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Roughly, a graph has small “tree-width” if it can be constructed by piecing small
graphs together in a tree structure. Here we study the obstructions to the existence
of such a tree structure. We find, for instance:

(i) a minimax formula relating tree-width with the largest such obstructions
(ii) an association between such obstructions and large grid minors of the
graph '
(iii) a “tree-decomposition” of the graph into pieces corresponding with the
obstructions.

These results will be of use in later papers. © 1991 Academic Press, Inc.

1. TANGLES

Graphs in this paper are finite and undirected and may have loops or
multiple edges. The vertex- and edge-sets of a graph G are denoted by V(G)
and E(G). If G, = (V,, E,), G,=(V,, E,) are subgraphs of a graph G, we
denote the graphs (V,nV,, E,nE,) and (V,UV,, E,UE,) by GnG,
and G, U G,, respectively. A separation of a graph G is a pair (G;, G,) of
subgraphs with G, U G,=G and E(G,nG,)=¢, and the order of this
separation is | V(G| N G,)l.

It sometimes happens with a graph G that for each separation (G,, G>)
of G of low order, we may view one of G, G, as the “main part” of G, in
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a consistent way. For example if G is drawn on a connected surface (not
a sphere) and every non-null-homotopic curve in the surface meets the
drawing many times, then it can be shown (see [5]) that for each low
order separation (G,, G,), exactly one of G,, G, contains a non-null-
homotopic circuit. As a second example, let H be a minor of G (defined
later), isomorphic to a large complete graph; then for each low order
separation (G,, G,) of G, exactly one of G,, G, has a subgraph corre-
sponding to a vertex of H. The object of this paper is to study such
“tangles,” as we call them, since they play a central role in future papers
of this series.

Many of our results about tangles extend easily to hypergraphs, and we
have expressed them in this generality. A hypergraph G consists of a set of
vertices V(G), a set of edges E(G), and an incidence relation; each edge may
or may not be incident with each vertex. If each edge is incident with either
one or two vertices, the hypergraph is a graph. All hypergraphs in this
paper are finite. A subhypergraph G' of G is a hypergraph such that

(i) V(G')c V(G), E(G')< E(G)
(ii) for ee E(G') and ve V(G), e is incident with v in G if and only
if ve V(G') and e is incident with v in G'.

We write G' = G if G' is a subhypergraph of G. We define G, U G,, G, G,
for subhypergraphs G,, G, of a hypergraph as for graphs, and a separation
of a hypergraph, and its order, are defined as for graphs. If G is a hyper-
graph and X< E(G), G\X is the subhypergraph G’ with V(G')= V(G),
E(G')=E(G)—X; while if X< V(G), G\X is the subhypergraph with
V(G')=V(G)— X and E(G') the set of those edges of G incident with no
vertex in X. We sometimes abbreviate G\ {x} to G\x, etc.

Let G be a hypergraph and let # > 1 be an integer. A tangle in G of order
0 is a set 7 of separations of G, each of order <#, such that

(i) for every separation (4, B) of G of order <6, one of (4, B),
(B,A)isin 7
(i) if (4,, B,), (4,, B,), (45, B;)e T then A, U A, U A, #G
(iii) if (4, B)e T then V(4)+# V(G).

We refer to these as the first, second, and third (tangle) axioms. Every
tangle J has order <|V(G)|, since (G, G\E(G)), (G\E(G), G)¢ 7. The
tangle number of G, denoted 6(G), is the maximum order of tangles in G
(or O, if there are no tangles).

The main results of this paper are as follows:

(1) Tangle number is connected with “tree-width,” which was dis-
cussed in earlier papers of this series (for example, [3]); indeed, there is a
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minimax equation connecting the tangle number of a hypergraph and its
“branch-width,” which is an invariant very similar to tree-width and essen-
tially within a constant factor of tree-width.

(2) Despite our rather abstract definition of a tangle, there are in any
hypergraph G at most |V(G)| maximal tangles, and any other tangle is a
subset (a “truncation”) of one of these. Furthermore, there is a “tree-
decomposition” of G, the vertices of which correspond to these maximal
tangles.

(3) For 6=2, any minor isomorphic to a (6 x 8)-grid of a graph G
gives rise to a tangle in G of order 6, and conversely, for any 6 > 2 there
exists N(0) = 6 such that for every tangle of order > N(8) in a graph G, its

truncation to order 6 is the tangle arising from some (6 x 6)-grid minor
of G.

(4) Finally, the main result of the paper. It is too technical to state
without a number of definitions, but roughly it enables us to gain

knowledge of the global structure of a hypergraph from a knowledge of its
structure relative to each tangle. This will be applied in [6].

2. SOME TANGLE LEMMAS

In this section we develop some easy results about tangles for later use.

(2.1) If 7 is a tangle and (A, B)e T then (B, A)¢ T .
Proof. Since AU B=G, (B, A)¢ J by the second axiom. |

(22) If 7 is a tangle of order 0 and (A, B), (A',B')e T and (Au A,
B~ B') has order <0 then (AU A, BNB')ed.

Proof. Now (BN B', AuA’')¢ T by the second axiom, because (A4, B),
(A, B)eJ and AuA’U(BNB')=G. Thus (Au A, BnB')eJ by the
first axiom. ||

(23) If T has order =2 and (A, B,), (A5, B,), (A3, B3)e I then
E(4,u 4,0 A4;)# E(G).

Proof. Suppose that there exist (4, B,), (4,, B,), (A3, B3)eJ with
E(A,u A, U A;)= E(G), and choose them with |V(4,)| maximum. By the
second axiom, 4, U 4, U A, # G, and so there is a vertex v of G in none of
V(A,), V(A,), V(A3) and hence incident with no edge of G. Let K be the
hypergraph with V(K)= {v}, E(K)= . Then (K, G) has order 1 and by
the second axiom, (G, K)¢ 7 ; thus (K, G)e by the first axiom, since J
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has order >2. Now (K, G\v) has order 0, and (G\v, K) ¢ 7 by the second
axiom, since (G\v)u K=G. Thus (K, G\v)e 7. But (Ku 4,, (G\v)n B,)
has order at most the order of (4,, B;) and hence is in J by (2.2),
contrary to the maximality of |V(4,)l|, as required. |

For an edge e of a hypergraph G, the ends of e are the vertices of G
incident with e, and the size of e is the number of ends of e.

(24) Let 621, and let e be an edge of G with size >0. Let T be the
set of all separations (A, B) of G of order <0 with ec E(B). Then J is a
tangle of order 0.

Proof. The first two axioms are clear. For the third, let (4, B)e 7.
Then V(A4 n B) does not contain every end of e since | V(4 n B)| <6, and
yet e€ E(B), and so V(4)# V(G). This completes the proof. |

We remark

(2.5) G has a tangle if and only if V(G)# &.

Proof. 1If ve V(G), let J be the set of all separations (A4, B) of G of
order 0 with ve V(B). Then Z is a tangle of order 1, as is easily seen.
Conversely, since every tangle has order <|V(G)|, if G has a tangle then

ViG)y#a. |
For graphs, we can extend (2.5) as follows.

(26) If G is a graph, the tangles in G of order 1 are in 1-1
correspondence with the connected components of G, and those of order 2 are
in 1-1 correspondence with the blocks of G which have a non-loop edge.

(A block of a graph is a maximal connected subgraph any two distinct
edges of which are in a circuit.)

Proof. Since we do not need the result, we merely sketch the proof. Any
ve V(G) yields a tangle of order 1 as in (2.5), and it is easy to see that
every tangle of order 1 arises this way, and distinct v, v’ € V(G) yield the
same tangle if and only if v and v’ are in the same component of G. For
order 2, any non-loop edge yields a tangle of order 2, by (2.4), and again,
it is easy to see that every order 2 tangle arises this way, and two edges
yield the same tangle if and only if they are in the same block. ||

One might speculate that in a graph, the tangles of order d correspond
to the long-sought “d-connected components,” but that possibility is not
further explored here.
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Some further lemmas:

(2.7) Let T be a set of separations of a hypergraph G, each of order <9,
satisfying the first and second tangle axioms, Then J is a tangle if and only
if (K,, G\e)e T for every ee E(G) of size <8, where K, is the hypergraph
formed by e and its ends.

Proof. If 7 is a tangle and ec E(G) then (G\e, K,)¢ J by the third
tangle axiom, since V(G\e)= V(G), and so (K,, G\e)e 7, as required. For
the converse, let J not be a tangle, and choose (4, B)eJ with
V(A)= V(G) and with B minimal. By the second tangle axiom, 4 # G and
so E(B)#J; choose ee E(B). From the minimality of B, (4uKk,,
B\e)¢ .7, and so (B\e, AUK,)e 7. Hence (K,, G\e)¢ 7 by the second
axiom, since (4, B)e J and Au (B\e)u K,=G. But e has size <6, since
every end of e is in V(4 n B). The result follows. |

Let J be a tangle in a hypergraph G. A separation (4, B)e 7 is extreme
if A=A and B'= B for every (4, B')e 7 with A< A’ and B'< B.

(2.8) Let I be a tangle of order 0 in a hypergraph G, and let (A, B)e T
be extreme. Then (A, B) has order 6 — 1. Moreover, if (B,, B,) is a separa-
tion of B, then either By An B and B,=B, or B, An B and B, =B, or
(B,, B,) has order strictly greater than

min(| V(A4 0 B,)|, | V(4 N B,))).

In particular, there is no separation (B,, B,) of B with B,, B, non-null of
order 0, and there is no edge of B with all its ends in V(A).

Proof. By the third axiom there exists ve V(B)— V(4). Let K, be the
hypergraph with vertex set {v} and with no edges. From the extremity of
(4, B), (AuK,,B)¢7, and (B, AUK,)¢J by the second axiom, since
(4,B)eJ and Au B=G. Thus (4 U K,, B) has order >0, and so (A4, B)
has order 6 — 1.

Let (B,, B,) be a separation of B. If (4 U B,, B,)=(A4, B) then B, < 4
and B,=B, and so we may assume that (4uU B,, B,)# (4, B). From
the extremity of (4, B), (A B,, B,)¢ 7, and similarly (4 U B,, B))¢ 7.
Not both (B,,AuB,), (B;,AuB,)eJ, by the second axiom, since
AUB UB,=G, and without loss of generality we assume that
(B, AuB|)¢ 7. Since (AU By, B,)¢ 7 it follows that (4u B,, B,) has
order >0; that is,

[V(B,nB,)| +|V(AnB)—V(ANB,)|=0=|V(AnB)| + 1.

Hence |V(B, N B,)| > | V(A4 n B,)|, as required.
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It follows that there is no separation (B,, B,) of B of order 0 with B,, B,
non-null. Suppose that e E(B) has all its ends in V(4). Let K, be the
hypergraph with edge set {e} and vertex set the set of ends of e; then
(K., B\e) is a separation of B. Now K, & A4 since e ¢ E(A4), and B\e ¢ 4
since V(A4) # V(G), and so

[V(K. (B\e))| >min(| V(4N K, )|, V(4N (B\e))])-

But the left side is the number of ends of e, and so is the right side, a
contradiction. Thus there is no such e. |

(29) Let  be a tangle of order 8 in a hypergraph G, and let
(A,,B,)eT . Let (4,, B,) be a separation of order <0. If either
(i) V(B,)< V(B,), or
(i) V(A4,)=V(Ay), or
(ili) 0=2 and E(A,)<S E(A,) (equivalently, E(B,) < E(B,))
then (A,, B,)e 7.

Proof. Suppose not; then (B,, 4,)e 7. Choose (4, B)eJ, extreme,
with B, A4 and B A4,. Then AU A;#G by the second axiom. Since
AuUuB=G and 4, U B,;=G it follows that B& 4, and B, & 4.

Case 1. V(B,)< V(B,).

Then V(B,)c V(B,)<=V(A), and E(B,)n E(B)=, since from (2.8)
every edge of B has an end in V(G)—V(4)< V(G)— V(B,;). Thus
E(B,)< E(A) and so B, < A4, a contradiction.

Case 2. V(A,)< V(4,).

Since (B,, 4,)eJ and (B,, A,) has order <6, and V(4,)< V(4,), it
follows that (B, 4,)eJ, since the theorem holds in Case 1. But this
contradicts (2.1).

Case 3. 0>2 and E(4,)< E(4,).

Since E(B)< E(A,)< E(A,) and B¢ A,, there is a vertex v of B with
vé¢ V(A,). Since E(B)< E(A,), it follows that v is incident with no edge of
B. By (2.8), V(B)={v} and E(B)=, and since V(4)+# V(G), it follows
that V(4 n B)= (. By (2.8) again, =1, a contradiction. ||

For future reference, we observe the following.

(2.10) Let J be a tangle of order =3 in a graph G, and let (A, B)e T .
Then B has a circuit.
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Proof. Tt suffices to prove the result when (4, B) is extreme. By (2.8),
[ANB|>2; let v, v,e V(4 B) be distinct.

(1) There is no separation (B,,B,) of B of order <1 with

For such a separation would satisfy
min(|V(AnB))|, V(AN By)|) =1

and B, B, # B, contrary to (2.8).

Moreover, from (2.8), v, and v, are not adjacent in B. From (1) and
Menger’s theorem, there are two paths of B between v, and v,, internally
disjoint, and hence B has a circuit, as required. |

3. A LEMMA ABOUT SUBMODULAR FUNCTIONS

Now we turn to our first main result, the minimax theorem relating
tangle number and branch-width. It is most convenient to prove a
generalization, which is a statement about submodular functions.

Let E be a finite set. A connectivity function on E is a function x from the
set of all subsets of E to the set of integers such that

(i) for X< E, k(X)=«k(E—X)
(ii) for X, YSE k(XuY)+x(XnY)<k(X)+k(Y).

For instance, if G is a hypergraph and E = E(G), we would let x(X) be the
number of vertices of G incident both with an edge in X and with an edge
in E— X; or if M is a matroid with rank function r and E = E(M), we could
let k(X)=r(X) + r(E—X).

A subset X € E is efficient if k(X)<0. A bias is a set # of efficient sets,
such that

(i) if X< FE is efficient then # contains one of X, E— X
(i) ifX,Y,Ze#B then XUYUZ#AE.

A bias 4 is said to extend a set o/ of efficient sets if .o = #. We are con-
cerned with the problem of, given ./, when is there a bias extending .«/?

Let us describe an obstacle to the existence of such a bias. A tree is a
connected non-null graph with no circuits; its vertices of valency <1 are its
leaves. A tree is ternary if every vertex has valency 1 or 3. (Thus, ternary
trees have >2 leaves.) An incidence in a tree T is a pair (v, e), where
ve V(T), ee E(T), and e is incident with v. A tree-labelling over of is a pair
(T, «), where T is a ternary tree, and « is a function from the set of all
incidences in T to the set of efficient subsets of E, such that
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(i) for each ee E(T) with ends u, v, say, a(u, e)=E —a(v, €)
(ii) for each incidence (v,e) in T such that v is a leaf, either
ofv, e)=E or a(v, e} u X =E for some Xe .o/
(iii) if ve V(T) has valency 3, incident with e,,e,, e;, say, then
a(v, e;) v al(v, e;)Va(v, e5)=E.

(3.1) If there is a bias extending </ then there is no tree-labelling
over .

Proof. Suppose that 4 is a bias extending «/, and (7T, «) is a tree-
labelling over .. An incidence (v, e) of T is passive if (v, ¢) ¢ #. For each
edge e with ends u, v, # contains exactly one of a(u, e), a(v, e) since they
are efficient complementary sets. Thus there are precisely |E(T)| passive
incidences. Since T has |E(T)| + 1 vertices there is a vertex v of T in no
passive incidence; that is, a(v, ¢) € # for all edges e incident with v. If v has
valency 1 then by the definition of a tree-labelling, either a(v, e)=F or
a(v, e)u X = E for some X e .«/, in either case contrary to the definition of
a bias. Thus v has valency 3. Let e, e,, e; be the edges of T incident with
v; then

(v, e;) v, ay)valv, es)=F

by the definition of a tree-labelling, and yet each a(v, e;) € 4, contrary to
the definition of a bias, as required. |J

The main result of this section is a converse of (3.1), in a strong form,
that if there is no bias extending .o/, then there is an exact tree-labelling
over &/. “Exact” is defined as follows. Let (7, «) be a tree-labelling over /.
A fork in T is an unordered pair {e, ¢,} of distinct edges of T with a com-
mon end (the nub of the fork). A fork {e,, e,} with nub ¢ is exact (for «)
if aft,e,) N a(t,e,)= . We say that (T, a) is exact if every fork of T is
exact. We require the following lemma.

(3.2) If there is a tree-labelling over of then there is an exact tree-
labelling over o/, using the same tree.

Proof. Choose a tree T such that there is a tree-labelling (7, o) over </.
Choose tye V(T). For each e V(T) we denote by d(z) the number of edges
in the path of T between t, and . Choose « satisfying (1), (2), and (3),
below.

(1) (T, a) is a tree-labelling over <.

(2) Subject to (1), 3 k(a(v, e)) (summed over all incidences (v, e) of
T) is minimum.

(3) Subject to (1) and (2), 3. 3~9Y (summed over all non-exact forks,
where t is the nub of the fork) is minimum.
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We claim that (7, «) is exact. For suppose that some fork {e,, e,} with
nub ¢ is non-exact. Then ¢ has valency 3 in 7, since T is ternary; let e; be
the third edge of T incident with v, and let ¢, have ends ¢, ¢, (i=1, 2, 3). Let
A=t e), A, =ua(t, e,). Define o’ by

2(t,e)=A,— 4,
o (ty, e)=alt;, e))VA,=E—(4,—4,)
O(’(U, e) = a(va e) fOI’ (U’ e) # (ta €1), (tl’ el)'
We claim that k(4, — 4,) = k(A4,). For if k(4, — A,) = 0 this is true, and so

we may assume that 4, — A4, is efficient. Then o' is a tree-labelling over </,
and from (2),

K(d,(t, el)) + K(a’(tls el)) > K(d(t, el)) + K(a(th €1));
that is,
k(A —A)) +K(E— (A, — A4,)) 2 k(A4,) + K(E— A,).

Since k(E—(A;—A4,))=k(A, — A4,) and k(E— A,)=k(A,), it follows that
K(A,— A,)=2k(A4,), as claimed. Similarly x(4,— A4,)>x(A4,). But since k
is a connectivity function,

K(A)+K(E—A4;) 2 k(AU (E—4,)+x(A4, 0 (E— 4,));
that is,
K(A4;)+x(Ay) ZKr(A,—A;)+ (4, — A4,).

Thus equality holds throughout, and in particular, k(4, — 4,) =k(A4,) and
k(A,— A{)=k(A,). From the symmetry between ¢, and ¢,, we may assume
that d(t) < d(t,). With o' as before we see that o’ is a tree-labelling over &/
and X k(a'(v, €)) =2 k(a(v, €)). Moreover, {e,, e,} is exact for a', and any
fork of T which is exact for « is exact for a’ except possibly for forks {e, e, }
with nub ¢,. There are at most two such forks, and since d(¢,) > d(¢), this
contradicts (3), as required. |}

(3.3) Let (T, a) be an exact tree-labelling over </, and let (u, f) be an
incidence in T. Let T, be the component of T\ f which contains u. Then, as
(v, €) ranges over all incidences of T such that v is a leaf of T and ve V(T,),
the sets E—a(v, e) are mutually disjoint and have union E — a(u, f).

Proof. We proceed by induction on |V(T,)|. If u is a leaf the result
is trivial, and so we may assume that u is incident with three edges
f, f1, fo; let f; have ends u, u; (i=1, 2), and let T, be the component of
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T\ f; containing u; (i = 1, 2). Then V(T,) = V(T,) v V(T,) v {u} and
V(T )~ V(T,)=&. Now the result holds for (u,, f,) and (u,, f5) by the
inductive hypothesis. Moreover, since E—a(u,, f;)=alw, f;) (i=1,2) and
(T, a) is exact, it follows that

(E—a(uy, /1)) 0 (E—alus, f2)) = E—a(u, f)
(E—aluy, f1)) N (E—a(uy, )= &

The result follows. |

(3.4) If there is no bias extending o/ then there is an exact tree-labelling
over <.

Proof. By (3.2), it suffices to prove that there is a tree-labelling over .«7.
Suppose that E=F. If (¥ is efficient, let T be a two-vertex tree, and
let a(v, e) = & for both incidences (v, e) of T; (T, «) is the required tree-
labelling. If ¢ is not efficient, then .o/ is a bias, a contradiction. Thus we
may assume that E# ¢J. Choose x € E, and let # be the set of all efficient
sets BS E with x¢ B; then # is a bias. Since # does not extend 7, it
follows that o/ # (.

We proceed by induction on the number N of efficient sets X = E such
that neither X nor E— X is a subset of any member of .«/. We suppose first
that N=0. Let # be the set of all efficient sets which are subsets of mem-
bers of .. Since .« € &, 4 is not a bias. But for every efficient set X, either
Xe# or E—Xed since N=0. Thus there exist X, X,, X;eZ with
X,uX,uX;=E. Let T be the tree with four vertices ¢,, ¢,, t,, t; and
edges e; with ends ¢y, ¢, (i=1,2, 3). Define a(ty, ¢,)=X,, a(t;, ¢,)=E— X,
(i=1,2,3). Then (T, «) is a tree-labelling over </, as required.

Thus we may assume N >0. Choose an efficient set X < E such that
neither X nor E— X is a subset of any member of ./, and subject to
that with X minimal. Since o #, X#. Let &= 0u{X},
= U {E—X}. Since there is no bias extending </, there is no bias
extending . or «%. From our inductive hypothesis there are exact tree-
labellings (7T, a;) over .o/, and (T,, a,) over 4. A leaf t of T, is bad if
o,(t,e)# E and a,(t,e) u A # E for all A€/, where (¢, ¢) is an incidence,
and we define the bad leaves of T, similarly. Now if 7 is a bad leaf of T,
and (¢, e) is an incidence, then o (f,e)u X=E and so E—u,(t,e)= X. If
E—u,(1, e) # X, then from our choice of X, either E —a,(¢, ¢) = 4 for some
Aesf or a(t,e)= A for some Ae/. In the first case o, (f,e)U A=E,
a contradiction, since ¢ is bad. In the second case E—Xca,(t,e)<= A,
contrary to our choice of X. Thus E—oa,(t, e) = X, for every bad leaf 1.
Since X # (7, it follows from (3.3) that there is at most one bad leaf in T,.
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On the other hand, we may assume that T, has at least one bad leaf, for
otherwise (T, o) is the desired tree-labelling over «. Let ¢, be the unique
bad leaf of T, incident with an edge ¢,. Then a,(,, ¢g) = E — X. Let the
ends of e, be ty,s. Then a,(s,e,)=2X. Since X#E and E— X is not a
subset of any member of o7, s is not a leaf of T';. Let S = T'|\t,; then s has
valency 2 in S.

Let the bad leaves of T, be ¢, ..., t,, incident with edges ¢,, ..., e,, respec-
tively. Then as before

ay(t;, e ) V(E—X)=E,

that is, XS a,(t,, e;), for 1 <i<r. Let S', ..., S” be r copies of S, mutually
disjoint. For ve V(S) and ee E(S) let v and e’ denote the corresponding
vertex and edge of S’ (1<i<r). Choose S’,.., S so that s'=¢;, and
V(S)n V(T,)=t, (1<i<r), and let T be the tree formed by the union of
T, and S, .., S". Every incidence of T is an incidence of exactly one of T,
S, .., 8". We define « by
o(v, e) = a,(v, e) if (v, e) is an incidence of T,
a(v', e)=a,(v,e) (1<i<r) if (v, e)is anincidence of T}.

We claim that (7, «) is a tree-labelling over 7, and this follows easily from
the fact that

ay(s, o) = X Say(t;, €;) (I<i<r).

Then the result follows. J

In summary then we have shown

(3.5) The following are equivalent:
(1) there is no bias extending o/
(i) there is a tree-labelling over <o/

(iii) there is an exact tree-labelling over </ .

We observe also

(3.6) If there is an exact tree-labelling over o, then either E= (J, or
Ee oA, or there is an exact tree-labelling (T, o) over &/ such that for each
leaf v and incident edge e, a(v, ) # E.

Proof. Choose an exact tree-labelling (7, a) with |V(T')] minimum.
Suppose that for some leaf v, and incident edge ey, a(vy, €o) = E. Let v be
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the other end of e,. Then a(v, ¢4} = &. If v is also a leaf, then either E= &
or Ee .o/, as required. We assume then that v has two other neighbours
vy, v, in T; let e; be the edge joining v and v, (i=1, 2). Now since (7, «)
is exact, a(v, eq), a(v, e,), a(v, e,) are mutually disjoint and have union E.
Since a(v, eq) = &, it follows that a(v,, ¢,) = a(v, e,) and a(v, e;) = x(v,, €5).
Let T’ be obtained from T by deleting v and v, and adding a new edge f
joining v, and v,. We define «'(v,, f)=0a(v,, €,), a'(v,, f)=a(v,, e,), and
otherwise o' =a; then (77,a') is an exact tree-labelling over o/ with
|V(T")| <|V(T)|, a contradiction. |

4, BRANCH-WIDTH

A branch-decomposition of a hypergraph G is a pair (7, t), where T is a
ternary tree and 7 is a bijection from the set of leaves of T to E(G). The
order of an edge e of T is the number of vertices v of G such that there are
leaves t,, t, of T in different components of T\e, with t(¢,), z(¢,) both inci-
dent with v. The width of (T, t) is the maximum order of the edges of T,
and the branch-width B(G) of G is the minimum width of all branch-decom-
positions of G (or 0 if |E(G)| <1, when G has no branch-decompositions).
For example, Fig. 1 shows a branch-decomposition with width 2 of a
series-parallel graph.

Let us prove some properties of branch-width. A graph H is a minor of
a graph G if H can be obtained from a subgraph of G by contracting edges.

(4.1) If H is a minor of a graph G, then B(H) < B(G).

Proof. We may assume that |E(H)| =2, for otherwise S(H)=0. Let
(T, t) be a branch-decomposition of G with width B(G). Let S be a minimal
subtree of T such that t ~!(e) e V(S) for all ee E(H), and let T’ be obtained
from S by suppressing all vertices of valency 2 (that is, for any vertex of
valency 2 we delete it and add an edge joining its neighbours and continue
this process until no such vertices remain). Let 7’ be the restriction of t to
the set of leaves of T'; then (77, t') is a branch-decomposition of H, and
its width is <B(G), as is easily seen. The result follows. |

FIGURE 1
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(4.2) A graph G has branch-width

(i) 0 if and only if every component of G has <1 edge

(i) <1 if and only if every component of G has <1 vertex of valency
=2

(iii) <2 if and only if G has no K, minor.

Proof. Statement (i) is clear. The “if” part of (ii) is easy and “only if”
follows from (4.1) and the fact that a 2-edge circuit and a 3-edge path both
have branch-width 2. The “only if” part of (iii) follows similarly, while the
“if” part may be proved by induction on the size of G, using Dirac’s
theorem [1] that any non-null simple graph with no K, minor has a vertex
of valency <2. |

The main result of this section is the following. We denote by y(G) the
maximum size of an edge of G (setting y(G)=0 if E(G)= ). We recall
that 6(G) is the tangle number of G.

(4.3) For any hypergraph G, max(f(G), y(G))=0(G) unless y(G)=0
and V(G)+# .

Proof. Suppose first that y(G) =0 and that J is a tangle in G of order
=>2. Choose (4, B)e 7, extreme. By (2.8), E(B)= J, and so E(A4)= E(G),
contrary to (2.3). Thus, if y(G)=0 then 6(G)< 1. Moreover, if y(G)=0
then f(G)=0, and 6(G)=1 if and only if V(G)# &, by (2.5). Thus if
9(G) =0 the result holds, and we henceforth assume that y(G) > 0.

Let E=E(G), and for X € E, define k(X) to be the number of vertices
of G incident both with an edge in X and with an edge in E— X. Choose
k>y(G), and let k(X)=ky(X)—k. It is easily seen that x is a connectivity
function, and for every e E(G), {e} is efficient. Let o/ = {{e}:e€ E(G)}.

(1) There is a bias extending </ if and only if G has a tangle of order
k+1.

For if 7 is a tangle in G of order k+1, let Z#={E(A):(4, B)e T }.
Then B is a bias, by (2.3), since k> y(G) > 1, and it extends .« by the third
axiom. For the converse, let # be a bias extending .o/, and let J be the
set of all separations (A4, B) of G of order <k with E(A4)e 4. We claim that
J is a tangle of order k + 1. For if (4, B) is a separation of G of order <k,
then E(A4) and E(B) are both efficient, and so one of E(A4), E(B) is in 4,
E(A), say; but then (4, B)e 7. Thus the first axiom holds, and clearly so
does the second. Since k > y(G) and # extends <, (K,, G\e)e I for every
ec E, where K, is the hypergraph consisting of e and its ends. By (2.7), 7
is a tangle of order k + 1, as required.

(2) There is an exact tree-labelling over </ if and only if f(G)< k.
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For if |E| <1, then B(G)=0<k and there is an exact tree-labelling over
</, and so we may assume that |E| > 2. If (T, 7) is a branch-decomposition
of G of width <k, define a(v, ) for each incidence (v, e) to be the set of
all edges t(t) of G with ¢ and v in different components of T\e. Then (T, «)
is an exact tree-labelling over .«. For the converse, suppose that there is an
exact tree-labelling over o/. Since |E| > 1, it follows that E¢ &/ and E # J,
and so by (3.6) we may choose an exact tree-labelling (T, «) over .« such
that for each leaf v and incident edge e, a(v, e) # E. For such v, ¢, there
exists {f}e.o/ such that a(v,e)=E— {f}; we define f=1(v). By (3.3),
(T, ©) is a branch-decomposition of G of width <k.

From (3.5), (1), and (2) we deduce that

(3) For all k=y(G), G has a tangle of order k+1 if and only if
k < B(G).

Now we deduce the theorem. By (2.4), 8(G) = y(G). By setting k= 6(G)
we deduce from (3) that B(G) < 6(G), and so max(8(G), y(G)) <0(G). By
setting k = 0(G)— 1 we deduce from (3) that 8(G) <max(8(G), y(G)). The
result follows. |

We apply (4.3) (actually, the easy part of (4.3)) for the following.

(44) For n=0, K, has tangle number [ (2/3)n’), and for n=3, it has
branch-width [ (2/3) n’).

Proof. The result holds for n<3, and we assume that n>4. Put
0=[(2/3)n7]. It is easy to see that K, has a branch-decomposition of width
< 6. Thus the result follows from (4.3) if we can find a tangle of order 6.
Let 7 be the set of all separations (4, B) of G=K, with |V(4)| <0. If
(A4, B) is any separation of G then one of V(4), V(B) equals V(G), and
so its order equals the smaller of |V(4)|, | V(B)|. Hence if (A, B) has order
<6 then J contains one of (A4, B), (B, A), and the first axiom is satisfied.
For the second axiom, suppose that (4;,B)eJ (1<i<3) and
A, UA,ud;=G. Since

V(A + V(A +1V(A43)| <30 -3 <2n

some vertex v of G is in at most one of V(A4,), V(4,), V(A4s);
v¢ V(A4,)u V(A4,), say. Since |V(A45)| <8 <n some vertex u of G is not in
V(A,). But then the edge joining u and v is in none of E(A4,), E(A4,), E(A43),
a contradiction. Thus the second axiom is satisfied. For the third, let
ec E(G), and let K be the graph formed by e and its ends; then
(K, G\e)e J by definition of J, since 6 >3, and so 7 is a tangle by (2.7).
This completes the proof. |
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Let us mention the following weakening of the second tangle axiom.

(4.5) Let 0>2, and let T be a set of separations of a hypergraph G,
each of order <0. Suppose that the first tangle axiom holds, and

(i) if (4,, B,), (45, B,)€T then B, & A,

(i) there do not exist subhypergraphs A, A,, A;< G, mutually edge-
disjoint, with A, VA, UA;=G and with (A,, A, U A4;), (4,, A;UA)),
(A3, 4, VA, allin 7.

Then the second tangle axiom holds.

Proof. Suppose that the second axiom fails, and choose (4,, B,),
(A5, By), (A3, B3)e T such that 4, U A, U A; = G, satisfying

(1) Xi<i<3|V(4,n B))| is minimum, and
(2) subject to (1), Ay, A,, A are minimal.

We observe

(3) For1<i<3,ifveV(A,n B;) then v is incident with an edge of B,;
and also with an edge of A,, unless v belongs to no other A; (j#1i).

For if v is incident with no edge of B; then (A4,, B,\v) is a separation, and
it belongs to J; by the first axiom and (i), contrary to (1). If v is incident
with no edge of 4, then (4,\v, B;) is a separation, and it belongs to 7, by
the first axiom and (i), and so by (1), v belongs to no A4; (j#1).

(4) For 1<i,j<3withi#j, A, B,.

For let i=1, j=2, say. The sum of the orders of (4, " B,, B, U A4,) and
(A; v B,, By~ A4,) equals the sum of the orders of (4,, B,) and (4,, B,).
If (4,nB,, B,uA,) has order at most that of (4,, B,), then since
(AiNnBy)uA,UA3;=G and (4,nB,, B,ud,)eT by the first axiom
and (i), it follows from (2) that A, " B,=A,; that is, 4, B,. Thus
E(A,) = E(B,). Suppose that 4,  B,, and choose ve V(4,)— V(B,). Then
ve V(4,n A4,), and by (3), v is incident with an edge in E(A4,) < E(B,); yet
v¢ V(B,), a contradiction. Thus A, < B,. Similarly, if (4,n B,, B,uU 4,)
has order at most that of (4,, B,), then 4, < B, and 4, < B,. The result
follows, since one of these inequalities must apply.

From (4), 4, UA4,< B;, and so (A4;, 4; U 4,) is a separation of order
<0. Since (43, B;)e 7, it follows from (i) that (4,u 4,, 4;)¢7, and
s0 (A;, Ay uAd,)eT, from the first axiom. Similarly (A4,, 4,u 4,),
(4,, A5 A,)e T, contrary to (ii). |

582b/52/2-2
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5. BRANCH-WIDTH AND TREE-WIDTH

A tree-decomposition of a hypergraph G is a pair (7, t), where T is a tree
and for te V(T), t(t) is a subhypergraph of G with the following proper-
ties:

i) U@():re(T))=G
(ii) for distinct ¢, t'e V(T), E(z(t)n(t))= &
(iii) fort, ¢, t" e V(T), if ¢’ is on the path of T between ¢ and ¢” then
(t)nt(t") s ().

The width of such a tree-decomposition is the maximum of (| ¥ (z(¢))] — 1),
taken over all te V(T), and the tree-width w(G) of G is the minimum width
of all tree-decomposition of G. (Thus, w(G)=0 unless V(G)= ¢, when
o(G)=-1.)

Let us compare tree-width and branch-width.

(5.1) For any hypergraph G, max(B(G), y(G)) € w(G) +1 <
max(_(3/2) B(G) ], y(G), 1).

Proof. 1If y(G)=0 then B(G)=0 and w(G) <0, and the result holds. We
assume then that y(G)>0, and so V(G)# & and E(G)# &. If |E(G)| =1
then f(G)=0 and w(G)=79(G)—1, and again the result holds. Thus we
may assume that |E(G)| = 2. Since the removal of isolated vertices does not
change any of f, y, w, we may assume that there are no isolated vertices
in G. We show the second inequality first.

Let (T, t) be a branch-decomposition of G of width B(G). For each
te V(T) we define a subhypergraph o(z) of G as follows:

(i) if ¢tis a leaf of T, let a(¢) be the hypergraph consisting of t(7) and
its ends

(i) if ¢ is niot a leaf of T, let U, consist of those vertices v of G for
which there are edges f, g of G, both incident with v, such that ¢ lies on the
path of T between t "!(f) and t ~'(g). Let V(a(t))=U,, E(c(?))= .

It is easy to verify that (7, o) is a tree-decomposition of G. Let us bound
its width. If 7 is a leaf of T, |V(a(2))| < y(G). If ¢ is not a leaf of T, let ¢,,
e,, e, be the three edges of T incident with ¢. For any ve U,, v contributes
to the order of at least two of e,, e,, e;, and so 2 |U,| <3B(G). Thus,
this tree-decomposition has width <max(y(G), (3/2) f(G))—1, and so
o(G)+ 1 <max(y(G), (3/2) B(G)), as required.

Now we show the first inequality. Clearly y(G) < w(G) + 1. Let (T, 7) be
a tree-decomposition of G of width w(G).
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(1) We may assume that for each e E(G), there is a leaf t of T with
E(t(t)) = {e} and V(1(t)) the set of ends of e, and hence that E(1(t)) = & for
each te V(T) with valency >2.

For if for some e there is no such ¢, we choose '€ V(T') with e € E(t('));
we add a new vertex ¢ to T adjacent only to ¢'; we remove e from 7(¢'), and
define 7(#) to be the hypergraph formed by e and its ends. This provides a
new tree-decomposition of G of width w(G). By continuing this process we
may arrange that (1) holds.

(2) We may assume that |E(t(t))| =1 for each leaf t of T.

For by (1), |E(z(¢))| < 1. If E(z(t))= let T’ be obtained from T by
deleting ¢, and let ' be the restriction of t to V(T’); then since G has no
isolated vertices it follows that (77, ') is a new tree-decomposition of G of
width w(G) still satisfying (1). By continuing this process we may arrange
that (2) holds.

(3) We may assume that every vertex of T has valency <3.

For if re V(T) has valency >4, we may choose a tree 7’ and an edge
fof T’ such that T is obtained from T’ by contracting f, and the two ends
t,,t, of f both have valency less than the valency of ¢, and we define
t(t;) =1(¢,) = t(¢). The new tree-decomposition still has width w(G) and
still satisfies (1) and (2), and by repeating this process we may arrange that
(3) holds.

Now let E(t(t)) = {a(t)} for each leaf ¢ of T. Let S be the tree obtained
from T by suppressing each vertex of valency 2. Then (S, ¢) is a branch-
decomposition of G. For f € E(S), the order of fin (S, o) is at most the
number of vertices in 7(z), where ¢ is an end of f, and hence at most
w(G)+ 1. Thus B(G) < w(G)+ 1, as required. ||

Incidentally, both extremes of (5.1) can occur. For if G =K, (for some
n>0 divisible by 3) then w(G)=[(3/2)B(G)]—1, by (44), since
w(G)=n—1, while if G is obtained from K,, by deleting a perfect
matching (for some n>4) then it can be shown that w(G)=n—1 and

B(G)=n.
We deduce

(5.2) For any hypergraph G, 8(G) < w(G)+ 1 <(3/2) 6(G).
Proof. For from (5.1),
- max(B(G), 7(G)) < w(G) + 1 <max(3B(G), ¥(G), 1)

and from (4.3), max((G), y(G))=60(G) unless y(G)=0 and V(G)# .
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Moreover the proof of (2.5) shows that (G) =1 unless V(G)= . Thus if
7(G) #0 and hence V(G)# J, then

8(G) =max(B(G), 7(G)) S w(G) + | <max(38(G), 7(G), 1)
= 3max(B(G), 7(G)) = 30(G),

as required. If y(G)=0 and V(G)+# &, then w(G)=0 and 6(G)=1, and
the result holds. Finally, if V(G)= ¢, then 6(G)=0 and w(G)= —1, and
again the result holds. |

6. NEw TANGLES FROM OLD

The object of this section is to provide some operations on tangles. The
simplest is the following. Let J be a tangle of order 6 in a hypergraph G,
let 1<6'<86, and let 7' be the set of all members of J with order <6'.
Then it is easy to see that 7' is a tangle in G of order 6'; we call "’ the
truncation of J to order §’. We observe also that if 7, g are tangles in
G then 7'< 7 if and only if J' is a truncation of 7.

For graphs G, a second construction extends a tangle in a minor of G to
a tangle in G, as follows.

(6.1) Let H be a minor of a graph G, and let ' be a tangle in H of
order 0=2. Let I be the set of all separations (A, B) of G of order <8 such
that there exists (A', B'Ye ' with E(A') = E(A)n E(H). Then J is a tangle
in G of order 0.

Proof. We must verify the three axioms. First, let (4, B) be a separation
of G of order <. Then we may choose a separation (4’, B’) of H' such
that E(4')= E(A) n E(H), and every vertex of V(4' n B’) is incident with
an edge of E(A’) and with an edge of E(B’). Then (A4’, B') has order at
most the order of (4, B) and so <#; thus, ' contains one of (4', B'),
(B', A’), and so J contains one of (A, B), (B, A).

For the second axiom, suppose that (A4, B;)eJ (1<i<3) with
Ay wA,uA;=G, and let (4], Bj)e 7' (1<i<3) be the corresponding
separations of H. Then E(A; u A5 A3) = E(H), contrary to (2.3). Finally,
it is clear from (2.7) that the third axiom holds. |

We call J in (6.1) the tangle in G induced by 7.

A third construction reverses this process. Let G be a hypergraph and W
a set. We denote by G/W the hypergraph G’ with vertex set V(G)— W and
edge set E(G), in which ve V(G’) and ee E(G’) are incident if and only if
they are incident in G. (This may produce edges with no ends.)
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(6.2) Let I be a tangle of order 0 in a hypergraph G, and let W < V(G)
with |W| < 6. Let ' be the set of all separations (A’, B') of G/W such that
there exists (A, BYe T with W= V(AN B), A/W=A', and B/W = B'. Then
T is a tangle in G/W of order 0 — | W|.

Proof. Certainly every member of J ' has order <6—|W)|. For any
separation (A4’, B') of G/W of order <8 — |W]|, there is a separation (A, B)
of G of order <8 with W= V(4 n B), A/W=A’', and B/W =B, and since
J contains one of (4, B), (B, A), it follows that J contains one of
(A, B'), (B', A’). Thus the first axiom is satisfied.

For the second, suppose that (4;,B/)eJ’ (1<i<3). Choose
(A;, B)e T with WeV(A4,nB,), A;/W=A!, and B,/W=B; (1<i<3).
Since 4, U A, U 45 +# G, it follows that 4] U A5 U A5 # G/W, and hence the
second axiom holds.

For the third, let (4, B')e 7 '. Choose (4, B)e J with W< V(4N B),
A/W=A', and B/W=B'. Then V(A4)# V(G), and so V(A4')# V(G/W), as
required. |

We denote the tangle 9 of (6.2) by 7 /W. We observe

(6.3) Let 7,0,G, W be as in (6.2), and let (A, B) be a separation of G.
Then (A/W, BIW)e T /W if and only if (A, B)e I and |V(AnB)—W|<
0—1|W.

Proof. Let A™ be a subhypergraph of G with V(4*)=V(4)u W and
E(A*)=E(A), and define B* similarly. Then (4%, B*) is a separation of
G, W V(A" nB*Y), At/W=A4/W, and B*/W = B/W. By definition of
TIW, (A", B*)e T if and only if (4/W, B/W)e T /W. But by (2.9),
(A4*,B*)es if and only if |[V(A* nB*) <0 and (4, B)eJ. Since
[V(AT* " B*)| = |W| + | V(A n B)— W], the result follows. ||

7. A TANGLE IN A GRID

Let 622 be an integer. Let G be a simple graph with V(G)=
{(4,7):1<i,j< 6}, where (i,j) and (i,j’) are adjacent if |i'—i|+
|j"=jl=1. We call G a 8-grid. The object of this section is to prove
the existence of a natural tangle of order 6 in a #-grid.

Let G be the 0-grid defined above. For 1 <i<#, let P, be the path of G
with vertex set {(i,j):1</j<0}, and for 1<;<0, define Q; similarly.
When X < E(G), we define d(X) to be the set of vertices v e X such that v
is incident with an edge in X and with an edge in E(G) — X.

(7.1y If X< E(G) and |6(X)| <0 then X includes E(P;) for some i
(1<i<0) if and only if X includes E(Q;) for some j (1< j<0).
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Proof. Suppose that E(P,)< X for some i (1<i<#0). Then V(Q))
contains an end of an edge in X for 1< <, since each Q; meets P,. But
not every @, meets 9(X), since |0(X)| <0, and so for some j (1<,;<0),
E(Q;) < X, as required. ||

If X< E(G), we say that X is small (in G) if {0(X)| <6 and X includes
E(P;) for no i (1<i<0). The following is the main lemma used to obtain
the required tangle, and we are grateful to D. Kleitman and M. Saks for
finding the proof.

(7.2) If Gisa0-gridand X, X,, X5< E(G) with X,u X, U X5 = E(G),
then not all of X, X,, X5 are small in G.

Proof. We proceed by induction on 6. If § =2 the result is trivial, and
so we assume that 6> 3 and that the result is true for § — 1. Let P, .., Py,
a,, .-, 0y be as before.

If E(Q;) = X,, X,, or X, for some j, the result is true by (7.1). Thus we
may assume that each E(Q;) meets at least two of X, X,, X3, and in
particular, without loss of generality, that

E(Qo) 0 X, # O # E(Qo) N X>.

We suppose that all of X, X,, X5 are small. Thus, for 1<, <0 and
I<k<3, if E(Q;) meets X, then V(Q;) meets d(X,). Moreover, if both
ends of Q; are incident with edges in X, then |V(Q;)nd(X,) =2. Now
suppose that neither E(P;) nor E(P,) meets X;. Then for 1< /<8 both
ends of Q; are incident with edges in X, U X,. From the above remarks, we
deduce that

IV(Q)) no(X 1)+ [V(Q) 0 d(Xy) =2

By summing over j, we find that {0(X;)| + |0(X,)| =20, a contradiction.
Thus one of E(P,), E(P,), say E(P,), meets X;. Hence E(P,u Q) meets
each of X, X,, X5 and hence V(P,u Q) meets each of d(X;), d(X5),
3(X5).

Put G'=G\V(P,u Qy). Then G’ is a (6 — 1)-grid. Put X}, =X, n E(G")
(1<k<3). Then X U X,uX;=E(G'). Let ¢ be the 0 function in G’
Now

0'(X}, )= o(X,) (1<k<3)
since V(P,u Q,) meets 4(X,), and so

X)l<8-2  (1<k<3).
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By our inductive hypothesis, one of X}, X3, X4 is not small in G'. By (7.1),
we may choose i, j' with 1<i’, j'<8—1, and 1 <k <3 such that

E(P,vQ,)nG)E X,

If k=1 or 2, then every V(Q;) contains an end of an edge in X, (1<,/<0);
for if j=0, this was shown earlier, and if j<6, then V(Q;) meets V(P;).
Hence each V(Q;) meets d(X,), and so |0(X,)| >0, a contradiction.
Similarly, if k=3, then every V(P;) meets d(X,), and again we have a
contradiction. This completes the proof. |

From (7.2) we may infer the existence of the desired tangle. Given a
f-grid G with P,, ..., Py, Q,, .., Q4 as before, let 7 be the set of all separa-
tions (A4, B) of G of order <6 such that E(A) is small

(7.3) 7 is a tangle in G of order 6.

Proof. Let (A, B) be a separation of G of order <. Suppose that
neither E(A) nor E(B) is small. Choose A, i with 1<h, i<6 such that
E(P,)< E(A) and E(P;) < E(B). Thus V(P,) < V(A) and V(P;)< V(B). For
1</<0, F#V(Q,nP,)sV(Q;nA), and similarly V(Q,n B)#,
and so V(Q,nANnB)# since (A4,B) is a separation. But then
| V(A n B)| >0, a contradiction. Thus one of E(A4), E(B) is small, and so I
satisfies the first axiom. That  is a tangle then follows from (7.2). |

The following was shown in [3].

(7.4) For every =2 there exists ¢ =0 such that every graph with tree-
width = ¢ has a 6-grid minor.

Since any graph with a 6-grid minor has tree-width >0, one can say,
roughly, that a graph has large tree-width if and only if it has a large grid
minor. But (5.2) tells us that a graph has large tree-width if and only if it
has a tangle of large order. One might therefore hope for a direct connec-
tion between tangles and grid minors, not via tree-width. The connection
in one direction is easy, as follows. Let H be a minor of G, isomorphic to
a 0-grid. Then the tangle in H described in (7.3) induces a tangle 4 in G
of order 6, by (6.1). A kind of converse is provided by the following
strengthening of (7.4), proved in [7].

(7.5) For every 0 =2 there exists ¢ = 60 such that for every graph G and
every tangle I in G of order =@, the truncation of I to order 0 is the
tangle induced by some 0-grid minor of G.
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8. ROBUST AND TITANIC SEPARATIONS

The object of this section is to prove a technical lemma for use in a later
paper. A separation (A4, B) of G is robust if for every separation (C, D) of
A, one of the separations (C, Bu D), (D, Bu C) has order at least that of
(A4, B). (Incidentally, Noga Alon (unpublished) has shown that deciding if
a separation is robust is NP-complete.) We need the following lemma.

(8.1) Let (A, B) be a robust separation of G, and let (C, D) be a separa-
tion of G. Then one of (Au C, BnD), (Auw D, Bn C) has order at most
that of (C, D).

Proof. Now (AN C, An D) is a separation of A. Since (A4, B) is robust,
we may assume (exchanging C, D if necessary) that

V(AN C)n(BuD))|=V((AnC)n(Bu(4nD))) =|V(4n B).
But
| V(A ~ B)| + |V(Cn D)
=|V((ANnC)n(BuD))|+ V(4 C)n (Bn D))|,

and the result follows. |

A separation (A4, B) of G is titanic if for every triple (X, Y, Z) of
subhypergraphs of A4 such that A=Xu YU Z and E(X), E(Y), E(Z) are
mutually disjoint, we have either

IV((XuY)nZ) =2 V(X Y)nB)
or

V(YU Z)nX)| = |V(YUZ)n B)|
or

[V(ZuX)n Y)| = |V((Zu X)n B)|.

(8.2) Every titanic separation is robust.

Proof. Let (A, B) be a titanic separation, and let (C, D) be a separation
of A Put X=C, Y=D, and let Z be the hypergraph with
V(Z)=E(Z)=. Since (A4, B) is titanic, we deduce that either
0= |V(AnB)| or |V(CnD)|=|V(BND)| or |[V(CnD)|=V(BNC)|. If
V(A n B)= (¥ then (A4, B) is robust. Thus, by symmetry, we may assume
that [V(Bn C)| < |V(Cn D)|. But

|V(A A B)| =|V(BAC)| +|V(BnD)— V(C)|
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and

[V((BuC)nD)|=|V(CnD)|+|V(BnD)-V(C),

and so | V(AN B)|<|V((Bu C)n D), as required. |

The main result of this section is another way to construct new tangles
from old, the following,

(8.3) Let (C, D) be a separation of a hypergraph G, and let (C', D) be
a titanic separation of a hypergraph G', with V(Cn D)= V(C'n D). Let
be a tangle in G of order 0>=2 with (C,D)eT. Let I’ be the set of all
separations (A', B') of G’ of order <0 such that there exists (A, B)e I with
E(ANnD)Y=E(A'nD). Then ' is a tangle in G’ of order 6.

Proof. We verify the hypotheses of (4.5). For the first axiom, let (4’, B')
be a separation of G’ of order <. Since (C’, D) is robust by (8.2), we may
assume by (8.1) (exchanging A’, B’ if necessary) that (4’ n D, B’ u C’) has
order at most that of (4', B'). Now (4'n D, (B'nD)u C) is a separation
of G with the same order as (4'~D, B'u ('), since BuC' =(B' nD)uC’
and

(4’AD)NC=A4'"(DNC)=A"n(DNC")=(4'AnD)nC.

Hence (A'nD, (B nD)uC) has order <8 and so 4 contains one of
(4'nD, (BnD)uC), (BnD)uC, A'nD). If the first, then
(4, B')e 7', while if the second, then since E(((B°nD)uC)nD)=
E(B'n D), it follows that ' contains (B’, A’). This verifies that 7'
satisfies the first axiom.

For (4.5) (i), suppose that (47, B}), (45, B5)e T . Choose (4;, B,))e T
with E(4,nD)=E(A;n D) (i=1,2). Since (C,D)e T, E(CuAd,UAd,)+#
E(G) by (2.3), and so E(D)Z E(A,u A,). Hence E(D) & E(A} U A), and
so A1U A5#G', and B} & A5, as required.

For (4.5) (ii), suppose that A4}, A}, A% are mutually edge-disjoint
subhypergraphs of G’ with union G’, and (4}, B/)eJ ' for i=1,2,3,
where Bi=A4,0A4%, B,=A,0 A}, By=A7uUA,. Choose (4, B)eT
with E(4,nD)=E(A.nD) (1<i<3). Let F;=A4/nC’' (1<i<3). Then
FiOF,uF;=C', and since (C’, D) is titanic we may renumber so that

[V((F,u F3) N Fy)| 2 [V((F,u F3)n D);
that is,

|V(B) " C'A})| = | V(B C A D).
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Now V(470 C'Yy=V(C")u (V(4])— V(C")), and so

V(410 C)n(Byn D))l
=|V(B\n C'n D) +|(V(4})— V(C)) " V(B0 D).

Moreover, since FV(A;n B))—V(C')=(V(4})—V(C))n V(B nD), it
follows that

V(40 BY)| = V(Bin C' Ay +|(V(4)) = V(C) n V(B n D).

We deduce that (4} u C’, B} n D) has order at most that of (47, B}) and

hence < 6. It follows that ((4; n D) u C, B} n D) is a separation of G of order

<0, and so J contains one of (BinD, (A\nD)uC), ((4inD)uC,
" N D). The first is impossible by (2.3), since (C, D), (4,, B,)e ZJ and

E((BinD)uCu A,)= E(G).
The second is impossible by (2.3), since (A4,, B,), (45, B;}€J and
E((A1nD)uCuAd,u 4;)=E(G).

This contradiction completes the verification of (4.5) (ii). Thus, from (4.5),
we deduce that ' satisfies the second axiom.

To verify the third axiom, we verify the hypothesis of (2.7). Let e€ E(G’)
with size <0, and let K, be as in (2.7). If e € E(D), then since (K,, G\e)e I
by (2.7) applied to G, 7, it follows from the definition of 7’ that
(K., G'\e)eT'. If eeE(C'), then since (C,D)eJ and E(CnD)=
E(K,n D), it again follows that (K,, G'\e)e J "' from the definition of 7.
Thus, from (2.7), we deduce that .7 satisfies the third axiom, as required. |

As an application, we observe

(84) Let J be a tangle of order 0=2 in a hypergraph G, and let
e€ E(G) with at most one end. Let T’ be the set of all separations (A, B')
of G\e of order <@ such that there exists (A, Bye T with E(An (G\e)) =
E(A'). Then 9’ is a tangle in G\e of order 0.

Proof. Let C be the subhypergraph of G formed by e and its ends and
let C'=C\e and D=G\e. Then (C, D)eJ and (C’, D) is titanic, as is
easily seen, and the result follows from (8.3). ||

Thus, if we delete all edges of G with <1 end, we do not change its
tangle number. (This holds even for tangle number <1, as is easily seen.)
(8.4) has the following consequence.
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(8.5) Let T be a tangle in a graph G of order 02 1. Let W< V(G) with
[W) <. Let T' be the set of all separations (A', B') of G\W of order
<O0—|W| such that there exists (A, B)e T with W< V(ANB) and
A\W=A', B\W=DPB'.Then "' is a tangle in G\W of order 8 — |W)|.

Proof. Since |W| < 0, the result is obvious when 6 =1, and so we may
assume that § >2. Now G\ W is obtained from G/W by deleting edges with
at most one end, and J ' is obtained from J /W by repeating the operation
of (8.4). The result follows. |

9. LAMINAR SEPARATIONS

We have seen in (5.2) that the tangles of large order are obstructions to
the existence of tree-decompositions of small width. Qur next result is a
counterpart of this, that there is a tree-decomposition into pieces which
correspond to the tangles.

Let (4,, By), (4,, B,) be separations of a hypergraph G. We say these
separations cross unless either 4, <A, and B,<=B,, or A, < B, and
A, B,or Bjc A,and B,=A,,or Bjc B, and A,= A,. A set of separa-
tions is laminar if no two of its members cross.

Let (T, ) be a tree-decomposition of a hypergraph G. For each ee€ E(T),
let Ty, T, be the components of T\e and let

Gi=|) (z(0):te (T))  (i=1,2).

Then (G{, G%) is a separation of G, and we call (G$, G%) and (G5, G) the
separations made by e (under the given tree-decomposition).

(9.1) If (T, ) is a tree-decomposition of G, then the set of all separations
of G made by edges of T is laminar. Conversely, if {(A;, B,):1<i<k} isa
laminar set of separations of G, there is a tree-decomposition (T, ) of G such
that

(i) for 1<i<k, (A,, B;) is made by a unique edge of T

(ii) for each edge e of T, at least one of the two separations made by
e equals (A;, B;) for some i (1<i<k).

The proof is easy and is left to the reader.

We wish to arrange a “tie-breaking” mechanism so that no two distinct
separations are counted as having the same order (except for reversal). A
tie-breaker A in a hypergraph G is a function from the set of all separations
of G into some linearly ordered set (A4, <), satisfying certain axioms given
below. For each separation (A4, B), A(A4, B) is called the i-order of (A4, B),
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and, if (4, B), (C, D) are separations, we say that (A, B) has smaller
4-order than (C, D) if A(A4, B) < A(C, D). The tie-breaker A must satisfy the
following conditions:

(i) if (4, B), (C, D) are separations of G, they have the same
A-order if and only if (4, B)=(C, D) or (4, B)=(D, C)

(ii) if (4, B), (C, D) are separations of G, then either (4 U C, Bn D)
has A-order at most that of (4, B) or (4~ C, Bu D) has A-order smaller
than that of (C, D)

(iii) if (A, B), (C, D) are separations of G and (A4, B) has smaller
order than (C, D), then (A4, B) has smaller i-order than (C, D).

We refer to these as the first, second, and third tie-breaker axioms.
(9.2) In every hypergraph there is a tie-breaker.

Proof. Let (A, <) be the set of all triples of real numbers, ordered
lexicographically; thus, (a, b, ¢) < (a’, b, ¢')ifa<a’,ora=a’ and b< b, or
a=a and b=b" and c<c¢'. For any hypergraph G, let L(G)=
V(G)UE(G). Let G be a hypergraph. Choose a function p from
L(G) x L(G) into the set of positive real numbers such that

(1) u(x, y)=wu(y, x) for all x, ye L(G), and
(ii) for every choice of rationals «(x,y) (x,yeL(G)) such that
Yy ax, y) p(x, y) =0, we have a(x, y) = —a(y, x) for all x, ye L(G).

For each separation (4, B) of G, define A(4, B)=(N,, N,, N;), where

Ny =|V(4n B)|
N,=Y (u(x, x):xe V(AN B))

Ny=Y (u(x, y):xe L(4) — L(B), y € L(B) — L(A)).

(1) If (A4, B) and (A’, B') are separations of G with the same A-order
then (A', B')= (A, B) or (B, A).

For let (A, B) have A-order (N,, N,, N;), and let (4’, B’) have A-order
(N, N3, N3). Let V(AnB)=2, L(A)— L(B)=X, L(B)— L(A)=Y, and
define Z', X', Y’ similarly. Then (X, Y, Z), (X', Y’, Z') are partitions of
L(G), and we must show that Z’=Z and that (X', Y')= (X, Y) or (¥, X).
Now since N, =N},

Y oux,x)=Y pu(x, x),

xeZ xeZ'
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and so Z=Z' from (ii) above. Moreover, since N;= N7,

Y (ux, p):xeX,yeY)=Y (u(x,y):xe X', yeY’).
Hence
{x,y}:xeX,yeY}={{x,y}:xeX,yeY'},
and the claim follows.

(2) Let (A, B), (C,D) be separations of G. Then so are (A C,
Bn D), (An C, BuD), and the sum of their A-orders is at most the sum of
the A-orders of (A, B), (C, D).

This follows by comparing (for each x, ye L(G)) the number of
occurrences of u(x, y) and u(y, x) in the expressions for the A-orders of
(4, B) and (C, D) with the corresponding numbers for the other two
separations.

From (1) and (2), it follows that the first and second tie-breaker axioms
are satisfied, and clearly so is the third, as required. ||

The following strengthening of the second axiom is sometimes useful.

(9.3) Let 1 be a tie-breaker in a hypergraph G, and let (A, B), (C, D) be
separations of G. Then either

(i) (Avu C, BN D) has smaller A-order than (A, B), or
(i) (AN C, Bu D) has smaller A-order than (C, D), or
(iii) C< A4 and B D, or
(iv) B=C=G and A=D and E(4)= .

Proof. Since we may assume that (ii) is false, it follows from the second
axiom that (4 U C, B D) has A-order at most that of (4, B), and we may
assume that equality holds, for otherwise (i) holds. Thus, by the first
axiom, (Au C, BAD)=(A4, B) or (B,A). If (AuC, Bn D)= (A, B) then
C<c A and B D and (iii) holds, and so we may assume that (AU C,
Bn D)= (B, A). Hence Au C=Band Bn D= A. In particular, 4 < B, and
since 4 U B=G, it follows that B=G, and 4 =D since BN D= A.

By the second axiom applied to (D, C), (B, A), we deduce that either
(BuD,AnC) has A-order at most that of (D,C) or (BNnD, AuC)
has A-order less than (B, 4). In the second case, (i) holds, and if strict
inequality holds in the first case, then (ii) holds. Thus we may assume that
(BuD, An C) has the same A-order as (D, C), and so (BuD, AnC)=
(D, C) or (C, D), by the first axiom. In the first case, B D and C< 4,
and (iii) holds, and so we may assume that (Bu D, A n C)=(C, D); that
is, C=G and A = D. Since B= G, it follows that (iv) holds. |}
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Given a tie-breaker A, a separation (A4, B) of G is A-robust if for every
separation (C, D) of A4, one of (C, Bu D), (D, Bu C) has A-order at least
the A-order of (4, B). Clearly a A-robust separation is robust. The separa-
tion (A, B) is doubly A-robust if both (A4, B) and (B, A) are A-robust.

(9.4) Let (A, B), (C, D) be doubly A-robust separations of G. Then
(4, B) and (C, D) do not cross.

Proof. By the symmetry, we may assume that of the four separations
(AnC, BuD), (AnD, BuC), (BNC, AuD), (BnD, Au C), the first

has smallest A-order. Since (Cn A, DN A) is a separation of A4 and (4, B)
is A-robust, one of

(CNA, (DnA)uB), (DnA,(CnA)uB)
has A-order at least that of (4, B). These separations are (4 C, Bu D)
and (4 n D, Bu C), respectively, and so, in view of the assumption in the
first sentence of this proof, (4 "D, Bu C) has A-order at least that of
(4, B). Similarly, (BnC, Au D) has i-order at least that of (C, D). By

(9.3) applied to (B, A4), (C, D), we deduce that either C< B and A= D, or
A=C=G and B= D, and in either case (4, B), (C, D) do not cross. |

10. TANGLE TREE-DECOMPOSITIONS

Let 7, 7, be tangles in a graph G. They are indistinguishable if one is
a truncation of the other, that is, either 7, € 7, or 9, € 7, and otherwise
they are distinguishable. A separation (A4, B) of G distinguishes 7, from 7,
if (4, B)e 7, and (B, A) e 7.

(10.1) Either there is a separation of G which distinguishes 7, from 7,
or I, I, are indistinguishable and not both.

Proof. Since there is a separation distinguishing 7, from 7, if and only
if there is one distinguishing 7, from 7|, we may assume that 7, has order
at least that of 7,. Then

7, and 7, are distinguishable
> I &I,
<> there exists (4, B)e 7, with (A4, B) ¢ 7,
<> there exists (4, B) e 7, with (B, A)e 7,

<> there is a separation distinguishing 7, from 7,,

as required. ||
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Given a tie-breaker 4, a separation (A4, B) which distinguishes 7, from
T, is a (9, J,)-distinction if it has minimum A-order of all separations
which distinguish J; from ;. From the first tie-breaker axiom, (4, B) is
unique, and we may speak of the (7, 7,)-distinction. (Of course, different
choices of the tie-breaker A result in different (7, 7,)-distinctions in
general.) There is a (7, 7;)-distinction if and only if 4,7, are dis-
tinguishable.

(10.2) If 9., T, are distinguishable tangles in G, the (7., 7,)-distinction
is doubly A-robust.

Proof. Let (A, B) be the (77, 7,)-distinction. Since (B, A) is the
(7, 91 )-distinction, it suffices to show that (A4, B) is A-robust. Let (C, D)
be a separation of 4, and suppose that both (C, Bu D) and (D, Bu C)
have A-order strictly smaller than that of (4, B). Then (C, BuD),
(D, Bu C) have order at most that of (4, B) and hence less than the
orders of 4, and ;. Since (A4, B)e J, it follows that (C, BuD)e J,
and (D, Bu(C)ed;. Since (A, B) is the (7,, J;)-distinction it follows
that (BuD,C)¢J, and (BuC,D)¢7,, and hence (C, BuD),
(D,BuC)eJ,. But (B,A)e7,, and BuCuD=G, contrary to the
second tangle axiom. Thus one of (C, Bu D), (D, Bu C) has Z-order at
least that of (A4, B), and hence (A, B) is A-robust, as required. |

(10.3) Let 91, .., 7, be mutually distinguishable tangles in a hypergraph
G with n>1, and let 1 be a tie-breaker. Then there is a tree-decomposition
(T, 7) of G, where V(T)={t,, ..., t,,}, with the following properties:

(i) For every ec E(T) and for 1 <i<n, if T,, T, are the components
of T\e and t;€ V(T,) then

(Y w0 U wo)e
te V(Ty) te V(T3)

(ii) For all i#j with 1 <i, j<n, let e be the edge of the path of T
between t; and t; making separations of smallest A-order; then these separa-
tions are the (7, 7;)- and (7, 7,)-distinctions.

Proof. For i# j with 1<, j<n, there is a (7;, 7,)-distinction. Each of
these separations is doubly A-robust by (10.2), and so by (9.4) no two of
them cross. By (9.1) there is a tree-decomposition (7, t) of G such that

(i) for 1<i, j<n with i#j, a unique edge of T makes the (7, 7,)-
distinction ’

(ii) for every ee E(T), there exist i# j with 1<, j<n such that e
makes the (7}, 7))- and (7, 7,)-distinctions.
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For 1 <i<gn, we say toe V(T) is a home for 7, if for every ee E(T),

( U 0, U r(t))w',-,

te V(Ty) te V(T?)
where T, T, are the components of T\e and t,e V(T)).
(1) For tyeT and 1 <i<j<n, t, is not a home for both I, and J,.

For let e be an edge of T making the (7;, J))-distinction. Let T, T, be
the components of T\e, where the (7, 7;)-distinction (A4, B) is

( U =, U ‘L’(t)).
te V(T1) te V(T2)
Then (4, B)e J; and (B, A4)eJ;, and so if t, is a home for J; then
to¢ V(T,), and if ¢, is a home for 7, then t, ¢ V(T,). Since toe V(T L T)),
to is not a home for both 7; and J}, as required.

For the moment, fix i with 1 <i<n. An edge ee E(T) is i-relevant if the
separations made by e have order less than the order of Z;. Let us direct
each i-relevant edge e so that

( U 0, U r(t))egj.,

te V(Ty) te V(T)

where T, T, are the components of T\e and V(T,) contains the head of
e. We observe that

(2) toe V(T) is a home for J; if and only if every i-relevant edge of T
is directed towards t.

Let H; be the set of homes for 7.
(3) H,#  and H, is the set of vertices of a subtree of T.

The second assertion follows from the first and (2). To show that
H,+# 7, it suffices (by an elementary property of trees) to show that for
all i-relevant edges e, ¢’ of T, if T,, T, are the components of T\e with
the head of e¢ in WV(T,), and T, T, are defined similarly, then
V(Ty) N V(T3) # . Now

( U 0 U r(z))ef,-

te V(Ty) te V(T)
and

< U =, U r(z))eg’i,

te V(T}) re V(T)
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and so T, & T, by the second tangle axiom; thus, T, " T is non-null, as
required.

(4) If e E(T) has ends x,ye V(T), and xe H,, y¢ H,, then e is
i-relevant.

For since xe H; and y¢ H,, some edge of T is directed towards x and
not towards y. The only possible such edge is ¢, and so e is directed and
hence i-relevant.

(5) For 1<i,j<n, and ec E(T), e makes a separation which dis-
tinguishes 7, from 7 if and only if e lies on the (unique) minimal path of T
between V(H,) and V(H;) and is i- and j-relevant.

For if e makes a separation which distinguishes Z; from 7, this separa-
tion has order less than the smaller of the orders of 7, 7;, and so e
is j-relevant and j-relevant, and from (2), e lies on the unique minimal
H,— H; path in T. Conversely, if e lies on this path and is i- and j-relevant,
then it makes a separation (4, B) with (4, B)e J; and (B, A)e .7, by
definition of H; and H,, as required.

(6) For 1<i<n, |H,|=1.

For suppose that |H,| =2 for some i Choose ¢,,t,€ H,, distinct and
adjacent in T (this is possible by (3)) joined by an edge e. Then e is not
i-relevant. Choose j, k with j#k and 1<, k<n such that e makes the
(}» T )-distinction. Let P be the minimal H,— H, path in T. Then e € E(P)
by (5), and so j, k #i. Let fe E(T) make the (7, 7;)-distinction. Then by
(5), f € E(P). Since fis i-relevant and e is not, f makes a separation of order
(and hence i-order) strictly smaller than that of the (7, 7;)-distinction,
and by (5) makes a separation of that order which distinguishes J, from
I, a contradiction, as required.

(1) Hyu - UH,=WV(T).

For suppose that ¢,e V(T)—(H, v --- UH,). Since n#0, |V(T)| =2,
and so there is a neighbour of #, in T. Let the edges of T incident with ¢,
be ey, ..., e, let T, be the component of T\e, not containing #,, and let T »
be the other component of T\e, (1< p<k). The separations made by
ey, .., ¢ are all distinct, since each of them is the (J;, 7;)-distinction for
some i, j, and the (7, J))-distinction is made by a unique edge, from our
initial choice of the tree-decomposition. Thus we may assume, by the first
tie-breaker axiom, that the separations made by e, have i-order strictly
more than the separations made by e,, .., e,. Choose i, j with i+# j such
that

( VIECNVIED)

te V(T1) re V(TY)

582b/52/2-3
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is the (7, 7))-distinction. Let P be the minimal H;— H; path in 7. Then
e, € E(P), and since to¢ H;u H;, E(P) contains one of e,, .., e, say e,.
Now

( U 0, U r(z))

te V(Ty) 1€ V(T3)

has A-order strictly less than that of the (7}, 7))-distinction and hence has
order at most that of the (7;, 7;)-distinction. By (5), ¢, makes a separation
which distinguishes 7; from 7;, with A-order strictly smaller than that of
the (7, 7))-distinction, a contradiction.

Let H,= {1,} (1 <i<n); then the theorem is satisfied. {

We call the tree-decomposition of (10.3) the standard tree-decomposition
of G relative to 7, ..., 7,.

From (10.3) we deduce a corollary mentioned earlier. We merely sketch
the proof since we do not need the result.

(10.4) In any hypergraph G there are at most |V(G)| maximal tangles.

Proof. Let 7, .., 7, be the distinct maximal tangles in G, and let 1 be
a tie-breaker. Since they are mutually distinguishable, there is a standard
tree-decomposition (7T, t). Let e, fe E(T) be distinct, making separations
(4, B) and (C, D), say, where A= C and D< B. If V(4)=V(C) then it
follows easily that 4 =C, B= D, a contradiction; thus V(4)< V(C) and
similarly V(D)< V(B). From this one can show that |E(T)| < |V(G)| —1,
and hence n=|V(T)| <|V(G)|, as required. |

11. STRUCTURE RELATIVE TO A TANGLE

Now we come to the last main result of the paper. We have seen in (5.2)
that if G has small tangle number, then it has a tree-decomposition of small
width. Our problem here is, suppose that G has large tangle number, but
relative to each high order tangle the graph has a structure or decomposi-
tion of a certain kind X, say; what can we infer about the global structure
of G from this local knowledge? One might guess that G should have a
tree-decomposition into pieces each with structure X, but that is false.
Nevertheless, it turns out that G has a tree-decomposition into pieces
which “almost” have structure X, and we need to know this for an applica-
tion in [6].
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A design is a pair (H, M), where H is a hypergraph and M is a set of
subsets of V(H). If (T, 1) is a tree-decomposition of a hypergraph G and
toe V(T), and ¢, has neighbours ¢, ..., ¢, in T, then

(t(to), {V(x(to) n2(2)):1<i<k})

is a design, called the design of to in (T, 7). If & is a class of designs, a tree-
decomposition (7, 7) is said to be over & if for each t,e V(T'),  contains
the design of ¢, in (7, 7).

Let (H, M), (H', M) be designs and let Z< V(H') be such that

(i) H is a subhypergraph of H' and V(H')—V(H)=Z
(ii) every edge of H' is an edge of H
(iii) for every Xe M’ with X#Z, Xn V(H)e M.

(Z may or may not be a member of M'.) In these circumstances, we say
that (H', M’) is an n-enlargement of (H, M) for every integer n> |Z|. If &
is a class of designs, we denote the class of all n-enlargements of members
of & by &". For any integer n >0, we denote by £, the class of all designs
(H, M) with |V(H)| <n.

A location in a hypergraph G is a set {(4,, B,), .., (44, B,)} of separa-
tions of G such that 4,=B; for all distinct 4,j with 1<ij<k If
{(4,, B,), .., (Ax, B,)} is a location in G, then

(GAByN - NB; {V(4,nB;):1<i<k})

is a design, which we call the design of the location.

Let 821 be an integer, and let & be a class of designs. We say that &
is @-pervasive in a hypergraph G if for every subhypergraph G’ of G and
every tangle J in G’ of order >0 there is a location % in G’ such that
Z <7 and the design of & belongs to .. Our object is to deduce infor-
mation about the global structure of G from the knowledge that a certain
class of designs is 0-pervasive. We show

(11.1) For any 0= 1, let & be a class of designs which is 0-pervasive in
a hypergraph G; then G has a tree-decomposition over 0 =20 Ry 5.
We need the following lemma.
(11.2) Let 021, let & be B-pervasive in G, and let Z<V(G) with
|Z| =360 — 2. Then either
(i) there is a separation (A, B) of G of order <6 with

HZVV(4) A V(B)|, (ZuV(B)NV(4) <363
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or

(ii) there is a location {(A,, B,), .., (Ay, Bi)} in G, with design in &,
such that for 1 <i<k,

|1ZnV(A)| <|V(4;n B <0.

Proof. Let I be the set of all separations (4, B) of G of order <0 such
that |Zn V(4)| < |V(4 N B)|. Since |Z|>3(0—1) the second and third
tangle axioms hold for . Suppose the first does not; then there is a
separation (A4, B) of order <@ such that |[ZnV(A4)|, |ZnV(B)|>
|V(A ~ B)|. But then

(Z o V(4)nV(B)=|V(AnB)| +|Z~V(4)|
<|ZaV(A)+1Z-V(4)|=1Z|=30-2

and similarly (Zu V(B))n V(4)|<36—3, and so (i) holds. We may
assume then that J is a tangle of order 6.

Since & is O-pervasive, there is a location {(A4,, B,), .., (A, BY)} T
with design in &. Thus for 1 <i<k, |ZnV(4,)|<|V(4;n B;)| <8, and so
(i1) holds, as required. |

If (H, M) is a design and Z< V(H) then (H, Mu{Z}) is a design,
which we call the Z-extension of (H, M). In order to prove our main result
(11.1) it is convenient for inductive purposes to prove a somewhat
strengthened form, the following ((11.1) may be derived from this by
setting Z = ().

(11.3) Let & be a class of designs, and let 0 = 1. Let G be a hypergraph
such that & is O-pervasive in G, and let Z< V(G) with |Z| <30 —2. Then
there is a tree-decomposition (T, t) of G over S*°~2 U Ryy_, such that for
some toe V(T), Z< V(1(ty)) and L2 U Ry _ 5 contains the Z-extension
of the design of ty in (T, 7).

Proof. Let us remark, first, that from the definition of f-pervasive, if &
is B-pervasive in G then it is 6-pervasive in every subhypergraph of G. Let
S =920, ,. For fixed &, 0, we prove that the result holds for all
G, Z by induction on |V(G)|. Thus, let us assume that it holds for ail G’,
Z' with |V(G")| <|V(G)|. First we show that it holds for G, Z if
|Z] =36 —2.

Therefore, let |Z]| =36 —2. By (11.2), one of the following two cases
applies.

Case 1. There is a separation (4,, 4,) of G of order <0, with

(Zw V(4,))n V(A4,)l, (ZoV(4,)) 0 V(4,)] <303
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Let Z,=(ZuV(4,))nV(A,), Z,=(ZUV(A4,))nV(A4,). Then for
i=1,2, Z,cV(A;) and |Z;|<30—3. Since |Z,|<|Z| and so ZZ Z,, it
follows that ¥(A,) # V(G), and so the result holds for 4,, Z,, and similarly
for A,, Z, by our inductive hypothesis. Since % is -pervasive in 4, and
in A,, it follows that for i= 1, 2, there is a tree-decomposition (7, t;) of 4;
over &', and there exists ¢, V(T;) such that Z,< V(z,(¢,)) and &’ contains
the Z-extension of the design of ¢; in (7T, t;). We choose T, T, to be
disjoint. Take a new vertex f,, and let T be the tree with vertex set
V(Ty)u V(T,) U {ty}, where T\t,=T,u T, and ¢, is adjacent to ¢, #,. Let
1(1,) be the hypergraph with vertex set Zu V(A4, n 4,) and with no edges,
and let ©(¢1)=1,(¢) if te V(T;) (i=1, 2). Then (T, t) is a tree-decomposition
of G, as is easily seen. The design of ¢, in (T, 7) is (z(to), {Z;, Z,}), which
is in %yy_ 5, since

WV(t(to)l =1Z 0 V(A n ) SIZI + V(4,0 4,)| < (30 -2)+ (6 1),

and the Z-extension of this design is also in %#,,_5, for the same reason.
For i=1,2 and each re V(T,), the design of ¢ in (7, 7) equals the design
of tin (T, t,) (or its Zextension if r=¢;) and so belongs to %’. Hence the
theorem holds in this case.

Case 2. There is a location {(4;, B,), ... (s, B,)} in G with design
in &, such that for 1 <i<k,

|1Z A V(A4)| < V(4,0 B)| <6.

For 1<i<k, let Z,=(ZuV(B,))nV(A4,). Then |Z,| <2(0—1)<36 -2,
and Z;,c V(4,). Also,

|ZAV(4,)<0<30—2=|ZnV(G),

and so V(A4,)# V(G). By our inductive hypothesis, there is a tree-decom-
position (T, 1,) of 4, over &', and there exists ¢, V(T;) such that
Z, 2 V(z{t;)) and &’ contains the Z;-extension of the design of ¢; in
(T;, t;). We choose T, .., T, to be disjoint. Take a new vertex ¢,, and
let T be the tree with vertex set V(T,)u --- U V(Ty) v {to}, where T\ty=
T,V .-+ uT, and ¢, is adjacent to ¢,, .., t,. Let 7(¢,) be the hypergraph
with vertex set

V(GNnB,nB,n ---NnB)uZ

and with edge set and incidence relation the same as those of
GAB, NBy,n ---nB,. Let t1(¢t)=1,(¢) if te V(T;) (1<i<k). Then (T, 1)
is a tree-decomposition of G, as is easily seen. Let us examine the designs
of the vertices of T in (T, 7). First, let 1 <i<k and let 1€ V(T;) with r+#£1,.
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Then the design of ¢ in (7, 1) equals the design of ¢ in (T, t,), and hence
this design belongs to &’. Secondly, let 1<i<k and let 1=1,; the design
of t in (T, 1) is the Z -extension of the design of ¢ in (7, 7,) and hence also
belongs to %'. Finally, the design of 7, in (T, ) is (t(s,), {Z;:1<i<k})
and its Z-extension is (t(¢), {Z;:1<i<k}u {Z}). But these designs are
both |Z|-enlargements of

(GAB,Nn ---nB,, {V(A,nB):1<i<k})e ¥,

and so they both belong to #*°~2< %", as required.

Thus, we have proved that the result holds for G, Z when |Z| =360 —2.
Now let Z < V(G) with |Z] <30 — 2. If |V(G)| < 36 — 2 then
(G, {Z})eRsy_3<= ¥, and so the desired tree-decomposition (7, t) exists
with T a 1-vertex tree. We may assume then that |V(G)| =36 — 2. Choose
Z'cV(G) with Z< Z’ and |Z’| =360 — 2. As we have seen above, the result
holds for G, Z’, and so there is a tree-decomposition (7, t,) of G over &',
such that for some ¢, € V(T,), Z' < V(1,(¢,)) and &’ contains the Z’-exten-
sion of the design of ¢, in (T, t,). Take a new vertex ¢,, and let T be the
tree with vertex set V(T,)u {¢,}, where T\t,= T, and ¢, is adjacent to ¢,.
Let t(z,) be the hypergraph with vertex set Z’' and no edges, and for
te V(T,), let t(¢)=1,(z). Then (T, 1) is a tree-decomposition of G. For
te V(T) with t#1¢,, t,, the design of ¢ in (T, ) equals the design of ¢ in
(Ty,7,) and hence belongs to &’'. The design of ¢, in (7T, 1) is the
Z'-extension of the design of 11 in (T, t,) and hence belongs to &'
Finally, the design of ¢, in (T, 7) is (t(¢,), {Z'}), and the Z-extension of
this is (t(2y), {Z,Z'}), and both of these belong to %, ,< ' This
completes the proof. ||

We remark that in essence (11.1) generalizes (5.2). For let & = . Then
it follows from (11.1) that if G is a hypergraph with no tangle of order 6
(and so & is B-pervasive) then G has a tree-decomposition over %,,_5, and
hence w(G) <40 —4; in other words, w(G)<46(G). Apart from the size of
the multiplicative constant, this is the main part of (5.2).

12. TANGLES AND MATROIDS

Finally, let us discuss some matroidal aspects of tangles. Let 7 be a
tangle in a hypergraph G, of order 6. For X < V(G), let us define r(X) to
be the least order of a separation (4, B)e I with X < V(A), if one exists,
and 6 otherwise.

(12.1) r is the rank function of a matroid on V(G).
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Proof. We must check [8] that

(1) r is integral-valued
(ii)) for X< V(G), 0<r(X) <X
(i) for X Y V(G), r(X)<r(Y)
(iv) for X, Y<V(G), (Xu Y)+r(XnY)<r(X)+r(Y).

(i) and (iii) are clear. For (ii), certainly r(X)>0. Since r(X) <0, we may
assume that [X| < 6. Let K be the hypergraph with V(K)=X, E(K)= .
Since (G, K)¢ 7 and has order <@, it follows that (K, G)e J, and so

rX)<|V(KnG) <X

This verifies (ii). For (iv), let X, Y< V(G). Since (XN Y)<r(Y) and
r(Xu Y)<6, we may assume that r(X) <6 and similarly r(Y) < 6. Choose
(4, B)e I of order r(X) with X< V(4) and (C, D)€ J of order r(Y) with
Y < V(C). We claim that #(X' n Y) is at most the order of (4 n C, Bu D);
for this is true if (A C, BuD) has order >0, and otherwise (4 C,
BuD)e7, and the claim follows since X Y< V(4N C). Similarly,
r(Xu Y) is at most the order of (4 U C, Bn D), by (2.2). Since the sum of
the orders of (4, B) and (C, D) equals the sum of the order of (4 C,
Bu D) and (AU C, Bn D), the result follows. |

Thus, given 7, G as before, let us say that X < V(G) is free if | X] <6 and
there is no (4, B)eJ of order <|X| with X< V(4). From (12.1) we
deduce

(12.2) The free sets are the independent sets of a matroid on V(G) with
rank function r as in (12.1).

We shall need (12.2) in a later paper. Incidentally, we do not know
which matroids can arise this way, but they are not just the gammoids [8].

Secondly, for the matroid theorist it is a little unnatural to define the
order of a separation (A4, B) of a graph to be | V(A4 n B)|, as we have done.
From the viewpoint of matroid theory, a more significant number is the
Tutte-order, defined to be

V(AN B)| 4+ 14+ x(G)—x(A)—«(B),

where k(F) denotes the number of components of F, for a subgraph F of
G; for the Tutte-order of a separation (A4, B) equals

r(E(4)) + r(E(B))—r(E(G)) +1,

where r is the rank function of the polygon matroid of G. One can define
both “Tutte-tangles” and “Tutte-branch-width” using Tutte-order instead
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of order, and the analogue of (4.3) holds. Indeed, this definition of the
order of a separation extends to general matroids in the natural way, and
again the analogue of (4.3) holds (with essentially the same proof). We
suspect, but have not shown, that in a graph, Tutte-tangles and tangles are
essentially the same objects. Some evidence for this lies in the fact that, for
a connected planar graph, there is a 1-1 correspondence between its
tangles and the tangles in a geometric dual [5].
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