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Roughly, a graph has small “tree-width” if it can be constructed by piecing small 
graphs together in a tree structure. Here we study the obstructions to the existence 
of such a tree structure. We find, for instance: 

(i) a minimax formula relating tree-width with the largest such obstructions 
(ii) an association between such obstructions and large grid minors of the 

graph 
(iii) a “tree-decomposition” of the graph into pieces corresponding with the 

obstructions. 

These results will be of use in later papers. 0 1991 Academic Press, Inc. 

1. TANGLES 

Graphs in this paper are finite and undirected and may have loops or 
multiple edges. The vertex- and edge-sets of a graph G are denoted by V(G) 
and E(G). If G, = ( V1, E,), G2 = ( V2, E2) are subgraphs of a graph G, we 
denote the graphs (V1n V2,E1nE,) and (V,u V2, EluEZ) by G,nG, 
and G, u GZ, respectively. A separation of a graph G is a pair (G,, G2) of 
subgraphs with G1 u G2 = G and E(G1 n G2) = 0, and the order of this 
separation is f V(G, n G2)(. 

It sometimes happens with a graph G that for each separation (G, , G2) 
of G of low order, we may view one of G1, G, as the “main part” of G, in 
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a consistent way. For example if G is drawn on a connected surface (not 
a sphere) and every non-null-homotopic curve in the surface meets the 
drawing many times, then it can be shown (see [5]) that for each low 
order separation (G,, G2), exactly one of G,, G2 contains a non-null- 
homotopic circuit. As a second example, let H be a minor of G (defined 
later), isomorphic to a large complete graph; then for each low order 
separation (G,, G2) of G, exactly one of G1, G2 has a subgraph corre- 
sponding to a vertex of H. The object of this paper is to study such 
“tangles,” as we call them, since they play a central role in future papers 
of this series. 

Many of our results about tangles extend easily to hypergraphs, and we 
have expressed them in this generality. A hypergruph G consists of a set of 
vertices V(G), a set of edges E(G), and an incidence relation; each edge may 
or may not be incident with each vertex. If each edge is incident with either 
one or two vertices, the hypergraph is a graph. All hypergraphs 
paper are finite. A subhypergraph G’ of G is a hypergraph such tha 

in this 
.t 

(i) r/(G’) c V(G), E(G’) E E(G) 

(ii) for e E E(G’) and v E V(G), e is incident with v in G if and only 
if v E V(G’) and e is incident with v in G’. 

We write G’ s G if G’ is a subhypergraph of G. We define G1 u G2, G1 n G, 
for subhypergraphs Gi, G2 of a hypergraph as for graphs, and a separation 
of a hypergraph, and its order, are defined as for graphs. If G is a hyper- 
graph and XE E(G), G\X is the subhypergraph G’ with V( G’) = V(G), 
E(G’)=E(G)-X; while if XC V(G), G\X is the subhypergraph with 
V(G’) = V(G) - X and E( G’) the set of those edges of G incident with no 
vertex in X. We sometimes abbreviate G\(x) to G\x, etc. 

Let G be a hypergraph and let 8 >, 1 be an integer. A tangle in G of order 
8 is a set Y of separations of G, each of order ~8, such that 

(i) for every separation (A, B) of G of order < 8, one of (A, B), 
(B, A) is in Y 

(ii) if (A,, B,), (A?, &), (A3, &) E Y then Al u A2 u A, #G 
(iii) if (A, B)E Y then V(A) # V(G). 

We refer to these as the first, second, and third (tangle) axioms. Every 
tangle Y has order < 1 V( G)I, since (G, G\E( G)), (G\E( G), G) 4 Y. The 
tangle number of G, denoted 8(G), is the maximum order of tangles in G 
(or 0, if there are no tangles). 

The main results of this paper are as follows: 

(1) Tangle number is connected with “tree-width,” which was dis- 
cussed in earlier papers of this series (for example, [3]); indeed, there is a 
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minimax equation connecting the tangle number of a hypergraph and its 
“branch-width,” which is an invariant very similar to tree-width and essen- 
tially within a constant factor of tree-width. 

(2) Despite our rather abstract definition of a tangle, there are in any 
hypergraph G at most 1 V(G) 1 maximal tangles, and any other tangle is a 
subset (a “truncation”) of one of these. Furthermore, there is a “tree- 
decomposition” of G, the vertices of which correspond to these maximal 
tangles. 

(3) For 8 2 2, any minor isomorphic to a (13 x @-grid of a graph G 
gives rise to a tangle in G of order 6, and conversely, for any 8 > 2 there 
exists N(8) > 8 such that for every tangle of order > N(8) in a graph G, its 
truncation to order 0 is the tangle arising from some (0 x Q-grid minor 
of G. 

(4) Finally, the main result of the paper. It is too technical to state 
without a number of definitions, but roughly it enables us to gain 
knowledge of the global structure of a hypergraph from a knowledge of its 
structure relative to each tangle. This will be applied in [6]. 

2. SOME TANGLE LEMMAS 

In this section we develop some easy results about tangles for later use. 

(2.1) If F is a tangle and (A, B) ET then (B, A)# LT. 

Prooj Since A u B = G, (B, A) $ Y by the second axiom. 1 

(2.2) If F is a tangle of order 8 and (A, B), (A’, B’) E F and (A u A’, 
BnB’) has order <8 then (AuA’, B~B’)EF. 

ProoJ: Now (B n B’, A u A’) & 5 by the second axiom, because (A, B), 
(A’,B’)EF and AuA’u(BnB’)=G. Thus (AuA’, BnB’)EF by the 
first axiom. 1 

(2.3) If F has order 32 and (A,, B,), (AZ, B2), (A3, B,)EF then 
E(A, u A, u Ad #E(G). 

ProoJ: Suppose that there exist (A,, B,), (AI, B2), (A3, B3) ~9’ with 
E(A1 u A, u A3) = E(G), and choose them with 1 V(A,)J maximum. By the 
second axiom, A 1 u A, u A, # G, and so there is a vertex v of G in none of 
V(A,), V(A,), V(A,) and hence incident with no edge of G. Let K be the 
hypergraph with V(K) = (v}, E(K) = @. Then (K, G) has order 1 and by 
the second axiom, (G, K) # 5; thus (K, G) E Y by the first axiom, since Y 
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has order > 2. Now (K, G\u) has order 0, and (G\u, K) $ Y by the second 
axiom, since (G\v) u K = G. Thus (K, G\v) E Y. But (KU A 1, (G\v) n B,) 

has order at most the order of (A 1, B,) and hence is in Y by (2.2), 
contrary to the maximality of 1 V(A 1)1, as required. 1 

For an edge e of a hypergraph G, the ends of e are the vertices of G 
incident with e, and the size of e is the number of ends of e. 

(2.4) Let 8 > 1, and let e be an edge of G with size 20. Let F be the 
set of all separations (A, B) of G of order < 8 with e E E(B). Then F is a 
tangle of order 8. 

ProoJ: The first two axioms are clear. For the third, let (A, B) E 5. 
Then V(A n B) does not contain every end of e since 1 V( A n B)I < 8, and 
yet e E E(B), and so V(A) # V(G). This completes the proof. 1 

We remark 

(2.5) G has a tangle if and only if V(G) # a. 

Proof. If u E V(G), let Y be the set of all separations (A, B) of G of 
order 0 with v E V(B). Then Y is a tangle of order 1, as is easily seen. 
Conversely, since every tangle has order d 1 V( G)I, if G has a tangle then 
WW0. I 

For graphs, we can extend (2.5) as follows. 

(2.6) If G is a graph, the tangles in G of order 1 are in I-1 
correspondence with the connected components of G, and those of order 2 are 
in I-1 correspondence with the blocks of G which have a non-loop edge. 

(A block of a graph is a maximal connected subgraph any two distinct 
edges of which are in a circuit.) 

Proof: Since we do not need the result, we merely sketch the proof. Any 
v E V(G) yields a tangle of order 1 as in (2.5), and it is easy to see that 
every tangle of order 1 arises this way, and distinct u,, V’ E V(G) yield the 
same tangle if and only if u and U’ are in the same component of G. For 
order 2, any non-loop edge yields a tangle of order 2, by (2.4), and again, 
it is easy to see that every order 2 tangle arises this way, and two edges 
yield the same tangle if and only if they are in the same block. B 

One might speculate that in a graph, the tangles of order d correspond 
to the long-sought “d-connected components,” but that possibility is not 
further explored here. 
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Some further lemmas: 

(2.7) Let F be a set of separations of a hypergraph G, each of order < 0, 
satisfying the first and second tangle axioms, Then F is a tangle if and only 
if (K,, G\e) E F for every e E E(G) of size < 8, where K, is the hypergraph 
formed by e and its ends. 

ProoJ If Y is a tangle and e E E(G) then (G\e, K,) $ Y by the third 
tangle axiom, since I’( G\e) = V(G), and so (K,, G\e) E Y, as required. For 
the converse, let Y not be a tangle, and choose (A, B) E Y with 
V(A) = V(G) and with B minimal. By the second tangle axiom, A # G and 
so E(B) # a; choose e E E(B). From the minimality of B, (A u K,, 
B\e) $ Y, and so (B\e, A u K,) E Y. Hence (K,, G\e) 4 Y by the second 
axiom, since (A, B) E Y and A u (B\e) u K, = G. But e has size < 0, since 
every end of e is in V(A n B). The result follows. 1 

Let Y be a tangle in a hypergraph G. A separation (A, B) E F is extreme 
if A’- -A and B’=B for every (A’, B’)EY with AEA’ and B’EB. 

(2.8) Let F be a tangle of order 0 in a hypergraph G, and let (A, B) E F 
be extreme. Then (A, B) has order 9 - 1. Moreover, if (B, , B,) is a separa- 
tion of B, then either B, E A n B and B, = B, or B, E A n B and B, = B, or 
(B,, B2) has order strictly greater than 

mint1 VA n W, I VA n &)I). 

In particular, there is no separation (B,, B2) of B with B,, B2 non-null of 

order 0, and there is no edge of B with all its ends in V(A ). 

ProoJ: By the third axiom there exists v E V(B) - V(A). Let K, be the 
hypergraph with vertex set (v> and with no edges. From the extremity of 
(A, B), (A u Kv, B) 4 Y, and (B, A u K,) 4 Y by the second axiom, since 
(A, B) E Y and A u B = G. Thus (A u Ku, B) has order 2 8, and so (A, B) 
has order 0 - 1. 

Let (B,, B2) be a separation of B. If (A u B, , B2) = (A, B) then B, c A 
and B, = B, and so we may assume that (A u B,, B2) # (A, B). From 
the extremity of (A, B), (A u B, , B2) 4 Y, and similarly (A u B,, B,) 4 9. 
Not both (B2, A u B,), (B,, A u B2) E Y, by the second axiom, since 
A u B, u B, = G, and without loss of generality we assume that 
(B2, AuB,)$F. Since (AuB,, B2)$F it follows that (AuB,, B2) has 
order 28; that is, 

lV(B,nB,)l+IV(AnB)-V(AnB,)I>O=1V(AnB)J+l. 

Hence 1 V(B, n B2)) > ( V(A n B,)I, as required. 
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It follows that there is no separation (B, , B2) of B of order 0 with B,, B, 
non-null. Suppose that e E E(B) has all its ends in V(A). Let K, be the 
hypergraph with edge set {e} and vertex set the set of ends of e; then 
(K,, B\e) is a separation of B. Now K, $Z A since e 4 E(A), and B\e g A 
since V(A) # V(G), and so 

But the left side is the number of ends of e, and so is the right side, a 
contradiction. Thus there is no such e. u 

(2.9) Let F be a tangle of order 8 in a hypergraph G, and let 
(A,, Bl)~F. Let (AZ, B2) b e a separation of order < 9. If either 

(0 I/(4) s VW, or 
(ii) V(A,) E V(A,), or 

(iii) 8 > 2 and E(A,) 5 E(A,) (equiualently, E(B,) s E(B,)) 

then (A*, B2) E F. 

ProoJ Suppose not; then (B2, AZ) E Y. Choose (A, B) E Y, extreme, 
with &CA and BcA,. Then A u A 1 # G by the second axiom. Since 
AuB=G and A,uB, = G it follows that B $Z A, and B, g A. 

Case 1. V(B,) s V(B,). 

Then V(B,) s V(B,) E V(A), and E(B,) n E(B) = 0, since from (2.8) 
every edge of B has an end in V(G) - V(A) c V(G) - V( B,). Thus 
E(B,) E E(A) and so B1 E A, a contradiction. 

Case 2. Z’(A,)c V(A,). 

Since (B,, A&F and (B,, A,) has order ~0, and V(A,)s V(A,), it 
follows that (B,, A,) E Y, since the theorem holds in Case 1. But this 
contradicts (2.1). 

Case 3. 8 Z 2 and E(A,) E E(A,). 

Since E(B) c E(A,) c E(A i) and B $Z A,, there is a vertex v of B with 
u # V(A,). Since E(B) c E(A,), it follows that u is incident with no edge of 
B. By (2.8), V(B) = {v} and E(B) = 0, and since V(A) # V(G), it follows 
that V( A n B) = 0. By (2.8) again, 8 = 1, a contradiction. m 

For future reference, we observe the following. 

(2.10) Let F be a tangle of order b3 in a graph G, and let (A, B) E F. 
Then B has a circuit. 
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ProoJ: It suflices to prove the result when (A, B) is extreme. By (2.8), 
IA n B( b 2; let ui, v2 E V(A n B) be distinct. 

(1) There is no separation (B, , B2) of B of order 6 1 with 
v1 E V(B,)- V(B,) and v,~ V(B,)- V(B,). 

For such a separation would satisfy 

and B,, B, # B, contrary to (2.8). 
Moreover, from (2.8), v1 and v2 are not adjacent in B. From (1) and 

Menger’s theorem, there are two paths of B between v1 and v2, internally 
disjoint, and hence B has a circuit, as required. 1 

3. A LEMMA ABOUT SUBMODULAR FUNCTIONS 

Now we turn to our first main result, the minimax theorem relating 
tangle number and branch-width. It is most convenient to prove a 
generalization, which is a statement about submodular functions. 

Let E be a finite set. A connectivity function on E is a function IC from the 
set of all subsets of E to the set of integers such that 

(i) for XE E, fc(X) = rc(E- X) 

(ii) for X, YCE, K(XU Y)+tc(Xn Y)<rc(X)+tc(Y). 

For instance, if G is a hypergraph and E = E(G), we would let K(X) be the 
number of vertices of G incident both with an edge in X and with an edge 
in E - X, or if A4 is a matroid with rank function r and E = E(M), we could 
let K(X) = r(X) + r(E- X). 

A subset X_C E is efficient if K(X) < 0. A bias is a set S? of efficient sets, 
such that 

(i) if XE E is efficient then SS contains one of X, E - X 

(ii) if X, Y, ZEN then Xu YuZ#E. 

A bias g is said to extend a set & of efficient sets if & E &?. We are con- 
cerned with the problem of, given s$‘, when is there a bias extending ra2? 

Let us describe an obstacle to the existence of such a bias. A tree is a 
connected non-null graph with no circuits; its vertices of valency d 1 are its 
leaves. A tree is ternary if every vertex has valency 1 or 3. (Thus, ternary 
trees have > 2 leaves.) An incidence in a tree 7’ is a pair (v, e), where 
v E V(T), e E E( T), and e is incident with v. A tree-Zabelling over ~2 is a pair 
(T, a), where T is a ternary tree, and a is a function from the set of all 
incidences in T to the set of efficient subsets of E, such that 
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(i) for each e E E(T) with ends u, V, say, a( U, e) = E - a(~, e) 

(ii) for each incidence (u, e) in T such that v is a leaf, either 
a(~, e) = E or a(u, e) u X= E for some XE d 

(iii)‘ if u E V(T) has valency 3, incident with e,, e2, e3, say, then 
a(v,e,)ua(u,e,)ua(u,e,)=E. 

(3.1) rf there is a bias extending d then there is no tree-labelling 
over d. 

ProoJ: Suppose that 9? is a bias extending &, and (T, Q) is a tree- 
labelling over &. An incidence (u, e) of T is passive if a(~, e) $98. For each 
edge e with ends u, V, 49 contains exactly one of a(u, e), a(~, e) since they 
are efficient complementary sets. Thus there are precisely IE( T)( passive 
incidences. Since T has jE( T)j + 1 vertices there is a vertex u of T in no 
passive incidence; that is, a(~, e) E B for all edges e incident with u. If u has 
valency 1 then by the definition of a tree-labelling, either a(~, e) = E or 
a(~, e) u X= E for some XE d, in either case contrary to the definition of 
a bias. Thus v has valency 3. Let e,, e2, e3 be the edges of T incident with 
U; then 

a(v,e,)ua(u,a,)ua(u,e,)=E 

by the definition of a tree-labelling, and yet each a(~, ei) E 99, contrary to 
the definition of a bias, as required. 1 

The main result of this section is a converse of (3.1), in a strong form, 
that if there is no bias extending &‘, then there is an exact tree-labelling 
over G!. “Exact” is defined as follows. Let (7’, a) be a tree-labelling over J$. 
A fork in T is an unordered pair (e, , e2} of distinct edges of T with a com- 
mon end (the nub of the fork). A fork {e,, e2} with nub t is exact (for a) 
if a( t, e,) n a( t, e,) = @. We say that (7’, cc) is exact if every fork of T is 
exact. We require the following lemma. 

(3.2) If there is a tree-labelling 
labelling over &, using the same tree. 

over A$’ then there is an exact tree- 

ProoJ Choose a tree T such that there is a tree-labelling (T, a) over &. 
Choose to E V( 7’). For each t E V(T) we denote by d(t) the number of edges 
in the path of T between to and t. Choose a satisfying (l), (2), and (3), 
below. 

(1) (T, a) is a tree-labelling over &. 

(2) Subject to (l), C ~(a(u, e)) ( summed over all incidences (v, e) of 

T) is minimum. 

(3) Subject to (1) and (2), C 3-d(f) ( summed over all non-exact forks, 
where t is the nub of the fork) is minimum. 
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We claim that (T, 01) is exact. For suppose that some fork (e,, e2) with 
nub t is non-exact. Then t has valency 3 in r, since T is ternary; let e3 be 
the third edge of T incident with U, and let ei have ends t, ti (i = 1,2, 3). Let 
A, = a( t, e,), A, = a( t, e,). Define a’ by 

a’(t, e,)= Al -A, 

a’(tI,e,)=a(t,,e,)uA,=E-(AI--A,) 

a’@, 4 = a(4 e) for (v, e) # (t, e,), (tl, e,). 

We claim that x(A1 -AZ) 2 rc(A,). For if Ic(A, - AZ) 2 0 this is true, and so 
we may assume that A I - A, is efficient. Then a’ is a tree-labelling over J, 
and from (2), 

k-M4 4) + 4a’(tl, e,)) 2 k-(44 e,)) + Ic(a(tl, el)); 

that is, 

4A1-A,)+lc(E-(A,-A&>lc(AJ+lc(E-A,). 

Since tc(E- (A, -AZ)) = rc(A1 -AZ) and K(E- A,) = tc(A,), it follows that 
rc(A, -A*) 2 tc(A,), as claimed. Similarly rc(A, -A,) > rc(A2). But since K 
is a connectivity function, 

that is, 

Thus equality holds throughout, and in particular, tc(A, - AZ) = K(A 1) and 
tc(A, - A,) = tc(AZ). From the symmetry between tl and t2, we may assume 
that d(t) < d(t,). With a’ as before we see that a’ is a tree-labelling over & 
and 2 ~(a’( 0, e)) = C ~(a( o, e)). Moreover, (el , e2} is exact for cc’, and any 
fork of T which is exact for a is exact for a’ except possibly for forks (e, e, ) 
with nub t,. There are at most two such forks, and since d(t,) > d(t), this 
contradicts (3), as required. 1 

(3.3) Let (T, a) be an exact tree-labelling over &, and let (u, f) be an 
incidence in T. Let TO be the component of T\f which contains u. Then, as 
(v, e) ranges over all incidences of T such that v is a leaf of T and v E V(T,), 
the sets E- cc(v, e) are mutually disjoint and have union E- a(u, f ). 

Proof We proceed by induction on 1 V( T,)(. If u is a leaf the result 
is trivial, and so we may assume that u is incident with three edges 
f, fi, f2; let J;: have ends u, Ui (i = 1, 2), and let Ti be the component of 
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T\lf;: containing uj (i = 1, 2). Then V(TO) = V( T,) u V( T2) u (u> and 
V( T,) n V( T2) = 0. Now the result holds for (ur , fi ) and (u2,f2) by the 
inductive hypothesis. Moreover, since E - a(ui,~f;:) = a(u, A) (i = 1, 2) and 
(T, a) is exact, it follows that 

The result follows. 1 

(3.4) If there is no bias extending ~2 then there is an exact tree-labelling 
over &. 

Proof. By (3.2), it suffices to prove that there is a tree-labelling over &. 
Suppose that E= 0. If 0 is efficient, let T be a two-vertex tree, and 
let a(v, e) = 0 for both incidences (v, e) of T; (T, a) is the required tree- 
labelling. If 0 is not efficient, then & is a bias, a contradiction. Thus we 
may assume that E # 0. Choose x E E, and let 99 be the set of all efficient 
sets BEE with x$ B; then a is a bias. Since a does not extend &, it 
follows that & # 0. 

We proceed by induction on the number N of efficient sets XC E such 
that neither X nor E- X is a subset of any member of &. We suppose first 
that N = 0. Let a be the set of all efficient sets which are subsets of mem- 
bers of &. Since & C_ 9#, a is not a bias. But for every eflkient set X, either 
XE~?J or E-XEB since N=O. Thus there exist X,,Xz,X,~99 with 
X1 u X2 u X, = E. Let T be the tree with four vertices t,, t,, t,, t, and 
edges ei with ends to, ti (i= 1,2, 3). Define a(t,, ei)=Xi, a(ti, ei)=E- Xi 
(i= 1, 2, 3). Then (T, ) a is a tree-labelling over d, as required. 

Thus we may assume N > 0. Choose an efficient set XC E such that 
neither X nor E- X is a subset of any member of G?, and subject to 
that with X minimal. Since & # 0, X# 0. Let &r =&u {Xl, 
&* = & u (E - X>. Since there is no bias extending &, there is no bias 
extending &r or &*. From our inductive hypothesis there are exact tree- 
labellings ( T1, a,) over &I and ( T2, a,) over z$~. A leaf t of T, is bad if 
a,( t, e) # E and a,( t, e) u A # E for all A E &, where (t, e) is an incidence, 
and we define the bad leaves of T2 similarly. Now if t is a bad leaf of T, 
and (t, e) is an incidence, then al(t, e)uX=E and so E-a,(t, e)cX. If 
E- a,(t, e) #X, then from our choice of X, either E- al(t, e) E A for some 
AE& or a,(t,e)cA for some AEJJ. In the first case al(t,e)uA=E, 
a contradiction, since t is bad. In the second case E - X E a,( t, e) s A, 
contrary to our choice of X. Thus E - a,( t, e) = X, for every bad leaf t. 
Since X # 0, it follows from (3.3) that there is at most one bad leaf in T1. 



GRAPH MINORS, X 163 

On the other hand, we may assume that T, has at least one bad leaf, for 
otherwise ( T1, a,) is the desired tree-labelling over d. Let to be the unique 
bad leaf of T, , incident with an edge e,. Then a,( to, e,) = E - X. Let the 
ends of e, be to, s. Then al(s, e,) =X. Since X# E and E-X is not a 
subset of any member of dl, s is not a leaf of T,. Let S = T1\to; then s has 
valency 2 in S. 

Let the bad leaves of T2 be I~, . . . . t,, incident with edges e,, . . . . e,, respec- 
tively. Then as before 

$(ti, e,) u (E - X) = E, 

that is, XS a,(ti, ei), for 1 < i < r. Let S ‘, . . . . S’ be r copies of S, mutually 
disjoint. For u E V(S) and e E E(S) let ui and e’ denote the corresponding 
vertex and edge of S’ (1 < i< r). Choose S’, .,., s’ so that s’= ti and 
V( Si) n V( T2) = ti (1 < i < r), and let T be the tree formed by the union of 
T2 and S’, . . . . s’. Every incidence of T is an incidence of exactly one of T2, 
s’ 9 “‘, S’. We define a by 

&J, 4 = Q4 4 if (u, e) is an incidence of T2 

a(~‘, e’) = ~~(21, e) (1 < i < r) if (v, e) is an incidence of T1. 

We claim that (T, a) is a tree-labelling over &, and this follows easily from 
the fact that 

Ctl(S, e,) = XC CX,(t,, ei) (1 G&r). 

Then the result follows. 4 

In summary then we have shown 

(3.5) The following are equivalent: 

(i) there is no bias extending J;4 

(ii) there is a tree-labelling over & 

(iii) there is an exact tree-labelling over &‘. 

We observe also 

(3.6) If there is an exact tree-labelling over ~4, then either E = a, or 
E E SZI, or there is an exact tree-labelling (T, a) over ~4 such that for each 
leaf v and incident edge e, a(v, e) # E. 

ProoJ Choose an exact tree-labelling (T, a) with 1 V( T)( minimum. 
Suppose that for some leaf v. and incident edge e,, a(vo, e,) = E. Let v be 
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the other end of e,. Then a(~, eo) = 0. If u is also a leaf, then either E = @ 
or E E &, as required. We assume then that u has two other neighbours 
ul, u2 in T, let ei be the edge joining u and V, (i = 1,2). Now since (T, a) 
is exact, a(~, e,), a(~, e,), a(~, e,) are mutually disjoint and have union E. 
Since a(~, e,) = 0, it follows that a(~,, e,) = a(~, e,) and a(~, e,) = a(~~, e,). 
Let T’ be obtained from T by deleting v and u. and adding a new edge f 
joining ZJ~ and v2. We define a’(~~ ,f) = a(~,, e,), a’(v,,f) = a(v2, e2), and 
otherwise a’ = a; then (T’, a’) is an exact tree-labelling over &’ with 
1 I’( T’)I < 1 I’( T)I, a contradiction. 1 

4. BRANCH-WIDTH 

A branch-decomposition of a hypergraph G is a pair (T, z), where T is a 
ternary tree and z is a bijection from the set of leaves of T to E(G). The 
order of an edge e of T is the number of vertices u of G such that there are 
leaves t,, t2 of T in different components of T\e, with z( tl), z( t2) both inci- 
dent with u. The width of (T, z) is the maximum order of the edges of T, 
and the branch-width P(G) of G is the minimum width of all branch-decom- 
positions of G (or 0 if IE( G)I < 1, when G has no branch-decompositions). 
For example, Fig. 1 shows a branch-decomposition with width 2 of a 
series-parallel graph. 

Let us prove some properties of branch-width. A graph H is a minor of 
a graph G if H can be obtained from a subgraph of G by contracting edges. 

(4.1) If H is a minor of a graph G, then p(H) d p(G). 

Proof. We may assume that /E(H)/ 2 2, for otherwise /l(H) = 0. Let 
(T, z) be a branch-decomposition of G with width P(G). Let S be a minimal 
subtree of T such that t-‘(e) E V(S) for all e E E(H), and let T’ be obtained 
from S by suppressing all vertices of valency 2 (that is, for any vertex of 
valency 2 we delete it and add an edge joining its neighbours and continue 
this process until no such vertices remain). Let z’ be the restriction of z to 
the set of leaves of T’; then (T’, 7’) is a branch-decomposition of H, and 
its width is <P(G), as is easily seen. The result follows. 1 

FIGURE 1 



GRAPH MINORS, X 165 

(4.2) A graph G has branch-width 

(i) 0 if and only f I ever component of G has 6 1 edge y 

(ii) < 1 if and only if every component of G has < 1 vertex of valency 
22 

(iii) < 2 if and only if G has no K4 minor. 

ProoJ Statement (i) is clear. The “if” part of (ii) is easy and “only if” 
follows from (4.1) and the fact that a 2-edge circuit and a 3-edge path both 
have branch-width 2. The “only if” part of (iii) follows similarly, while the 
“if” part may be proved by induction on the size of G, using Dirac’s 
theorem [l] that any non-null simple graph with no K4 minor has a vertex 
of valency <2. m 

The main result of this section is the following. We denote by y(G) the 
maximum size of an edge of G (setting y(G) = 0 if E(G) = 0). We recall 
that 8(G) is the tangle number of G. 

(4.3) For any hypergraph G, max(p(G), y(G)) = 6(G) unless y(G) = 0 
and V(G) # 0. 

Prooj Suppose first that y(G) = 0 and that Y is a tangle in G of order 
22. Choose (A, B) E Y, extreme. By (2.8), E(B) = 0, and so E(A) = E(G), 
contrary to (2.3). Thus, if y(G) = 0 then 8(G) < 1. Moreover, if y(G) = 0 
then Q(G) = 0, and 0(G) = 1 if and only if V(G) # 0, by (2.5). Thus if 
y(G) = 0 the result holds, and we henceforth assume that y(G) > 0. 

Let E = E(G), and for XC E, define K~(X) to be the number of vertices 
of G incident both with an edge in X and with an edge in E- X. Choose 
k 2 y(G), and let k(X) = Q(X) -k. It is easily seen that K is a connectivity 
function, and for every e E E(G), {e} is efficient. Let &’ = ( (e> :e E E(G)}. 

(1) There is a bias extending SX? if and only if G has a tangle of order 
k+ 1. 

For if Y is a tangle in G of order k+l, let $?9= (E(A):(A,B)EY). 
Then B is a bias, by (2.3), since k > y(G) > 1, and it extends & by the third 
axiom. For the converse, let ,@ be a bias extending d, and let Y be the 
set of all separations (A, B) of G of order <k with E(A) E 99. We claim that 
F is a tangle of order k + 1. For if (A, B) is a separation of G of order <k, 
then E(A) and E(B) are both efficient, and so one of E(A), E(B) is in 99, 
E(A), say; but then (A, B) E Y. Thus the first axiom holds, and clearly so 
does the second. Since k 2 y(G) and a extends &, (K,, G\e) E Y for every 
e E E, where K, is the hypergraph consisting of e and its ends. By (2.7), Y 
is a tangle of order k + 1, as required. 

(2) There is an exact tree-labeiling over JZ? if and only if P(G) < k. 
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For if /El < 1, then /?(G) = 0 < k and there is an exact tree-labelling over 
d, and so we may assume that \El>, 2. If (T, z) is a branch-decomposition 
of G of width <k, define a(~, e) for each incidence (v, e) to be the set of 
all edges r(t) of G with t and u in different components of T\e. Then (T, a) 
is an exact tree-labelling over &. For the converse, suppose that there is an 
exact tree-labelling over &. Since /El > 1, it follows that E# & and E # 0, 
and so by (3.6) we may choose an exact tree-labelling (T, a) over AXZ such 
that for each leaf v and incident edge e, a(~, e) # E. For such v, e, there 
exists (f} EJZZ such that a(~, e) = E- (f); we define f=z(~). By (3.3), 
(T, r) is a branch-decomposition of G of width <k. 

From (3.5), (l), and (2) we deduce that 

(3) For all k > y(G), G has a tangle of order k -I- 1 if and only if 
k < B(G)- 

Now we deduce the theorem. By (2.4), 8(G) 3 y(G). By setting k = 0(G) 
we deduce from (3) that fi( G) 6 8(G), and so max(/?(G), y(G)) < 0(G). By 
setting k = 8(G) - 1 we deduce from (3) that 8(G) < max(/?(G), y(G)). The 
result follows. 1 

We apply (4.3) (actually, the easy part of (4.3)) for the following. 

(4.4) For n 2 0, K,, has tangle number r (213) n-j, and for n b 3, it has 
branch-width r(2/3) nl. 

ProoJ: The result holds for n < 3, and we assume that n > 4. Put 
8 = r(2/3) nl. It is easy to see that K, has a branch-decomposition of width 
<0. Thus the result follows from (4.3) if we can find a tangle of order 8. 
Let Y be the set of all separations (A, B) of G = K, with 1 V(A)\ < 8. If 
(A, B) is any separation of G then one of V(A), V(B) equals V(G), and 
so its order equals the smaller of 1 V(A)/, 1 V(B)/. Hence if (A, B) has order 
< 0 then Y contains one of (A, B), (B, A), and the first axiom is satisfied. 
For the second axiom, suppose that (Ai, Bi) E Y (1 <i< 3) and 
A,uA,uA,=G. Since 

IC%)I + M&)l+ lW,)I d3e-3<2n 

some vertex u of G is in at most one of V(A,), I’(&), V(A,); 
v$ V(A,) u V(A,), say. Since I V(A,)I < 8 <n some vertex u of G is not in 
V(A,). But then the edge joining u and v is in none of E(A,), E(A,), E(A,), 
a contradiction. Thus the second axiom is satisfied. For the third, let 
e E E(G), and let K be the graph formed by e and its ends; then 
(K, G\e) E 9 by definition of Y, since 8 2 3, and so Y is a tangle by (2.7). 
This completes the proof. i 
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Let us mention the following weakening of the second tangle axiom. 

(4.5) Let 8 > 2, and let Y be a set of separations of a hypergraph G, 
each of order < 0. Suppose that the first tangle axiom holds, and 

0) if(4, Bd, (4, B&r then B1 Gf2 
(ii) there do not exist subhypergraphs A 1, AZ, A3 _C G, mutually edge- 

disjoint, with A, v A, v A, = G and with (A,, A2 v A3), (A,, A, v A,), 
(A3, A, v AZ) all in Y. 

Then the second tangle axiom holds. 

Proof. Suppose that the second axiom fails, and choose (A,, B, ), 

(A*, B2), (A3, B3) E Y such that A, u A2 u A, = G, satisfying 

(1) C1GlG3 IV(Ain Bi)] is minimum, and 

(2) subject to (1 ), A 1, A,, A3 are minimal. 

We observe 

(3) For 1 < i< 3, ifs E V(Ain Bi) then v is incident with an edge of Bi; 
and also with an edge of Ai, unless v belongs to no other Aj (j # i). 

For if v is incident with no edge of Bi then (Ai, Bi\v) is a separation, and 
it belongs to $ by the first axiom and (i), contrary to (1). If v is incident 
with no edge of Ai then (Ai\V, Bi) is a separation, and it belongs to Y, by 
the first axiom and (i), and so by (l), v belongs to no Aj (j # i). 

(4) For 1 <i, j<3 with i# j, AicBj. 

For let i = 1, j = 2, say. The sum of the orders of (A, n B2, B, u AJ and 
(A, u BZ, B, n AZ) equals the sum of the orders of (A,, B,) and (AZ, B2). 
If (A, n&, B, u A*) has order at most that of (A,, B,), then since 
(A,nB,)uA,uA,=G and (A,nB,, B,uA,)EY by the first axiom 
and (i), it follows from (2) that A, n B2 = A,; that is, A, c B,. Thus 
E(A,) c E(B,). Suppose that A, $Z B,, and choose v E V(A,) - V(B,). Then 
VE V(A, n AZ), and by (3), v is incident with an edge in E(A,) E E(B,); yet 
u 4 V(B,), a contradiction. Thus A2 c B1. Similarly, if (A, n B, , B2 u A,) 
has order at most that of (AZ, B2), then AI E B, and A2 c B, . The result 
follows, since one of these inequalities must apply. 

From (4), A 1 u A, c B,, and so (A,, A 1 u AZ) is a separation of order 
~8. Since (AS, B3) E Y, it follows from (i) that (A, u A,, As) 4 5, and 
so (A,,A,uA,)EY, from the first axiom. Similarly (A,, A, u A3), 
(AZ, A, u A,) E 9, contrary to (ii). 1 

582b/5212-2 
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5. BRANCH-WIDTH AND TREE-WIDTH 

A tree-decomposition of a hypergraph G is a pair (T, z), where T is a tree 
and for t E V(T), z(t) is a subhypergraph of G with the following proper- 
ties: 

(i) u (z(t):tE V(T))=G 

(ii) for distinct t, t’E V(T), E(r(t)nr(t’))=@ 

(iii) for t, t’, t” E V(T), if t’ is on the path of T between t and t” then 
2(t) n z( t”) E z( t’). 

The width of such a tree-decomposition is the maximum of (1 V(z( t))l - 1 ), 
taken over all t E V(T), and the tree-width U(G) of G is the minimum width 
of all tree-decomposition of G. (Thus, U(G) >, 0 unless V(G) = 0, when 
co(G)= -1.) 

Let us compare tree-width and branch-width. 

(5.1) For any hypergraph G, max(p(G), y(G)) < o(G) + 1 < 
max(LW) PWJ, Y(G), 1). 

ProoJ If y(G) = 0 then j?(G) = 0 and w(G) 6 0, and the result holds. We 
assume then that y(G) > 0, and so V(G) # 0 and E(G) # 0. If \E(G)( = 1 
then P(G) = 0 and U(G) = y(G) - 1, and again the result holds. Thus we 
may assume that IE( G)I > 2. Since the removal of isolated vertices does not 
change any of fl, y, cu, we may assume that there are no isolated vertices 
in G. We show the second inequality first. 

Let (T, z) be a branch-decomposition of G of width P(G). For each 
t E V(T) we define a subhypergraph a(t) of G as follows: 

(i) if t is a leaf of 7’, let a(t) be the hypergraph consisting of z(t) and 
its ends 

(ii) if t is not a leaf of T, let U, consist of those vertices u of G for 
which there are edgesf, g of G, both incident with V, such that t lies on the 
path of T between z- ’ (f) and r-‘(g). Let V(a(t)) = U,, E(a(t)) = 0. 

It is easy to verify that (7’, a) is a tree-decomposition of G. Let us bound 
its width. If t is a leaf of T, I V(s(t))l 6 y(G). If t is not a leaf of T, let e,, 
e2, e3 be the three edges of T incident with t. For any v E U,, v contributes 
to the order of at least two of e, , e2, e3, and so 2 I U, I< 3/?(G). Thus, 
this tree-decomposition has width < max(y(G), (3/2) p(G)) - 1, and so 
co(G) + 1 d max(y(G), (3/2) P(G)), as required. 

Now we show the first inequality. Clearly y(G) < co(G) + 1. Let (7’, z) be 
a tree-decomposition of G of width co(G). 
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(1) We may assume that for each e E E(G), there is a leaf t of T with 
E(z(t)) = {e} and V(z(t)) the set of ends of e, and hence that E(z(t)) = 0 for 
each t E V(T) with valency 22. 

For if for some e there is no such t, we choose t’ E V(T) with e E E(z( t’)); 
we add a new vertex t to T adjacent only to t’; we remove e from r( t’), and 
define z(t) to be the hypergraph formed by e and its ends. This provides a 
new tree-decomposition of G of width co(G). By continuing this process we 
may arrange that (1) holds. 

(2) We may assume that IE(z( t))l = 1 for each leaf t of T. 

For by (l), IE(z(t))l < 1. If E(z(t))=@ let T’ be obtained from T by 
deleting t, and let z’ be the restriction of r to V(T’); then since G has no 
isolated vertices it follows that (T’, r’) is a new tree-decomposition of G of 
width w(G) still satisfying (1). By continuing this process we may arrange 
that (2) holds. 

(3) We may assume that every vertex of T has valency < 3. 

For if t E V(T) has valency 2 4, we may choose a tree T’ and an edge 
f of T’ such that T is obtained from T’ by contracting5 and the two ends 
t,, t2 of f both have valency less than the valency of t, and we define 
z(tl) = T(tZ) = z(t). The new tree-decomposition still has width U(G) and 
still satisfies (1) and (2), and by repeating this process we may arrange that 
(3) holds. 

Now let E(z(t))= (o(t)> f or each leaf t of T. Let S be the tree obtained 
from T by suppressing each vertex of valency 2. Then (S, a) is a branch- 
decomposition of G. For f E E(S), the order off in (S, a) is at most the 
number of vertices in z(t), where t is an end of f, and hence at most 
m(G) + 1. Thus P(G) 6 U(G) + 1, as required. 1 

Incidentally, both extremes of (5.1) can occur. For if G = K,, (for some 
n > 0 divisible by 3) then o(G) = L( 3/2) p(G) J - 1, by (4.4), since 
a(G) = n - 1, while if G is obtained from K,,, by deleting a perfect 
matching (for some n > 4) then it can be shown that co(G) = n - 1 and 
B(G) = n. 

We deduce 

(5.2) For any hypergraph G, 8(G) d CO(G) + 1 d (3/2) 8(G). 

Proof For from (5.1), 

ma&w), lw) d m(G) + 1 < max(!p(G), y(G), 1) 

and from (4.3), max(p(G), y(G)) = 0(G) unless y(G) = 0 and V(G) # 0. 
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Moreover the proof of (2.5) shows that 0(G) > 1 unless V(G) = @. Thus if 
y(G) # 0 and hence V(G) # 0, then 

e(G) = max(W), Y(G)) d a(G) + 1 d max($(G), y(G), 1) 

= $ax(B(G), y(G)) = @(G), 

as required. If y(G) = 0 and V(G) # 0, then cu( G) = 0 and 8(G) = 1, and 
the result holds. Finally, if V(G) = 0, then 8(G) = 0 and U(G) = - 1, and 
again the result holds. i 

6. NEW TANGLES FROM OLD 

The object of this section is to provide some operations on tangles. The 
simplest is the following. Let Y be a tangle of order 8 in a hypergraph G, 
let 1 < 0’ < 8, and let Y’ be the set of all members of Y with order -C 8’. 
Then it is easy to see that Y’ is a tangle in G of order 8’; we call Y’ the 
truncation of Y to order 8’. We observe also that if Y, Y’ are tangles in 
G then Y’ c Y if and only if Y’ is a truncation of Y. 

For graphs G, a second construction extends a tangle in a minor of G to 
a tangle in G, as follows. 

(6.1) Let H be a minor of a graph G, and let F’ be a tangle in H of 
order 9 2 2. Let Y be the set of all separations (A, B) of G of order -C 8 such 
that there exists (A’, B’) E Y’ with E(A’) = E(A) n E(H). Then F is a tangle 
in G of order 8. 

Proof We must verify the three axioms. First, let (A, B) be a separation 
of G of order < 6. Then we may choose a separation (A’, B’) of H’ such 
that E(A’) = E(A) n E(H), and every vertex of V(A’ n B’) is incident with 
an edge of E(A’) and with an edge of E(B’). Then (A’, B’) has order at 
most the order of (A, B) and so < 8; thus, Y’ contains one of (A’, B’), 
(B’, A’), and so 5 contains one of (A, B), (B, A). 

For the second axiom, suppose that (Ai, Bi) E Y (16 i< 3) with 
AIuA2uA3=G, and let (A~,BI)EF’ (l<i<3) be the corresponding 
separations of H. Then E(A; u A; u A;) = E(H), contrary to (2.3). Finally, 
it is clear from (2.7) that the third axiom holds. m 

We call Y in (6.1) the tangle in G induced by Y’. 
A third construction reverses this process. Let G be a hypergraph and W 

a set. We denote by G/W the hypergraph G’ with vertex set V(G) - W and 
edge set E(G), in which u E V(G’) and e E E(G’) are incident if and only if 
they are incident in G. (This may produce edges with no ends.) 
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(6.2) Let F be a tangle of order 8 in a hypergraph G, and let W c V(G) 
with 1 W( < 8. Let F’ be the set of all separations (A’, B’) of G/W such that 
there exists (A, B) E 5 with WE V(A n B), A/W = A’, and B/W = B’. Then 
F’ is a tangle in G/W of order 8 - ) W(. 

Proof. Certainly every member of 5’ has order < 8 - 1 WI. For any 
separation (A’, B’) of G/W of order < 8 - 1 WI, there is a separation (A, B) 
of G of order < 8 with W c V(A n B), A/W = A’, and B/W = B’, and since 
Y contains one of (A, B), (B, A), it follows that Y’ contains one of 
(A’, B’), (B’, A’). Thus the first axiom is satisfied. 

For the second, suppose that (Aj, Bi) E F’ (1 < i < 3). Choose 
(Ai, Bi)EY with WG V(A,A Bi), A,/W= Ai, and B,/W= Bi (1 <i<3). 
Since A,uA,uA,#G, it follows that A;uA;uA;#G/W, and hence the 
second axiom holds. 

For the third, let (A’, B’) E Y’. Choose (A, B) E Y with WE V(A n B), 
A/W= A’, and B/W= B’. Then V(A)# V(G), and so V(A’) # V(G/W), as 
required. 1 

We denote the tangle Y’ of (6.2) by F/W. We observe 

(6.3) Let F, 8, G, W be as in (6.2), and let (A, B) be a separation of G. 
Then (A/W, B/W) E F/W if and only if (A, B) E 5 and ( V(A n B) - WI -C 
e- 1 WI. 

ProoJ Let A + be a subhypergraph of G with V(A + ) = V(A) u W and 
E(A+) = E(A), and define B+ similarly. Then (A + , B + ) is a separation of 
G, WC V(A+ n B+), A+/W=A/W, and B+/W= B/W. By definition of 
Y/W, (A+, B+)EF if and only if (A/W,B/W)EF/W. But by (2.9), 
(A+,B+)EF if and only if (V(A+nB+)I<O and (A, B)EF. Since 
IV(A+ n B+)I = (WI + (V(An B)- WI, the result follows. 1 

7. A TANGLE IN A GRID 

Let 8 3 2 be an integer. Let G be a simple graph with V(G) = 
((i,j):l <i,jGe), where (i,j) and (i’,j’) are adjacent if Ii’-iI + 
lj’ - jl = 1. We call G a e-grid. The object of this section is to prove 
the existence of a natural tangle of order 8 in a B-grid. 

Let G be the O-grid defined above. For 1 < i \< 8, let P, be the path of G 
with vertex set ((i, j): 1 <j,< tI}, and for 1 d j < 8, define Qj similarly. 
When Xc E(G), we define a(X) to be the set of vertices u E X such that ZJ 
is incident with an edge in X and with an edge in E(G) - X. 

(7.1) If XcE(G) and la(X)1 < 8 then X includes E( Pi) for some i 
(1 < i d 0) if and only if X includes E( Qj) for some j (1 < j d 0). 
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ProoJ: Suppose that E(P,) E X for some i (1 f i < 0). Then V( Qj) 
contains an end of an edge in X for 1< j 6 0, since each Qj meets Pi. But 
not every Qj meets a(X), since 1 a(X)1 < 0, and so for some j (1 d j < O), 
E( Qi) E X, as required. 1 

If X z E(G), we say that X is small (in G) if (8(X)1 < 8 and X includes 
E( Pi) for no i (1 < i < 0). The following is the main lemma used to obtain 
the required tangle, and we are grateful to D. Kleitman and M. Saks for 
finding the proof. 

(7.2) If G is a O-grid and X1, X,, X, E E(G) with X, u X2 u X, = E(G), 
then not all of X1, X,, X, are small in G. 

ProoJ We proceed by induction on 8. If 8 = 2 the result is trivial, and 
so we assume that 8 > 3 and that the result is true for 8 - 1. Let P1, . . . . PO, 

Q 1, . . . . Qe be as before. 
If E( Qj) c X, , X2, or X, for some j, the result is true by (7.1). Thus we 

may assume that each E( Qj) meets at least two of X,, X2, X3, and in 
particular, without loss of generality, that 

We suppose that all of X1, X2, X3 are small. Thus, for 1< j < 0 and 
l<k<3, if E(Qj) meets Xk, then V( Qj) meets 8(X,). Moreover, if both 
ends of Qj are incident with edges in Xk, then ( V(Qj) n 8(X,)1 > 2. Now 
suppose that neither E( P1) nor E(P,) meets X,. Then for 1 < j < 8 both 
ends of Qi are incident with edges in X1 u Xz. From the above remarks, we 
deduce that 

Iv(Qj)na(x,)l+ IUQj)na(xz)l>2- 

By summing over j, we find that /8(X,)( + Ia( > 28, a contradiction. 
Thus one of E(P,), E( PO), say E(P,), meets X3. Hence E(Pe u Qe) meets 
each of X1, X,, X3 and hence V(P, u Qe) meets each of 8(X,), 8(X,), 
a(& )- 

Put G’ = G\V(PO u Q,). Then G’ is a (0 - 1 )-grid. Put Xi = X, n E(G’) 
(16 k < 3). Then Xi u Xi u Xi = E(G’). Let 8 be the d function in G’. 
Now 

ffwG) = a(&) (1 ,<k,<3) 

since V(P, u Q,) meets 8(X,), and so 

Ia'( ~8-2 (1 <k63). 
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By our inductive hypothesis, one of Xi, Xh, Xi is not small in G’. By (7.1), 
we may choose i’,j’ with 1 <i’, j’<e-- 1, and 1 <k<3 such that 

E((Pir u Qjf) CT G’) E Xi* 

If k = 1 or 2, then every V(P,) contains an end of an edge in Xk (1 < j < 0); 
for if j = 8, this was shown earlier, and if j < 0, then V(P,) meets V(Pi,). 
Hence each V(Qj) meets 8(X,), and so 18(X,)/ 2 8, a contradiction. 
Similarly, if k = 3, then every V(Pi) meets 8(X,), and again we have a 
contradiction. This completes the proof. 1 

From (7.2) we may infer the existence of the desired tangle. Given a 
&grid G with P,, . . . . P,, Q1, . . . . Qe as before, let Y be the set of all separa- 
tions (A, B) of G of order < 8 such that E(A) is small. 

(7.3) T is a tangle in G of order 8. 

Proof: Let (A, B) be a separation of G of order < 8. Suppose that 
neither E(A) nor E(B) is small. Choose h, i with 1 <h, i< 8 such that 
E(P,) E E(A) and E(Pi) G E(B). Thus V(P,) c V(A) and V(Pi) c V(B). For 
1 d j < 0, @ # V( Qj n Ph) E V( Qi n A ), and similarly V( Qj n B) # @, 
and so V(Qj n A n B) # 0 since (A, B) is a separation. But then 
( V(A n B)( 2 0, a contradiction. Thus one of E(A), E(B) is small, and so Y 
satisfies the first axiom. That Y is a tangle then follows from (7.2). 4 

The following was shown in [3]. 

(7.4) For every 8 2 2 there exists 4 > 0 such that every graph with tree- 
width 24 has a &grid minor. 

Since any graph with a &grid minor has tree-width 28, one can say, 
roughly, that a graph has large tree-width if and only if it has a large grid 
minor. But (5.2) tells us that a graph has large tree-width if and only if it 
has a tangle of large order. One might therefore hope for a direct connec- 
tion between tangles and grid minors, not via tree-width. The connection 
in one direction is easy, as follows. Let H be a minor of G, isomorphic to 
a e-grid. Then the tangle in H described in (7.3) induces a tangle Y in G 
of order 8, by (6.1). A kind of converse is provided by the following 
strengthening of (7.4), proved in [7]. 

(7.5) For every 0 2 2 there exists 4 > 0 such that for every graph G and 
every tangle T in G of order 2 4, the truncation of T to order 8 is the 
tangle induced by some &grid minor of G. 
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8. ROBUST AND TITANIC SEPARATIONS 

The object of this section is to prove a technical lemma for use in a later 
paper. A separation (A, B) of G is robust if for every separation (C, D) of 
A, one of the separations (C, B u D), (D, B u C) has order at least that of 
(A, B). (Incidentally, Noga Alon (unpublished) has shown that deciding if 
a separation is robust is NP-complete.) We need the following lemma. 

(8.1) Let (A, B) b e a robust separation of G, and let (C, D) be a separa- 
tion of G. Then one of (A u C, B n D), (A u D, B n C) has order at most 
that of (C, D). 

Proof: Now (A n C, A n D) is a separation of A. Since (A, B) is robust, 
we may assume (exchanging C, D if necessary) that 

IV((An C)n (BUD))\ = IV((An C)n (Bu(AnD)))J 2 IV(An B)I. 

But 

I1/(A n WI + I VCn ml 
= 1 V((A n C) n (Bu D))l + I V((A u C) n (Bn D))l, 

and the result follows. 1 

A separation (A, B) of G is titanic if for every triple (X, Y, 2) of 
subhypergraphs of A such that A = Xu Y u 2 and E(X), E( Y), E(Z) are 
mutually disjoint, we have either 

1 V((Xu Y) n Z)l2 1 V((Xu Y) n B)I 

or 

or 

IV((zuX)n Y)( 2 IV((ZuX)n B)I. 

(8.2) Every titanic separation is robust. 

ProoJ: Let (A, B) be a titanic separation, and let (C, D) be a separation 
of A. Put X= C, Y= D, and let 2 be the hypergraph with 
V(Z) = E(Z) = @. S ince (A, B) is titanic, we deduce that either 
O>,IV(AnB)I or IV(CnD)I>,IV(BnD)I or IV(CnD)I>lI(BnC)I. If 
V(A n B) = @ then (A, B) is robust. Thus, by symmetry, we may assume 
that I V(Bn C)l < I V(Cn D)l. But 

IV(AnB)I=IV(BnC)(+IV(BnD)-V(C)1 
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and 

IV((BuC)nD)I = IV(CnD)l+ (V(BnD)- V(C)l, 

and so I V(A n B)I < I V((B u C) n D)l, as required. 1 

The main result of this section is another way to construct new tangles 
from old, the following. 

(8.3) Let (C, D) b e a separation of a hypergraph G, and let (C’, D) be 
a titanic separation of a hypergraph G’, with V(C n D) = V( C’ n D). Let F 
be a tangle in G of order 8 2 2 with (C, D) E F. Let f’ be the set of all 
separations (A’, B’) of G’ of order < 8 such that there exists (A, B) E 9 with 
E(A n D) = E(A’ n D). Then F’ is a tangle in G’ of order 8. 

ProoJ We verify the hypotheses of (4.5). For the lirst axiom, let (A’, B’) 
be a separation of G’ of order < 8. Since (C’, D) is robust by (8.2), we may 
assume by (8.1) (exchanging A’, B’ if necessary) that (A’ n D, B’ u C’) has 
order at most that of (A’, B’). Now (A’ n D, (B’ n D) u C) is a separation 
of G with the same order as (A’ n D, B’ u C’), since B’ u C’ = (B’ n D) u C’ 
and 

(A’nD)nC=A’n(DnC)=A’n(DnC’)=(A’nD)nC’. 

Hence (A’ n D, (B’ n D) u C) has order < 0 and so Y contains one of 
(A’nD, (B’nD)uC), ((B’nD)uC, A’nD). If the first, then 
(A’, B’) E F’, while if the second, then since E( ((B’ n D) u C) n D) = 
E(B’n D), it follows that r’ contains (B’, A’). This verifies that Y’ 
satisfies the first axiom. 

For (4.5) (i), suppose that (A;, B;), (A;, B;) EF’. Choose (Ai, Bi) E F 
with E(A,nD)=E(AjnD) (i=l,2). Since (C,D)EF, E(CuA,uA,)# 
E(G) by (2.3), and so E(D) g E(A, u AZ). Hence E(D) $Z E(A; u A;), and 
so A; u A; # G’, and B’, g A;, as required. 

For (4.5) (ii), suppose that A;, A;, A; are mutually edge-disjoint 
subhypergraphs of G’ with union G’, and (Al, Bi) E F’ for i = 1,2,3, 
where B;=A;uA;, B;=A;uA;, B;=A;uAi. Choose (A,,B,)eF 
with E(AinD)=E(AjnD) (l<i,<3). Let Fi=AlnC’ (l,<i<3). Then 
P, u 1;2 u FJ = C’, and since (C’, D) is titanic we may renumber so that 

IWQ-&)n~,)I b IWWF,)nD)J; 

that is, 

1 V(B; n C’ n A;)[ 2 I V(B; n C’ n D)l. 
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Now V(A; u C’)= V(C’)u (I+!;)- V(C’)), and so 

I w% u C’) n (B; n D))l 
=IV(B;nC’nD)I+I(V(A;)-V(C’))nV(B;nD)I. 

Moreover, since V(A; n I?;) - V(C’) = (V(A;) - V(C’)) n V(B; n D), it 
follows that 

We deduce that (A; u C’, B; n D) has order at most that of (A;, B;) and 
hence < 8. It follows that ((A; n D) u C, B; n D) is a separation of G of order 
~8, and so F contains one of (B; nD, (A; nD) u C), ((A; no) u C, 
Hi n D). The first is impossible by (2.3), since (C, D), (A 1, B,) E F and 

E((B;nD)uCuA,)=E(G). 

The second is impossible by (2.3), since (A *, B,), (A 3, B3) E F and 

E((A+ID)uCUA,UA,)=E(G). 

This contradiction completes the verification of (4.5) (ii). Thus, from (4.5), 
we deduce that F’ satisfies the second axiom. 

To verify the third axiom, we verify the hypothesis of (2.7). Let e E E(G’) 
with size < 8, and let K, be as in (2.7). If e E E(D), then since (K,, G\e) E Y 
by (2.7) applied to G, F, it follows from the definition of F’ that 
(K,, G’\e) E F’. If eEE(C’), then since (C,D)EF and E(CnD)= 
E(K, n D), it again follows that (K,, G’\e) E F’ from the definition of F’. 
Thus, from (2.7), we deduce that F’ satisfies the third axiom, as required. 1 

As an application, we observe 

(8.4) Let F be a tangle of order 8 2 2 in a hypergraph G, and let 
e E E(G) with at most one end. Let F’ be the set of all separations (A’, B’) 
of G\e of order < 0 such that there exists (A, B) E F with E(A n (G\e)) = 
E( A’). Then F’ is a tangle in G\e of order 9. 

Proof: Let C be the subhypergraph of G formed by e and its ends and 
let C’ = C\e and D = G\e. Then (C, D) E F and (C’, D) is titanic, as is 
easily seen, and the result follows from (8.3). 1 

Thus, if we delete all edges of G with < 1 end, we do not change its 
tangle number. (This holds even for tangle number < 1, as is easily seen.) 
(8.4) has the following consequence. 
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(8.5) Let F be a tangle in a graph G of order 132 1. Let WS V(G) with 
1 WI < 8. Let F’ be the set of all separations (A’, B’) of G\ W of order 
< 0 - 1 WI such that there exists (A, B) E F with W c V(A n B) and 
A\W= A’, B/W= B’. Then F’ is a tangle in G/W of order 9-- 1 WI. 

Proof Since 1 WI < 6, the result is obvious when 8 = 1, and so we may 
assume that 0 3 2. Now G\ W is obtained from G/W by deleting edges with 
at most one end, and Y’ is obtained from r/W by repeating the operation 
of (8.4). The result follows. 1 

9. LAMINAR SEPARATIONS 

We have seen in (5.2) that the tangles of large order are obstructions to 
the existence of tree-decompositions of small width. Our next result is a 
counterpart of this, that there is a tree-decomposition into pieces which 
correspond to the tangles. 

Let (A,, B,), (A*, BJ be separations of a hypergraph G. We say these 
separations cross unless either A 1 c A, and B, z B1, or A I c B, and 
A,~B,,orB,~A,andB,cA,,orB,cB,andA,cA,.Asetofsepara- 
tions is Zaminar if no two of its members cross. 

Let (T, z) be a tree-decomposition of a hypergraph G. For each e E E(T), 
let T,, T2 be the components of T\e and let 

G; = u (z(t): t E V(TJ) (i= 1, 2). 

Then (GT, G;) is a separation of G, and we call (Gi, Gz) and (GG, Gy) the 
separations made by e (under the given tree-decomposition). 

(94 Y-u-, ) z is a tree-decomposition of G, then the set of all separations 
of G made by edges of T is laminar. Conversely, if { (Ai, Bi) : 1 < i < k) is a 
laminar set of separations of G, there is a tree-decomposition (T, z) of G such 
that 

(i) for 1 < i< k, (Ai, Bi) is made by a unique edge of T 

(ii) for each edge e of T, at least one of the two separations made by 
e equals (A i, Bi) for some i ( 1 < i < k). 

The proof is easy and is left to the reader. 
We wish to arrange a “tie-breaking” mechanism so that no two distinct 

separations are counted as having the same order (except for reversal). A 
tie-breaker A in a hypergraph G is a function from the set of all separations 
of G into some linearly ordered set (A, < ), satisfying certain axioms given 
below. For each separation (A, B), A(A, B) is called the A-order of (A, B), 
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and, if (A, B), (C, D) are separations, we say that (A, B) has smaller 
A-order than (C, D) if A(A, B) < A(C, D). The tie-breaker 2 must satisfy the 
following conditions: 

0) if (4 B), (C, D) are separations of G, they have the same 
A-order if and only if (A, B) = (C, D) or (A, B) = (D, C) 

(ii) if (A, B), (C, D) are separations of G, then either (A u C, B n D) 
has A-order at most that of (A, B) or (A n C, B u D) has A-order smaller 
than that of (C, D) 

(iii) if (A, I?), (C, D) are separations of G and (A, B) has smaller 
order than (C, D), then (A, B) has smaller A-order than (C, D). 

We refer to these as the first, second, and third tie-breaker axioms. 

(9.2) In every hypergraph there is a tie-breaker. 

ProoJ Let (A, < ) be the set of all triples of real numbers, ordered 
lexicographically; thus, (a, b, c) < (a’, b’, c’) if a < a’, or a = a’ and b < b’, or 
a=a ’ and b=b’ and ccc’. For any hypergraph G, let L(G) = 
V(G) u E(G). Let G be a hypergraph. Choose a function p from 
L(G) x L(G) into the set of positive real numbers such that 

(i) ~(x, y)=p(y, x) for all x, y&(G), and 

(ii) for every choice of rationals a(x, y) (x, y E L(G)) such that 
CWy, I’ a(x, y) ~(x, y) = 0, we have a(x, y) = - a( y, x) for all x, y E L(G). 

For each separation (A, B) of G, define iZ(A, B) = (N, , N,, N3), where 

N,=)V(AnB)I 

N2=x (p(x, X):XE V(A cd)) 

N, = c (Ax, Y): x E L(A) - L(B), y  E L(B) - L(A)). 

(1) If (A, B) and (A’, B’) are separations of G with the same A-order 
then (A’, B’) = (A, B) or (B, A). 

For let (A, B) have A-order (N,, NZ, N3), and let (A’, I?‘) have A-order 
(N;, N;, N;). Let V(AnB)=Z, L(A)-L(B)=X, L(B)-L(A)= Y, and 
define Z’, X’, Y’ similarly. Then (X, Y, Z), (X’, Y’, Z’) are partitions of 
L(G), and we must show that Z’ = Z and that (X’, Y’) = (X, Y) or ( Y, X). 
Now since N, = N;, 

c Pu(X, 4 = c Ax, x), 
XEZ XEZ’ 
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and so 2 = 2’ from (ii) above. Moreover, since N3 = N;, 

c M4y):-=&w y>=C (p(&y):.=X’,yE Y’). 

({x,y):xEX,yE Y}= ((X,y):-=X’,YE Y’>, 

and the claim follows. 

(2) Let (A, B), (C, D) be separations of G. Then so are (A u C, 
B n D), (A n C, B u D), and the sum of their A-orders is at most the sum of 
the A-orders of (A, B), (C, D). 

This follows by comparing (for each X, y E L(G)) the number of 
occurrences of ~(x, v) and p(v, X) in the expressions for the A-orders of 
(A, B) and (C, D) with the corresponding numbers for the other two 
separations. 

From (1) and (2), it follows that the first and second tie-breaker axioms 
are satisfied, and clearly so is the third, as required. 1 

The following strengthening of the second axiom is sometimes useful. 

(9.3) Let 2 be a tie-breaker in a hypergraph G, and let (A, B), (C, D) be 
separations of G. Then either 

(i) (A u C, B n D) has smaller A-order than (A, B), or 

(ii) (An C, BUD) h as smaller l-order than (C, D), or 
(iii) CGA and BGD, or 

(iv) B=C=GandA=DandE(A)=@. 

ProoJ Since we may assume that (ii) is false, it follows from the second 
axiom that (A u C, B n D) has A-order at most that of (A, B), and we may 
assume that equality holds, for otherwise (i) holds. Thus, by the first 
axiom, (A u C, Bn D) = (A, B) or (B, A). If (A u C, Bn D) = (A, B) then 
C s A and BED and (iii) holds, and so we may assume that (A u C, 
BnD)=(B, A). Hence AuC=Band BnD=A. In particular, AEB, and 
since A u B = G, it follows that B = G, and A = D since B n D = A. 

By the second axiom applied to (D, C), (B, A), we deduce that either 
(B u D, A n C) has A-order at most that of (D, C) or (B n D, A u C) 
has A-order less than (B, A). In the second case, (i) holds, and if strict 
inequality holds in the first case, then (ii) holds. Thus we may assume that 
(B u D, A n C) has the same A-order as (D, C), and so (B u D, A n C) = 
(D, C) or (C, D), by the first axiom. In the first case, BE D and CC A, 
and (iii) holds, and so we may assume that (B u D, A n C) = (C, D); that 
is, C = G and A = D. Since B = G, it follows that (iv) holds. 1 
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Given a tie-breaker 2, a separation (A, B) of G is A-robust if for every 
separation (C, D) of A, one of (C, B u D), (D, B u C) has A-order at least 
the &order of (A, I?). Clearly a A-robust separation is robust. The separa- 
tion (A, B) is doubly A-robust if both (A, B) and (B, A) are l-robust. 

(9.4) Let (A, B), (C, D) be doubly A-robust separations of G. Then 
(A, B) and (C, D) do not cross. 

Proof. By the symmetry, we may assume that of the four separations 
(AnC, BUD), (AnD, BuC), (BnC, AuD), (BnD, AuC), the first 
has smallest a-order. Since (C n A, D n A) is a separation of A and (A, B) 
is k-robust, one of 

(CnA, (DnA)uB), (DnA,(CnA)uB) 

has J.-order at least that of (A, B). These separations are (A n C, B u D) 
and (A n D, B u C), respectively, and so, in view of the assumption in the 
first sentence of this proof, (A n D, B u C) has l-order at least that of 
(A, B). Similarly, (B n C, A u D) has A-order at least that of (C, D). By 
(9.3) applied to (B, A), (C, D), we deduce that either Cr B and A C_ D, or 
A = C = G and B = D, and in either case (A, B), (C, D) do not cross. m 

10. TANGLE TREE-DECOMPOSITIONS 

Let FI, F2 be tangles in a graph G. They are indistinguishable if one is 
a truncation of the other, that is, either 8 c Y2 or F2 s FI, and otherwise 
they are distinguishable. A separation (A, B) of G distinguishes YI from F2 
if (A, B)rzFI and (B, A)EF~. 

(10.1) Either there is a separation of G which distinguishes % from F2 
or FI, F2 are indistinguishable and not both. 

ProoJ Since there is a separation distinguishing FI from F2 if and only 
if there is one distinguishing F2 from JY, we may assume that F2 has order 
at least that of q. Then 

YI and F2 are distinguishable 

e there exists (A, B) E FI with (A, B) $ F2 

e there exists (A, B) E FI with (B, A) E F2 

* there is a separation distinguishing YI from F2, 

as required. 1 
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Given a tie-breaker A, a separation (A, B) which distinguishes YI from 
Y2 is a (YI, Y2)-distinction if it has minimum A-order of all separations 
which distinguish Yr from J rz. From the first tie-breaker axiom, (A, B) is 
unique, and we may speak of the (%, Yz)-distinction. (Of course, different 
choices of the tie-breaker il result in different (%, Yz)-distinctions in 
general.) There is a (YI, Y*)-distinction if and only if K, Yz are dis- 
tinguishable. 

(10.2) IfYI, Y2 are distinguishable tangles in G, the (&, Y2)-distinction 
is doubly A-robust. 

Proof Let (A, B) be the (&, Yz)-distinction. Since (B, A) is the 
(&, %)-distinction, it suffices to show that (A, B) is A-robust. Let (C, D) 
be a separation of A, and suppose that both (C, B u D) and (D, B u C) 
have A-order strictly smaller than that of (A, B). Then (C, B u D), 
(D, Bu C) have order at most that of (A, B) and hence less than the 
orders of Y, and Yz. Since (A, B) E $ it follows that (C, B u D) E s 
and (D, BuC)EY~. Since (A, B) is the (YI, Yz)-distinction it follows 
that (BuD,C)#Yz and (BuC,D)$Y*, and hence (C,BuD), 
(D,BuC)EY~. But (B,A)E&, and Bu Cu D = G, contrary to the 
second tangle axiom. Thus one of (C, B u D), (D, B u C) has A-order at 
least that of (A, I?), and hence (A, B) is A-robust, as required. 1 

(10.3) Let %, . . . . 5” be mutually distinguishable tangles in a hypergraph 
G with n 2 1, and let 1 be a tie-breaker. Then there is a tree-decomposition 
(T, z) of G, where V(T)= (tI, . . . . t,>, with the following properties: 

(i) For every e E E(T) and for 1 < i < n, tf T, , T2 are the components 
of T\e and ti E V( T, ) then 

(ii) For all i # j with 1 < i, j 6 n, let e be the edge of the path of T 
between ti and tj making separations of smallest A-order; then these separa- 
tions are the (6, q)- and (9J, 9J-distinctions. 

Proof For i # j with 1 < i, j < n, there is a ($, q)-distinction. Each of 
these separations is doubly A-robust by (10.2), and so by (9.4) no two of 
them cross. By (9.1) there is a tree-decomposition (T, r) of G such that 

(i) for 1~ i, j < n with i # j, a unique edge of T makes the (T, q)- 
distinction . 

(ii) for every e E E(T), there exist i # j with 1 < i, j< n such that e 
makes the (z, q)- and (q, z)-distinctions. 
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For 1 <i<n, we say t,~ V(T) is a home for K if for every GEE, 

where T1, T2 are the components of T\e and to E V( T,). 

(1) For t,ETand I<i<j<n, to isnot a homefor both Tandq. 

For let e be an edge of T making the (q, q)-distinction. Let T, , T2 be 
the components of T\e, where the (<, Q-distinction (A, B) is 

( u w, u -i(t)). tE UTI) tE VT2) 

Then (A, B) E K and (B, A)E 6, and so if to is a home for $ then 
to $ V( T,), and if to is a home for q then to # V( T2). Since to E V( T, u T2), 
to is not a home for both z and q, as required. 

For the moment, fix i with 16 i < n. An edge e E E( T) is i-relevant if the 
separations made by e have order less than the order of q. Let us direct 
each i-relevant edge e so that 

iU w, u r(t)) EC 
\tc V(TI) [E VT2) / 

where T,, T2 are the components of T\e and V( T2) contains the head of 
e. We observe that 

(2) toE VT) is a home for q if and only if every i-relevant edge of T 
is directed towards to. 

Let Hi be the set of homes for K. 

(3) Hi # 0 and Hi is the set of vertices of a subtree of T. 

The second assertion follows from the first and (2). To show that 
Hi # 0, it suffices (by an elementary property of trees) to show that for 
all i-relevant edges e, e’ of T, if T,, T2 are the components of T\e with 
the head of e in V( T2), and T; , T; are defined similarly, then 
V(T,)n V(T;)#@. Now 

( u w, u r(t)) Elq 
\r E V(TI) tE WT2) / 

and 
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and so T; g T, by the second tangle axiom; thus, T2 n T; is non-null, as 
required. 

(4) If GEE has ends X, YE V(T), and XE Hi, y$Hi, then e is 
i-relevant. 

For since x E Hi and y 4 Hi, some edge of T is directed towards x and 
not towards y. The only possible such edge is e, and so e is directed and 
hence i-relevant. 

(5) For 1 < i, j < n, and e E E(T), e makes a separation which dis- 
tinguishes K from q if and only if e lies on the (unique) minimal path of T 
between V(Hi) and V(Hj) and is i- and j-relevant. 

For if e makes a separation which distinguishes K from q, this separa- 
tion has order less than the smaller of the orders of K, q, and so e 
is i-relevant and j-relevant, and from (2), e lies on the unique minimal 
Hi - Hj path in T. Conversely, if e lies on this path and is i- and j-relevant, 
then it makes a separation (A, B) with (A, B)E z and (I?, A)E q, by 
definition of Hi and Hi, as required. 

(6) For 1 <i<n, /HiI = 1. 

For suppose that 1 Hi 1 2 2 for some i. Choose t,, t, E Hi, distinct and 
adjacent in T (this is possible by (3)) joined by an edge e. Then e is not 
i-relevant. Choose j, k with j# k and 1 <j, k < n such that e makes the 
(q, &)-distinction. Let P be the minimal Hj - H, path in T. Then e E E(P) 
by (5), and so j, k # i. Let f~ E(T) make the (K, Q-distinction. Then by 
(9, fe E(P). S’ mcefis i-relevant and e is not, fmakes a separation of order 
(and hence A-order) strictly smaller than that of the (5, &)-distinction, 
and by (5) makes a separation of that order which distinguishes q from 
&, a contradiction, as required. 

(7) H, u ..e u H,= V(T). 

For suppose that t,E V(T)-(H,u es- uH,). Since n#O, IV(T)1 32, 
and so there is a neighbour of to in T. Let the edges of T incident with t, 
be el, . . . . ek, let TP be the component of T\e, not containing to, and let TI, 
be the other component of T\e, (1~ p ,< k). The separations made by 
e1 7 ..‘, ek are all distinct, since each of them is the (T, Qdistinction for 
some i, j, and the (z, q)-distinction is made by a unique edge, from our 
initial choice of the tree-decomposition. Thus we may assume, by the first 
tie-breaker axiom, that the separations made by e, have A-order strictly 
more than the separations made by e2, . . . . ek. Choose i, j with i # j such 
that 

( u m u i(l)) 
tE VTl) tE V(T;) 

582b/52/2-3 
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is the (q, Q-distinction. Let P be the minimal Hi - Hj path in T. Then 
e, E E(P), and since to 4 Hiu Hj, E(P) contains one of e2, . . . . ek, say e2. 
Now 

has A-order strictly less than that of the (T, q)-distinction and hence has 
order at most that of the (K, q)-distinction. By (5), e2 makes a separation 
which distinguishes < from q, with A-order strictly smaller than that of 
the (.$, Q-distinction, a contradiction. 

Let Hi = { ti} (1 < i < n); then the theorem is satisfied. 1 

We call the tree-decomposition of (10.3) the standard tree-decomposition 
of G relative to Yi , . . . . Y*. 

From (10.3) we deduce a corollary mentioned earlier. We merely sketch 
the proof since we do not need the result. 

(10.4) In any hypergraph G there are at most 1 V(G)( maximal tangles. 

ProoJ: Let Y1, . . . . Yn be the distinct maximal tangles in G, and let A. be 
a tie-breaker. Since they are mutually distinguishable, there is a standard 
tree-decomposition (T, 7). Let e, f E E(T) be distinct, making separations 
(A, B) and (C, D), say, where A c C and D c B. If V(A) = V(C) then it 
follows easily that A = C, B = D, a contradiction; thus V(A) c V(C) and 
similarly V(D) c V(B). From this one can show that [E( T)J < 1 V( G)I - 1, 
and hence n = 1 V(T)1 < I V(G)l, as required. fi 

11. STRUCTURE RELATIVE TO A TANGLE 

Now we come to the last main result of the paper. We have seen in (5.2) 
that if G has small tangle number, then it has a tree-decomposition of small 
width. Our problem here is, suppose that G has large tangle number, but 
relative to each high order tangle the graph has a structure or decomposi- 
tion of a certain kind X, say; what can we infer about the global structure 
of G from this local knowledge? One might guess that G should have a 
tree-decomposition into pieces each with structure X, but that is false. 
Nevertheless, it turns out that G has a tree-decomposition into pieces 
which “almost” have structure X, and we need to know this for an applica- 
tion in [6]. 
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A design is a pair (H, M), where H is a hypergraph and M is a set of 
subsets of V(H). If (T, z) is a tree-decomposition of a hypergraph G and 
t, E V(T), and to has neighbours tl , . . . . tk in T, then 

is a design, called the design of to in (T, r). If 9 is a class of designs, a tree- 
decomposition (T, z) is said to be over 9 if for each t, E V(T), T contains 
the design of to in (T, 7). 

Let (H, M), (H’, M’) be designs and let 2 c V(H’) be such that 

(i) H is a subhypergraph of H’ and V(H’) - V(H) s 2 

(ii) every edge of H’ is an edge of H 

(iii) for every XEM’ with X#Z, Xn V(H) EM. 

(Z may or may not be a member of M’.) In these circumstances, we say 
that (H’, M’) is an n-enlargement of (H, M) for every integer n 3 IZI. If 9 
is a class of designs, we denote the class of all n-enlargements of members 
of 9 by 9’“. For any integer n 2 0, we denote by Sn the class of all designs 
(H, M) with ] V(H)/ < n. 

A location in a hypergraph G is a set ((A i , B,), . . . . (Ak, Bk) > of separa- 
tions of G such that Aj E Bi for all distinct i, j with 1 d i, j d k. If 
WI, a *‘*T (40 &)) is a location in G, then 

(Gn&n -a- n&, {V(A,nBi):l <i&k)) 

is a design, which we call the design of the location. 
Let 0 3 1 be an integer, and let 9 be a class of designs. We say that 9’ 

is B-pervasive in a hypergraph G if for every subhypergraph G’ of G and 
every tangle T in G’ of order 20 there is a location 3 in G’ such that 
9 E 9 and the design of 2 belongs to 9. Our object is to deduce infor- 
mation about the global structure of G from the knowledge that a certain 
class of designs is &pervasive. We show 

( 11 .I ) For any 0 2 1, let 9’ be a class of designs which is O-pervasive in 
a hypergraph G; then G has a tree-decomposition over Y3e-2 u .64& --3. 

We need the following lemma. 

(11.2) Let 0 > 1, let 9 be O-pervasive in G, and let Z s V(G) with 
(ZJ = 36 - 2. Then either 

(i) there is a separation (A, B) of G of order < 8 with 

I(Zu V(A))n V(B)), I(Zu V(B))n V(A)) 630-3 
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OY 

(ii) there is a location ((A,, B,), . . . . (Ak, B,)} in G, with design in 9, 
such that for 1~ i < k, 

IZn V(Ai)j < 1 V(Ain Bi)j < 6. 

ProoJ: Let Y be the set of all separations (A, B) of G of order < 8 such 
that IZn V(A)) < I V(A n B)I. Since 121 > 3(8- 1) the second and third 
tangle axioms hold for Y. Suppose the first does not; then there is a 
separation (A, B) of order ~8 such that IZn V(A)I, JZn V(B)1 > 
I V(A n B)I. But then 

I(Zu V(A))n V(B)1 = (V(A n B)I + IZ- V(A)] 

< IZn V(A)1 + IZ- V(A)1 = IZI=38--2 

and similarly I (2 u V(B)) n V( A)1 6 38 - 3, and so (i) holds. We may 
assume then that Y is a tangle of order 8. 

Since 9 is O-pervasive, there is a location ((A,, B,), . . . . (Ak, B,)} c F 
with design in 9. Thus for 1 <id k, IZn V(Ai)I < I V(Air\ Bi)l < 8, and SO 

(ii) holds, as required. 1 

If (H, M) is a design and 2 c V(H) then (H, M u (21) is a design, 
which we call the Z-extension of (H, M). In order to prove our main result 
(11.1) it is convenient for inductive purposes to prove a somewhat 
strengthened form, the following (( 11.1) may be derived from this by 
setting 2 = 0). 

( 11.3 ) Let 9 be a class of designs, and let 8 > 1. Let G be a hypergraph 
such that 9 is O-pervasive in G, and let Z E V(G) with IZI f 38 - 2. Then 
there is a tree-decomposition (T, z) of G over 93e- 2 u 9be- 3, such that for 
some to E V(T), Z s V(z(to)) and 9 3e- 2 u 940 _ 3 contains the Z-extension 
of the design of t, in (T, 7). 

ProoJ: Let us remark, first, that from the definition of O-pervasive, if 9 
is O-pervasive in G then it is O-pervasive in every subhypergraph of G. Let 
Y’=Y3e-2U9~e-3. For fixed 9, 8, we prove that the result holds for all 
G, 2 by induction on I V(G)\. Thus, let us assume that it holds for all G’, 
Z’ with ) V( G’)I < I V( G)I. First we show that it holds for G, Z if 
IzI =3e-2. 

Therefore, let I ZI = 38 - 2. By (11.2), one of the following two cases 

Case 1. There is a separation (A,, AZ) of G of order < 8, with 

IWJ Wb))n VA,)I, WV V(A2))n V(A,)l GO-3. 
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Let 2, = (Zu V(A,))n V(A,), Z2= (Zu V(A,))n V(A,). Then for 
i= 1,2, Zj c V(Aj) and lZ,l< 30 - 3. Since IZ, 1 < IZl and so Z g Z1, it 
follows that V(A 1) # V(G), and so the result holds for A,, Z1, and similarly 
for AZ, Z2 by our inductive hypothesis. Since 9 is B-pervasive in Al and 
in AZ, it follows that for i = 1, 2, there is a tree-decomposition (Ti, zi) of Ai 
over Y”, and there exists ti E V( Ti) such that Zi E V(ri(t,)) and 9’ contains 
the Zi-extension of the design of ti in (Ti, Zi). We choose T1, T2 to be 
disjoint. Take a new vertex to, and let T be the tree with vertex set 
V( T,) u V( T2) u {to>, where T\t, = T1 u T2 and t, is adjacent to t,, tZ. Let 
z(to) be the hypergraph with vertex set Z u V(A, n AZ) and with no edges, 
and let z(t) = zi(t) if t E V(Ti) (i= 1, 2). Then (T, z) is a tree-decomposition 
of G, as is easily seen. The design of to in (T, z) is (z(t,), {Z,, Z,>), which 
is in 9&o-3, since 

I ~(~kdl = F-J J%% n &)I G IZI + I VA1 n AJ G (38 - 2) + (0 - I), 

and the Z-extension of this design is also in 9&Q- 3, for the same reason. 
For i = 1,2 and each t E V( T,), the design of t in (7’, z) equals the design 
of t in (Ti, zi) (or its Z,-extension if t = ti) and so belongs to 9’. Hence the 
theorem holds in this case. 

Case 2. There is a location { (A 1, B, ), . . . . ( Ak, B,)} in G with design 
in 9, such that for 1 < i ,< k, 

(Zn V(A,)( < IV(AinBi)( <O. 

For 1 \<i<k, let Zi=(Zu V(Bj))n V(Ai). Then IZil <2(8-1),<3~-2, 
and Zi c V(Ai). Also, 

(Zn V(A,)I <6630-2= JZn V(G)/, 

and so V(Ai) # V(G). By our inductive hypothesis, there is a tree-decom- 
position (Ti, Zi) of Ai over Y’, and there exists tiE V(Tj) such that 
Zi _C v(ti(ti)) and 9’ contains the Z,-extension of the design of ti in 
(Ti, z~). We choose T1, . . . . Tk to be disjoint. Take a new vertex to, and 
let T be the tree with vertex set V( T,) u *I* u V(T,) u (to>, where T\t, = 
T,u ... u Tk and t, is adjacent to t,, . . . . tk. Let z(to) be the hypergraph 
with vertex set 

V(GnB,nB,n --- nB,)uZ 

and with edge set and incidence relation the same as those of 
GnBlnB2n --. nB,. Let z(t)=zi(t) if tE V(Ti) (1 <i<k). Then (T, 5) 
is a tree-decomposition of G, as is easily seen. Let us examine the designs 
of the vertices of T in (T, 7). First, let 1 < i ,< k and let t E V( Ti) with t # ti. 
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Then the design of t in (T, r) equals the design of t in ( Ti, z i), and hence 
this design belongs to 9”. Secondly, let 1~ i < k and let t = ti; the design 
of t in (r, z) is the Z,-extension of the design of t in (Ti, zi) and hence also 
belongs to 9’. Finally, the design of t, in (T, z) is (z( to), (Zi: 1 d i 6 k) ) 
and its Z-extension is (z(to), (Zi: 1 < i< k} u (Z}). But these designs are 
both 121 -enlargements of 

(GnB,n --a A&, {&&n&):1 <i<k))EY’, 

and so they both belong to Y3’-’ c Y’, as required. 
Thus, we have proved that the result holds for G, 2 when IZI = 30 - 2. 

Now let Z E V(G) with IZI < 38 - 2. If I V(G)\ < 38 - 2 then 
(G, { 21) E gse- 3 E Y’, and so the desired tree-decomposition (T, z) exists 
with T a l-vertex tree. We may assume then that ) V(G)] > 38 - 2. Choose 
Z’ E V(G) with Z E Z’ and JZ’I = 38 - 2. As we have seen above, the result 
holds for G, Z’, and so there is a tree-decomposition (T, , 7,) of G over Y’, 
such that for some t, E V( T,), Z’ c V(z,( tl)) and 9” contains the Z’-exten- 
sion of the design of tl in ( T1, 7,). Take a new vertex t,, and let T be the 
tree with vertex set I’( T,) u (to}, where T\tO = T1 and to is adjacent to t,. 
Let z(to) be the hypergraph with vertex set Z’ and no edges, and for 
t E V( T,), let z(t) = zl(t). Then (T, z) is a tree-decomposition of G. For 
tE V(T) with t# t,, tl, the design of t in (T, r) equals the design of t in 
(T, , z, ) and hence belongs to 9”. The design of tl in (T, z) is the 
Z’-extension of the design of t, in ( T1, 7,) and hence belongs to 9”. 
Finally, the design of t, in (T, r) is (r( to), (Z’> ), and the Z-extension of 
this is (z(t,), {Z, Z’}), and both of these belong to 9?3e-2 E 9”. This 
completes the proof. 1 

We remark that in essence (11.1) generalizes (5.2). For let 9 = @. Then 
it follows from ( 11.1) that if G is a hypergraph with no tangle of order 0 
(and so 9’ is O-pervasive) then G has a tree-decomposition over 9&O _ 3, and 
hence co(G) < 48 - 4; in other words, U(G) < 48(G). Apart from the size of 
the multiplicative constant, this is the main part of (5.2). 

12. TANGLES AND MATROIDS 

Finally, let us discuss some matroidal aspects of tangles. Let 9’ be a 
tangle in a hypergraph G, of order 8. For XE V(G), let us define r(X) to 
be the least order of a separation (A, B) E Y with Xs V(A), if one exists, 
and 8 otherwise. 

(12.1) r is the rank function of a matroid on V(G). 
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Prooj We must check [S] that 

(i) r is integral-valued 

(ii) for XE V(G), 0 <r(X) < 1x1 

(iii) for Xs YE V(G), v(X) d r(Y) 

(iv) for X, YE V(G), r(Xu Y) + r(Xn Y) d r(X) + r( Y). 

(i) and (iii) are clear. For (ii), certainly Y(X) > 0. Since Y(X) < 8, we may 
assume that (X( < 8. Let K be the hypergraph with Y(K) = X, E(K) = 0. 
Since (G, K) $ y and has order < 8, it follows that (K, G) E y, and so 

r(X) < 1 V(Kn @I< 1x1. 

This verifies (ii). For (iv), let X, Y G V(G). Since r(X n Y) < Y( Y) and 
r(Xu Y) 6 8, we may assume that r(X) < 8 and similarly r( Y) < 8. Choose 
(A, B) E r of order r(X) with XC V(A) and (C, D) E y of order Y(Y) with 
Y G V(C). We claim that r(Xn Y) is at most the order of (A n C, B u II); 
for this is true if (A n C, B u D) has order 2 8, and otherwise (A n C, 
B u D) E y, and the claim follows since Xn YE V(A n C). Similarly, 
r(X u Y) is at most the order of (A u C, B n D), by (2.2). Since the sum of 
the orders of (A, B) and (C, D) equals the sum of the order of (A n C, 

B u D) and (A u C, B n D), the result follows. 1 

Thus, given y, G as before, let us say that Xs V(G) is free if 1x1 < 8 and 
there is no (A, B)E~ of order < 1x1 with Xs V(A). From (12.1) we 
deduce 

(12.2) The free sets are the independent sets of a matroid on V(G) with 
rank function r as in (12.1). 

We shall need (12.2) in a later paper. Incidentally, we do not know 
which matroids can arise this way, but they are not just the gammoids [S]. 

Secondly, for the matroid theorist it is a little unnatural to define the 
order of a separation (A, B) of a graph to be I V(A n B)I, as we have done. 
From the viewpoint of matroid theory, a more significant number is the 
Tutte-order, defined to be 

1 V(A n B)I + 1 + K(G) - K(A) - K(B), 

where x(F) denotes the number of components of F, for a subgraph F of 
G; for the Tutte-order of a separation (A, B) equals 

OW)) + &W)) - 4WW + 1, 

where r is the rank function of the polygon matroid of G. One can define 
both “Tutte-tangles” and “Tutte-branch-width” using Tutte-order instead 
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of order, and the analogue of (4.3) holds. Indeed, this definition of the 
order of a separation extends to general matroids in the natural way, and 
again the analogue of (4.3) holds (with essentially the same proof). We 
suspect, but have not shown, that in a graph, Tutte-tangles and tangles are 
essentially the same objects. Some evidence for this lies in the fact that, for 
a connected planar graph, there is a l-l correspondence between its 
tangles and the tangles in a geometric dual [S]. 
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