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Abstract

We prove Wagner’s conjecture, that for every infinite set of finite graphs, one of its members is
isomorphic to a minor of another.



1 Introduction

A famous conjecture of Wagner [6] asserts that for any infinite set of graphs, one of its members is
isomorphic to a minor of another (all graphs in this paper are finite). It has been one of the main
goals of this series of papers to prove the conjecture, and in this paper the proof is completed.

Our method is roughly as follows. If {G1, G2, . . . } is a counterexample to Wagner’s conjecture
then none of G2, G3, . . . has a minor isomorphic to G1, and so to prove Wagner’s conjecture it suffices
to show the following.

1.1 For every graph H and every infinite set of graphs each with no minor isomorphic to H, some

member of the set is isomorphic to a minor of another member of the set.

It was shown in [3] that

1.2 For every graph H, if G has no minor isomorphic to H, then every “highly connected compo-

nent” of G can “almost” be drawn on a surface on which H cannot be drawn.

(The meanings of “highly connected component” and “almost” here are complicated and we shall
postpone the exact statement of this theorem as long as possible. Surfaces are connected and
compact.)

We may assume the surface in 1.2 is without boundary; and since up to homeomorphism there
are only finitely many such surfaces in which H cannot be drawn, to prove 1.1 and hence Wagner’s
conjecture it suffices to show that

1.3 If Σ1, . . . ,Σn are surfaces then for every infinite set F of graphs, if every highly connected

component of every member of F can almost be drawn in one of Σ1, . . . ,Σn, then some member of

F is isomorphic to a minor of another member of F .

To prove 1.3 we use the main results of two other papers of this series [4, 5]. The main result
of [4] asserts that, if F is an infinite set of graphs and all the highly connected components of all
members of F have a certain “well-behaved” structure, then some member of F is isomorphic to a
minor of another member of F . It therefore suffices to show that the hypothesis of 1.3 implies that
all these highly connected components have a well-behaved structure. To show this, we apply the
main result of [5], which asserts that for any infinite set of hypergraphs all drawable in a fixed surface
(where the edges of the hypergraphs all have two or three ends, and each edge is labeled from a fixed
well-quasi-order), some member of the set is isomorphic to a minor of another (with an appropriate
definition of “minor” for hypergraphs).

In sections 2–10 we finish the proof of Wagner’s conjecture, and in section 11 we prove a slight
strengthening.

2 Hypergraphs and tangles

For the purposes of this paper, a hypergraph G consists of a finite set V (G) of vertices, a finite set
E(G) of edges, and an incidence relation between them. The vertices incident with an edge are the
ends of the edge. (A hypergraph is thus a graph if every edge has one or two ends.) A hypergraph
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H is a subhypergraph of a hypergraph G (written H ⊆ G) if V (H) ⊆ V (G), E(H) ⊆ E(G), and for
every v ∈ V (G) and e ∈ E(H), e is incident with v in G if and only if v ∈ V (H) and e is incident
with v in H. If G1, G2 are subhypergraphs of G we denote by G1 ∪G2, G1 ∩G2 the subhypergraphs
with vertex sets V (G1) ∪ V (G2), V (G1) ∩ V (G2) and edge sets E(G1) ∪ E(G2), E(G1) ∩ E(G2)
respectively. A separation of G is an ordered pair (G1, G2) of subhypergraphs with G1 ∪G2 = G and
E(G1 ∩G2) = ∅, and its order is |V (G1 ∩G2)|.

A central idea in our approach is that of a tangle in a hypergraph, which was introduced in [2].
Intuitively, a tangle of order θ is a “θ-connected component” of the hypergraph, which therefore
resides on one side or the other of every separation of order < θ. Formally, let G be a hypergraph
and θ ≥ 1 an integer. A tangle of order θ in G is a set T of separations of G, each of order < θ, such
that

• for every separation (A,B) of G of order < θ, T contains one of (A,B), (B,A)

• if (Ai, Bi) ∈ T (i = 1, 2, 3) then A1 ∪A2 ∪A3 6= G

• if (A,B) ∈ T then V (A) 6= V (G).

Let us mention one lemma that we shall need later.

2.1 Let G be a hypergraph, let G′ ⊆ G and let T ′ be a tangle in G′ of order θ. Let T be the set of

all separations (A,B) of G of order < θ such that (A ∩G′, B ∩G′) ∈ T ′. Then T is a tangle in G
of order θ.

The proof is clear.
A tie-breaker in a hypergraph G is a function λ which maps each separation (A,B) of G to some

member λ(A,B) of a linearly ordered set (Λ,≤) (we call λ(A,B) the λ-order of (A,B)) in such a
way that for all separations (A,B), (C,D) of G,

• λ(A,B) = λ(C,D) if and only if (A,B) = (C,D) or (A,B) = (D,C)

• either λ(A ∪ C,B ∩D) ≤ λ(A,B) or λ(A ∩C,B ∪D) < λ(C,D)

• if |V (A ∩B)| < |V (C ∩D)| then λ(A,B) < λ(C,D).

Let λ be a tie-breaker in a hypergraph G. If T1, T2 are tangles in G with T1 6⊆ T2 and T2 6⊆ T1,
then there is a unique (A,B) ∈ T1 such that (B,A) ∈ T2 of minimum λ-order, called the (T1, T2)-
distinction.

A march in a set V is a finite sequence of distinct elements of V ; and if π is the march v1, . . . , vk,
we denote the set {v1, . . . , vk} by π̄. We denote the null march by 0. A rooted hypergraph G is a pair
(G−, π(G)) where G− is a hypergraph and π(G) is a march in V (G−). We define V (G) = V (G−),
E(G) = E(G−). If G is a rooted hypergraph, a tangle in G is a tangle in G−, and a tie-breaker in G
is a tie-breaker in G−.

A separation of a rooted hypergraph G is a pair (A,B) of rooted hypergraphs such that (A−, B−)
is a separation of G−, π̄(A) = V (A ∩ B), and π(B) = π(G). If G, A are rooted hypergraphs, we
write A ⊆ G if A− ⊆ G−. If A ⊆ G, we say A is complemented if there exists B ⊆ G such that
(A,B) is a separation of G, and we define G \ A = B. A rooted location in a rooted hypergraph
G is a set L of complemented rooted hypergraphs A with A ⊆ G such that E(A−

1 ∩ A−
2 ) = ∅ and
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V (A−
1 ∩ A−

2 ) = π̄(A1) ∩ π̄(A2) for all distinct A1, A2 ∈ L. Its order is max(|π̄(A)| : A ∈ L), or 0
if L = ∅. If L is a rooted location in G, we define L− = {(A−, (G \ A)−) : A ∈ L}, and we define
M(G,L) to be ∩((G \A)− : A ∈ L) if L /∈ ∅, and to be G− if L = ∅.

Let G be a rooted hypergraph, let T be a tangle in G, and let λ be a tie-breaker in G. A rooted
location L in G is said to θ-isolate T if θ ≥ 1, L has order < θ, L− ⊆ T , and for each A ∈ L, and for
every tangle T ′ in G of order ≥ θ with ((G \ A)−, A−) ∈ T ′, the (T , T ′)-distinction (C,D) satisfies
C ⊆ A− and (G \ A)− ⊆ D.

3 Patchworks

If V is a finite set we denote by KV the complete graph on V , that is, the simple graph with vertex
set V and edge set the set of all subsets of V of cardinality 2, with the natural incidence relation.
A grouping in V is a subgraph of KV every component of which is complete. A pairing in V is a
grouping in V every component of which has most two vertices. A pairing K in V is said to pair X,
Y if X, Y ⊆ V are disjoint and

• every 2-vertex component of K has one vertex in X and the other in Y , and

• every vertex of X ∪ Y belongs to some 2-vertex component of K.

A patch ∆ in V consists of a subset V (∆) ⊆ V , and a collection of groupings in V , each with the
same vertex set V (∆) ⊆ V . We denote the collection of groupings by the same symbol ∆. A patch
∆ is free if it contains every grouping in V with vertex set V (∆); and it is robust if for every choice
of X, Y ⊆ V (∆) with |X| = |Y | and X ∩ Y = ∅, there is a pairing in ∆ which pairs X, Y .

A patchwork is a triple P = (G,µ,∆), where

• G is a rooted hypergraph

• µ is a function with domain dom (µ) ⊆ E(G); and for each e ∈ dom(µ), µ(e) is a march with
µ̄(e) the set of ends of e in G

• ∆ is a function with domain E(G), and for each e ∈ E(G), ∆(e) is a patch with V (∆(e)) the
set of ends of e; and for each e ∈ E(G) \ dom(µ), ∆(e) is free.

The patchwork is robust if each ∆(e)(e ∈ E(G)) is robust. (This is automatic for e /∈ dom(µ), since
free patches are robust.) It is rootless if π̄(G) = ∅.

A quasi-order Ω is a pair (E(Ω),≤), where E(Ω) is a set and ≤ is a reflective transitive relation
on E(Ω). It is a well-quasi-order if for every countable sequence xi (i = 1, 2, . . . ) of elements of E(Ω)
there exist j > i ≥ 1 such that xi ≤ xj . If Ω1, Ω2 are quasi-orders with E(Ω1) ∩ E(Ω2) = ∅ we
denote by Ω1 ∪ Ω2 the quasi-order Ω with E(Ω) = E(Ω1) ∪E(Ω2) in which x ≤ y if for some i (i =
1, 2)x, y ∈ E(Ωi) and x ≤ y in Ωi. If Ω1, Ω2 are quasi-orders we write Ω1 ⊆ Ω2 if E(Ω1) ⊆ E(Ω2)
and for x, y ∈ E(Ω1), x ≤ y in Ω1 if and only if x ≤ y in Ω2.

If Ω is a quasi-order, a partial Ω-patchwork is a quadruple (G,µ,∆, φ), where (G,µ,∆) is a
patchwork and φ is a function from a subset dom(φ) of E(G) into E(Ω). It is an Ω-patchwork if
dom(φ) = E(G). It is robust if (G,µ,∆) is robust. It is rootless if π̄(G) = ∅.
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If V is a finite set, NV denotes the graph with vertex set V and no edges. A realization of a
patchwork (G,µ,∆) is a subgraph of KV (G) expressible in the form

NV (G) ∪
⋃

e∈E(G)

δe

where δe ∈ ∆(e) for each e ∈ E(G). A realization of a partial Ω-patchwork (G,µ,∆, φ) is a realization
of (G,µ,∆). If µ1, µ2 are marches with the same length, we denote by µ1 → µ2 the bijection from
µ1 onto µ2 that maps µ1 onto µ2. Let P = (G,µ,∆, φ), P ′ = (G′, µ,∆′, φ′) be Ω-patchworks. An
expansion of P in P ′ is a function η with domain V (G) ∪E(G) such that

• for each v ∈ V (G), η(v) is a non-empty subset of V (G′), and for each e ∈ E(G), η(e) ∈ E(G′)

• for distinct v1, v2 ∈ V (G), η(v1) ∩ η(v2) = ∅

• for distinct e1, e2 ∈ E(G), η(e1) 6= η(e2)

• for each e ∈ E(G), e ∈ dom(µ) if and only if η(e) ∈ dom(µ′)

• for each e ∈ E(G) \ dom(µ), if v is an end of e in G then η(v) contains an end of η(e) in G ′

• for each e ∈ dom(µ), µ(e) and µ′(η(e)) have the same length, k say, and for 1 ≤ i ≤ k, η(v)
contains the ith term of µ′(η(e)) where v is the ith term of µ(e)

• π(G) and π(G′) have the same length, k say, and for 1 ≤ i ≤ k, η(v) contains the ith term of
π(G′) where v is the ith term of π(G)

• for each e ∈ dom(µ), ∆′(η(e)) is the image of ∆(e) under µ(e) → µ′(η(e))

• for each e ∈ E(G), φ(e) ≤ φ′(η(e)).

If G is a hypergraph and F ⊆ E(G), G\F denotes the subhypergraph with the same vertex set
and edge set E(G)\F . If G is a rooted hypergraph, G\F denotes (G−\F , π(G)). If P = (G,µ,∆, φ)
is an Ω-patchwork and F ⊆ E(G), P\F denotes the Ω-patchwork (G\F , µ′ ∆′, φ′) where µ′, ∆′,
φ′ are the restrictions of µ, ∆, φ to dom(µ) ∩ E(G\F ), E(G\F ), E(G\F ) respectively. Let η be
an expansion of P = (G,µ,∆, φ) in P ′ = (G′, µ′,∆′, φ). A realization H of P ′\η(E(G)) is said to
realize η if for every v ∈ V (G), η(v) is the vertex set of some component of H; and if there is such
a realization, η is said to be realizable. Let us say that P is simulated in P ′ if there is a realizable
expansion of P in P ′.

If P = (G,µ,∆) is patchwork and A is a rooted hypergraph with A ⊆ G, we denote by P |A the
patchwork (A,µ′,∆′), where µ′, ∆′ are the restrictions of µ,∆ to E(A)∩ dom(µ), E(A) respectively.
If P = (G,µ,∆, φ) is a partial Ω-patchwork, P |A is the partial Ω-patchwork (A,µ ′,∆′, φ′) where µ′,
∆′ are as before and φ′ is the restriction of φ to E(A) ∩ dom(φ).

Let P = (G,µ,∆) be a patchwork. A grouping K is feasible in P if V (K) = π̄(G) and there is a
realization H of P such that for distinct x, y ∈ V (K), x and y belong to the same component of H
if and only if they are adjacent in K.
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Let P = (G,µ,∆) be a patchwork and let L be a rooted location in G. For each A ∈ L let e(A)
be a new element, and let G′ be the rooted hypergraph with

V (G′) = V (M(G,L))

E(G′) = E(M(G,L)) ∪ {e(A) : A ∈ L}

π(G′) = π(G)

where for e ∈ E(M(G,L)) its ends are as in G−, and for A ∈ L the ends of e(A) are the vertices
in π̄(A). For e ∈ E(M(G,L)) ∩ dom(µ) let µ′(e) = µ(e), and for A ∈ L let µ′(e(A)) = π(A). For
e ∈ E(M(G,L)) let ∆′(e) = ∆(e), and for A ∈ L let ∆′(e(A)) be the set of all groupings feasible in
P |A, with V (∆′(e(A))) = π̄(A). Then (G′, µ′,∆′) is a patchwork which we call a heart of (P,L). (It
is unique up to the choice of the new elements e(A).)

Now let P ′ = (G,µ,∆, φ) be an Ω-patchwork, and let P = (G,µ,∆) and L be as before. For
e ∈ E(M(G,L)) let φ′(e) = φ(e); then, with G′, µ′, ∆′ defined as before, (G′, µ′,∆′, φ′) is a partial
Ω-patchwork which we call a heart of (P ′,L).

Let P = (G,µ,∆, φ) be a partial Ω-patchwork, and let Ω′ be a quasi-order with Ω ⊆ Ω′. By an Ω′-
completion of P we mean an Ω′-patchwork (G,µ,∆, φ′) such that φ′(e) = φ(e) for each e ∈ dom(φ).
A set C of partial Ω-patchworks is well-behaved if Ω is a well-quasi-order and for every well-quasi-
order Ω′ with Ω ⊆ Ω′ and every countable sequence P ′

i (i = 1, 2, . . . ) of Ω′-completions of members
of C there exist j > i ≥ 1 such that P ′

i is simulated in P ′
j . Let Ω1 ⊆ Ω2 be well-quasi-orders, and

let C be a set of partial Ω1-patchworks. Then C is also a set of partial Ω2-patchworks; and it is an
easy exercise to show that C is well-behaved taking Ω = Ω1, if and only if it is well-behaved with
Ω = Ω2. Thus, our terminology suppressing the dependence on Ω is not misleading.

The following is theorem 6.7 of [4].

3.1 Let Ω be a well-quasi-order, let F be a well-behaved set of rootless partial Ω-patchworks, and let

θ ≥ 1 be an integer. Let Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable sequence of rootless robust

Ω-patchworks. For each i ≥ 1 let λi be a tie-breaker in Gi; and suppose that for every tangle T in

Gi of order ≥ θ there is a rooted location L in Gi such that L θ-isolates T and (Pi,L) has a heart

in F . Then there exist j > i ≥ 1 such that Pi is simulated in Pj.

4 Well-behaved sets of patchworks

The previous result 3.1, combined with the main result of [3] (see 10.3 of the present paper), almost
proves Wagner’s conjecture. Not quite, however; although the rooted locations provided by [3] have
hearts in a well-behaved set, they do not quite θ-isolate the corresponding tangles and so 3.1 cannot
be applied to them. In the next few sections we prove a strengthening 7.3 of 3.1, that bridges the
gap. We show that the locations of [3] can be modified such that the new locations still have hearts
in a (new) well-behaved set and do θ′-isolate the corresponding tangles, for an appropriate θ ′. The
main problem is that there are a bounded number of vertices that need to be removed; and in essence
7.3 addresses the problems caused by removing these vertices.

To prove 7.3 we first need to develop ways of constructing new well-behaved sets of patchworks
from old ones, and that is the object of this section. Incidentally, the rooted locations L provided by
[3] have the property that

⋃
(A− : A ∈ L) = G−, which has two desirable consequences; that their
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hearts have no “isolated vertices”, and that their hearts have no edges labeled from Ω, and hence are
more naturally regarded as patchworks than as partial Ω-patchworks. This motivates the following.

If P = (G,µ,∆) is a patchwork and Ω is a quasi-order, we call every Ω-patchwork (G,µ,∆, φ) an
Ω-completion of P . A set F of patchworks is well-behaved if for every well-quasi-order Ω and every
countable sequence Pi (i = 1, 2, . . . ) of Ω-completions of members of F there exist j > i ≥ 1 such
that Pi is simulated in Pj .

4.1 If F is well-behaved, then there exists N ≥ 0 such that if (G,µ,∆) ∈ F and e ∈ dom(µ) then

|µ̄(e)| ≤ N .

Proof. Let Ω be the well-quasi-order with E(Ω) = {ω1, ω2} say, where ω1, ω2 are incomparable
(that is, ω1 6≤ ω2 6≤ ω1). Suppose that there is no N as in the theorem. Then there exist integers
ni and Pi = (Gi, µi,∆i) ∈ F and ei ∈ E(Gi) ∩ dom(µ1) with |µ̄i(ei)| = ni for i = 1, 2, . . . , such that
n1 < n2 < . . . . For i ≥ 1, define φi : E(Gi) → E(Ω) by φi(ei) = ω2 and φi(e) = ω1(e 6= ei). Then
(Gi, µi,∆i, φi) (= Qi, say) is an Ω-completion of Pi. Since F is well-behaved, there exist j > i ≥ 1
such that there is a realizable expansion η of Qi in Qj. Consequently

ω2 = φi(ei) ≤ φj(η(ei))

and so φj(η(ei)) = ω2, that is, η(ei) = ej. But ei ∈ dom(µi), and so µi(ei) and µj(η(ei)) have the
same length; that is,

ni = |µ̄i(ei)| = |µ̄j(η(ei))| = |µ̄j(ej)| = nj,

a contradiction. The result follows.

Let Ω1, Ω2 be quasi-orders, and let Fi be a set of Ωi-patchworks (i = 1, 2). A function γ : F2 → F1

is an encoding of F2 in F1 if P is simulated in P ′ for all P , P ′ ∈ F2 such that γ(P ) is simulated in
γ(P ′). The following is a convenient lemma for producing new well-behaved sets of patchworks.

4.2 Let F1, F2 be sets of patchworks where F1 is well-behaved. Suppose that for every well-quasi-

order Ω2 there is a well-quasi-order Ω1 and an encoding of the set of all Ω2-completions of members

of F2 in the set of all Ω1-completions of members of F1. Then F2 is well-behaved.

The proof is clear.

4.3 Let F1 be a well-behaved set of patchworks. Let F2 be the set of all patchworks P2 = (G2, µ,∆)
such that there exist (G1, µ,∆) ∈ F1 and v ∈ V (G1) \ π̄(G1) such that G−

2 = G−
1 and π(G2) is the

concatenation of π(G1) with a new last term v and v is incident with some edge e ∈ dom(µ). Then

F2 is well-behaved.

Proof. Choose N as in 4.1 (with F replaced by F1). For 1 ≤ r ≤ N , let Cr be the set of those
patchworks P2 = (G2, µ,∆) ∈ F2 such that v, e may be chosen as above with v the rth term of µ(e).
Since F2 = F1∪ · · ·∪FN and the union of finitely many well-behaved sets is well-behaved, it suffices
to show that F r is well-behaved for each r.

Let Ω2 be a well-quasi-order. Let Ω3 be an isomorphic copy of Ω2 with E(Ω2)∩E(Ω3) = ∅, and let
λ = Ω2 → Ω3 be an isomorphism. Let Ω1 = Ω2∪Ω3. Let Q2 = (G2, µ,∆, φ2) be an Ω2-completion of
a member P2 = (G2, µ,∆) of F r. Let v be the last term of π(G2), and let G1 be the hypergraph with
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G−
1 = G−

2 and π(G1) the sequence obtained from π(G2) by deleting v. Then P1 = (G1, µ,∆) ∈ C1.
Choose f ∈ dom(µ) such that v is the rth term of µ(f). Define an Ω1-completion Q1 = (G1, µ,∆, φ1)
of P1 as follows:

φ1(e) = φ2(e) (e ∈ E(G1) \ {f})

φ1(f) = λ(φ2(f)).

We define λ(Q2) = Q1, and claim that γ is an encoding. For suppose that γ(Q′
2) = Q′

1, where
Q′

2 = (G′
2, µ

′,∆′, φ′2) etc., and η is a realizable expansion of Q1 in Q′
1. Then η(f) = f ′, since f ′

is the only edge e of Q′
2 with φ′1(e) ∈ E(Ω3). Since f ∈ dom(µ) and f ′ ∈ dom(µ′) it follows that

v′ ∈ η(v), and hence η is a realizable expansion of Q2 in Q′
2, as required. Thus γ is an encoding, and

the theorem follows from 4.2.

4.4 Let F1 be a well-behaved set of patchworks, and let F2 be the set of all rootless patchworks

P2 = (G2, µ,∆) such that there exists (G1, µ,∆) ∈ F1 with G−
1 = G−

2 . Then F2 is well-behaved.

The proof is clear (for any realization expansion of one patchwork in another is a realizable expansion
of the corresponding patchworks with roots forgotten).

A patchwork (G,µ,∆) is active if every vertex of G is incident with some e ∈ dom(µ).

4.5 Let F1 be a well-behaved set of active patchworks, let k ≥ 0 and let F2 be the set of all patchworks

(G2, µ,∆) such that |π̄(G2)| ≤ k and there exists (G1, µ,∆) ∈ F1 with G−
1 = G−

2 . Then F2 is well-

behaved.

Proof. It suffices to prove that {(G2, µ,∆) ∈ F2 : |π̄(G2)| = k′} is well-behaved, for each k′ with
0 ≤ k′ ≤ k. For k′ = 0 this follows from 4.4, and in general by induction on k ′ from 4.3.

4.6 Let F1 be a well-behaved set of patchworks, and let F2 be a set of patchworks such that for each

P2 = (G2, µ2,∆2) ∈ F2 there exists f ∈ E(G2) such that P2\{f} ∈ F1 and every end of f belongs to

π̄(G2). Then F2 is well-behaved.

The proof is clear.
Let P1 = (G1, µ1,∆1) be a patchwork and f ∈ dom(µ1). Take a new vertex v and let G2 be the

rooted hypergraph with π(G2) = π(G1), E(G2) = E(G1), V (G2) = V (G1) ∪ {v} where f is incident
with v but otherwise the incidence relation is the same as for G. Let µ2(f) be an arbitrary march
and let ∆2(f) be an arbitrary patch, except that µ̄(f), V (∆2(f)) are both the set of ends of f in
G2. For e ∈ dom(µ1) \ {f} let µ2(e) = µ1(e), and for e ∈ E(G1) \ {f} let ∆2(e) = ∆1(e). Then
(G2, µ2,∆2) is a patchwork, which we say is a 1-vertex extension of (G1, µ1,∆1).

4.7 Let F1 be a well-behaved set of patchworks and let F2 be a set of patchworks each of which is a

1-vertex extension of a member of F1. Then F2 is well-behaved.

Proof. Let Ω2 be a well-quasi-order, and let N ≥ 0 be an integer such that for every (G,µ,∆) ∈ F1

and every e ∈ dom(µ), e has ≤ N ends. Let Ω be the well-quasi-order with E(Ω) the set of all
Ω2-patchworks (G,µ,∆, φ) with |E(G)| = 1 and |V (G)| ≤ N +1, ordered by simulation. (Evidently,
this is indeed a well-quasi-order.) We may assume that E(Ω) ∩E(Ω2) = ∅. Let Ω1 = Ω ∪ Ω2.
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Let Q2 = (G2, µ2,∆2, φ2) be an Ω2-completion of a member of F2. Choose (G1, µ1,∆1) ∈ F1 and
f ∈ dom(µ1) and v ∈ V (G2), as in the definition of 1-vertex extension. Let Q1 = (G1, µ1,∆1, φ1) be
the Ω1-completion of (G1, µ1,∆1) where

φ1(e) = φ2(e) (e ∈ E(G1) \ {f})

φ1(f) = Q2|H

where H is the rooted hypergraph such that H ⊆ G2, π(H) = µ1(f), E(H) = {f}, and V (H) is the
set of ends of f in G2. Let us define Q1 = λ(Q2); then it is easy to see that λ is an encoding, and
the result follows from 4.2.

4.8 Let F1 be a well-behaved set of patchworks, let k ≥ 0, and let F2 be the set of all patchworks P2

such that there exist P1 ∈ F1 and a sequence

P1 = P 0, P 1, . . . , P k′

= P2

where k′ ≤ k and for 1 ≤ i ≤ k′, P i is a 1-vertex extension of P i−1. Then F2 is well-behaved.

Proof. Let us express F2 = F0 ∪F1 ∪ · · · ∪ Fk, where for P2 ∈ F i the k′ above can be chosen with
k′ = i. By repeated use of 4.7, Fk′

is well-behaved for each k′, and hence F2 is well-behaved.

If G is a hypergraph and W ⊆ V (G), G/W denotes the hypergraph G′ with V (G′) = V (G) \W
and E(G′) = E(G), in which v ∈ V (G) \ W and e ∈ E(G) are incident if and only if they are
incident in G. If π is a march in a set V and W ⊆ V , π/W denotes the march obtained by omitting
all terms in W . If G is a rooted hypergraph and W ⊆ V (G), G/W denotes (G−/W, π(G),W ). If
P = (G,µ,∆) is a patchwork and W ⊆ V (G), P/W denotes the patchwork (G/W,µ′,∆′) where for
e ∈ dom(µ), µ′(e) = µ(e)/W , and for e ∈ E(G), if Z denotes the set of ends of e in G then ∆′(e)
consists of all groupings K ′ with vertex set Z \W such that K ′ ∪NW∩Z ∈ ∆(e). If P = (G,µ,∆, φ)
is an Ω-patchwork and W ⊆ V (G), P/W denotes the Ω-patchwork (G/W,µ′,∆′, φ), where µ′,∆′ are
as before.

4.9 Let F1 be a well-behaved set of patchworks, let θ ≥ 0, and let F2 be the set of all patchworks

P2 = (G2, µ2,∆2) such that dom(µ2) = E(G2) and there exists W ⊆ V (G2) with |W | ≤ θ and

P2/W ∈ F1. Then F2 is well-behaved.

Proof. It suffices (by induction on |W |) to prove this when for each P2 = (G2, µ2,∆2) ∈ F2 there
exists v ∈ V (G2) such that P2/{v} ∈ F1. Let Ω2 be a well-quasi-order and define N,Ω,Ω1 as in
the proof of 4.7. Let Q2 = (G2, µ2,∆2, φ2) be an Ω2-completion of a member P2 of F2, and choose
v ∈ V (G2) such that P2/{v} = P1 ∈ F1. Let P1 = (G1, µ1,∆1) and let Q1 be the Ω1-completion
(G1, µ1,∆1, φ1) of P1 where

φ1(e) = φ2(e) if e ∈ E(G1) is not incident with v in G2

φ1(e) = Q2|H if e ∈ E(G1) is incident with v in G2

where in the second case, H is the rooted hypergraph such that H ⊆ G2, π(H) = µ2(e), E(H) = {e}
and V (H) is the set of ends of e in G2. Let us define γ(Q2) = Q1; then it is easy to see that γ is an
encoding and the result follows from 4.2.
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Let P1 = (G1, µ1,∆1) and P2 = (G2, µ2,∆2) be patchworks. We say that P1 is a condensation

of P2 if V (G1) = V (G2), π(G1) = π(G2), dom(µ1) = E(G1), dom(µ2) = E(G2), for each e ∈ E(G1)
there is a rooted subhypergraph Ae ⊆ G2 with the following properties:

• V (Ae) is the set of ends of e in G1, and π(Ae) = µ1(e)

•
⋃

e∈E(G1)

E(Ae) = E(G2)

• for distinct e, e′ ∈ E(G1), E(Ae) ∩E(Ae′) = ∅

• for each e ∈ E(G1) and K ∈ ∆1(e), K is feasible in P2|Ae.

A patchwork P = (G,µ,∆) is removable if for every e ∈ E(G), ∆(e) contains NV where V is the set
of ends of e.

4.10 Let F1 be a well-behaved set of removable patchworks and let F2 be a set of patchworks such

that for each P2 ∈ F2 some P1 ∈ F1 is a condensation of P2. Then F2 is well-behaved.

Proof. Choose N ≥ 0 (by 4.1) such that for every (G,µ,∆) ∈ F1 and every e ∈ dom(µ), e has ≤ N
ends. Now let Ω2 be a well-quasi-order. Let Ω1 be the well-quasi-order with E(Ω1) the set of all
Ω2-patchworks (G,µ,∆, φ) where |V (G)| ≤ N , and (G,µ,∆) is removable, ordered by simulation.
(That Ω1 is a well-quasi-order is proved in the same way as theorem 8.4 of [1] and we omit the proof.)

Now let Q2 = (G2, µ2,∆2, φ2) be an Ω2-completion of some P2 ∈ F2. Choose P1 = (G1, µ1,∆1) ∈
F1 such that P1 is a condensation of P2, and choose the rooted subhypergraphs Ae (e ∈ E(G1))
as in the definition of condensation. Let Q1 = (G1, µ1,∆1, φ1) be the Ω1-completion of P1 where
φ1(e) = Q2|Ae for each e ∈ dom(µ1) = E(G1). Let Q1 = γ(Q2); then theorem 5.7 of [4] implies that
γ is an encoding, and the result follows.

4.11 Let F1 be a well-behaved set of active patchworks, and let F2 be the set of all patchworks

P2 = (G2, µ2,∆2) such that there exists P1 = (G1, µ1,∆1) ∈ F1 with G2 ⊆ G1, π(G2) = π(G1), G2

complemented in G1 and P2 = P1|G2. Then F2 is well-behaved.

Proof. Let Ω2 be a well-quasi-order. Let ∗ /∈ E(Ω2) be a new element and let Ω1 be the well-quasi-
order with Ω2 ⊆ Ω1 and E(Ω1) = E(Ω2) ∪ {∗}, where if x ≤ ∗ or ∗ ≤ x then x = ∗. Now let Q2 =
(G2, µ2,∆2, φ2) be an Ω2-completion of P2 = (G2, µ2,∆2) ∈ F2. Choose P1 = (G1, µ1,∆1) ∈ F1 so
that G2 ⊆ G1, π(G2) = π(G1), G2 is complemented in G1, and P2 = P1|G2. Let Q1 = (G1, µ1,∆1, φ1)
be the Ω-completion of P1 where

φ1(e) = φ2(e) (e ∈ E(G2))

= ∗ (e ∈ E(G1) \ E(G2)).

Let γ(Q2) = Q1; we claim that γ is an encoding.
Let Q′

i = (G′
i, µ

′
i,∆

′
i, φ

′
i) (i = 1, 2), such that γ(Q′

2) = Q′
1, and let η be a realizable expansion of

Q1 in Q′
1. We shall show that there is a realizable expansion of Q2 in Q′

2. Define η2 by

η2(v) = η(v) ∩ V (G′
2) (v ∈ V (G2))

η2(e) = η(e) (e ∈ E(G2)).
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(1) For each e ∈ E(G2), η2(e) ∈ E(G′
2) and φ2(e) ≤ φ′2(η2(e)).

Subproof. Certainly φ1(e) ≤ φ′1(η(e)) and so φ′1(η(e)) 6= ∗, since φ1(e) 6= ∗; hence η(e) ∈ E(G′
2) and

the claim follows.

(2) For each v ∈ V (G2), η2(v) 6= ∅.

Subproof. If v ∈ π̄(G1) and v is the ith term of π(G1) say, then η(v) contains the ith term of
π(G′

1), which belongs to V (G′
2) since π(G′

1) = π(G′
2). Thus we may assume that v /∈ π̄(G1). Since

G1 is active, there is an edge e ∈ E(G1) incident with v, and then e ∈ E(G2) since v /∈ π̄(G2) and
G2 is complemented in G1. Then η(e) is incident with a vertex of η(v); but every end of η(e) is in
V (G′

2) by (1), and so η2(v) 6= ∅. This proves (2).

From (1) and (2) it is easy to verify that η2 is an expansion of Q2 in Q′
2. Now let H1 be a

realization of Q′
1\η(E(G1)) realizing η. Let G′

3 = G′
1 \ G′

2. Then H1 = H2 ∪ H3 where Hi is a
realization of (Q′

1\η(E(G1)))|(G
′
i \ (E(G′

i) ∩ η(E(G1)))) (i = 2, 3). Now for e ∈ E(G1)

e 6∈ E(G2) ⇔ φ1(e) = ∗ ⇔ φ2(η(e)) = ∗ ⇔ η(e) 6∈ E(G′
2)

and so η(E(G1)) ∩E(G′
2) = η(E(G2)). Hence

(Q′
1\η(E(G1)))|(G

′
2 \ (E(G′

2) ∩ η(E(G1)))) = Q′
2\η(E(G2))

and so H2 is a realization of Q′
2\η(E(G2)). We claim that H2 realizes η2. For let v ∈ V (G2).

We must show that η2(v) is the vertex set of a component of H2. Let C1 be a component of H1

with V (C1) = η(v). Then V (C1) contains at most one vertex of π̄(G′
2), since π(G′

2) = π(G′
1)

and η is an expansion of Q1 in Q′
1. Choose C2 ⊆ H2, C3 ⊆ H3 such that C1 = C2 ∪ C3, with

V (Ci) = V (C1) ∩ V (Hi) (i = 2, 3). Since C3 contains at most one vertex of π̄(G′
2) and G′

3 is a
complement of G′

2, it follows that |V (C2 ∩ C3)| ≤ 1 and hence C2 is connected, and is therefore a
component of H2, since

V (C2) = V (C1) ∩ V (H2) = η2(v) 6= ∅.

This proves that H2 realizes η2, and completes the proof of the theorem.

4.12 Let F1 be a well-behaved set of active patchworks, let k ≥ 0, and let F2 be a set of patchworks

such that for each P2 = (G2, µ2,∆2) ∈ F2 there exists f ∈ dom(µ2) with ≤ k ends and P1 =
(G1, µ1,∆1) ∈ F1 so that G2\f = G1\A and π(A) = µ2(f) for some complemented rooted hypergraph

A ⊆ G1, and P2\{f} = P1|(G2\{f}). Then F2 is well-behaved.

Proof. Let F3 be the set of all patchworks (G3, µ3,∆3) such that |π̄(G3)| ≤ k and there exists a
march π such that ((G−

3 , π), µ3,∆3) ∈ F1. By 4.5, F3 is well-behaved. Let F4 be related to F3 as
F2 is to F1 in 4.11. By 4.11, F4 is well-behaved. Let F5 be related to F4 as F2 is to F1 in 4.6. By
4.6, F5 is well-behaved. We claim that F2 ⊆ F5; for let P2 = (G2, µ2,∆2) ∈ F2, and let f, P1 be as
in the statement of the theorem. Then ((G−

1 , µ2(f)), µ1,∆1) ∈ F3, and so P2 \ f ∈ F4, and therefore
P2 ∈ F5. This proves that F2 ⊆ F5, and the result follows.
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By w applications of 4.12, we deduce

4.13 Let F1 be a well-behaved set of active patchworks, let k, w ≥ 0 and let F2 be a set of patchworks

such that for each P2 = (G2, µ2,∆2) ∈ F2 there exists F ⊆ dom(µ2) with |F | ≤ w and P1 =
(G1, µ1,∆1) ∈ F1, and a rooted location L = {Af : f ∈ F} in G1, such that

• G−
2 \F = G−

1 ∩
⋂

((G1 \A)− : A ∈ L)

• P2\F = P1|(G2\F ), and

• for each f ∈ F , π(Af ) = µ2(f) and f has ≤ k ends.

Then F2 is well behaved.

5 Isolation modulo a subset

In the previous section we gave several ways to construct new well-behaved sets from old. Now we
use these constructions to begin to bridge the gap between what is given by the theorem of [3] and
what is required by 3.1.

If G is a hypergraph or rooted hypergraph, we denote V (G)∪E(G) by Z(G). Let T be a tangle
in a hypergraph G, let λ be a tie-breaker in G, let θ ≥ 1, and let W ⊆ Z(G). We define M(T ,W, θ)
to be the set of all separations (A,B) ∈ T such that

• (A,B) has order < θ and W 6⊆ Z(B)

• (A,B) is the (T , T ′)-distinction for some tangle T ′

• there is no (A′, B′) ∈ T with (A′, B′) 6= (A,B) satisfying the first two conditions with A ⊆ A′

and B′ ⊆ B.

5.1 Let (C,D) ∈ M(T ,W, θ), and let (A,B) be the (T , T ′)-distinction for some tangle T ′. Then

either A ⊆ C and D ⊆ B, or A ⊆ D and C ⊆ B, or C ⊆ A and B ⊆ D, and if (A,B) has order < θ
then one of the first two alternatives holds.

Proof. By theorems 9.4 and 10.2 of [2], either one of these three alternatives holds or D ⊆ A and
B ⊆ C; and this last is impossible since (A,B), (C,D) ∈ T . If (A,B) has order < θ then the third
alternative also is impossible, because of the third condition in the definition of M(T ,W, θ), unless
(A,B) = (C,D) when the first alternative holds as well.

5.2 If (A,B), (A′, B′) ∈ M(T ,W, θ) are distinct then A ⊆ B ′; and M(T ,W, θ) has cardinality

≤ |W |.

Proof. Suppose that A 6⊆ B ′. By 5.1, A ⊆ A′ and B′ ⊆ B, since (A,B) has order < θ and (A,B)
is the (T , T ′)-distinction for some T ′. Similarly, with (A,B) and (A′, B′) exchanged, it follows that
A′ ⊆ A and B ⊆ B ′. But then (A,B) = (A′, B′), a contradiction. This proves the first claim.

From this, it follows that

E(A) ∪ (V (G) \ V (B)) ((A,B) ∈ M(T ,W, θ))

are mutually disjoint, and each contains a member of W . It follows that |M(T ,W, θ)| ≤ |W |, as
required.
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If T is a tangle in G, θ ≥ 1 is an integer, λ is a tie-breaker in G and W ⊆ Z(G), a rooted location
L in G is said to θ-isolate T modulo W if L has order < θ, L− ⊆ T , and for each A ∈ L and every
tangle T ′ in G of order ≥ θ with ((G \A)−, A−) ∈ T ′, if (C,D) is the (T , T ′)-distinction then either
C ⊆ A− and (G \ A)− ⊆ D, or W 6⊆ Z(D).

A rooted location L in a rooted hypergraph G is fine if
⋃

(A− : A ∈ L) = G−. Let θ ≥ 1 be an
integer, let P = (G,µ,∆) be a patchwork, let λ be a tie-breaker in G, let T be a tangle in G of order
≥ θ2, and let W ⊆ Z(G) with |W | ≤ θ. In these circumstances, a rooted location L in G is said to
be W -suitable if

• L is fine, and L− ⊆ T , and L has order < θ2

• for each tangle T ′ in G of order ≥ θ2, if (C,D) ∈ L and (D,C) ∈ T ′ and (A,B) is the (T , T ′)-
distinction then either A ⊆ C and D ⊆ B, or A ⊆ A∗ and B∗ ⊆ B for some (A∗, B∗) ∈
M(T ,W, θ).

5.3 Let F be a well-behaved set of patchworks and let θ ≥ 1. Then there is a well-behaved set of

patchworks F ′ with the following property. Let P = (G,µ,∆) be a patchwork, let λ be a tie-breaker in

G, let T be a tangle in G of order ≥ θ2, let W ⊆ Z(G) with |W | ≤ θ, let L be a fine rooted location

in G that θ-isolates T modulo W , and let F contain a heart of (P,L). Then there is a rooted location

L′ in G and W ′ ⊆W such that

• L′ is W ′-suitable and F ′ contains a heart of (P,L′),

• for each (A,B) ∈ M(T ,W ′, θ),

– V (A ∩B) ∩ V (C) ⊆ π̄(C) for each C ∈ L′, and

– there is no (C,D) ∈ L′− with A ⊆ C and D ⊆ B.

Proof. Let F ′ be related to F as F2 is to F1 in 4.8, where k = θ2. By 4.8, F ′ is well-behaved,
and we claim that it satisfies the theorem. For let P = (G,µ,∆), λ, T ,W ⊆ Z(G) and L satisfy the
hypotheses of the theorem. Choose W ′ ⊆W minimal such that L θ-isolates T modulo W ′.

(1) For each (A,B) ∈ M(T ,W ′, θ), there is no (C,D) ∈ L− with A ⊆ C and D ⊆ B.

Subproof. Let (A,B) ∈ M(T ,W ′, θ) and suppose that there is such a (C,D). Since (A,B) ∈
M(T ,W ′, θ) there is a tangle T ′ such that (A,B) is the (T , T ′)-distinction, and there exists z ∈
W ′ \ Z(B). Now from the minimality of W ′, L does not θ-isolate T modulo W ′ \ {z}, and so there
exists (C ′, D′) ∈ L− and a tangle T ′′ in G of order ≥ θ with (D′, C ′) ∈ T ′′ with the property that
W ′ \{z} ⊆ Z(B ′) and not both A′ ⊆ C ′ and D′ ⊆ B′, where (A′, B′) is the (T , T ′′)-distinction. Since
L does θ-isolate T modulo W ′, it follows that W ′ 6⊆ Z(B′) and so z /∈ Z(B ′). Hence B ∪ B ′ 6= G.
Moreover, since (A,B) ∈ M(T ,W ′, θ), it follows that not both A ⊆ A′ and B′ ⊆ B, from the third
condition in the definition of M(T ,W ′, θ). From 5.1, A′ ⊆ A and B ⊆ B ′. Now A ⊆ C and D ⊆ B,
and so A′ ⊆ C and D ⊆ B ′; and hence (C,D) 6= (C ′, D′), since not both A′ ⊆ C ′ and D′ ⊆ B′.
Moreover, (B ′, A′) ∈ T ′′, and A′ ⊆ C and D ⊆ B ′, and so (D,C) ∈ T ′′ since (D,C) has order
< θ and T ′′ has order ≥ θ. Since L is a rooted location and (C,D), (C ′, D′) ∈ L− it follows that
D∪D′ = G−. But (D,C), (D′, C ′) ∈ T ′′ contrary to the second axiom for tangles. This proves (1).
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Let X =
⋃

(V (A ∩ B) : (A,B) ∈ M(T ,W ′, θ)). Since |M(T ,W ′, θ))| ≤ |W ′| ≤ |W | ≤ θ by 5.2,
it follows that |X| ≤ θ(θ − 1). For each C ∈ L, let f(C) be a rooted hypergraph with f(C)− = C−

and π̄(f(C)) = π̄(C)∪ (X ∩V (C)), taking f(C) = C if X ∩V (C) ⊆ π̄(C). Let L′ = {f(C) : C ∈ L}.
Then L′ is a fine rooted location, and L′ has order at most θ(θ − 1) more than the order of L, and
hence at most θ2 − 1. We observe

(2) For each (C ′, D′) ∈ L′− there exists (C,D) ∈ L− with C = C ′ and D ⊆ D′; and E(D′) = E(D),
and V (D′) \ V (D) = X ∩ (V (C) \ π̄(C)).

Since |X| ≤ θ(θ − 1) and each x ∈ X belongs to V (C) \ π̄(C) for at most one C ∈ L, we see
that F ′ contains a heart of (P,L′), from the definition of F ′. Since T has order ≥ θ2 and L− ⊆ T
it follows from (2) that L′− ⊆ T . To verify that L′ is W ′-suitable, let T ′ be a tangle of order ≥ θ2,
let (C ′, D′) ∈ L′− with (D′, C ′) ∈ T ′, and let (A,B) be the (T , T ′)-distinction. We may assume that:

(3) There is no (A∗, B∗) ∈ M(T ,W ′, θ) such that A ⊆ A∗ and B∗ ⊆ B.

We must therefore show that A ⊆ C ′ and D′ ⊆ B. Choose (C,D) as in (2). Then (A,B) has
order at most that of (C,D), and hence < θ. If W ′ 6⊆ Z(B), then from the definition of M(T ,W ′, θ),
there exists some (A∗, B∗) ∈ M(T ,W ′, θ) violating (3); so W ′ ⊆ Z(B). Since L θ-isolates T modulo
W ′ and (D,C) ∈ T ′, it follows that A ⊆ C andD ⊆ B. Since C = C ′ it remains to show that D′ ⊆ B.
Let v ∈ V (D′) \ V (D). Then v ∈ X, and so v ∈ V (A∗ ∩ B∗) for some (A∗, B∗) ∈ M(T ,W ′, θ). By
5.1, (3) and the third condition in the definition of M(T ,W ′, θ), it follows that A ⊆ B∗ and A∗ ⊆ B;
and in particular v ∈ V (B). Consequently V (D ′) \ V (D) ⊆ V (B); and since E(D′) = E(D) and
D ⊆ B, it follows that D′ ⊆ B as required. This proves that L′ is W ′-suitable. The final statement
holds because of (1) and the definition of L′.

If x, y are vertices of a graph H, we say they are connected in H if they belong to the same
connected component of H.

5.4 Let F be a well-behaved set of patchworks, and let θ ≥ 1. Then there is a well-behaved set of

patchworks F ′ with the following property. Let P = (G,µ,∆) be a patchwork, let λ be a tie-breaker

in G, let T be a tangle in G of order ≥ θ2, and let W ⊆ Z(G) with |W | ≤ θ. Suppose that:

• P is removable,

• L is a W -suitable rooted location in G, such that F contains a heart of (P,L),

• for each (A∗, B∗) ∈ M(T ,W, θ),

– V (A∗ ∩B∗) ∩ V (C) ⊆ π̄(C) for each C ∈ L, and

– there is no (C,D) ∈ L− with A∗ ⊆ C and D ⊆ B∗.

Then there is a W -suitable rooted location L′ in G such that F ′ contains a heart of (P,L′), and for

each C ∈ L′ and each (A∗, B∗) ∈ M(T ,W, θ), either C− ⊆ A∗ and B∗ ⊆ (G \C)−, or C− ⊆ B∗ and

A∗ ⊆ (G \ C)−.
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Proof. Let F ′ be the set of all removable patchworks P ′ such that some P ∈ F is a con-
densation of P ′. By 4.10, F ′ is well-behaved, and we claim the theorem is satisfied. For let
P = (G,µ,∆), λ, T ,W ⊆ Z(G),L be as in the theorem. Let

M(T ,W, θ) = {(Ai, Bi) : 1 ≤ i ≤ k}.

Let A0 = G−∩B1∩· · ·∩Bk, B0 = A1∪· · ·∪Ak. Then (A0, B0) is a separation of G−. For each C ∈ L
and 0 ≤ i ≤ k let fi(C) be a rooted hypergraph with fi(C)− = C−∩Ai and π̄(fi(C)) = π̄(C)∩V (Ai).

(1) For each C ∈ L,

• C− = f0(C)− ∪ f1(C)− ∪ · · · ∪ fk(C)−,

• π̄(C) = π̄(A0) ∪ π̄(A1) ∪ · · · π̄(Ak),

• for 1 ≤ i ≤ k, fi(C)− ⊆ Ai and Bi ⊆ (G \ fi(C))−, and

• for 0 ≤ i < j ≤ k, V (fi(C)) ∩ V (fj(C)) ⊆ π̄(fi(C)) ∩ π̄(fj(C)).

Subproof. The first two statements follow since A−
0 ∪A−

1 ∪· · ·∪A−
k = G−. For the third, let 1 ≤ i ≤ k.

Then (fi(C))− ⊆ Ai by definition, and so E(Bi) ⊆ E(G \ fi(C)); it remains to prove the same in-
clusion for vertex sets. Let v ∈ V (Bi), and suppose for a contradiction that v /∈ V (G \ fi(C)). Thus
v ∈ V (fi(C))\ π̄(fi(C)). Consequently v ∈ V (Ai ∩Bi) ⊆ π̄(C), and yet V (fi(C))∩ π̄(C) = π̄(fi(C)),
a contradiction. This proves the third statement. For the fourth, let 0 ≤ i < j ≤ k, and let
v ∈ V (fi(C)) ∩ V (fj(C)). Then v ∈ V (C) ∩ V (Ai) ∩ V (Aj) ⊆ V (C) ∩ V (Aj ∩ Bj), and since j ≥ 1
it follows from the hypothesis that v ∈ π̄(C). Consequently v ∈ π̄(fi(C))∩ π̄(fj(C)). This proves (1).

(2) Let C ∈ L and let K be a grouping feasible in P |C. Then there are groupings Ki feasible in

P |fi(C) (0 ≤ i ≤ k) such that for distinct x, y ∈ π̄(C), x and y are adjacent in K if and only if x
and y are connected in K0 ∪K1 ∪ · · · ∪Kk.

Subproof. Let H be a realization of P |C such that for distinct x, y ∈ π̄(C), x and y are adja-
cent in K if and only if x and y are connected in H. Then H = H0 ∪ H1 ∪ · · · ∪ Hk where Hi is
a realization of P |fi(C) (0 ≤ i ≤ k) by (1). Let Ki be the grouping with V (Ki) = π̄(fi(C)) such
that distinct x, y ∈ π̄(fi(C)) are adjacent in Ki if and only if they are connected in Hi. By k + 1
applications of (1) and theorem 5.1 of [4], distinct x, y ∈ π̄(C) are connected in H if and only if they
are connected in K0 ∪K1 ∪ · · · ∪Kk. This proves (2).

Let L′ = {fi(C) : C ∈ L, 0 ≤ i ≤ k}. Then by (1), L′ is a fine rooted location in G, and L′ ⊆ T ,
and L′ has order at most that of L, and hence < θ2.

To verify that L′ is W -suitable, take a member of L′−, say (fh(C), G \ fh(C)) where C ∈ L and
0 ≤ h ≤ k. Let T ′ be a tangle in G of order ≥ θ2 such that (G \ fh(C), fh(C)) ∈ T ′, and let (A′, B′)
be the (T , T ′)-distinction. We will show that either

• h = 0 and A′ ⊆ f0(C) and G \ f0(C) ⊆ B′, or

• A′ ⊆ Ai and Bi ⊆ B′ for some i with 1 ≤ i ≤ k.
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Since (G \ fh(C), fh(C)) ∈ T ′ it follows that ((G \ C)−, C−) ∈ T ′ since T ′ has order ≥ θ2 and
|π̄(C)| < θ2. We may assume that A′ ⊆ C− and (G \ C)− ⊆ B′, since otherwise the second
alternative above holds because L is W -suitable. For 1 ≤ i ≤ k it is not true that Ai ⊆ A′ and
B′ ⊆ Bi, since that would imply that Ai ⊆ C− and (G \ C)− ⊆ Bi contrary to the hypothesis.
We may also assume it is not true that A′ ⊆ Ai and Bi ⊆ B′, since otherwise we are done. By
5.1 it follows that Ai ⊆ B′ and A′ ⊆ Bi for 1 ≤ i ≤ k, and hence A′ ⊆ A0 and B0 ⊆ B′. Since
(B′, A′), (G \ fh(C), fh(C)) ∈ T ′, it follows that fh(C) 6⊆ B′, and so fh(C) 6⊆ B0. Consequently
h = 0, and the first alternative above holds, as required. This proves that L′ is W -suitable.

From (2) and the facts that P is removable and L, L′ are both fine (and hence their hearts
(G1, µ1,∆1), (G2, µ2,∆2) satisfy dom(µi) = E(Gi) (i = 1, 2)), it follows that F ′ contains a heart
of (P,L′). Let C ∈ L and 0 ≤ i ≤ k. For 1 ≤ j ≤ k, if i = j then fi(C)− ⊆ Ai = Aj and
Bj = Bi ⊆ (G \ fi(C))−; and if i 6= j then fi(C)− ⊆ Ai ⊆ Bj and Aj ⊆ Bi ⊆ (G \ fi(C))−. This
proves 5.4.

5.5 Let F be a well-behaved set of patchworks and let θ ≥ 1. Then there is a well-behaved set of

patchworks F ′ with the following property. Let P = (G,µ,∆) be a patchwork, let λ be a tie-breaker

in G, let T be a tangle in G of order ≥ θ2, and let W ⊆ Z(G) with |W | ≤ θ. Suppose that

• P is rootless

• L is a W -suitable rooted location in G such that F contains a heart of (P,L), and

• for each C ∈ L and each (A∗, B∗) ∈ M(T ,W, θ), either

– C− ⊆ A∗ and B∗ ⊆ (G \ C)−, or

– C− ⊆ B∗ and A∗ ⊆ (G \ C)−.

Then there is a fine rooted location L′ such that L′ θ2-isolates T and F ′ contains a heart of (P,L′).

Proof. Let F1 be the set of active members of F , and let F2 be defined as in 4.13, taking k = w = θ.
We claim that F2 satisfies the theorem. For let P = (G,µ,∆), λ, T ,W,L be as above. Let L = L1∪L2

where C ∈ L belongs to L2 if and only if there exists (A∗, B∗) ∈ M(T ,W, θ) with C− ⊆ A∗ and
B∗ ⊆ (G \C)−, and L1 = L\L2. For each (A,B) ∈ M(T ,W, θ), let f(A,B) be a rooted hypergraph
with f(A,B)− = A and π̄(f(A,B)) = V (A∩B). Let L′ = L1∪{f(A∗, B∗) : (A∗, B∗) ∈ M(T ,W, θ)}.

(1) L′ is a fine rooted location.

Subproof. Certainly L1 and {f(A∗, B∗) : (A∗, B∗) ∈ M(T ,W, θ)} are rooted locations (by 5.2,
and since P is rootless), and so to check that L′ is a rooted location it suffices to show that for each
C ∈ L1 and each (A∗, B∗) ∈ M(T ,W, θ),

V (C− ∩ f(A∗, B∗)−) ⊆ π̄(C) ∩ π̄(f(A∗, B∗))

E(C− ∩ f(A∗, B∗)−) = ∅.

Suppose, therefore, that C ∈ L1 and (A∗, B∗) ∈ M(T ,W, θ). Then since C /∈ L2 it follows that
not both C− ⊆ A∗ and B∗ ⊆ (G \ C)−. Hence from the hypothesis of the theorem, C− ⊆ B∗ and
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A∗ ⊆ (G \ C)−. Since f(A∗, B∗)− = A∗, and

V (C− ∩A∗) ⊆ V (C− ∩ (G \ C)−) ∩ V (A∗ ∩B∗) = π̄(C) ∩ π̄(f(A∗, B∗))

E(C− ∩A∗) ⊆ E(A∗ ∩B∗) = ∅

it follows that L′ is a rooted location. To see that it is fine, we observe that
⋃

(C− : C ∈ L′) =
⋃

(C− : C ∈ L1) ∪
⋃

(f(A∗, B∗)− : (A∗, B∗) ∈ M(T ,W, θ))

=
⋃

(C− : C ∈ L1) ∪
⋃

(A∗ : (A∗, B∗) ∈ M(T ,W, θ))

⊇
⋃

(C− : C ∈ L1) ∪
⋃

(C− : C ∈ L2) = G−

the inclusion holding since if C ∈ L2 then C− ⊆ A∗ for some (A∗, B∗) ∈ M(T ,W, θ). This proves (1).

(2) L′ θ2-isolates T .

Subproof. Now L′− ⊆ T and its members have order < θ2. Let T ′ be a tangle of order ≥ θ2,
let (A′, B′) ∈ L′− with (B′, A′) ∈ T ′, and let (A,B) be the (T , T ′)-distinction. Suppose first that
(A′, B′) ∈ L−

1 . Then since L is W -suitable, either A ⊆ A′ and B′ ⊆ B or A ⊆ A∗ and B∗ ⊆ B
for some (A∗, B∗) ∈ M(T ,W, θ). The first is the desired conclusion, and we assume the second.
Then (B∗, A∗) ∈ T ′ since A ⊆ A∗ and (B,A) ∈ T ′ and T ′ has order ≥ θ2 and (B∗, A∗) has order
< θ ≤ θ2. Since (A′, B′) /∈ L−

2 , it follows as in the proof of (1) that A′ ⊆ B∗, and so B∗ ∪ B′ = G−,
a contradiction to the second tangle axiom since (B ′, A′), (B∗, A∗) ∈ T ′. We may assume then that
(A′, B′) /∈ L−

1 ; and so (A′, B′) ∈ M(T ,W, θ), and therefore (A′, B′) has order < θ. Since (B ′, A′) ∈ T ′

it follows that (A,B) has order at most that of (A′, B′) and hence < θ. From 5.1, either A ⊆ A′ and
B′ ⊆ B, or A ⊆ B ′ and A′ ⊆ B. The first is the desired conclusion and the second is impossible
since (B′, A′), (B,A) ∈ T ′. This proves (2).

Now |π̄(f(A,B))| < θ for each (A,B) ∈ M(T ,W, θ), and the heart of (P,L) in F is active (since
L is fine) and hence belongs to F1. Consequently, (P,L′) has heart in F2. This proves 5.5.

By applying 5.3, 5.4 and 5.5 in turn, we deduce:

5.6 Let F be a well-behaved set of patchworks, and let θ ≥ 1. Then there is a well-behaved set of

patchworks F ′ with the following property. Let P = (G,µ,∆) be a rootless removable patchwork, let

λ be a tie-breaker in G, let T be a tangle in G of order ≥ θ2, and let W ⊆ Z(G) with |W | ≤ θ.
Suppose that L is a fine rooted location in G such that L θ-isolates T modulo W , and F contains

a heart of (P,L). Then there is a fine rooted location L′ in G such that L θ2-isolates T and F ′

contains a heart of (P,L′).

From 3.1 and 5.6 we deduce the main result of this section:

5.7 Let Ω be a well-quasi-order, let F be a well-behaved set of patchworks, and let θ ≥ 1. Let

Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable sequence of rootless robust Ω-patchworks. For each

i ≥ 1 let λi be a tie-breaker in Gi; and suppose that for each tangle T in Gi of order ≥ θ, there exist

W ⊆ Z(Gi) with |W | ≤ θ and a fine rooted location L in Gi, such that L θ-isolates T modulo W ,

and F contains a heart of ((Gi, µi,∆i),L). Then there exist j > i ≥ 1 such that Pi is simulated in

Pj.
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Proof. Define F ′ as in 5.6, and let F ′′ be the set of all rootless partial Ω-patchworks (G,µ,∆, φ)
with dom(φ) = ∅ and (G,µ,∆) ∈ F ′. Thus F ′′ is a well-behaved set of partial Ω-patchworks. We
claim that the hypothesis of 3.1 are satisfied, with F , θ replaced by F ′′, θ2. For let i ≥ 1, let
Q = (Gi, µi,∆i), and let T be a tangle in Gi of order ≥ θ2. Then T has order ≥ θ, and so there exist
W , L as in the hypothesis of 5.7. Hence Q, λi, Ti, W , L satisfy the hypothesis of 5.6 (in particular
Q is removable, since it is robust), and so there is a fine rooted location L′ in Gi which θ2-isolates
T , such that F ′ contains a heart of (Q,L′). Since L′ is fine and Q is rootless, the heart of (Pi,L

′)
belongs to F ′′. Consequently the hypotheses of 3.1 are satisfied, and the result follows from 3.1.

6 Eliminating the tie-breaker

Our next objective is to prove a form of 5.7 with no tie-breakers. Let G be a hypergraph and let
f ∈ E(G). For each x ∈ Z(G) let ν(x) > 0 be a real number, such that the numbers ν(x) (x ∈ Z(G))
are rationally independent. For each separation (A,B) of G with f ∈ E(A), we define

λ(A,B) = (|V (A ∩B)|,Σ(ν(x) : x ∈ Z(G) \ Z(A)),Σ(ν(x) : x ∈ V (A ∩B))).

Thus each λ(A,B) is a triple of real numbers. We order R
3 lexicographically, that is, (a1, a2, a3) <

(b1, b2, b3) if for some k ∈ {1, 2, 3}, ai = bi for 1 ≤ i < k and ak < bk. If (A,B) is a separation with
f ∈ E(B), we define λ(A,B) = λ(B,A).

6.1 λ is a tie-breaker.

Proof. We must verify the three axioms. Suppose first that (A,B), (C,D) are separations and
λ(A,B) = λ(C,D). We may assume that f ∈ E(A) and f ∈ E(C). Hence |V (A∩B)| = |V (C ∩D)|,
and Z(G) \ Z(A) = Z(G) \ Z(C), that is, A = C, since the ν’s are rationally independent; and for
the same reason, V (A ∩ B) = V (C ∩ D). Since E(A) = E(C) it follows that E(B) = E(D); and
since V (A ∩ B) = V (C ∩ D), it follows that B = D. Thus (A,B) = (C,D). This proves the first
axiom, for the “if” part of the first axiom is clear.

For the second axiom, let (A,B), (C,D) be separations, and suppose that λ(A ∪ C,B ∩ D) >
λ(A,B) and λ(A ∩C,B ∪D) ≥ λ(C,D). Now (A ∪C,B ∩D) has order at least that of (A,B), and
(A ∩ C,B ∪D) has order at least that of (C,D). But the sum of the orders of (A ∪ C,B ∩D) and
(A ∩ C,B ∪D) equals the sum of the orders of (A,B) and (C,D), and so we have equality; that is,
(A ∪ C,B ∩D) has the same order as (A,B), and (A ∩ C,B ∪D) has the same order as (C,D).

Suppose first that f ∈ E(A). Since λ(A ∪ C,B ∩D) > λ(A,B), it follows that

Σ(ν(x) : x ∈ Z(A ∪ C)) ≤ Σ(ν(x) : x ∈ Z(A)),

and so C ⊆ A (since ν(x) > 0 for all x). Hence V ((A∪C)∩(B∩D)) ⊆ V (A∩B), and so equality holds
since these two sets have the same cardinality. But then λ(A∪C,B ∩D) = λ(A,B), a contradiction.

Thus f ∈ E(B). Suppose that f ∈ E(D). Since λ(A∩C,B ∪D) ≥ λ(C,D) we deduce, as above,
that B ⊆ D and V ((A∩C)∩ (B ∪D)) = V (C ∩D), and so λ(A∩C,B ∪D) = λ(C,D). By the first
axiom, (A∩C,B∪D) = (C,D) or (D,C), and since f ∈ E(D) it follows that (A∩C,B∪D) = (C,D).
Thus C ⊆ A and B ⊆ D, and so (A ∪ C,B ∩ D) = (A,B). But λ(A ∪ C,B ∩ D) 6= λ(A,B), a
contradiction.
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We have shown then that f /∈ E(A) and f /∈ E(D), and so f ∈ E(B∩C). Since λ(A∪C,B∩D) >
λ(A,B) it follows that

Σ(ν(x) : x ∈ Z(A ∪ C)) ≤ Σ(ν(x) : x ∈ Z(B)).

Since λ(A ∩ C,B ∪D) ≥ λ(C,D) it follows that

Σ(ν(x) : x ∈ Z(B ∪D)) ≤ Σ(ν(x) : x ∈ Z(C)).

But Z(A∪C) ⊇ Z(C) and Z(B∪D) ⊇ Z(B), and so we have equality throughout, that is Z(A∪C) =
Z(C) and Z(B ∪D) = Z(B); and consequently A ⊆ C and D ⊆ B. Moreover,

Σ(ν(x) : x ∈ Z(B)) = Σ(ν(x) : x ∈ Z(C))

and so B = C. Since (A,B) is a separation and A ⊆ C = B, it follows that B = G.
From comparing the third components of the tie-breaker, we deduce

Σ(ν(x) : x ∈ V ((A ∪ C) ∩B ∩D)) > Σ(ν(x) : x ∈ V (A ∩B)),

that is,
Σ(ν(x) : x ∈ V (D)) > Σ(ν(x) : x ∈ V (A)),

and
Σ(ν(x) : x ∈ V ((A ∩ C) ∪ (B ∪D))) ≥ Σ(ν(x) : x ∈ V (C ∩D)),

that is,
Σ(ν(x) : x ∈ V (A)) ≥ Σ(ν(x) : x ∈ V (D)),

a contradiction. This proves the second axiom.
The third axiom is clear because of the lexicographical order on R

3. This proves 6.1.

We call a tie-breaker λ as in 6.1 the tie-breaker defined by f , ν; we call tie-breakers of this form
edge-based.

Let G be a rooted hypergraph, and let T be a tangle in G. A rooted location L is linked to T
if L− ⊆ T and for each A ∈ L there is no (A′, B′) ∈ T of order less than |π̄(A)| with A− ⊆ A′ and
B′ ⊆ (G \ A)−. If T is a tangle in a hypergraph G of order θ, and W ⊆ V (G) with |W | < θ, we
define

T /W = {(A/W,B/W ) : (A,B) ∈ T ,W ⊆ V (A ∩B)}.

It is shown in theorem 6.2 of [2] that T /W is a tangle in G/W of order θ − |W |.
If L is a rooted location in a rooted hypergraph G, and W ⊆ V (G), and W ⊆ π̄(A) for all A ∈ L,

then {A/W : A ∈ L} is a rooted location in G/W which we denote by L/W .

6.2 Let G be a rooted hypergraph, and let T be a tangle in G of order θ ≥ 1. Let λ be an edge-

based tie-breaker in G defined by f , ν say. Let L be a rooted location in G with order < θ, and let

W ⊆ V (G) be such that W ⊆ π̄(A) for all A ∈ L. Let L/W be linked to T /W . Then L θ-isolates T
modulo W ∪ {f}.
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Proof. Let A ∈ L, and let B = G\A. Since L/W is linked to T /W , it follows that (A−/W,B−/W ) ∈
T /W , and so (A−, B−) ∈ T . Let T ′ be a tangle in G of order ≥ θ with (B−, A−) ∈ T ′, and let (C,D)
be the (T , T ′)-distinction. We must show that either C ⊆ A− and B− ⊆ D, or W ∪ {f} 6⊆ Z(D).
We assume that W ∪ {f} ⊆ Z(D), and in particular f ∈ E(D).

(1) λ(A− ∩ C,B− ∪D) ≥ λ(C,D)

Subproof. We may assume that the separation (A− ∩ C,B− ∪D) has order at most that of (C,D),
for otherwise the desired inequality holds. But (C,D) has order at most the order of (A−, B−), since
(A−, B−) ∈ T and (B−, A−) ∈ T ′, and hence (C,D) has order < θ. Consequently (A− ∩C,B− ∪D)
has order < θ, and so (A− ∩C,B− ∪D) ∈ T since (A−, B−) ∈ T . But (A− ∩C,B− ∪D) /∈ T ′ since
(B−, A−), (D,C) ∈ T ′ and (A− ∩ C) ∪B− ∪D = G−. Consequently (B− ∪D,A− ∩ C) ∈ T ′. Since
(C,D) is the (T , T ′)-distinction it follows that λ(A− ∩ C,B− ∪D) ≥ λ(C,D). This proves (1).

By (1) and the second tie-breaker axiom and 6.1, λ(A−∪C,B−∩D) ≤ λ(A−, B−). In particular,
(A− ∪ C,B− ∩D) has order < θ, and so (A− ∪C,B− ∩D) ∈ T (because (B− ∩D,A− ∪C) /∈ T by
the second tangle axiom, since (A−, B−), (C,D) ∈ T ). But W ⊆ V (A− ∩B−) since W ⊆ π̄(A); and
W ⊆ V ((A− ∪ C) ∩ (B− ∩D)) since W ⊆ V (D) by our previous assumption. Since L/W is linked
to T /W , and A/W ∈ L/W , and ((A− ∪ C)/W , (B− ∩D)/W ) ∈ T /W , it follows that the order of
(A−/W,B−/W ) is at most that of ((A− ∪ C)/W , (B− ∩D)/W ); that is, the order of (A−, B−) is
at most that of (A− ∪C,B− ∩D). Since λ(A− ∪C,B− ∩D) ≤ λ(A−, B−), it follows that (A−, B−)
has the same order as (A− ∪ C,B− ∩D).

Now the sum of the orders of (A− ∪ C,B− ∩ D) and (A− ∩ C,B− ∪ D) equals the sum of the
orders of (A−, B−) and (C,D); and so (A− ∩ C,B− ∪ D) has the same order as (C,D). Since
λ(A− ∩ C,B− ∪D) ≥ λ(C,D), and f ∈ E(D), it follows that

Σ(ν(x) : x ∈ Z(B− ∪D)) ≤ Σ(ν(x) : x ∈ Z(D))

and so B− ⊆ D. Hence
V ((A− ∩ C) ∪ (B− ∪D)) ⊆ V (C ∩D);

but these two sets have the same cardinality, and so equality holds. Consequently λ(A−∩C,B−∪D) =
λ(C,D), and so A−∩C = C by the first tie-breaker axiom (for A−∩C 6= D since f ∈ E(D)). Hence
C ⊆ A−. This proves 6.2.

By combining 6.2 and 5.7 we obtain a form of 5.7 which does not involve tie-breakers, the
following.

6.3 Let Ω be a well-quasi-order, let F be a well-behaved set of patchworks, and let θ ≥ 1. Let

Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable sequence of rootless robust Ω-patchworks. Suppose

that for each tangle T in Gi of order ≥ θ, there exist W ⊆ V (Gi) with |W | < θ and a fine rooted

location L in Gi, such that

• W ⊆ π̄(A) for all A ∈ L

• L/W is linked to T /W , and

• F contains a heart of ((Gi, µi,∆i),L).
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Then there exist j > i ≥ 1 such that Pi is simulated in Pj.

Proof. If P , P ′ are two rootless Ω-patchworks with E(P ) = E(P ′) = ∅, then one of P , P ′ is
simulated in the other. We may therefore assume that E(Gi) 6= ∅ for each i ≥ 1. For i ≥ 1, let λi

be an edge-based tie-breaker in Gi defined by fi, νi say. We claim that the hypotheses of 5.7 are
satisfied. For let T be a tangle in Gi of order ≥ θ, and let T ′ be the set of all (A,B) ∈ T of order < θ.
Then T ′ is a tangle in Gi of order θ. Choose W , L as in 6.3 (with T replaced by T ′). Since L/W
is linked to T ′/W , it follows that L/W has order < θ − |W |, and so L has order < θ. Since L/W
is linked to T ′/W , it follows that L/W is linked to T /W . By 6.2, L θ-isolates T modulo W ∪ {fi}.
Since |W ∪ {fi}| ≤ θ, the hypotheses of 5.7 are satisfied. The result follows from 5.7.

7 Another adjustment

Before we apply 6.3 to Wagner’s conjecture, it is convenient to make one further small adjustment
to it. We begin with the following lemma. A patchwork (G,µ,∆) or Ω-patchwork (G,µ,∆, φ) is free

if ∆(e) is free for all e ∈ E(G).

7.1 Let P = (G,µ,∆) be a free patchwork and W ⊆ π̄(G). Let K be a grouping with V (K) =
π̄(G) \W . Then K is feasible in P/W if and only if K ∪NW is feasible in P .

Proof. If K is feasible in P/W , let

H ′ = NV (G)\W ∪
⋃

(δ′e : e ∈ E(G))

be a realization of P/W such that for distinct x, y ∈ π̄(G) \W , x and y are connected in H if and
only if they are adjacent in K. For each e ∈ E(G) there exists δe ∈ ∆(e) such that the vertices of δe
in W are isolated vertices of δe and their removal yields δ′e. Let

H = NV (G) ∪
⋃

(δe : e ∈ E(G)).

Then for distinct x y ∈ π̄(G), x and y are connected in H if and only if they are adjacent in K∪NW ,
as required.

For the converse, let K ∪NW be feasible in P , and choose a corresponding realization

H = NV (G) ∪
⋃

(δe ∈ E(G)).

Since P is free, we may choose H and the δe’s such that for each e ∈ E(G)) every vertex of W in
V (δe) is an isolated vertex of δe. Then H/W is a realization of P/W with the required properties.
This proves 7.1.

7.2 Let F be a well-behaved set of patchworks and let θ ≥ 1. Then there is a well-behaved set of

patchworks F ′ with the following property. Let P = (G,µ,∆) be a free patchwork, let T be a tangle

in G of order ≥ θ, let W ⊆ V (G) with |W | < θ, and let L be a fine rooted location in G/W such

that L is linked to T /W , and F contains a heart of (P/W,L). Then there is a fine rooted location

L′ in G such that
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• W ⊆ π̄(A) for all A ∈ L′

• L′/W = L and hence is linked to T /W , and

• F ′ contains a heart of (P,L′).

Proof. Let F ′ be related to F as F2 is related to F1 in 4.9. By 4.9, F ′ is well-behaved, and we claim
it satisfies the theorem. For let P , T , W , L be as above. Let L′ be the rooted location in G such that
W ⊆ π̄(A) for every A ∈ L′ and L′/W = L. We claim that L′ has the desired properties. Certainly
the first two statements holds. To see the third, let P ′ = (G′, µ′,∆′) be a heart of (P,L′). Then
P ′/W is defined. We claim that P ′/W is a heart of (P/W,L). To show this, it suffices to show that
if A ∈ L′ and K is a grouping with V (K) = π̄(A) \W , then K is feasible in (P/W )|(A/W ) if and
only if K ∪NW is feasible in P |A. But this follows from 7.1, since (P/W )|(A/W ) = (P |A)/W , and
P |A is free. Hence P ′/W is a heart of (P/W,L) as claimed. Since F contains a heart of (P/W,L),
we may choose P ′ such that P ′/W ∈ F . But dom(µ′) = E(G′) since no edge of G′ is an edge of G,
and so P ′ ∈ F ′. This proves that the third statement holds, as required.

Incidentally, the hypothesis that P be free in 7.2 is not really necessary, but it makes the proof
slightly easier, and our only application is to a free patchwork anyway. From 7.2 and 6.3 we obtain
another variant of 3.1, as follows.

7.3 Let Ω be a well-quasi-order, let F be a well-behaved set of patchworks, and let θ ≥ 1. Let

Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable sequence of free rootless Ω-patchworks. Suppose

that for each tangle T in Gi of order ≥ θ, there exist W ⊆ V (Gi) with |W | < θ and a fine rooted

location L in G/W , such that L is linked to T /W , and F contains a heart of ((Gi, µi,∆i)/W,L).
Then there exist j > i ≥ 1 such that Pi is simulated in Pj.

Proof. Let F ′ be as in 7.2. We claim that the hypotheses of 6.3 are satisfied (with F replaced by
F ′). For let T be a tangle in Gi of order ≥ θ. Let W , L be as in the hypotheses of 7.3, and choose
L′ as in the proof of 7.2. Thus the hypotheses of 6.3 hold (with L replaced by L′) and the result
follows from 6.3.

8 Surfaces and paintings

Now we come to the second part of the paper, where we shall apply 7.3 to deduce Wagner’s conjecture
from a theorem about hypergraphs drawn on a fixed surface. In this paper, by a surface we mean
a compact connected 2-manifold with (possibly null) boundary. If Σ is a surface, its boundary is
denoted by bd(Σ), and each component of bd(Σ) is a cuff of Σ. An O-arc in Σ is a subset of Σ
homeomorphic to a circle; every cuff is thus an O-arc. A line is a subset homeomorphic to the closed
interval [0,1]. If X ⊆ Σ the closure of X is denoted by X̄ and X̄ \X by X̃.

A painting Γ in a surface Σ is a triple (U,N, γ), where U ⊆ Σ is closed, N ⊆ U is finite, and

• bd(Σ) ⊆ U , and U \N has only finitely many arc-wise connected components, called cells

• for each cell c, c̄ is a closed disc and |c̃| = 2 or 3 and c̄ ∩N = c̃ ⊆ bd(c̄)
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• for each cell c, if c∩bd(Σ) 6= ∅ then |c̃| = 2, and c̄∩bd(Σ) is a line and its ends are the members
of c̃

• for each cell c, γ(c) is a march µ with µ̄ = c̃.

We write U(Γ) = U,N(Γ) = N, γΓ = γ, and denote the set of cells of Γ by C(Γ). The members
of N(Γ) are called nodes. If c ∈ C(Γ) and 1 ≤ i ≤ |c̃|, we call the ith term of γ(c) the ith node of c;
and in particular, the first node of c is its tail. A cell c is a border cell if c∩ bd(Σ) 6= ∅, and otherwise
is internal. Nodes in bd(Σ) are border nodes and the others are internal. If Θ is a cuff, we say a cell
c or node n borders Θ if c ∩ Θ 6= ∅ or n ∈ Θ. The size of a cell c is |c̃|. The components of Σ \ U(Γ)
are the regions of Γ. A subset X ⊆ Σ is Γ-normal if X ∩ U(Γ) ⊆ N(Γ). A painting Γ is 3-connected

if

• for every Γ-normal O-arc F in Σ with |F ∩ N(Γ)| ≤ 2 there is a closed disc ∆ ⊆ Σ with
bd(∆) = F which includes at most one cell of Γ and with ∆ ∩N(Γ) ⊆ F

• for every Γ-normal line F in Σ with |F ∩N(Γ)| ≤ 2 and with both ends in bd(Σ) and with no
other point in bd(Σ), there is a closed disc ∆ ⊆ Σ with F ⊆ bd(∆) ⊆ F ∪ bd(Σ) which includes
at most one cell of Γ and with ∆ ∩N(Γ) ⊆ F .

Let Γ be a painting in Σ. We define its skeleton sk(Γ) to be the subgraph of KN(Γ) with vertex
set N(Γ) in which for distinct n1, n2 ∈ N(Γ), n1 and n2 are adjacent in sk(Γ) if and only if there is
a cell c ∈ C(Γ) with n1, n2 ∈ c̃.

Let Γ, Γ′ be paintings in Σ. Let ζ be a function with domain C(Γ)∪N(Γ) and with the following
properties:

• ζ(c) ∈ C(Γ′) for each c ∈ C(Γ), and ζ(c) has the same size as c, and for each cuff Θ, c borders
Θ if and only if ζ(c) does (and hence c is internal if and only if ζ(c) is)

• ζ(c1) 6= ζ(c2) for all distinct c1, c2 ∈ C(Γ)

• for each cuff Θ, if c ∈ C(Γ) borders Θ and we orient Θ so that the tail of c immediately precedes
c ∩ Θ, then the tail of ζ(c) immediately precedes ζ(c) ∩ Θ under the same orientation of Θ.

• for each n ∈ N(Γ), ζ(n) is a non-null induced connected subgraph of sk(Γ′)

• ζ(n1) and ζ(n2) are disjoint for distinct n1, n2 ∈ N(Γ)

• for all n ∈ N(Γ) and c ∈ C(Γ) and 1 ≤ i ≤ |c̃|, n is the ith node of c if and only if ζ(n) contains
the ith node of ζ(c)

• for every border cell c′ ∈ C(Γ′), if c′ /∈ ζ(C(Γ)) then the nodes of c′ are adjacent in ζ(n) for
some n ∈ N(Γ).

We call such a function ζ a linear inflation of Γ in Γ′. (There are no “nonlinear” inflations in this
paper, but there were in [5].) Theorem 2.1 of [5] implies the following. (Note that there is a minor
discrepancy between the meanings of “painting” in these two papers; in this paper, if |c̃| = 2 then
the closure of c is a disc, while in [5], the closure of c is a line. But it is easy to convert from one
version to the other; make the discs narrow and the lines thick.)
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8.1 Let Σ be a surface and let Ω be a well-quasi-order. For each i ≥ 1 let Γi be a 3-connected

painting in Σ and let φi : C(Γi) → E(Ω) be a function. Then there exist j > i ≥ 1 and a linear

inflation ζ of Γi in Γj such that φi(c) ≤ φj(ζ(c)) for each c ∈ C(Γi).

The objective of the next two sections is to deduce Wagner’s conjecture from 8.1 and the main
theorem of [3].

9 Patchworks from a surface

We wish now to discuss certain patchworks associated with paintings in a surface. Let Σ be a surface,
and for each cuff Θ let ρ(Θ) ≥ 0 be an integer. We call (Σ, ρ) a graded surface. Let Γ be a 3-connected
painting in Σ, and let G be a hypergraph with N(Γ) ⊆ V (G) and (C(Γ) = E(G), such that for each
n ∈ N(Γ) and c ∈ C(Γ), n ∈ c̃ if and only if n is incident with c in G. For each border node n ∈ N(Γ),
let β(n) ⊆ V (G), such that

• for each n ∈ N(Γ) ∩ bd(Σ), β(n) ∩N(Γ) = ∅ and |β(n)| = ρ(Θ), where Θ is the cuff bordered
by n; for nodes n1, n2 bordering distinct cuffs, β(n1) ∩ β(n2) = ∅; and

V (G) = N(Γ) ∪
⋃

(β(n) : n ∈ N(Γ) ∩ bd(Σ))

• for each internal cell c, the set of ends of c in G is c̃; and for each border cell c with n1, n2 the
set of ends of c in G is β(n1) ∪ β(n2) ∪ {n1, n2}

• if n1, n2, n3, n4 ∈ N(Γ) border the same cuff in order, then β(n1) ∩ β(n3) ⊆ β(n2) ∪ β(n4).

In these circumstances, (Γ, β) is said to be a (Σ, ρ)-hull for G. Now let P = (G,µ,∆) be a
patchwork. We say that P is (Σ, ρ)-hulled if there is a (Σ, ρ)-hull (Γ, β) for G− such that

• for each internal cell c ∈ C(Γ), ∆(c) is free

• for each border cell c ∈ C(Γ) with c̃ = {n1, n2}, there is a pairing Mc with V (Mc) = β(n1) ∪
β(n2) ∪ {n1, n2}, such that n1, n2 are adjacent in Mc, and Mc has |β(n1)| + 1 = |β(n2)| + 1
components, each containing one vertex of β(n1)∪ {n1} and one of β(n2)∪ {n2} (possibly the
same), and either

– Mc ∈ ∆(c) or

– Mc \ n1n2 ∈ ∆(c) (where n1n2 denotes the edge of Mc joining n1, n2) and there is an
internal cell c′ of Γ with n1, n2 ∈ c̃′.

• π(G) = 0 and dom(µ) = E(G); and for each internal cell c, and for 1 ≤ i ≤ |c̃| the ith term of
µ(c) is the ith node of c.

The main result of this section is the following.

9.1 For every graded surface (Σ, ρ), the set of all (Σ, ρ)-hulled patchworks is well-behaved.

Proof. Let Ω be a well-quasi-order. Let r = max ρ(Θ), taken over all cuffs Θ, and r = 0 if bd(Σ) = ∅.
Let Ω0 be the well-quasi-order with E(Ω0) the set of all 7-tuples (µ, π0, π1, π2,∆, ω, t) where
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• µ is a march with ≤ 2r + 3 terms

• π0, π1, π2 are marches in µ̄

• ∆ is a patch with V (∆) = µ̄

• ω ∈ E(Ω)

• t = 0 or 1

where we say that (µ, π0, π1, π2,∆, ω, t) ≤ (µ′, π′0, π
′
1, π

′
2,∆

′, ω′, t′) if t = t′, ω ≤ ω′, µ and µ′ have the
same length k say, and the bijection from µ̄ to µ̄′ mapping µ to µ′ also maps πi to π′i (i = 0, 1, 2)
and maps ∆ to ∆′. It is easy to see that Ω0 is indeed a well-quasi-order. We may assume that
E(Ω0) ∩E(Ω) = ∅; let Ω1 = Ω ∪ Ω0.

Now let P = (G,µ,∆, φ) be an Ω-completion of a (Σ, ρ)-hulled patchwork. Let (Γ, β) be a (Σ, ρ)-
hull for P . For each cuff Θ let cΘ be a cell of Γ bordering Θ. For each node n bordering Θ let us
choose a march π(n) with π̄(n) = β(n), such that for each cell c 6= cΘ bordering Θ with nodes n1, n2

and for 1 ≤ i ≤ ρ(Θ), the ith term of π(n1) and the ith term of π(n2) belong to the same component
of Mc (where Mc is as in the second part of the definition of (Σ, ρ)-hulled patchwork).

For each c ∈ C(Γ) we define ψ(c) as follows. If c is internal we let ψ(c) = φ(c), and so we assume
that c borders a cuff Θ, with nodes n1, n2, where n1 is the first node of c. We define

ψ(c) = (µ(c), (n1, n2), π(n1), π(n2),∆(c), φ(c), t)

where t = 0 if c 6= cΘ and t = 1 if c = cΘ.
In view of 8.1, to complete the proof it suffices (cf. 4.3) to show that if P = (G,µ,∆, φ) and

(Γ, β) is a (Σ, ρ)-hull for P with groupings denoted by Mc as before, and ψ is defined as above, and
also P ′ = (G′, µ′,∆′, φ′), (Γ′, β′), M ′

c′ , ψ′ are related similarly (with the same graded surface and
same well-quasi-orders Ω, Ω1) and ζ is a linear inflation of Γ in Γ′ such that ψ(c) ≤ ψ′(ζ(c)) for each
c ∈ C(Γ), then P is simulated in P ′. Let π(n) (for each border node n) be defined as before, and let
π′(n′) be defined analogously for each border node n′ of Γ′.

(1) For each cuff Θ, ζ(cΘ) = c′Θ.

Subproof. Let ζ(cΘ) = c′. Then c′ borders Θ (since ζ is a linear inflation) and ψ(cΘ) ≤ ψ′(c′),
and so the seventh term of ψ′(c′) is 1. This proves (1).

For v ∈ V (G) \N(Γ) we define η(v) to be the set of all vertices v ′ ∈ V (G′) such that there exist
a cuff Θ and n ∈ N(Γ) ∩ Θ and n′ ∈ V (ζ(n)) ∩ Θ and an integer i > 0 such that v is the ith term
of π(n) and v′ is the ith term of π′(n′). For n ∈ N(Γ) we define η(n) = V (ζ(n)). For c ∈ C(Γ) we
define η(c) = ζ(c). Our next objective is to show that η is an expansion of P in P ′.

(2) For each v ∈ V (G), η(v) 6= ∅.

Subproof. If v ∈ N(Γ) then ζ(v) is not null and so η(v) 6= ∅. If v ∈ β(n) for some n ∈ N(Γ) ∩ Θ
where Θ is a cuff, let v be the ith term of π(n), let n′ ∈ V (ζ(n)) ∩ Θ, and let v′ be the ith term of
π′(n′). Then v′ ∈ η(v) and so η(v) 6= ∅. This proves (2).
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(3) Let v ∈ V (G) \N(Γ) and let v′ ∈ η(v). For each n ∈ N(Γ) ∩ bd(Σ) and n′ ∈ V (ζ(n)) ∩ bd(Σ), if

v′ is the ith term of π′(n′) then v is the ith term of π(n).

Subproof. By the third condition in the definition of a (Σ, ρ)-hull, there is a line F ⊆ Θ for some
cuff Θ, such that for each n′ ∈ N(Γ) ∩ bd(Σ), v′ ∈ β′(n′) if and only if n′ ∈ F . Let us say that
n′ ∈ N(Γ′) ∩ F is good if for some i > 0, v′ is the ith term of π′(n′) and v is the ith term of π(n)
where n′ ∈ V (ζ(n)). Certainly some node in N(Γ′)∩F is good since v′ ∈ η(v); and we wish to prove
that all are good. It suffices therefore to show that if n′

1, n
′
2 ∈ N(Γ′) ∩ F are consecutive and n′

1 is
good then so is n′2. Let v′ be the ith term of π′(n′1) and the jth term of π′(n′2); and let n′1 ∈ V (ζ(n1)),
n′2 ∈ V (ζ(n2)). Then v is the ith term of π(n1), and we must show that it is the jth term of π(n2).
Let c′ ∈ C(Γ) border Θ with nodes n′

1, n
′
2. If n1 = n2 then c′ /∈ ζ(C(Γ)) and so c′ 6= c′Θ by (1); hence

i = j because the ith term of π′(n′1) and the jth term of π′(n′2) are equal and hence belong to the
same component of M ′

c′ and the claim is trivial. We assume then that n1 6= n2. Hence c′ = ζ(c) for
some c ∈ C(Γ) (because otherwise n′

1, n
′
2 would be adjacent in and hence both belong to some ζ(n)

for n ∈ N(Γ), contrary to n1 6= n2). Since ψ(c) ≤ ψ′(c′) and the ith term of π′(n′1) is the jth term of
π′(n′2) it follows that the ith term of π(n1) is the jth term of π(n2), that is, v is the jth term of n2.
This proves (3).

(4) For distinct v1, v2 ∈ V (G), η(v1) ∩ η(v2) = ∅.

Subproof. Let v′ ∈ η(v1)∩η(v2). If v′ ∈ N(Γ′) then v1, v2 ∈ N(Γ) and hence V (ζ(v1))∩V (ζ(v2)) 6= ∅
and so v1 = v2. If v′ /∈ N(Γ′) then v1, v2 /∈ N(Γ) and there exist n1 ∈ N(Γ) ∩ bd(Σ) and
n′1 ∈ V (ζ(n1))∩bd(Σ) and i > 0 such that v1 is the ith term of π′(n′1) and v′ is the ith term of π′(n′1).
Since v′ ∈ η(v2) it follows from (3) that v2 is the ith term of π(n1) and hence v1 = v2. This proves (4).

(5) For each c ∈ C(Γ), µ(c) and µ′(η(c)) have the same length k say, and for 1 ≤ i ≤ k, η(v)
contains the ith term of µ′(η(c)) where v is the ith term of µ(c).

Subproof. Let c′ = η(c). Since ψ(c) ≤ ψ′(c′) and |c̃| = |c̃′| it follows that µ(c) and µ′(c′) have
the same length k say. Let 1 ≤ i ≤ k, let v be the ith term of µ(c), and let v ′ be the ith term of
µ′(c′). We must show that v′ ∈ η(v). If c is internal then so is c′, and v is the ith node of c and
hence η(v) = V (ζ(v)) contains the ith node of c′, that is, v′ as required. (We are using here the third
condition in the definition of (Σ, ρ)-hulled.) We assume then that c and hence c ′ are border cells. If
v ∈ N(Γ) then v ∈ c̃; let v be the jth node of c. Then since ψ(c) ≤ ψ ′(c′), v′ is the jth node of c′,
and hence belongs to η(v) = V (ζ(v)) since ζ is a linear inflation. We assume then that v /∈ N(Γ).
Choose n ∈ c̃ with v ∈ β(n), and let v be the jth term of π(n). Let n′ be the corresponding node of
c′ (that is, the first node of c′ if and only if n is the first node of c). Since ψ(c) ≤ ψ ′(c′), v′ is the jth
term of π′(n′) and so v′ ∈ η(v). This proves (5).

(6) For each c ∈ C(Γ), φ(c) ≤ φ′(η(c)) and the bijection from π̄(c) to π̄ ′(η(c)) mapping µ(c) to

µ′(η(c)) also maps ∆(c) to ∆′(η(c)).

Subproof. If c is internal then φ(c) = ψ(c) ≤ ψ ′(η(c)) = φ′(η(c)) and ∆(c), ∆′(η(c)) are both
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free. If c is a border cell the claim follows since ψ(c) ≤ ψ ′(η(c)). This proves (6).

From (2), (3), (4), (5), (6) we deduce

(7) η is an expansion of P in P ′.

For each c′ ∈ C(Γ′) \ ζ(C(Γ)) we choose δc′ ∈ ∆(c′) as follows. If c′ is a border cell and M ′
c′ ∈ ∆(c′),

let δc′ = M ′
c′ . If c′ is a border cell and M ′

c′ /∈ ∆(c′), let δc′ = M ′
c′ \ e, where e is the edge of M ′

c′

joining the two nodes of c′. If c′ is internal let δc′ be the grouping K with V (K) = c̃′ in which
distinct n1, n2 ∈ c̃′ are adjacent in K if and only if there exists n ∈ N(Γ) with n1, n2 ∈ V (ζ(n)).
Then δc′ ∈ ∆(c′) since ∆(c′) is free. Let

H = NV (G′) ∪
⋃

(δc′ : c′ ∈ C(Γ′) \ ζ(C(Γ))).

Then H is a realization of P ′\η(E(G)). We shall show that it realizes η.

(8) For each n ∈ N(Γ) there is a component J of H with V (J) = V (ζ(n)); and for every component

J of H not of this form with E(J) 6= ∅ there is a cuff Θ such that V (J) ⊆
⋃

(β(n) : n ∈ N(Γ)
⋂

Θ).

Subproof. Every edge of H either joins two nodes in N(Γ′) or joins two vertices both in
⋃

(β(n) : n ∈
N(Γ) ∩ Θ) for some cuff Θ. Let n′

1, n
′
2 ∈ N(Γ′); we claim that they are connected in H if and only

if they both belong to V (ζ(n)) for some n ∈ N(Γ). First we prove the “only if” portion. If n ′
1, n

′
2

are connected in H then they are joined by a path of H, all the vertices of which belong to N(Γ ′),
and so it suffices to prove the claim when n′

1, n
′
2 are adjacent in H. Choose c′ ∈ C(Γ′) \ ζ(C(Γ)) such

that the edge of H joining n′
1, n

′
2 belongs to δc′ . If c′ is internal, then it follows from the definition of

δc′ that there exists n ∈ N(Γ) with n1, n2 ∈ V (ζ(n)) as required. If c′ is a border cell then from the
seventh condition in the definition of “linear inflation”, it follows that n ′

1, n
′
2 are adjacent in V (ζ(n))

for some n, and again the claim holds. This proves “only if”. Now for the “if” portion, assume that
n′1, n

′
2 ∈ V (ζ(n)). Since ζ(n) is a connected subgraph of sk(Γ′), we may assume that n′

1, n
′
2 are adja-

cent in sk(Γ′) and hence in V (ζ(n)). Let c′ be a cell of Γ′ such that n′1, n
′
2 ∈ c̃′. Since ζ(n) contains

two different nodes of c̃′, it follows (from the sixth condition in the definition of “linear inflation”)
that c′ /∈ ζ(C(Γ)). If c′ is internal, it follows that n′

1, n
′
2 are adjacent in H from the definition of δc′ ,

so we may assume that c′ is a border cell, and there is no internal cell c′′ ∈ C(Γ′) \ ζ(C(Γ)) with
n′1, n

′
2 ∈ c̃′′. But then again it follows that n′

1, n
′
2 are adjacent in H from the definition of δc′ . This

proves the “if” assertion, and thereby proves (8).

(9) Let n ∈ N(Γ) ∩ Θ, for some cuff Θ. Let n′
1, n

′
2 ∈ V (ζ(n)) ∩ Θ and let 1 ≤ i ≤ ρ(Θ). Then the

ith terms of π′(n′1) and π′(n′2) are connected in H.

Subproof. Since there is a line F ⊆ Θ such that for n′ ∈ N(Γ′) ∩ Θ, n′ ∈ V (ζ(n)) if and only
if n′ ∈ F , we may assume that n′

1, n
′
2 are both nodes of some cell c′ ∈ C(Γ) bordering Θ. Since n′

1,
n′2 ∈ V (ζ(n)) it follows that c′ /∈ η(C(Γ)) and so c′ 6= c′Θ by (1). Hence v′1, v

′
2 are connected in M ′

c′

from the defining property of π′, and hence they are connected in H. This proves (9).

(10) Let n1, n2 ∈ N(Γ) ∩ Θ for some cuff Θ, let i > 0, and let the ith term of π(n1) be the ith
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term of π(n2). Let n′1 ∈ V (ζ(n1)) ∩ Θ and n′2 ∈ V (ζ(n2)) ∩ Θ. Then the ith term of π′(n′1) and the

ith term of π′(n′2) are connected in H.

Subproof. By (9) the result holds if n1 = n2. Let v be the ith term of π(n1). Since there is a
line F ⊆ Θ such that for n ∈ N(Γ) ∩ Θ, v ∈ β(n) if and only if n ∈ F , we may assume (by the
argument used in the proof of (3)) that n1, n2 are both nodes of some cell c bordering Θ. By (9)
we may replace n′1 by any other element of V (ζ(n1)) ∩ Θ, for the result holds for the old element
if and only if it holds for the new; and hence we may assume that n′

1 and similarly n′2 are nodes of
c′ = η(c). Since ψ(c) ≤ ψ′(c′) and the ith term of π(n1) is the jth term of π(n2) we deduce that the
ith term of π′(n′1) is the jth term of π′(n′2). This proves (10).

(11) For each v ∈ V (G) every two members of η(v) are connected in H.

Subproof. If v ∈ N(Γ) then this follows from (8). If v /∈ N(Γ) it follows from (10).

(12) If v′1, v
′
2 are adjacent in H then there exists v ∈ V (G) with v ′1, v

′
2 ∈ η(v).

Subproof. Let e ∈ E(H) have ends v′1, v
′
2. From (8) we may assume that v′1 ∈ β′(n′1), v

′
2 ∈ β′(n′2)

where n′1, n
′
2 are the nodes of some border cell c′ ∈ C(Γ′) with e ∈ E(M ′

c′) and c′ /∈ η(C(Γ)). Let v′1
be the ith term of π′(n′1); then since c′ 6= c′Θ by (1) it follows from the property of π ′ that v′2 is the
ith term of π′(n′2). Since c′ /∈ η(C(Γ)) there exists n ∈ N(Γ) with n′

1, n
′
2 ∈ V (ζ(n)); let v be the ith

term of π(n). Then v′1, v
′
2 ∈ η(v). This proves (12).

From (11) and (12) it follows that H realizes η. This completes the proof of 9.1.

10 Excluding a minor

If G is a hypergraph, its 1-skeleton sk(G) is the subgraph of KV (G) with vertex set V (G) in which
distinct v1, v2 ∈ V (G) are adjacent if there is an edge of G incident with both v1 and v2.

10.1 Let P = (G,µ,∆) be a free patchwork, and let C be a subgraph of sk(G). Then there is a

realization H of P such that for all x, y ∈ V (C), x and y are connected in C if and only if they are

connected in H.

Proof. For each e ∈ E(G), choose δe ∈ ∆(e) such that for distinct x, y ∈ V (δe), x and y are
adjacent in δe if and only if they belong to V (C) and are connected in C. (This is possible since P
is free.) Let

H = NV (G) ∪
⋃

(δe : e ∈ E(G))).

Clearly if x, y ∈ V (C) are connected in H then they are connected in C. On the other hand, C is a
subgraph of H; for if x, y ∈ V (C) are adjacent in C, choose e ∈ E(G) such that x, y are ends of e;
then x, y are adjacent in H. The result follows.

Let (Σ, ρ) be a graded surface, let P = (G,µ,∆) be a free rootless patchwork, and let L be a
rooted location in G. We say that (P,L) is (Σ, ρ)-shelled if L is fine and there is a heart P ′ of (P,L)
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where P ′ = (G′, µ′,∆′) and E(G′) = {e(A) : A ∈ L}, and there is a (Σ, ρ)-hull (Γ, β) for G′− such
that

• if c ∈ C(Γ) is internal and c = e(A) where A ∈ L, then the ith node of c is the ith term of π(A),
for 1 ≤ i ≤ |c̃|, and for every grouping K with V (K) = c̃ there is a subgraph C of sk(A−) such
that for distinct x, y ∈ c̃, x and y are connected in C if and only if they are adjacent in K

• if c ∈ C(Γ) borders a cuff Θ, with nodes n1, n2, and ρ(Θ) = r, and c = e(A) where A ∈ L,
then there are r mutually disjoint paths P1, . . . , Pr of sk(A−) \ {n1, n2} from β(n1) to β(n2),
and either there is another path P0 of sk(A−) from n1, n2 disjoint from P1 ∪ · · · ∪ Pr, or there
is an internal cell c′ of Γ with n1, n2 ∈ c̃′.

10.2 Let (P,L) be (Σ, ρ)-shelled. Then it has a heart which is (Σ, ρ)-hulled.

The proof is immediate from 10.1.

Let T be a tangle in a hypergraph G, and let H be a graph. We say that T controls an H-minor

of sk(G) if there is a function α with domain V (H) ∪E(H), such that

• for each v ∈ V (H), α(v) is a non-null connected subgraph of sk(G), and α(u) and α(v) are
disjoint for all distinct u, v ∈ V (H)

• α(e) ∈ E(sk(G)) for each e ∈ E(H), and α(e) 6= α(f) for all distinct e, f ∈ E(H)

• for each e ∈ E(H) with distinct ends u, v, α(e) ∈ E(sk(G)) with one end in V (α(u)) and the
other in V (α)v))

• for each loop e ∈ E(H) with end v, V (α(v)) contains both ends of α(e) and e /∈ E(α(v))

• there do not exist (A,B) ∈ T of order < |V (H)| and v ∈ V (H) such that V (α(v)) ⊆ V (A).

Next we convert a theorem of [3] into the language of this paper.

10.3 For every graph H there exist θ ≥ 1 and a set S of graded surfaces, finite up to homeomor-

phism, with the following property. Let P = (G,µ,∆) be a rootless free patchwork, and let T be a

tangle in G of order ≥ θ controlling no H-minor of sk(G). Then there exist W ⊆ V (G) with |W | < θ
and a fine rooted location L in G/W , such that

• (P/W , L) is (Σ, ρ)-shelled for some (Σ, ρ) ∈ S, and

• L is linked to T /W .

Proof. By theorem 14.2 of [3], there are integers p, q, z ≥ 0 and θ > z with the property that, for
every hypergraph G and tangle T in G of order ≥ θ, if T controls no H-minor of sk(G), then there
exists W ⊆ V (G) with |W | ≤ z and a T /W -central portrayal π = (Σ,Γ, α, β, ν) of G/W with warp
≤ p, such that Σ has at most q cuffs and H cannot be drawn in Σ, and π is true and (2p + 7)-
redundant. (We omit the definitions of these terms; see [3]. Note in particular that “paintings” in [3]
are defined slightly differently, in that they are not equipped with the march function γΓ as in this
paper.) Let S be the set of all graded surfaces (Σ, ρ) such that Σ has the property just mentioned
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(that is, Σ has at most q cuffs and H cannot be drawn in Σ), and ρ(Θ) ≤ p for each cuff Θ of Σ.
Thus S is finite up to homeomorphism. We claim that θ and S satisfy the theorem.

For let P = (G,µ,∆) be a rootless free patchwork, and let T be a tangle in G of order ≥ θ
controlling no H-minor of sk(G). By the theorem just quoted, applied to G, we deduce that there
exist W and π = (Σ,Γ, α, β, ν) as above. Thus |W | ≤ z < θ. Now Γ is a painting in the sense of
[3], but not yet a painting in the sense of this paper, because it lacks a function γΓ; choose such a
function, arbitrarily, and therefore we may regard Γ as a painting in our sense. By theorems 8.3 and
8.5 of [3], it follows that Γ is 3-connected. By replacing Σ with a homeomorphic surface, we may
assume that ν(n) = n for every n ∈ N(Γ) (this is just to simplify notation a little). Let G ′ be the
hypergraph with

V (G′) = N(Γ) ∪
⋃

(β(n) : n ∈ N(Γ) ∩ bd(Σ))

and E(G′) = C(Γ), in which c ∈ C(Γ) is incident with v ∈ V (G′) if and only if either v ∈ c̃, or c is
a border cell and v ∈ β(n) for some n ∈ c̃. It follows that (Γ, β) is a (Σ, ρ)-hull for G ′, for some
(Σ, ρ) ∈ S.

For each cell c of Γ, let Ac be a rooted hypergraph with A−
C = α(c), and with π(Ac) as follows.

If c is internal, let π(Ac) = γΓ(c), and if c is a border cell with nodes n1, n2 say, let π(Ac) be some
march with π(Ac) = {ν(n1), ν(n2)} ∪ β(n1) ∪ β(n2). Let L be the set {Ac : c ∈ C(Γ)}. Then L is a
fine rooted location in G/W , and G′ is a heart of (G/W,L). It follows from theorems 9.1 and 9.8 of
[3] (and from the definition of “warp”) that (P/W,L) is (Σ, ρ)-shelled.

It remains to check that L is linked to T /W . Let c ∈ C(Γ), and suppose that (A,B) ∈ T /W
with A−

c ⊆ A. By theorem 11.7 of [3], (A,B) has order at least |π(Ac)|; and so L is linked to T /W .
This proves 10.3.

We deduce

10.4 Let Ω be a well-quasi-order and let p ≥ 0. Let Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable

sequence of free rootless Ω-patchworks such that for all i ≥ 1, sk(G−
i ) has no Kp minor. Then there

exist j > i ≥ 1 such that Pi is simulated in Pj.

Proof. Take θ and S such that 10.3 holds (with H = Kp). Let F be the set of all patchworks which
are (Σ, ρ)-hulled for some (Σ, ρ) ∈ S. Since S is finite, F is well-behaved by 9.1. For all i ≥ 1, if T is
a tangle of order ≥ θ in Gi, then T controls no Kp-minor of sk(G−

i ), because there is no Kp-minor
of sk(G−

i ). By 10.3, there exists W and L as in 10.3. By 10.2, ((Gi, µi,∆i)/W , L) has a heart in F .
The result follows from 7.3.

As a corollary, we deduce the following form of Wagner’s conjecture for directed graphs (which
immediately implies the standard form of the conjecture for undirected graphs). A directed graph is
a minor of another if the first can be obtained from a subgraph of the second by contracting edges.

10.5 Let Gi (i = 1, 2, . . . ) be a countable sequence of directed graphs. Then there exist j > i ≥ 1
such that Gi is isomorphic to a minor of Gj.

Proof. Let p = 2|E(G1)| + |V (G1)|; then every tournament with p vertices has a minor isomorphic
to G1. We may therefore assume for each i ≥ 2 that the (undirected) graph G′

i underlying Gi has
no minor isomorphic to Kp, for otherwise Gi has a minor isomorphic to G1. Take θ = 1, and let Ω
be the well-quasi-order with E(Ω) = {0}. For each i ≥ 2 let Hi be the rooted hypergraph (G′

i, 0).
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Let Pi = (Hi, µ,∆, φ) where for e ∈ E(Gi), µ(e) is the one- or two-vertex sequence enumerating the
ends of e in Gi (tail first), ∆(e) is {NX , KX} where X is the set of ends of e, and φ(e) = 0. Then Pi

is a free Ω-patchwork. The hypotheses of 10.4 are satisfied by the sequence Pi (i = 2, 3, . . . ) because
no sk(G′

i) has a minor isomorphic to Kp. Thus there exist j > i ≥ 2 such that Pi is simulated in Pj .
By the discussion in section 7 of [2], it follows that Gi is isomorphic to a minor of Gj , as required.

11 A refinement

The reader will see that we threw away a great deal in the proof of 10.4 and 10.5. If we repeat
essentially the same argument a little more conservatively, we can obtain a stronger result which will
be of use in the proof of Nash-Williams’ “immersions” conjecture. That is our next objective.

11.1 For every p ≥ 0, there exist θ > 0 and a well-behaved set of patchworks F with the following

property. Let P = (G,µ,∆) be a rootless free patchwork, and let T be a tangle in G of order ≥ θ,
controlling no Kp-minor of sk(G−). Then there is a fine rooted location L in G such that

• (P,L) has a heart in F , and

• L θ-isolates T for every edge-based tie-breaker of G.

Proof. Take θ1 and S such that 10.3 holds (with H = Kp and θ replaced by θ1). Let F1 be the set
of all patchworks which are (Σ, ρ)-hulled for some (Σ, ρ) ∈ S. Since S is finite, F is well-behaved by
9.1. Let F2 be related to F1 as F ′ is related to F in 7.2 (with θ replaced by θ1). Let F be related
to F2 as F ′ is related to F in 5.6, with θ replaced by θ1 + 1. Let θ = (θ1 + 1)2.

We claim that θ, F satisfy the theorem. For let P = (G,µ,∆) be a rootless free patchwork, and
let T be a tangle in G of order ≥ θ, controlling no Kp-minor of sk(G−). From 10.3 applied to the set
T1 of all (A,B) ∈ T of order < θ1, and 10.2, we deduce that there exists W ⊆ V (G) with |W | < θ1

and a fine rooted location L1 in G/W such that (P/W , L1) has a heart in F1 and L1 is linked to
T1/W .

By 7.2 it follows that there is a fine rooted location L2 in G such that W ⊆ π̄(A) for all A ∈ L2,
L2/W is linked to T1/W and (P , L2) has a heart in F2. In particular, L2 has order < θ1, and L2/W
is linked to T /W .

Choose f ∈ E(G) and let λ be a tie-breaker defined by f . It follows that L2 θ1-isolates (and
hence (θ1 + 1)-isolates) T modulo W ∪ {f}, by 6.2. By 5.6, there is a fine rooted location L3 in G
such that L3 (θ1 + 1)2-isolates T and (P,L3) has a heart in F , as required.

11.2 Let Ω be a well-quasi-order, let F be a well-behaved set of partial Ω-patchworks, and let θ ≥ 1
and p ≥ 0. Let Pi = (Gi, µi,∆i, φi) (i = 1, 2, . . . ) be a countable sequence of free rootless Ω-

patchworks. For each i ≥ 1, let λi be an edge-based tie-breaker in Gi. Suppose that for each i ≥ 1
and each tangle T in Gi of order ≥ θ which controls a Kp-minor of sk(G−

i ), there is a rooted location

L in Gi which θ-isolates T such that (Pi, L) has a heart in F . Then there exist j > i ≥ 1 such that

Pi is simulated in Pj.

Proof. Choose θ1 and F1 such that 11.1 holds (with θ, F replaced by θ1, F1). Let F2 be the set
of partial Ω-patchworks (G,µ,∆, φ) with dom(φ) = ∅ and (G,µ,∆) ∈ F1. Then F2 is well-behaved.
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Let F3 = F ∪ F2; then F3 is well-behaved. Moreover, for each i ≥ 1 and each tangle T in Gi of
order ≥ θ2 = max(θ, θ1), there is a rooted location L in Gi such that L θ2-isolates T and (Pi,L) has
a heart in F3; for if T2 controls a Kp-minor of sk(G−

i ), this is true by hypothesis, and if not then
this is true by 11.1. The result follows from 3.1.
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SYMBOLS

Greek β, γ, δ, ζ, η, θ, λ, µ, π, ρ, τ, φ, ψ, ω,Γ,∆,Θ, cΘ ,Σ,Ω

Script C,F ,L,R,S, T

Bold H

Mathematical ∪,∩,
⋃
,
⋂

(cup, cap, bigcup, bigcap),
∑

(summation), de, bc (rounding), ∅ (null
set), ∗, X̃, A−, P |A,G\F,G/F .
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