1; let P be obtained from P1 by adding a new vertex s of degree 1, adjacent to s1; and

define W (s) = A,V (W (s1)) = V (A ∩B), E(W (s1)) = {e}, and W (t) = W ′(t) for t ∈ V (P ) \ {s, s1}.
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Then (P,W ) satisfies the theorem, as required. Consequently (1) holds.

(2) We may assume that every v ∈ Z \ Z ′ has degree 6= 1 in B ∩ A′.

Subproof. If some v ∈ Z \ Z ′ has degree 1 in B ∩ A′, let e be the unique edge of B ∩ A′ inci-

dent with v, and let e have ends v, v1. Let A1 be obtained from A by adding v1 and e, and let

B1 = B \ v. Again the result follows from the inductive hypothesis applied to (A1, B1) and (A′, B′).

Consequently (2) holds.

Let P1, . . . , Pk be mutually vertex-disjoint paths of B∩A′ between Z and Z ′. From the hypothesis,

V (B ∩ A′) = V (P1 ∪ . . . ∪ Pk).

Let Pi have ends zi ∈ Z and z′i ∈ Z ′ (1 ≤ i ≤ k). Let zi 6= z′i for 1 ≤ i ≤ h and zi = z′i for h < i ≤ k,

where 0 ≤ h ≤ k. Let H be the directed graph with vertex set {1, . . . , h}, where there is a directed

edge from i to j if some edge e of B ∩ A′ has one end zi and the other end a vertex of Pj \ zj , and

e 6∈ E(Pi).

(3) Every vertex of H has out-degree ≥ 1.

Subproof. Let 1 ≤ i ≤ h; we claim that i has out-degree ≥ 1 in H. Since i ≤ h it follows

that zi 6= z′i, and by (2) there is an edge e of B ∩ A′ incident with zi with e 6∈ E(Pi). Since

V (B ∩ A′) = V (P1, . . . , Pk), there exists j with 1 ≤ j ≤ k such that v ∈ V (Pj), where e has ends

zi, v. By (1), v 6∈ Z, and in particularly zj 6= z′j , and hence j ≤ h. Consequently i is adjacent to j in

H. This proves (3).

(4) H has no directed circuit.

Subproof. Suppose that {1, 2, . . . , r} is the vertex set of a directed circuit of H, and there are

edges of H from i to i + 1 for 1 ≤ i < r and from r to 1. For 1 ≤ i < r, let ei be an edge of B ∩ A′

with one end zi and the other end in Pi+1 \zi+1, and let er ∈ E(B∩A′) with one end zr and the other

end in P1 \ z1. For 1 ≤ i < r, let P ′

i be the path consisting of zi, ei and the subpath of Pi+1 from

the end of ei to z′i+1, and define P ′

r similarly. Then {P ′

1, . . . , P
′

r, Pr+1, . . . , Pk} is a set of k mutually
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disjoint paths of G between Z and Z ′, different from {P1, . . . , Pp}, since e1 is an edge of one of them.

This contradicts our hypothesis, and hence (4) follows.

From (3) and (4) it follows that V (H) = ∅, and so zi = z′i for 1 ≤ i ≤ k. Hence

V (B ∩ A′) = V (P1 ∪ . . . ∪ Pk) = Z

and so E(B ∩ A′) = ∅, from (1). The theorem is therefore satisfied by a 2-vertex path P .

The converse of (12.1) is obvious, that if there is a path-decomposition satisfying (i), (ii) and

(iii), then there is a unique set of k paths as in the hypothesis.

Secondly we need the following.

12.2 Let (T,W ) be a linked tree-decomposition of a graph G, with width ≤ w. Let f1, f2 ∈ E(T ) be

distinct, and let T1, T2, T0 be the three components of T \{f1, f2} where fi has ends in Ti and T0 (i =

1, 2). Let |W (f1)| = |W (f2)| = k, and let (P,W ′) be a path-decomposition of G satisfying statements

(i)–(iii) of (12.1), with W,A,B,A′, B′ replaced by W ′,W (T1),W (T0)∪W (T2),W (T0)∪W (T1),W (T2).

Let P have ends s1, s2, where si is the end of fi in V (Ti) (i = 1, 2), and otherwise let P be disjoint

from T . Let T ∗ be the tree T1 ∪ T2 ∪ P , and define W ∗(t) = W (t) if t ∈ V (T1) ∪ V (T2) and

W ∗(t) = W ′(t) if t ∈ V (P ) \ {s, s′}. Then (T ∗,W ∗) is a linked tree-decomposition of G, with width

≤ w.

Proof. It is easy to see that (T ∗,W ∗) is a tree-decomposition of G. We shall check its width, and

check that it is linked. Since (P,W ′) satisfies (12.1)(iii), it follows that

(1) There are k mutually vertex-disjoint paths of G between W (f1) and W (f2). Let Q be the

path of T with first and last edges f1 and f2. From (1), we have

(2) |W (e)| ≥ k for each edge e of Q.

(3) (T ∗,W ∗) has width ≤ w.

Subproof. If t ∈ V (T1) ∪ V (T2) then |V (W ∗(t))| = |V (W (t))| ≤ w + 1, and if t ∈ V (P ) \ {s1, s2},

then

|V (W ∗))| = |V (W ′(t))| ≤ k + 1 = |W (f1)| + 1 ≤ w + 2.
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If k ≤ w then (3) holds, and so we assume that k = w + 1. From (2), |W (e)| ≥ w + 1 for each

e ∈ E(Q), and so V (W (t1)) = V (W (t2)) if e ∈ E(Q) has ends t1, t2, since

W (e) ⊆ V (W (t1)) ∩ V (W (t2))

and |V (W (t1))|, |V (W (t2))| ≤ w + 1. Consequently, V (W (t)) = W (f1) for all t ∈ V (Q), and in

particular W (f1) = W (f2). Hence W ′(f) = W (f1) for all f ∈ E(P ), and so |V (W ∗(t))| ≤ k = w + 1

for each t ∈ V (P ) \ {s1, s2}, by (12.1)(ii). This proves (3).

Let e1, e2 ∈ E(T ∗) with |W ∗(e1)| = |W ∗(e2)| = k′ say, such that |W ∗(e)| ≥ k′ for all edges e

of the path R of T ∗ with first edge e1 and last edge e2. We must show that there are k′ mutually

vertex-disjoint paths of G between W ∗(e1) and W ∗(e2). If e1, e2 ∈ E(P ) this is clear, and so we may

assume that e1 ∈ E(T1). If e1, e2 ∈ E(T1) the claim follows since (T,W ) is linked, and so we may

assume that e2 ∈ E(P ) or e2 ∈ E(T2). If e2 ∈ E(T2) then k′ ≤ k since P ⊆ R, and so |W (e)| ≥ k′

for every edge of e of the path of T between e1 and e2, by (2); and the claim follows since (T,W ) is

linked. We assume then that e2 ∈ E(P ), and so k′ = k. Since (T,W ) is linked, there are k mutually

disjoint paths of G between W (e1) and W (f1), and these are paths of A = W (T1). Since (P,W ′)

satisfies (12.1), there are k mutually disjoint paths of G between W (f1) and W ′(e2), and these are

paths of B = W (T0)∪W (T2). Since (A,B) is a separation and V (A∩B) = W (f1), we can pair these

paths to obtain k mutually disjoint paths of G between W ∗(e1) = W (e1) and W ∗(e2) = W ′(e2), as

required. Consequently, (T ∗,W ∗) is linked.

We use these lemmas to prove the main result of this section, the following.

12.3 For every integer p ≥ 0 there exists w ≥ 0 such that every graph with a vital p-linkage has

path-width ≤ w.

Proof. Choose w′ so that (1.1) holds with w replaced by w′. Choose n so that (2.6) holds with

k replaced by w′ + 1. Let w = w′ + 3(w′ + 1)2n−1. We claim that w satisfies (12.3). For let G

be a graph with a vital p-linkage L. By (1.1), G has tree-width ≤ w′. By (11.2), there is a linked

tree-decomposition (T,W ) of G, with width ≤ w′, such that every vertex of T has degree at most

3. Let N(T ) be the set of vertices of T with degree 3 in T , and let us choose (T,W ) with |N(T )|

minimum.

(1) Let f1, f2 ∈ E(T ) with |W (f1)| = |W (f2)| = k say, and let T0, T1, T2 be the three components of
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T \{f1, f2} where fi has ends in T0 and Ti (i = 1, 2). Suppose that there is a unique set of k mutually

vertex-disjoint paths of W (T0) between W (f1) and W (f2) and every vertex of W (T0) belongs to one

of these paths. Then V (T0) ∩ N(T ) = ∅.

Subproof. Let A = W (T1), B = W (T0) ∪ W (T2), A
′ = W (T0) ∪ W (T1), B

′ = W (T2). Then

B ∩ A′ = W (T0). Choose a path-decomposition (P,W ′) as in (12.1) (with W replaced by W ′).

We may assume that P has ends s1, s2, where si is the end of fi in Ti (i = 1, 2), and otherwise P is

disjoint from T . Let (T ∗,W ∗) be as in (12.2). Then N(T ∗) ⊆ N(T ), and so equality holds, from the

choice of (T,W ); but V (T0) ∩ N(T ∗) = ∅, and so V (T0) ∩ N(T ) = ∅. This proves (1).

(2) |V (P ) ∩ N(T )| ≤ n for every path P of T .

Subproof. Suppose not; then there is a path P of T with both ends in N(T ) and with |V (P )∩N(T )| =

n+1. Let V (P )∩N(T ) = {t0, t1, . . . , tn}, in order on P . For 1 ≤ i ≤ n, let fi ∈ E(P ), chosen so that

fi is between ti−1 and ti, and of all such edges |W (fi)| is minimum; let Si, Ti be the two components

of T \ ei where t0 ∈ V (Si), and let Ai = W (Si), Bi = W (Ti). Then for 1 ≤ i < j ≤ n,Ai ⊆ Aj and

Bj ⊆ Bi. Suppose that 1 ≤ i < i′ ≤ n, and (Ai, Bi) and (Ai′ , Bi′) have the same order k say, and

(Aj , Bj) has order > k for i < j < i′. In other words, |W (fi)| = |W (fi′)| = k, and |W (fj)| > k for

i < j < i′. From the definition of fj (1 ≤ j ≤ n), it follows that |W (e)| ≥ k for all edges e of the

path of T between fi and fi′ . Since (W,T ) is linked, there are k mutually vertex-disjoint paths of G

between W (fi) and W (fi′), and so there is a linkage Mii′ in Bi ∩ Ai′ with k components, each with

one end in V (Ai∩Bi) and the other in V (Ai′ ∩Bi′). By (1), since there is a member of N(T ) between

ei and ei′ , it follows that either V (Mii′) 6= V (Bi ∩ Ai′), or there is more than one choice for Mii′ . In

either case, we may choose Mii′ so that Mii′ 6= L ∩ Bi ∩ Ai′ , since V (L ∩ Bi ∩ Ai′) = V (Bi ∩ Ai′).

But this contradicts (2.6), since each (Aj , Bj) has order ≤ w + 1 = k. Hence there is no such path

P , and so (2) holds.

Since T has maximum degree ≤ 3, it follows from (2) that |N(T )| ≤ 2n. Let Z =
⋃

(V (Wt) : t ∈

N(T )); then |Z| ≤ 2n(w′ + 1). Now every component of T \ N(T ) is a path, and so we may add

edges to T \ N(T ) to obtain a path P . For each t ∈ V (P ), let W ′(t) = W (t) ∩ (G \ Z).

(3) (P,W ′) is a path-decomposition of G \ Z.
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Subproof. Certainly

⋃
(W ′(t) : t ∈ V (P )) = (G \ Z) ∩

⋃
(W (t) : t ∈ V (T \ N(T ))) = G \ Z

and the graphs W ′(t) (t ∈ V (P )) are mutually edge-disjoint. Let t, t′, t′′ ∈ V (P ), with t′ between t

and t′′. We must show that W ′(t)∩W ′(t′′) ⊆ W ′(t′), and may therefore assume that W ′(t)∩W ′(t′′)

is non-null. If t and t′′ lie in different components of T \N(T ), choose s ∈ N(T ) between them; then

W (t) ∩ W (t′′) ⊆ W (s) ⊆ Z

and so W ′(t)∩W ′(t′′) is null, a contradiction. Hence t and t′′ lie in the same component of T \N(T ),

and t′ therefore also lies in this component, between t and t′′. Thus W (t) ∩ W (t′′) ⊆ W (t′), and

hence W ′(t) ∩ W ′(t′′) ⊆ W ′(t′), as required. This proves (3).

Now (P,W ′) has width ≤ w′, and so G\Z has path-width ≤ w′. Since |Z| ≤ 2n(w′+1), it follows

that G has path-width ≤ w′ + 2n(w′ + 1) = w, as required.

Actually, we could repeat the same kind of argument to get even more. Let us say that a graph

G is a p-chain if there exist Y,Z ⊆ V (G) with |Y | = |Z| ≤ p, such that there is a unique set of

|X| mutually vertex-disjoint paths of G between Y and Z, and every vertex of G belongs to one of

these paths. (Note that Y ∩ Z may be nonempty.) It follows from (12.1) that every p-chain has a

particularly nice path-decomposition of width ≤ p, and so the following is a strengthening of (12.3).

12.4 For every integer p ≥ 0 there exists p′ ≥ 0 such that every graph with a vital p-linkage is a

p′-chain.

Proof. We only sketch the proof, since we shall not use the result. Let w be as in (12.3), let n

satisfy (2.6) with k replaced by w + 1, and let p′ = (w + 1)(2n + 1). Let G have a vital p-linkage L.

By (12.3), G has path-width ≤ w. By a variation of (11.2) (proved in the same way as (11.2), but

somewhat easier) there is a linked path-decomposition (P,W ) of G with width ≤ w. Let t ∈ V (P )

have degree 2, and be incident with e1 and e2 say. We say that t is bad unless |W (e1)| = |W (e2)|

and t satisfies (12.1)(iii). Let us choose (P,W ) to minimize the number of bad vertices, and let B be

the set of bad vertices. An argument similar to step (2) in the proof of (12.3) implies that |B| ≤ n.

Let Z =
⋃

(W (t) : t ∈ B); then |Z| ≤ (w + 1)n. For each component C of P \ B, the graph

⋃
(W (t) ∩ (G \ Z) : t ∈ V (C))

52



is a (w + 1)-chain, since no vertex of C is bad. Hence G \ Z is a (w + 1)(n + 1)-chain, since P \ B

has ≤ n + 1 components, and so G is a ((w + 1)n + (w + 1)(n + 1))-chain, as required.
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