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Introduction 

The first half of this paper is devoted to working out a correspondence 

between real analytic Eisenstein series on congruence subgroups of SL.(Z) 

and Ramanujan series [27]. the latter viewed as p-adic modular forms . To 

give the simplest non-trivial example. let. k and I be strictly positive inte- 

gers. with k + 12 1 + 3. and k + 1- I even. Then the real analytic Eisen- 

stein series on SL.(Z) of weight k + I + 1 
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d f n  k !n1 ( n  + mT)'
@:1(~) = - C ( n , m ) i i o , o )  z = x + i y ,

ZY' (n + m ~ ) ~ ~ '' 
corresponds to the Ramanujan series 

What gives substance to this correspondence is the fact that  both sides agree 
on all complex-multiplication curves on which both are defined. Let us t r y  
to make this precise. 

To begin, we view @?,, homogeneously, as a function of lattices M c C. 
For any lattice M c C, we denote by a(M) the area of a fundamental paral-
lelogram. (Thus a(Z + Zr) = y if r = x + iy). Then we define 

If we are given a complex elliptic curve E with a non-zero invariant dif-
ferential w, we can form the lattice M(E, w) of all periods of w over elements 
of H,(E, Z). This allows us to view @?,,as a function of pairs (E, w), by 
defining 

@?,1(E, w) = @Y, ( W E ,  4) 
Suppose now that (E,  w) is defined over a finite algebraic number-field 

K c  C, and that  i t  has complex multiplication which is defined over the same 
field. Let p be any prime of K such that (E,w) has "good reduction" a t  p, 
and such that the underlying rational prime p splits in the multiplication 
field. Then E has ordinary reduction a t  @,and so i t  makes sense to evaluate 
any p-adic modular form, e.g., @,,,, a t  (E,  w) viewed p-adically: the value 
@,,,(E,w) will be a p-adic integer in the p-adic completion K,. The precise 
result (cf 4.1, 4.8) is that the complex number @T,,(E,w) lies in K,  the p-adic 
number @k,l(E,w) lies in K, and the two are equal. (That @;,,(E,w) lies in 
K is a fundamental result of Damerell 121). 

In  the second half of the paper, we use this correspondence to develop 
a fairly complete theory of the p-adic L-functions (including the I? factor) 
attached to a quadratic imaginary field KOin which p splits. We obtain the 
L-functions as the "Mellin transforms" in the sense of Mazur-Swinnerton-
Dyer of a p-adic measure in two variables, whose moments are essentially 
the values of the Ramanujan series @,,, on suitable "trivialized elliptic 
curves" with complex multiplication by KO. 

Construction of such p-adic L-functions amounts to a problem of p-adic 
interpolation of special values of Hecke L-series attached to grossencharac-
ters of type A, of the field KO(cf. [31], p. 262-263). In this form, the problem 
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had already been solved by Manin-Vishik 1221 (except that their p-adic 
L-functions exist only as  p-adically continuous functions of two variables, 
but not as the Mellin transforms of measures in two variables). In  fact, 
their solution of the problem, by techniques quite different from those used 
here, was the psychological starting point of this work. 

Here is a brief description of the various chapters. The first chapter is 
devoted to the study of the Halphen-Fricke differential operator on analytic 
and C" modular forms. It was very strongly influenced by Weil's Fall 1974 
lectures "Elliptic Funtions According to Eisenstein" a t  the Institute for 
Advanced Study. The second chapter reviews the interplay between the 
algebraic and analytic approaches to modular forms. The third chapter 
constructs real analytic Eisenstein series as special values of Epstein zeta 
functions. Following Hecke ([lo], pp. 450-453 and 468-476), we give a fairly 
thorough account of holomorphic Eisenstein series in weights one and two. 
The formulas in this chapter show that in passing from the additive form 
of Eisenstein series with level (a sum over the lattice) to their q-expansions, 
an intrinsic partial Fourier transform takes place. Keeping track of this 
will plague us in later chapters, especially VIII, because our whole technique 
of studying Eisenstein series is through their q-expansions, while their 
number-theoretic interest (their relation to Hecke L-series with grossen- 
character of type A,) is apparent only when they are written in additive 
form. 

Chapter IV gives a mild generalization of Damerell's theorem. The proof 
we give shows that  Damerell's theorem is "also" true for elliptic curves over 
number fields whose de Rham cohomology looks as though the curve has 
complex multiplication (cf. 4.0.8 for a precise statement). The fifth chapter 
reviews the p-adic theory of modular forms. The last five chapters are 
devoted to the construction and over-detailed explication of the p-adic 
L-functions attached to quadratic imaginary fields in which p splits. The 
last chapter, giving a Kronecker "second limit formula" for our p-adic 
L-functions, was directly inspired by conversations with Lichtenbaum. 
This formula is a generalization to quadratic imaginary fields of Leopoldt's 
p-adic L(1, X) formula for the rational field. In  fact, our modular proof 
also provides a simple proof of Leopoldt's formula. 

Chapter I. Review of the classical theory 

1.0. The space GL+. We will work with the space GL+ of all oriented 
R-bases of C. Thus 

1.01 GLf = ( ( 4 ,  E C2I Im (w2/wl) >0) 



463 P-ADIC INTERPOLATION 

is also the space of all "lattices with oriented bases" in C. A point 
(w,, w,) E GL+ may also be viewed as  a triple (E, w; r , ,  7,) consisting of a 
complex elliptic curve E/C together with a nowhere-vanishing invariant 
differential w and an oriented basis Y,, Y, of H,(E, Z). The correspondence 
between the last two points of view is given by the mutually inverse con- 
structions 

The group SL(2, Z) acts freely on the right on GLf,  by 

The quotient space P GL+/SL(2, Z) is the space of all lattices in C. A point 
L E 2 is a lattice L c C, and may be viewed as a pair (E, w) consisting of a 
complex elliptic curve E/C together with a nowhere-vanishing invariant 
differential w. The correspondence is given by the mutually inverse con- 
structions 

Weierstrass theory gives us a pair of global coordinates g,, g, on 2 in 
the well-known manner: to the lattice L E 2 we attach the elliptic curve 
with differential (g2 = 4x3- g,x - g,, dxlry) where 

1.0.5 1 V = Y'(z; L ) ,  

Thus 2 becomes the open set of Cqefined by 

1.0.6 9N'{(&, g3) C2I gi - 279; f 0) 

over which (y2 = 4x3- g,x - g,, dxly) sits as the universal elliptic curve 
with (nowhere-vanishing invariant) differential. 

The action of Cx on GL+ by homothety, (w,, a , )  H (Xw,, Xo,), commutes 
with the action of SL(2, Z). For the elliptic-curve point of view, i t  is the 
action (E, w; Y,, 7,) w (E, Xw; Y,, 7,). On the space 9 i t  is the action L w XL, 

or (g,, g,) t+ (X-92, X-eg3). 
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1.1. Functions on GL+. A function F(o, ,  w,) is said to be of weight 
k E Z if i t  satisfies the functional equation 

1.1.1 F ( x ~ , ,Xu,) = X-kF(o,, w,) for all X E CX. 
More generally, i t  is said to  be of weight (k, s) E Z x C if i t  satisfies 

1.1.2 F(xwl, XU,) = X - 7  X l-28F(ol,w,) for a11 X E CX. 
Suppose F(o l ,  w,) is a holomorphic function on GL+ which for some 

integer N>,1 is invariant by (i y),i.e., satisfies F(o l ,  o ,+No, )=  F(o, ,  o,). 

Then the function on the upper half-plane 

is invariant by T-+Z + 1,  SO is an analytic function of q = e2'i' for 0 < I  q I <1. 
I t s  Laurent series development 

1.1.4 F(2ni,  2niNz) = C,,,a,qm 

is called the q-expansion of F (relative to  N).  If we too generously replace 
N by i ts  multiple N M, then we make a change of variable q t+ qMin the 
q-expansion. Notice that  if F is of weight k e Z ,  then i t  is completely 
determined by i ts  q-expansion: 

2ni " 1.1.5 F(o l ,  o,) = o;V(l ,  o,/o,) = (-) ~ ( 2 n i ,2si~(*)) 
0 1  No1 

-- (-zliy ~ . , ,a. exp (2ninoJNo.). 

For example, the function o, has weight - 1, and q-expansion 2ni. 
A holomorphic function Fon GL+ is said to be a modular form of weight 

k on r ( N )  = the kernel of SL(2, Z) -w SL(2, ZINZ) if i t  is invariant by r ( N ) ,  
of weight k, and if i t  and all of i ts  transforms by SL(2, Z) / r (N)zSL(2 ,  ZINZ) 
have meromorphic (i.e., finite-tailed) q-expansions. For example, the 
j-invariant is a modular form of weight zero on r ( l )  = SL(2, Z), but  exp ( j )  
is not. 

A Cm-functionon GL+ which is of weight (k, s) E Z x C and invariant 
by r ( N )  will be called a Cm-modular form of weight (k, s) on F(N). For 
example the function on 2, 

1.1.6 1a(L) = area of C/L = Im(G,w,) = -(G,o, - w,G,) ,
22 

is a C"-modular form of weight (0, - 1) on F(1). 

1.2. H', periods of the second kind, and  Rarnanujan's series P. Let 
(E,o )  be a complex elliptic curve with differential, corresponding to  the 
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period lattice L = { ;w / Y E Hl(E, z)/. The first complex cohomology group 

H1(E, C) may be viewed transcendentally as Hom,(L, C), or algebraically as 
HA,(E/C) = meromorphic differentials of the second kind (d. s. k.), modulo 
exact ones. Let us recall how a d.s. k. E on E gives rise to  a cohomology 
class in Hom,(L, C). By definition, s' becomes exact on the universal covering 
C of E ,  say t = df for some meromorphic function f on C. Since % = df is 
invariant by L-translation, f itself can only transform by a constant: 

1.2.1 	 f(x + I) - f(x) = constant.  

The cohomology class of s' is the element of Hom,(L, C) given by 

In terms of the Weierstrass form (y2 = 4x3- g2x- g3, dxly) of (E,  w), 
a standard basis of HAR(E/C) is given by w = dxly and 7 = xdx/y. The 
cohomology class of w = dx is the given inclusion L c-.C, while thecohomology 
class of 7 = xdxly = 8(x; L)dx arises from translating the negative of the 
Weierstrass zeta function 

which integrates 7 = -dC. Thus the cohomology class of 7 is 

The Legendre period relation asserts that  if (w,, w,) is any positively 
oriented basis of L ,  then 

In terms of the topological cup-product ( , ),,, on H 1 ,  defined by 

this says simply {o ,  v),,, = 2ni. In terms of the De Rham cup-product 
( , )DR = (1/2ni){ , ) t o p ,  i t  says (a,~ J ) D R  = 1. 

The "periods of the second kind" r~(w,; L)  and ~ ( w , ;  L)  are holomorphic 
functions on GL', of weight one. Indeed, from their definition in terms of 
translating the Weierstrass zeta function, we easily obtain the series repre- 
sentations 
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Let us define two holomorphic functions of weight one on GL+ 

and a function of weight two 

1.2.9 ~ 2 )  CmA z ( ~ I ,  = C n ; n t o  if m=o 1 

(mu, + nul)' ' 

Thus 

and Legendre's period relation 

*l W21.2.11 det ( = 2ni 
-wlAZ(w1, w2) -wzAz(-o,, ~ 1 )  

is equivalent to the functional equation 

2ni1.2.12 A2(01, 02) - A,( -@2, 4 )  = -. 
0 1W, 

The series definition of A, makes it obvious that A, is invariant by 

(i i),i.e., A2(w1, w,) = A2(wl,0, + 0,). I ts  q-expansion is given explicitly 

by 

where P(q) is Ramanujan's series P(q) = 1- d.2 4 C n 2 1 q n C d : n  

1.3. The function S, and the position of the antiholomorphic subspace 
Hop'cHA,. It follows from the functional equation 

that the C" function S(w,, o,), defined by 

-1 d f n  ncZl ncZ,1.3.2 -S(wl, w ~ )= A2(w1, o,) - = 02) -
1 2  o1a(L) o1(cZ1o,- 01cZ2)' 
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is invariant under (0.4, o,)c (o,,-ol). As i t  is also invariantun der (t :), 
i t  is invariant under all of SL(2, Z), hence is a C"-modular form of weight 
two on SL(2, Z). 

We now wish to relate S to the position of the subspace HOzlcH 1  
spanned by the antiholomorphic differential G. As an element of Hom,(L, C),

-
G is the map I 1. The cup-product (G,  w),,, is thus equal to-+ 

d f n
(G,  o),,, = det (1: 1:)= 2i Im (Glo,)= 2i a ( L ) . 

In particular, (G,  o),,, is always non-zero. 
In terms of the basis o,7 of H 1 ,we can express 6: 

Because ( o ,  0 )  = 0 and ( w ,  = 2ni,  we can solve for a and b: 

2nia = (G,  ?)top , 
2nib = ( o ,  G),,, = - (G,  w),,, . 

Thus b can never be zero, and the direction of the line C . G in H 1 ,measured 
with respect to the basis o,7,  is completely determined by its slope a/b = 

- ( 6 ,  7>tOPl(G,o > t o , .  

LEMMA1.3.6. The direction of HOrlin H 1 ,measured relative to the basis 
w, 7 , i s  given by - (1/12)S,in the sense that 

1.3.7 1 
S(o1, ~ 2 =) - ( 6 ,  ~)topAA - (G,  7)DR

12 ( 6 ,  o)to, (G,  ' 

Proof. The last equality holds simply because ( , ),, = (1/2ni)( , ),,,. 
To verify the first, we simply compute the cup-product expression, using 
the functional equation 1.3.1 of A,: 

= G l o 2 ( ~ , ( o l ,  a)- o,)o,)- o1~,A2(ol ,  
WlW2 

while 
- -

1.3.9 
0 1  0 2

(G,  o )  = det (ol o)  = Glo2- olG2, 

so that 
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1.3.10 -
2 r t i 5 ,  d f n  1("7 p)l"p = A,(o,,o,)- -- --S(O,, w,) . 

( 6 ,  ~) t0P o1(51oz- ~ 1 5 2 )  12 

Q.E.D. 

Remark 1.3.11. Another proof of the modular invariance of S is due to 
Hecke ( [ 9 ] )who showed that  in fact 

1.3.12 1 1--S(W,, 0 2 )  = lim E , m , m , , , o , o ,
12 8 -0 (no,+ mo2)2/no, + mu2 1 2 "  

For full details, see Rademacher [26],pp. 126-131. 

1.4. The Halphen-Fricke operator D (compare [7] ,Ch. IX, pp. 300ff) .  
It is the holomorphic derivation on GL+defined by 

For any of the functions 1 = no, + mw, E Zw, i- Zo,, we have 

1.4.2 D(1) = p(1; L), D ( i )  = 0 . 
We will develop the basic properties of D in a series of lemmas. 

LEMMA1.4.3. D i s  SL(2, Z)-invariant in the sense that it commutes 
wi th  the action of SL(2, Z )  on functions dejined by 

Proof. For fixed g E SL(2, Z ) ,  both D and [g-'1. D [g]are holomorphic 
derivations, so i t  suffices to check that  they agree on the coordinate func-
tions F(w,,  o,)= o,or F ( o , ,  w,) = o,. We carry out the computation only 
for F ( o , ,  o,)= w,; the other case is similar. 

D(lglF)(wl ,w,) = D ( F ( a o ,  + co,, bo,  + do,))  
= D(ao ,  + cw,) 

= p(ao, + cw,; L) 

= ([slvl)(ol,wz) 

= [gI(DF)(ol ,~ 2 ). Q.E.D. 

LEMMA1.4.4. D i s  of weight two in the sense that under the action of 
E C x  on functions defined by 

we have 

[ X I .  D • [X- '1  = X2D for all X E C x ,  

i.e., [ k ] ( D F )= X 2 ~ ( [ X ] F )  for all X E C x ,  all F . 
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Proof. As in the previous lemma, i t  suffices to chek the coordinate 
functions F = w, or F = o,. We carry out the computation only for 
F(w,, w,) = w,; the other case is similar. 

[hl(DF)= [x17?,(o,,a,)= 7?1(X-'o,,  x-lo,) 
= x .7?1(o,,w,) 
= A," V I D ( F )  
= x~D(x- 'F)  
= x2D([xlF). Q.E.D. 

The next lemma identifies D with the operator 3 of Serre [30]. 

LEMMA1.4.5(q-expansion of D). Let F(w,, o,)be a holomorphic func-

tion on GLL of weight k E Z,  which i s  invariant under ( ) Let F(q) 
denote i ts q-expansion (relative to N): 

1.4.6 F(q)  = F(2ni,  2ni NT)  = Em,,a,qn , q = eZrir 

Then DF, which by the two previous lemmas i s  a holomorphic function of 
weight k + 2 invariant by (i y),has q-ezpansion given by 

Proof. We first express F via its q-expansion: 

1.4.8 F(w,, w,) = (2ni)*F(2nio1,2rcio 

*Emamexp (2rcino,/No,) . 
Thus 

2ni 2nin1.4.9 DF(o, ,  o,)= (-) C , a , .  D(o,/o,) exp (Bninw,/Nw,)
*, 

- k .m)71(01,0,).C a ,  exp (2ninodNo,) . 
( ~ , ) * + l  

We simplify the first sum by using Legendre's period relation: 

and in the second sum we substitute v,(w,, o,)= -o,A,(o,, o,). Thus we get 

1 2ni k + 2DF(ol ,o,)=-(-) Emn-a .  exp (PninodNo,)
N o1 

+ k (*)* A,(ol,o,) C a mexp (2 s ino2 /No l ). 
0 1  
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Recalling (1.2.13) that the q-expansion with respect to 1of A, is - (1/12)P(q), 
we see that 

1 d kDF(q) = (DF)(2ni, 2niNz) = -9-F(q) - -P(qN) .F(q) . Q.E.D.
N dq 1 2  

COROLLARY1.4.11. The operator D maps modular forms of weight k 
on r ( N )  to modular forms of weight k + 2 on r (N) ,  and the q-expansion 
coeficients of 1 2 N D F  lie i n  the Z-submodule of C generated by the q-expan-
sion coeficients of F. 

The operator D, being SL(2, Z)-invariant, necessarily "descends" to a 
derivation on S =. GL+/SL(2,Z). 

LEMMA1.4.12. The expression of D i n  the coordinates (g,, g,) on 2 i s  

Proof. Up to constant factors, the forms g,, g,, (g,)' are the unique 
modular forms of weights 4, 6, and 8 on SL(2, Z), whose q-expansions are 
holomorphic. Therefore, we necessarily have D(g,) = constant x g,, and 
D(g,) = constant x (g,),. Using the q-expansions (with respect to N = 1) 

and Lemma 1.4.5, we see that 

Thus we conclude that 

Q.E.D. 

To relieve the aridity, we recall one of the standard applications of this 
last lemma (compare [17], p. 301). 

COROLLARY1.4.17 (q-expansion of A). The q-expansions of A %' (g,), -
27(g3),i s  given by 

1.4.18 A(9) = 9 II,,,(l - 9%)" 



-- 

p-ADIC INTERPOLATION 	 47 1 

Proof. From the expressions of D in terms of g,, g,, we see that 
D((gJ3- 27(g3)')= 0. Interpreting this in q-expansion, we find 

which integrates to give 

1.4.21 	 A(q) = constant x q n n 2 1 ( 1  - qn)24. 
The constant is one, because (g,(q))3- 27(g3(q))2= q + . . . , as follows imme- 
diately from 1.4.15. Q.E.D. 

LEMMA1.4.22. FOY a n y  of the functions I = mo, + ma,, n, m E Z,  we 
have 

1.4.23 	 D"(I = --g,l,1 i.e., D(?(l; L))= --g,l.1 

1 2  1 2  

P ~ o o f .By additivity, i t  suffices to prove that 

Notice that if we apply D to Legendre's period relation o,?,- o,?,= 2ni,  
we obtain 

/ o,D(?z) + ?I?, - %?l + wzD(v1) = 0 , i.e.7 

If follows that the ratio 

DYl) - D(nril + m?,) 
I no, + mo, 

is independent of (m,m)# (0, 0). We next conclude that the ratio D20, /o ,= 

D?,/ol is invariant by SL(2, Z). For if g = (: j) E SL(2, Z ) ,  we have 

( [ g l ? l ) ( ~ l ,we)= ?,(awl + co,, bo,  + do,) 
= ?(a@,+ cw,, Z o ,  + Zw,) = a?, + c?, , 
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while [g](wl) = awl + cw,, and thus 

awl + cw, 

is independent of the choice of g. Thus D2(wl)/wl is SL,(Z)-invariant, and 
of weight four. To identify i t  as - (1/12)g2, we compute i ts  q-expansion. 

The function wl is -invariant and of weight -1, and its q-expansion is 
(l -2ni. SO by 1.4.5, we have 

Now Do ,  is (t :)-invariant of weight 1= -1 + 2, so again by 1.4.5 we have 

Thus D2(w1)/wl has q-expansion 

Thus D2(ol)/ol is a weight four modular form on SL(2, Z) with holomorphic 
q-expansion, so a multiple of g,, and comparing constant terms in the 
q-expansions 1.4.14 and 1.4.30 shows that  i t  is - (1/12)g,. Q.E.D. 

Looking a t  the q-expansion formula 1.4.30, we obtain 

COROLLARY1.4.31. Ramanujan 's  series P satisjies the difirential 
equation 

1.5. The Weil operator W, and  the function S. W is the C" derivation 
on GL+ defined by 

where a(L) is the area function (1.1.6). For any of the functions 1 = n u l  + 
mw,, n,  m E Z, we have 

!w(T) = 0 ,  

and these formulas uniquely determine W. 
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Notice that 

and hence 

We will develop the basic properties of W in a series of lemmas, 
analogous to those concerning D. 

LEMMA1.5.5 (analog of 1.4.3). W is  SL(2, Z)-invariant. 

Proof. Since the function -n/a(L) is itself SL(2, Z)-invariant, the 
formulas 1.5.2 which characterize W are themselves SL(2, Z)-invariant. 

Q.E.D. 

LEMMA1.5.6 (analog of 1.4.4). W is  of weight two. 

P ~ o o f .We simply compute 

while 

and 

[x ] (w(~) )= )LT([x]T) = 0 . Q.E.D. 

1.5.7. Thus W maps C" modular forms of weight (k, s) on r ( N ) to C" 
modular forms of weight (k + 2, s) on I'(N). 

Let us denote by H the holomorphic homogeneity operator 

The operator H is SL(2, Z)-invariant and of weight zero, characterized by 
the conditions 

H(1) = -1, H(T) = 0 . 
If F is a C" function on GL' of weight (k, s), then 

1.5.10 H ( F )  = (k + s ) F  . 
More generally, if X is any differential operator (of any order) on GL+ 

which is of weight (k, s), then 

1.5.11 [H, X ]  = (k + s)X . 

1.5.9 
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LEMMA1.5.12 (analog of 1.4.5). The Halphen-Fricke operator D i s  
expressed i n  terms of the operators W, H ,  a n d  (multiplication by) S by the 
formula 

Proof. Comparing coefficients of a/awl and a/ao,, we reduce this to  the 
assertion 

- - W .1.5.14 7i(@17 WZ) = -wi t 2 S ( o 1 ,  02)  for i = 1, 2, 
a(L) 1 2  

or  equivalently to  the assertions 

The first is the definition 1.3.2 of S ,  and the second is i ts  invariance under 

( ~ 1 ,ad k+ (a21 -~ 1 ) - Q.E.D. 

Heurist ic 1.5.16. It is perhaps more enlightening to  explain the cohomo- 
logical apparatus which underlies such identities as 1.5.13. Over GL+ sits 

f
the universal elliptic curve EUni,-GL+, whose "H1along the fibre" R1ff,C 
is a canonically trivialized flat holomorphic vector bundle. The cohomology 
classes o and 7 define homomorphic (but not flat) cross-sections, while 6 
defines only a C" cross-section. In  terms of the canonical trivialization, a 
section s' is just a pair (El, Cz)  of functions on GL+, namely the periods of E ,  

1.5.17 E i =  C .1 
O i  

The Gauss-Manin connection V is the action of the derivations of GL+ on the 
cross-sections, defined by differentiating the periods 

Formulas 1.4.2, 1.4.22, 1.6.2, 1.5.9-10 reappear in this context a s  

1.5.21 V(H)(w) = - 0 ,  V H )  = 7, V(H)(G) = 0 . 
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The cup-product of two sections [, [' is the function on GL+ defined by 

In terms of this, Legendre's period relation reappears as 

1.5.23 (0 ,  ?)top= (0 ,  V(D)(w))top= 2rci . 
Remembering that 

1.5.24 ( z ,  w)top= 2ia(L) , 
we obtain 

Comparing 1.5.23 and 1.5.25, we see that 

1.5.26 (w, V(D)(w) -V(W(W))~~,= 0 

which implies that V(W)(w) - V(D)(w) is a multiple of w, i.e., 

Taking the cup-product with 7 ,  we find 

1.5.28 - - 2 ~ i ( 6 ,2r i?  = ( % a , ? )  -

top (6 ,  top 
Comparing this with the cohomological expression 1.3.7 for S,  we see that 
? = - (1/12)S, whence 

This shows that D and W - (1112)s H have the same effect, under V, 
on both w and G. But because the periods of o and c3 are  global Cm-coordi-
nates on GL+, we certainly know a Cmderivation when we know its effect, 
under V, on both w and 6. Therefore we again conclude that D = W -
(1112)s H. 

LEMMA1.5.30 (analog of 1.4.31). The function Ssatis6es the diferential 
equation 

1.5.31 12W(S) - S2= -12g, , 
or equivalently, 

1.5.32 12D(S) = -S2 - 12g2. 
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Proof. The two formulations are equivalent by 1.5.12, since S has 
weight two. To prove the second, we apply D to the cohomological expres- 
sion for S. 

because V(D)(6) = 0. 
Remembering that V(D)(o) = 7, and V(D)(v) = - (1/12)g2w, this be- 

comes 

Q.E.D. 

1.6. Interpretation i n  terms of a certain algebra of operators Z. Let 
Z denote the associative Z[1/12]-algebra generated by symbols 

1.6.1 92, 93, D, H, W, S 

subject only to the relations 

1[D, S] = -9, - -S2,
1 2  

[H, S] = 2s , 
[H, 9 2 1  = 492 

8 3 1  = 683 9 

[H, Dl = 2D . 
If we assign the weights 4, 6, 2, 0, 2, 2 to g,, g3, D, H, W, and S respectively, 
then Z becomes a graded algebra, whose graded pieces are the eigenspaces 
of ad(H). As a Z[1/12]-module, Z is free, with basis the monomials 

1.6.3 	 SagigC3DdHe, a, b, c, d, e integers 2 0 . 
Our previous computations may be summarized by saying that the ring 

of C" functions on GL+has the structure of a Z-module, in which the symbols 
g2, g3, D, H, W, S operate as g2, g3, D, H, W ,S. 



P-ADIC INTERPOLATION 477 

Chapter 11. Review of the algebraic theory 

2.0. Level N structures. Let E be an elliptic curve over a ring B. 
For each integer N 2 1, we denote by ,E the (scheme-theoretic) kernel of 
multiplication by N. It is a finite and flat commutative group-scheme over 
B, of rank N2. The e, pairing is a canonical alternating pairing 

which identifies ,E with its own Cartier dual. 
When B = C, and we view E transcendentally as being C/L, then ,E 

"is" the group (l/N)L/L, and the ex-pairing is given by the explicit formula 

Over any ground-ring B, a naive level N structure on EIB is an isomor- 
phism of B-group-schemes 

2.0.3 a :  ZINZ x ZINZ Lz2 , E . 

I t s  very existence implies that N is invertible in B. I ts  determinant det (a )  

is the primitive N' th  root of unity e,(a(l, 0), a(0, 1)). We will refer to a 
pair (E, a )  as a naive level N curve, or as a I'(N)nai"e-curve. 
2.0.4 For arithmetic purposes, it is convenient to define an arithmetic level 
N structure on EIB to be an isomorphism 

under which the e, pairing becomes the standard symplectic autoduality of 
p ,x ZINZ defined by 

A pair (E, p )  will be referred to as an arithmetic level N curve, or as a 
I ' (N)ar i th-c~r~e .  

When N is invertible in B, then a naive level N structure a gives rise 
to both a primitive N ' th  root of unity det (a) and to an arithmetic level N 
structure pa, defined by 

i 
This construction establishes a bijection 

naive level N arithmetic level N 
2.0.8 structures on E /B  

I=pyim (B) x { 
structures on E /B  1 ,  

a +-+(det (a), pa) 
whenever B 3 1/N. 
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We can think of an arithmetic level N structure P as being a pair of 
inclusions P,: pLv+ ,E, P,: Z/NZ c=+ ,E such that  

2.0.9 ~,(P,(C>, ~ , ( n ) )  = Cm . 

So i t  is natural to  define a l?oo(N)arith-structure on E/B to be an inclusion 


2.0.10 i: p.\,-.\, E , 
and a I 'oo(N)naiv~structure  on E / B  to be an inclusion 

2.0.11 j:Z/NZ c-, E . 
2.1. Level N test objects, and  modular forms. 
2.1.1. A I'(N)arith-test object over a ring B is a triple (E,  w, P) consisting 

of an elliptic curve E/B, a nowhere-vanishing invariant differential w on E, 
and a l?(N)arith-structure P on E/B; similarly for r(N)""'"; I'oo(N)"ri'h,or  
roo(N)naive, 

A I'(N)ari'h modular form of weight k E Z defined over a ring B is a 
"function" F which assigns to  any I'(N)arith-test object (E,w, P), defined 
over a B-algebra B', a value F ( E ,  w, P)  e B'. This value is to depend only 
on the B'-isomorphism class of the test object. It is to depend on the choice 
of w, which is indeterminate up to  a unit X E (B')" , by the rule 

2.1.2 F ( E ,  X-'w, P)  = XkF ( E ,  o ,  P)  . 
Finally, i ts  formation is to  be compatible with extension of scalars of 
B-algebras. Similarly for l?(N)""'"; or  l?,(N)""", or  I',,(N)naive. 

2.1.3. We denote by R'(B, I'(N)""") the graded ring of I'(N)arith modular 
forms defined over B. Similarly for I'(N)""'"", l?,,(N)arith, or  I'oo(N)naive. 

2.2. q-expansions. 
2.2.1. The Tate curve Tate (9.") over Z((q)), viewed as "Gm/qvz", carries a 

canonical invariant differential wean, deduced from "dx/x7' on G,, and a 
canonical arithmetic level N structure PC,,, defined by 

2.2.2 Pcan(C, n )  = Cqn "mod q‘vz" . 
Thus (Tate (qLv), w,,,, PC,,)is a l?(N)arith-test object over Z((q)). We denote 
by jcan:Z/NZ -,Tate (9.") the canonical l?,,(N)nai'e structure defined by 

2.2.3 jcan qn "mod Q-\'~" ,(n) = 


so that  (Tate(qAY), ocan,  j,,,) is a ro,(N)nai"e-test object over ~ ( ( q ) ) .  

Finally, we denote by i,,,: p, c=+ ,Tate(q) the canonical I'oo(N)arith struc-

ture on Tate (q) defined by 
2.2.4 ican C(C) = "mod qz" . 

Notice that  Tate (q) = Tate (q*")/jCan is the composite 
(ZINZ), and ican 
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ican 

p N GTate ( n n ) 2 T a t e  (qh)/jcan(ZJNZ). 
Thus (Tate (q), ocan,i,,,) is a roo(N)arithtest object over Z((q)). 

Evaluation a t  the relevant Tate curve defines q-expansion homomor-
phisms 

R'(B, r ( N y t h )  
2.2.5 R'(B, r,o(N)nai'e)-B BZ((((4))cB((q)) . 

arfth /R(B,TOO(N) ) 

According to the q-expansion principle [16],we have 
2.2.6 If we fix the weight k E Z, each of the q-expansion maps 

is injective. 
2.2.8 If B c B', then R k ( ~ ,l?(N)arith)c-.R k ( ~ ' ,r(N)arith)(and similarly 

for roo(N)nai'eand I ' , , (N)~~"~~) ,and an element f E R~(B',I?(N)""~~)lies in 
Rk(B,r(N)""") if and only if its q-expansion lies in ~ ( ( q ) )(and similarly for 
rOO(N)arith,I'OO(N)naive). 

2.3. Some interrelations. We first define a natural map (of stacks) 

2.3.1 {I'(N)arith-testobjects) ++ {ro,(N)naive-testobjects) 
by sending 
2.3.2 (E, @,@)t--.(E, w, b' 1 Z/NZ) 

It carries (Tate (9-"), wean, @can) to (Tate (q"), w a n ,j,,,). 
We next describe a pair of mutually inverse equivalences 

2.3.3 {l?oo(N)na've-testobjects) {l?oo(N)arith-testobjects) . 
Beginning with a roo(N)nai'e-testobject (E, o ,  j: ZJNZ + ,E), we let 
E' = EJj(ZJNZ), and denote by n: E-+E' the projection. Because n is Qtale 
(its kernel being ZJNZ), there is a unique invariant differential o' on E' such 
that n*(o') = o. By Cartier-Nishi duality, the kernel of the dual map 
2:E'-+Eis dual to ker (n) r:ZJNZ, hence "is" p,. We normalize i:p, +E' 
by decreeing that i(C) = n(t), where t is any section of ,E (defined over some 
f. p. p. f. overring) such that e,(t, j(n)), = P for all n E ZJNZ. This con-
struction 

(E, o ,  j )  -(E', 0 ' 7  i )  



480 NICHOLAS M. KATZ 

is the upper of the maps 2.3.3. It carries (Tate (q-"), o,,,, j,,,) to (Tate (q), 
Wean, {Can). 

The inverse map is quite similarly defined. Starting with a l?oo(N)ar'th- 
test object (E, o ,  i), we define E' = Eli@,), and denote by T:E-+ E' the 
projection. Since ker (z) - p,, we have ker (if: E' E )  - ZINZ. Thus jt is-+ 

Qtale, and we may define o' = %*(a). Finally, we normalize the inclusion j 
of ZINZ -- ker ( 2 )c-.E' by decreeing that  j(n) = z(t), where t is any section 
of ,E such that  e,(i(C), t), = C". for all C Ep,. This construction 

(E, @, i )  t-- (El, o', j )  
defines the lower of the maps 2.3.3. It carries (Tate(q), wean, i,,,) t o  
(Tate (99,  wean, jCan). 

Finally we combine 2.3.1 with the upper arrow of 2.3.3 to define a map 

{I'(N)arit'l-test objects) -2.3.4 {I'oo(N)arith-testobjects} 

defined by 

(E, o ,  P) t--(E/P(Z/NZ), a ' ,  n P I p H )  . 
The maps thus sit in a commutative diagram 

which by transposition yields a commutative diagram of ring homomorphisms 

Ra(B, l?(N)ar'th) 

2.3.6 "natural inclusion" 

which all preserve q-expansions. 

LEMMA2.3.7. When N = pT i s  a prime power, and  p i s  nilpotent in 
the r i ng  B, the "natural inclusion" (2.3.6) R'(B, l?oo(p ' )"a"e)+~' (~,  l?(pT)ar'Lh) 
i s  a n  isomorphism (and hence so is the "exotic inclusion" by 2.3.6). 

Proof. In fact, we will show that the map 2.3.1 on test objects is an 
equivalence. Given a B-algebra B', object (E, w, j:and a l?oo(pr)naiTe-test 
Z/prZ-pvE),  we must show that  there exists a unique -i:ppT prEsuch that ep7(i(C), j(n)) = r" for C EppTand n E Z/pTZ. 
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Unicity is clear, for the diference of two such i's is a map of pPTq P T E  
whose image is orthogonal under ePT to j(Z/pTZ), hence whose image lies in 
j(Z/pTZ). But over any ring B' where p is nilpotent, Hom,,(ppT, Z/pTZ) = (0). 
As for existence, notice that  the existence of j implies that  E /B  is fibre by 
fibre ordinary,  and therefore that  prEsits in an auto-dual short exact 
sequence 

2.3.8 	 0 -pTJ2-,?E-( p T ~ ) i t a ' e  0 ,-
where ,TE is the kernel of pT in the formal group of E. We know that ,YE 

is a twisted form of p,~,and that  is the dual twisted form of Z/pTZ. 

But the inclusion Z/pTZ c*j , Y E  necessarily projects to give an isomorphism 
Z / p T Z ~ ( p Y E ) e t ,whose Cartier dual is the inverse of the required isomorphism 

,-.
i:ppTr;, T E .  

2.4. Comparison with the transcendental situation, and  applications. 
Let (E,o ,  p )  be a I'(N)"""-test object over C. Using the primitive N ' t h  
root of unity e2"i'N, we may identify (cf. 2.0.8) p with a naive level N 
structure a of determinant e27i'.v. Transcendentally, this datum (E, w, a) 
corresponds to a lattice L c C together with a basis l,/N, l,/N of (1IN)LIL 
such that  

exp ( 	-" i112 - llt,) = exp (2nilN) . 
N a(L) 

Now if the vectors I,, I, E L formed an oriented basis of L ,  the above condi- 
tion 2.4.0 would be automatic. Because SL(2, Z) maps onto SL(2, ZINZ), we 
can in fact choose an oriented basis w,, w, of L such that  w,/N = l,/N mod L 
for i = 1,2. 

2.4.1. If F e  Rk(C, I'(N)"""), then the function on GL' 

is a "modular form of weight k on I'(N)" in the sense of (1.1). The key 
GAGA-type result is that  a "modular form of weight k on I'(N)" in the sense 
of (1.1) is always of the form Fanfor a unique element FE Rk(C, I'(N)a'ith). 
This correspondence F -F "" preserves q-expansion: 

2.4.3 Fa"(27ci, 2xiNz) = F(Tate(qN), w,,,, p,,,), q = eZzir. 
If we combine this with the q-expansion principle, we see that  if B is 

any subring of C, then elements of Rk(B, I'(N)""") are just those "modular 
forms of weight k on I'(N)" in the sense of (1.1) whose q-expansion coef- 
ficients happen to lie in B. Further,  if (E,  w, p )  is any I'(N)arith-test object 
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over B, whose complexification (E,, o,, PC) corresponds to  the point (w,, o,) E 

GLf/I'(N), then for any FE Rk(B, I'(N)arLth) we have the equality of values 

(which shows that  Fa"(@,, u,)lies in B, the characteristic rationality property 
of a modular form defined over B). 

2.4.5. As another application, we see by 1.4.11 tha t  if B is any sub- 
ring of C, then this Halphen-Fricke operator D maps Rk(B, I'(N)"'Ith) to 
(1/12N)Rk+' (B, I'(N)arLth). Of course this last fact is also a (more elementary) 
consequence of the expression 1.4.13 of D in terms of g, and g,, a t  least when 
12 is invertible. 

2.5. A remark. We formulated the algebraic definition of modular form 
in terms of "test objects" to avoid technical questions of representability. 
In  fact, for N2 3, the functor "isomorphism classes of I'(N)""" elliptic 
curves" is represented by a smooth affine curve M(I'(N)"rith) over Z, with 
geometrically irreducible fibres, and the corresponding I ' ( N ) n a L ' ~ u n c t o r  is 
represented by Z[l/N, C,] @, M(I'(N)"'Ith). Similarly, for N 2 4, the functor 
"isomorphism classes of l?oo(N)naLve curves" is repre- (resp. ~oo(N)"r'th)-elliptic 
sented by a smooth affine curve M(I'oo(N)nai'e) (resp. M(I'oo(N)"rLth)) over Z, 
with geometrically irreducible fibres. The q-expansion principle 2.2.6 is a 
consequence of the irreducibility (cf. [16]). Each of these modular curves 
M carries an invertible sheaf g,defined in terms of the universal elliptic 
curve f:E--+M as g = f,(QL,,). The corresponding ring of modular forms 
Re(B,?) is the graded ring @,,, HO(M(?) @, B, LQ@~). 

Over Z[1/12], the functor "isomorphism classes of I'(N)""" (resp. 
l?(N)naive,resp. I'oo(N)"'ith, resp. I'o,(N)nai'e)-test objects" is itself represen- 
table by a smooth affine surface MdLff(?) over Z[1/12], for a n y  N 2 1. The 
coordinate r ings  of these surfaces are just the corresponding rings of modular 
forms over Z[1/12]. So in those cases where the scheme M(?) exists (i.e., 
N 2 3 for I'(N), N 2 4 for I',,(N)), its coordinate ring, over Z[1/12] is the 
subring of the above ring consisting of modular functions (= modular forms 
of weight zero). 

For example, when N = 1,  Mdiff(r(l))  is (the spectrum of) the ring 
Z[1/12, g,, g,, l/A], with universal test object (E,,,,, o )  = (y2= 4x3- g,x -
g,, dxly). The surface Mdif'(I'(N)""") is then obtained as the affine quasi- 
finite covering of Md"'(r(l)) given by 

MdJff(r(N)B"") = .TSOM,diff ( F ( l ) ) ;  ( P N  X ZINZ, ivE) ,e, 

the "scheme of arithmetic level N structures on the curve E,,,," and 
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similarly for F(N)"""". The surface Md'ff(Foo(N)""th)is the fppf quotient of 
Md"f(l?(N)"rith)by pH= Hom(Z/NZ, p,,,), the indeterminacy in completing a 
roo(NYi thstructure to  a r(N)"'Ith structure. From this surface we obtain 
the (isomorphic) surface MdMf(~oo(N)na 'ye)by 2.3.3. 

Chapter 111. Review of the Epstein zeta function 
and Eisenstein series 

3.0. The Epstein zeta function; definition and  functional equation. 
Fix an integer N 2 1. Given a function f on Z/NZ x Z/NZ, we define its 
symplectic Fourier transform f on ZINZ x ZINZ by the formula 

Notice that  

3.0.2 

as an immediate computation shows. 
Let (o,, a , )  E GL+,and k E Z. The k'th Epstein zeta function Ck(s;a , ,  w,, f )  

is defined for Re(s) > 1by the series 

NZ8C ( n , m )+ (o,o)  
f (n, m) 

( n o ,  + r n ~ , ) ~ ln o ,  + mu,  i 2 8 - k  ' 

It is known (cf. 1341, pp. 70-72) tha t  

3.0.4. Ck(s;o,,o,, f )  extends to the whole s-plane as a meromorphic 
function of s. For k # 0, i t  is an entire function of s, while for k = 0, i t  has 
(at  worst) a first-order pole a t  s = 1 with residue Nn/a(L) .f(0, 0), (u(L) 
denoting as before (1.1.6) the area  of C/Zw, + ~ o , ) .  

In  order to  state the functional equation, i t  is convenient to  introduce 
the auxiliary meromorphic function 

qk(s;o,, o,, f )  ~ ( s+ S)(+$)8-k'2c~(s;ol,WI,f )  

It is known (cf. 1341, pp. 70-72) that  

3.0.6. For k > 0, qk(s;o , ,  w,, f )  is an entire function of s. 

3.0.7. For k = 0, qo(s;w,, w,, f )  = --I--(I) -f(o,+ an entire fct. 
S - 1  S 

3.0.8. For k < 0, the function 

( 
qkis entire, 

F s f -

The functional equation has the simple form 
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Remark 3.0.10. To give a more intrinsic description, let L be any lattice 
in C, and f a function on ( l / N ) L / L .  The e,-pairing 

makes the group ( l / N ) L / Linto its own dual. We define the Fourier trans-
form ? on ( l / N ) L / Lby the formula 

and define 

The asymmetry in 3.0.6-3.0.8 between k and -k  comes about because of a 
symmetry  in C,, as follows. Given a function f on ( l / N ) L / L ,consider the 
complex conjugate lattice E and the function T f  on ( 1 i ~ ) L i Ldefined by 

3.0.14 ~f ( T / N )  = f ( l / N )  
Then we have 
3.0.15 Ck(s;L, f )  = c-k(s; L, T f )  

as results immediately from the definition 3.0.3. 

3.1. The Epstein zeta function: special values. The functions 

are entire functions of s. Viewed as functions on C x GLf, they are C" 
functions of the three complex variables s, w,, o,,which are holomorphic in 
the first variable s. For fixed s, they are I'(N)-invariant functions on GL+ 
of weight (k, s - k/2). We are interested in special values of s ,  for which 
we obtain analytic functions on GL+. Since an analytic function can have 
.weight ( k ,  s - k/2)  only if s = k/2 ,  our only hope is to put s = k/2. This 
usually works. 

LEMMA3.1.1 (3.1.1.1). For k + 2, Ck(k/2;w,, w,, f )  i s  a n  analyt ic 
function on GL+. For k < 0 ,  i t  vanishes identically, and for k = 0 ,  i t  i s  
the constant -f (0,  0). 

(3.1.1.2) For k = 2, C,(k/2; w,, o,,f )  i s  analytic i f  and only i f  
.7(0,0 )  = 0. 
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Proof. In terms of the C" coordinates w,, w,, G,, w,,we define 

whose simultaneous kernel consists of the analytic functions. If follows 
immediately from the series definition 3.0.3 that  

first for Re(s) > 1, then for  all s by analytic continuation. Now for  k # 2, 
both C k  and Ck- ,  are entire functions of s, and so 3.1.3, evaluated a t  s = k/2, 
gives the desired analyticity. For k = 2, we still get  D,(C,(l; o,, o,, f ) )  = 0,  
while 

3.1.4 D,(C,(l; o1,o,, f )) = - ( s  - l)C,(s; w,, o,,f )  I , = ,  = ---NTJ(0,  0 )  .-
a ( L )  

It remains to see that  <,(k/2;o,, o,, f )  is constant for k = 0,  and 
vanishes for k < 0. For k = 0,  the functional equation is the statement 

3.1.5 r(s)(-)a ( L )  " Cd.3; o,,w,, f = r ( 1  - s)(-)a ( L )  I-" - s; ol,02,.?I .Nn NT 

Multiplying both sides by s gives 

3.1.6 r ( s  + I)(-)a ( L )  " ~ ( s ,o,,a,,f )  = r ( 1  - S)(*))~-'ST,(~ - s ,  a,, a,, 8).
Nn Nn 


Letting s -0 gives 

3.1.7 C,(0;o., o,, f )  = -Q(L) x (residue a t  s = 1 of Co(s;ol, o,, 7 ) )
Nn 


= -f (0 ,  0 )  by 3.0.4 . 
For k < 0,  the vanishing of Ck(k/2;o,,w,, f )  will result from the r 

factors. To simplify matters, let us use the trick 3.0.15 to  shift to k > 0. 
Then the assertion becomes 

But the product 
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is an entire function of s for k > 0 ,  which shows that  in fact  C k  has "trivial 
zeroes" a t  s = -k /2 ,  -k /2  - 1, ... Q.E.D. 

Remark  3.1.9. Under the Weil operator W ,  the 9, satisfy the pleasing 
equation 

3.1.10 N - W ( q k ( s ;0-4, 0 2 ,  f ) )  = ?k+z(s; 01,w2,  f )  • 
3.2. q-expansions of special values: the easy case k 2 3. Given a func-

tion f on ZINZ x Z I N Z ,  we define i ts  partial Fourier transform P f  on 
Z / N Z  x Z / N Z  by the formula 

3.2.1 ( Pf ) ( n ,  m) = Camod -v f ( a ,  m)e2"ianiN. 
The inverse partial Fourier transform is defined by the formula 

The flipped function f t  on Z / N Z  x Z / N Z  is defined by the formula 

3.2.3 f "n, m) = f (m,n) . 
LEMMA3.2.4. For  a n y  func t ion  f on  Z / N Z  x Z / N Z ,  we have 

~ . f= ( P f y  . 
Proof. Write I: for e2"v/17,and compute: 

= C,,,f ( a ,  b ) ~ a d Lzcp - b )

N 
= Caf (a ,  n)Cad= P f  ( d ,  n)  

= ( P fIt(%,d )  . Q.E.D. 

LEMMA3.2.5. Let  k 2 3,  f a func t ion  on  Z / N Z  x Z / N Z .  T h e n  the 
q-expansion ( w i t h  respect t o  N )  of 

i s  given by 

1 
0 i f  f ( - n ,  -m) .= (-l)k+'f ( n ,  m) , 

3.2.6 L(1 - k ,  P f  (n,0))  i- 2 Em,,qnzn=,,~dk-I ( P f  )(d, d ' )  
i f  f ( - n ,  -m) = (-l)kf ( n ,  m) . 

Proof. When we replace f (n,m) b y  f -(n,m) f (- n, -m), we get 
qk ( s ,4,w2,f -) = (- l)kqk( s ;wl ,  w2,f ). SOwe get 0 when f has the "wrong" 
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parity. I t  remains to treat the case when f(-n,  -m) = (-l)kf(n, m). By 
definition, the q-expansion in level N is evaluation on (2ni, 2 n i N ~ ) .  So we 
must compute 

- 2(- ~ ) ~ ( k  f (n, 0) + 2(- ~ ) ~ ( k  I)!- I)! - f (n, m) 
(27~ i )~  E n 2 1  (3 ( 2 ~ i ) ~  Cm21E n e z  

- f (n, 0) - 2(- N)k(k - I)!En,, 
( 2 ~ ; ) ~  nk  


Invoking the Lipschitz formula, valid for Im(z) > 0 and k 2 2, 

we obtain 

That the constant term is correct results from the functional equation of 
L-series (cf. [15], A. 15). Q. E. D. 

3.3. q-expansions; the case k = 2. Here we must suppose T(0, 0) = 0 to 
get an analytic function, but to get a nice formula we must also assume 
f(0, 0) = 0. 

LEMMA3.3.1 Let f be a function on ZINZ x ZINZ, which satisjies 

f(0, 0) = f(0, 0) = 0 . 
Then the q-expansion of 

i s  still given by the formula 3.2.6. 

Proof. The first step is to prove that ~ ~ ( 1 ;  o , ,  o,, f )  may be expressed 
in terms of the Y-function by the formula 

q2(1; o l ,  o,, f )  = Em,,,,, .f(n, m)Y( 
n u ,  

N 
+ mu, 

; L ) ,  
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a formula which makes sense because f (0, 0) = 0. To prove it, let x denote 
a non-zero element of (1IN)LIL. Then by definition 

while, remembering that  z x f (x) = N.?(o, 0) = 0, we have 

So we must show that  

It suffices to treat  the case when f is the d i f f e rence  of two characteristic 
functions of points x and y; then the claim is that  

This will certainly be established if we can establish an estimate for the 
general term of the shape 

for s near 1, Re(s) > 1, and I I I >> 0. By the mean value theorem, i t  suffices 
to show that  the d e r i v a t i v e  with respect to s satisfies an estimate 

for s near 1, (Re(s) > 1, and 111 >0) .  

To simplify, let us check separately for x and Y that  


log111 - log 11 + XI  log ll lI l 2  1 I"-' (I + xy 1 I + X j 2 s - 2  1 = o ( ~ )  
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But for I 1I >> 0 and Re(s) > 1, s near one, we obviously have 

and 

3.3.12 

which proves 3.3.11, even with an O(l/j 11) estimate. 
Now that we have the Y-expression 3.3.4 for ~ ~ ( 1 ;  w,, w,, f) ,  we compute 

as before. As in the proof of 3.2.5, we may limit attention to the case when 
f is an even function. 

1 {zj, f (j,  1) F ~ I ;2ni, 2riN7, f -zmPml mod AT

(2 ni)2 ( j / N  + n + (1 + Nm).r)' 

- 1 f ( j ,  1) 
- -Ej, E m En1 mod S

(2 niy ( j  +NNn + (1 + ~ m ) t ) l  

From this point on, the proof is identical to the proof of 3.2.5. Q.E.D. 

3.4. q-expansions; the case k = 1: reductions via the Weierstrass zeta 
,function. We will eventually prove 

LEMMA3.4.1. Let f be a function on ZINZ x ZINZ. The q-expansion 

of 


f (n, m) 
(nu,  + mu,\ 1 no ,  + mw, 1 '"-' 

i s  given by the formula 

0 iff is even 

iL(O, (Pf)(n, 0) + (Pf)(O, n)) + 2 Em,,qn En=,, ,(Pf)(d, dl) iTf is  odd . 
Proof. Clearly ql(s, w,, w,, f )  = 0 for f even. However, we will not 

immediately suppose f odd, but we will suppose that f(0, 0) = 0. In fact, 
let us begin by supposing that f is the characteristic function of a non-zero 
element x E (l /N)L/L, and write q,(s; L, x) instead. 
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3.4.3 ~ ~ ( s ;L ,  x) dgQ)~(s;0.4, w2, the char. fct. of x). 

Thus 

and for a n y  x E C, x e L ,  the series 3.4.4 above extendstoanent i re  function of s. 
We will begin b y  comparing the value ~ ~ ( 1 1 2 ;L ,  x) t o  the value of the i 

Weierstrass zeta function 
dfn 1 1 1 x 

C(X;L)  = = + E ~ + ~ ( ~- + j T )X 

KEYLEMMA3.4.6. F o r  variable x E C, x g L ,  the difference 

i s  additive: 

A(x + y) = A(x) + A(y) if x e L,  Y 65 L, x + y e L . 
Proof. Fix X E C ,x e L. To simplify, we make a change of variable 

t = s - 1/2. Let us define some series: 

for ~ e ( t )> ',
2 

1 1
3.4.8 for Re(t) > -- , 

X 2 

for Re(t) > 0 .  

for Re(t) > -1. ,
2 

13.4.11 j(t) = for Re(t) > 1,
2 

for Re(t) > 0 .  

We know tha t  
/ ~ ( t ;x), j(t), and k(t) extend to  entire functions of t ,  and j(t) = 0, 

I 1g(t, x) has an analytic continuation to  Re(t) > - -,2 namely 

3.4.13 C(t, X) - xk(t) , 
1

h(t; x) has an analytic continuation to  Re(t) > - -, namely
2 

g(t; x) + j(t) (= g(t, x), because j(t) = 0). 
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We now compute 

an equality of functions analytic for Re(t) > -112. Therefore, 

We next derive a series for h(t; x) - ~ ( t ;x), valid for t > 0: For Re(t) > 112, 
we can write 

The general term of this series may be estimated for Re (t) > 0, / t 1 < 314, 

by 

This shows that the series 3.4.16 converges for Re(t) > 0, and so provides 
an explicit analytic continuation of h(t; x) - q(t; x) to Re(t) > 0,It 1 > 314. 
Because the series 

themselves converge absolutely and uniformly in Re(t) >E >0, we can write, 
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for Re(t) > 0, 1 t 1 < 314, 

Now the function k(t) prolongs to an entire function of t ,  therefore 

3.4.20 	 lim,,, tk(t) = 0 . 
The function n(t) prolongs to a meromorphic function of t ,  with only a 
simple pole a t  t = 0; therefore 

3.4.21 	 lim,,, tn(t) exists . 
So taking the limit as t -0 in 3.4.19 gives 

Combining this with 3.4.14, we even obtain an explicit formula for A(x). 

Q.E.D. 

COROLLARY I n  the notations of 3.4.4, suppose x e ( l /N)L, x G L.3.4.24. 
Then for any  x e C, x @ L ,  we have the formula 

Proof. Notice that  for any 1 E L ,  9,(s; L,  x + 1) = q,(s; L, z); this is 
clear for Re(s) > 1from the series, and so follows for all s by analytic con- 
tinuation. In particular, 

3.4.26 	 9,($; L, z + NX)= 9,($; L,  z ) .  

Now simply compute 

Adding vertically and using 3.4.26 and the additivity of A give 3.4.25. 
Q. E. D. 

3.5. q-expansion for k = 1; the end of the proof. We have already 
remarked that  the double series 
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3.5.1 A2(~1, =) CmC,; 
(mw,+ 

1 

no,)2 
~ 2 if m=a 

converges. Since the Weierstrass zeta function 

is absolutely and uniformly convergent on compact subsets of C - L, it 
follows that  the double series 

d f n  1 1
3.5.3 F(x;w1, a,) = -x + ~ m ~ , : , + , i fm = O  ( z  imu2+ no, mo, + no,) 
converges uniformly on compact subsets of C - L, to [ ( x ,  L) - xA,(w,,o,). 

LEMMA3.5.4. F(x;w,, o,)satisfies the functional equation 

F(x + no, + ma,; o,,o,)= F(x;w,, o,)--2xim 
Wl  

Proof. Since the terms in the formula are all of "weight one," i t  is 
equivalent to prove 

3.5.5 F(x + n + ms;1, r )  = F(x;1, s) - 2zim 

for Im (7)> 0. For translation by 1,this is easy. For convenience, we will 
write F(x)for F(x;1, s). 

F(x + 1) - F(x) 

= C,o=o. 
For translation by r ,  we must use the cotangent identity 


8%"

1imv+-C:=-.,,--- rr cot (xz)= xi elm + 1 

x + n  - 1 

valid for x & Z. 
We compute 
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= Ern(T cot ( T ( X+ (m+ 1)s))- z cot (n(x  + ms))) 
= lim,,, C?,(T cot ( T X+ (m+ 1)s)- T cot ( T ( X+ ms))) 
= lim,,, (T cot ( T X  $ T ( M  + 1) s )- T cot ( T X- ~ M T ) )  

= -7~i- x i  = - 2 z i  because i q l < 1 .  Q.E.D. 

COROLLARY3.5.7. I n  the notations of 3.4.4, let x e ( l / N ) L ,  x G L; then  
for a n y  oriented basis (o,, o,) of L, we have 

9.(-;
1 L,x )  = F ( x ;o,, o,) + L(F(x; F ( x  + N x ;  o,,o,)).o., o,) -
2 N 

Proof.  This follows from 3.4.25, simply because t: and F differ by an 
addit ive function (in this case zA2(o, ,o,)). 

Thus if we write 

then 3.5.4 gives the "explicit formula" 

3.5.8 Y . ( $ ; L , ~ ~ ~ + ~ * ~ ) = F (  2 z i mno, + mo,.
N N 

In view of this, we next compute the q-expansion of F(no,+ mo,/N;o,,o,) 
(which makes sense because, by 3.5.8, i t  is invariant under (w., a,)-+ 

(01,  0 2  + No.)). 
LEMMA3.5.9. Let 0 2 j ,  I N - 1, and assume ( j ,  I )  # (0,  0).  W r i t e  

= e 2 ~ 1 / N  

T h e  q-expansion of F ( ( j w l  + l o , ) / N ;o,, o,) i s  given by the  series 

Proof.  We simply compute : 

F (%+ 2 z i l r ;  2 z i ,  2 n i N s  
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Using symmetric (lim,,, ZY,) summation on the inner sums allows us 
to use the cotangent identity 3.5.6, and rewrite this as 

= &(n cot (n($ + 1:)) + lim,,., ~2+)
2 s 2  1110 

+ & ~ ~ , , ( acot + lr + m ~ r ) )- scot(n(mNr))).
2n2 

Now using symmetric summation (lim,,, C?,)once again, the fact that  
the cotangent is an odd function gives 

If 1 = 0, this is 

+ lim,_, C:=,(r cot (z+ n m ~ r )- a cot (*+ n m ~ r ) ) ]. 
If I #  0, we would like to run the inner sum from -M - 1 to M. This 
involves adding a term: 

--
e 2 r i ( j l N + l : )  + Q

( & f + l ) N  

n2e z z i ( j / A v + t r )  - Q ' ~ + " ~  
which tends to ni as M - (since I q 1 < 1). 


So for 1 # 0, we add the term 3.5.12, and subtract its limit, to get  


1 1
3.5.14 = -- + -lim,,, C: s cot s i+ ( 1  + m ~ ) r )
2 2n2 ( ( N  

1 1 . 
3.5.15 = -- + -llm.,+.. js cot (++ W +  m ~ ) i - )c:=,
2 2x2 
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Writing z cot (nx) in terms of eF-"", we have 


. ezrtz+ 1 2ni
3.5.16 n cot (nx) = nz = zz - - e 2 P Z Z  ' ezazz- 1 

and abbreviating eZzilN as  C, we can rewrite 3.5.12 and 3.5.15 as 

The desired formula 3.5.10 follows immediately upon expanding the indi- 
vidual terms as power series in q and collecting terms (the resulting double 
series in powers of q converges absolutely in 1 q 1 < 1, so there is no subtlety 
in doing this!). Q. E. D. 

It now only remains to combine 3.5.8 and 3.5.9, in order to prove 3.4.1. 
We may and will suppose f odd. By definition, 

Passing to q-expansion, we obtain from 3.5.10, 

+ Tx;,;:o1 f ( j ,  1 )  
1 1 0  

+ Cn > l  qn (CPzO1f (j,  d')iYjd - C;colf ( j ,-d')C-jd) . 
Since f is odd, we have 

3.5.20 f ( j ,  1) = 0xj,,

11 0  

and we can rewrite 3.5.19 in terms of Pf (cf. 3.2.1): 
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To conclude, we must check that  the constant term is correct, i.e., that  for 
f odd, we have 

L(0, Pf (0, n)) = -5C:=-'l (Pf  )(O, 1)  , 
3.5.22 

C j  + 1~ ( 0 ,(Pf )(n, 0)) = - C:=ilf ( j ,  (I)---- . 
cj  - 1 

Recall that  for any  odd function g(n) on ZINZ, we have 

-1 
= -C:=, ng(n)

N 
(by l'H6pital). 

This formula, applied to Pf(0, n), gives the first part  of 3.5.22. Applied to 
Pf (n, 0), it  gives 

3.5.24 L(0, Pf (n, 0)) = - npf (n, 0)
N 
1 = - -C;Z=, n Z;:ol f ( j ,  o)cnj

N 

(because f is odd), 

and it remains only to check that  for j = 1, a ,  N - 1 

i.e., 
~ ( g j+ 1) = c-~-~,=, n(Cnj- C-nj)(gi - 1) . 

We compute 

-- -Cs C n j  + N - C j  - CaV-"-nj + ( N  - l)C-(X-llj 
n=2 n=O 

= [j  + N - + C-(N- ' ) j  + ( N  - l)C-(N-l)j 

= N + cj  + ( N  - l)ci = N( l  + cj) . Q. E. D. 

3.6. Algebrifying the Eisenstein series q,(k/2; o,, o,, f ) ;  the forms 
G,,.,,. As already remarked (3.0.10), i t  is more natural to think of p,(s; L, f ) ,  
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where L is a lattice in C and f is a function on (l /N)L/L. It is even better 
to think of this as q,(s; E ,  w, f ) ,  where (E, w) is an elliptic curve with 
differential over C, and f is a function on the group ,E. 

Now intrinsically, we can view the partial Fourier transforms P-' and P 
(3.2.1,3.2.2) as carrying functions on Z/NZ x Z/NZ to functions on p ,x ZINZ, 
and inversely: given f on Z/NZ x ZINZ, P-'f is the function on p, x ZINZ, 

3.6.1 
N m mod .V f (nt  m)c-R ? 

and given g on p, x ZINZ, Pg  is the function on ZINZ x Z/NZ 

3.6.2 (Pg)(n, m) = C;,,s g(C, m)CR. 
Now suppose (E, o ,  P) is a I'(NYnth-testobject over C, and f is a function on 
Z/NZ x Z/NZ. Then P-'f is a function on p, x Z/NZ, which we transport 
by P: [I, x Z/NZ 2; ,vEto a function on ,,,E. This allows us to form 

If we think of the test object (E, w, P) over C as varying, it is natural to 
view the construction 

3.6.4 (E,a ,  P) ~ 4 s ;E ,  o ,  P-'f o P-') 

as providing a sort of "Cm modular form of weight k on r(N)ar'th." 
At the risk of deranging the reader, i t  will also be convenient to make 

a shift in the variable s, so that  s = 0 rather than s = k/2 becomes the 
"good" point. 

Definition 3.6.5. 
d f n  (- k 

Gk,.,f(E, 0 ,  P) = l~k(s + -;2 E,  0 ,  (P- '~)oB-')  

In terms of the lattice L corresponding to (E,  w), (P-'f)oP-' becomes a 
function g(l/N) on ( l /N)L/L,  and for Re (s) > 1- k/2, we have the series 
representation 

The functional equation 3.0.9 becomes 

The differentiation formula 3.1.10 becomes 

We may sum up the main results of Sections 3.2-3.5 in the following 
theorem. 
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THEOREM3.6.9. Let k 2 1. Let f be a complex-valued function on 
Z/NZ x ZINZ. I n  the exceptional case k = 2, suppose also that Cjf ( j ,0)= 

C,f (0, 1) = 0. Then the value G,,,,, = G,,,, ,I , = ,  i s  a modular form of weight 
k on r(N)"'Ith, dejined over Q [the values off 1, whose q-expansion i s  given 
by the formulas: 

3.6.10 	 Gl,o,f(Tate(q"), ocan, P c a n )  

0 f even , 

a n d  for k 2 2, 

3.6.11 	 G, ,~ ,(Tate(qX),ocan, PC,*) 
0 i f f  isof par i ty  k - 1 ,  

- -~ ( 1- k, f (n, 0)) + CnZ1qn d-lf (d, d') 
- 1;  	

i f f  i s  of parity k . 
Proof. Given the q-expansion computations of 3.2-3.5, everything fol-

lows from the q-expansion principle and GAGA (cf. 2.4). (The restrictions 
on f in case k = 2 are just the partial Fourier transforms of those occurring 
in 3.3.1.) 

Remark 3.6.12. In the case k = 2, the two forbidden functions are f l= 
the characteristic function of ZINZ x {0}, and f, = (fl)t. Their partial 
transforms P-'fland P-'f, are respectively the characteristic function of 
(0, 0) and the constant function 1/N. Referring to the series definition 3.6.6, 
we see that  in terms of the lattice L corresponding to (E, a ) ,  we have 

1 	 1
(G,, , .ha.. .,zl.vzx ,,,(E, o ,  B) = -lim.+oC,,op -- --S(L),

2 1 11I,8 24  r 	 , , 

3.6.13 

o ,  B) = 

1 l IN
G2,0,char.  fct.of(o)xzi~~(E, -lims-oEltO = - N S ( ~ ) ,
2 (l/N)21 l/NIz8 24  


where S(L) is the "position of HO,l"C" modular form (cf. 1.3). 


Chapter IV. Darnerell's theorem 

4.0. Formulation and  proof the theorem. 

4.0.1. Let N 2 1be an integer, K a finite extension of Q, and (E,  o ,  P)  
a l?(N)arith-testobject over K. We assume that  the curve E has complex 
multiplication, and that  all of its complex multiplications are defined over 
K. The representation of End(E)  on HO(E,Q;,,) allows us to view End(E)  
as an order in a subfield KOcK, which we know to be quadratic imaginary 

P over Q. We denote by a F+ 8 the unique non-trivial automorphism of KO. 
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Given an element a E End(E)  c KO,we denote by [a ]  the corresponding 
endomorphism of E ,  but we think of a itself as an element of KOc K. Thus 
[a]*(o) = ao. 

4.0.2 If we choose an embedding K G  C, we obtain by extension of 
scalars a I'(N)arith-test object (E,, wc, PC) over C, which we may view 
transcendentally as being a point (a,, o,) E GL+, well defined mod r ( N )  (cf. 
2.4). We also obtain inclusions of rings of modular forms 

The Z[1/12] algebra of operators Z introduced in 1.6 operates on the 
ring Cw(GL+/I'(N)), but  of course i t  does not leave stable the subring 
R'(K, I'(N)""th). We denote by ZRS(K,I'(N)) the smallest Z-submodule of 
Cm(GL+/I'(N))which contains R'(K, I'(N)"""). 

THEOREM4.0.4. Hypotheses and  notations a s  above, let F be a n  element 
of ZRs(K, I'(N)"r"h). Then the complex number 

lies i n  K,  and,  a s  a n  element of K,  i s  independent of the choice of the 
embedding K c - C. 

Proof. According to  1.6.3, any element of Z is a Z[1/12] linear combi-
nation of the monomials S"gigDdHe.Since the operators H, D, and (multipli-
cation by) g,, g, are all stable on R'(K, I'(N)arith),i t  follows that  any element 
of ZRs(K,I'(N)""") is a sum of elements of the form 

S" x an element of Rs(K,I'(N)a'"h) , n = 0, 1, 2, . . . 
The assertion of the theorem is essentially tautologous for 

FE R'(K, I'(N)ar'th) (compare 2.4), so we are reduced to checking its t ru th  
for the function S. It is a t  this point that  we use the hypothesis of complex 
multiplication. The chosen embedding K + C allows us to speak of the 
usual singular cohomology group Hjing(EC,C), which we can also view as 
algebraic de Rham cohomology: 

The subspace HhR(E/K)sits in Hiing(EC,C) as the K-span of the cohomology 
classes of o = dxly and 7 = xdx/y (compare 1.2). The de Rham cup-product 
(,)DR = ( 1 / 2 ~ i ) ( , ) ~ ~ ~on Hiing(Ec,C) takes values in K o n  the subspace HhR(E/K) 
(in fact i t  is the unique alternating form satisfying ( a ,  v),, = 1). The 
cohomological expression (1.3.6) for S 

4.0.6 S(L) = 12(Ui9 '))on
( 5 ,  o ) D R  

does not change if we replace 5 by a n y  non-zero element of HOs'(Ec). So we 
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need only see that there is a non-zero element E E HAR(E/K)which, for any 
embedding K q C ,  lands in HO,'(Ec)under the isomor phism 4.0.5. This results 
from the following lemma. 

LEMMA4.0.7. Hypotheses as above, the subspace 

Ho3'(EC) HhR ( E I K )  n HAR ( E I K )  c 
i s  ?%on-zero, and i t  is  independent of the choice of embedding K c-.C. I n  
fact, for any [ a ]  E End(E)  with a e Z, i t  is  the 8-eigenspace of [a]*  acting 
on HhR(E/K). 

Proof. The endomorphism [ a ]acts (as [ a ] * )on both HAR(E/K)and on 
H,',,,(EC, C), compatibly with isomorphism 4.0.5. I t  has the distinct eigen- 
values a and 8.Because the action of [ a ]on H,'ing(Ec,C) respects H:,,,(EC, Z); 
it commutes with complex conjugation. So from the tautological relation 
[a]*(w)= aw we deduce that [a]* (Z)= 8c3. Thus the Hodge decomposition 
H,ling(EC,C )  = @ HOrl(Ec)H1sO(Ec) is simply the eigenspace decomposition of 
[a]* .In particular, the subspace HO"(Ec)n HAR(E/K)is just the 8-eigen- 
space of [a]*  on HhR(E/K).  An explicit rational projector onto it is 
( I /@- a))([al*- a) .  Q.E.D. 

4.0.8. Question. The proof we have given actually shows that Damerell's 
theorem is true for any lattice L c C such that g,(L), g,(L), and S(L)are 
simultaneously algebraic. Does any such lattice L have complex multipli- 
cation? Equivalently, if an elliptic curve E over a number field K has the 
Hodge decomposition of its complex H' induced from a splitting of its 
algebraic de Rham H 1over K ,  does E have complex multiplication? 

4.1. Concrete applicatio?%s. 


LEMMA4.1.0. Let (A, B )  be a pair of integers satisfying A + B 2 1, 

B 5 0. Then for any K-valued function f on ZINZ x ZINZ, the C mmodular 
form G,,,,f lies in ZRa(K ,I'(N)"""). 
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Proof. For k 2 1, we know that G,,,,, is either itself an element of 
Rs(K, I?(N)"""), if k # 2, or is the sum of such an element and a K-multiple 
of S (cf. 3.6.12). Thus Gk,o,f lies in ZR'(K, I'(N)""th) for k 2 1. For each 
integer r 2 0, the differentiation formula (cf. 3.6.8) 

shows that Gk+,,, -,, lies in ZRa(K, r(N)""") for k 2 1, r 2 0. The func- 
tional equation (3.6.7) gives 

4.1.2 G k + 2 r , - r , f  = Gk+zr,~-k-r,ft 

which shows that Gk+ ,,,,- lies in ZR.(K, r(N)"'lth) for k 2 1, r >= 0. If 
we put (A, B) = (k + 2r, -r), the conditions k >= 1, r 2 0 become the condi- 
tions A + 2B 2 1, B I0. If we put (A, B) = (k + 2r, 1- k - r), the condi- 
tions k 2 1, r 2 0 become the conditions A + 2B 5 1, A + B 2 1. Q. E. D. 

Applying 4.0.4 to the GA,B,f, we find 

COROLLARY Hypotheses as  i n  4.0, let A, B be integers satisfying 4.1.3. 
A + B 2 1, B 5 0. Then for any K-valued function f on ZINZ x ZINZ, 
the complex numbers GAZB,,(Ec, w,, PC) lie i n  K, and there they are  indepen- 
dent of the chosen embedding Kc-. C. 

We now turn to the explicit transcendental expression of the functions 
GAZBzf. Because E has complex Let L denote the period lattice of (E,, o,). 
multiplication, the two-dimensional Q-space L @, Q is a one-dimensional 

KO-space, with basis any period Q = o of w, over a non-zero element 

Y s r,(E,). Thus 

where M is a lattice which lies in the subfield KO cC. 
Now suppose in addition that K 3  i,,a primitive N ' th  root of unity. 

Then as f runs over all K-valued functions on Z/NZ x ZINZ, g = P-'f P-'0 


runs over all K-valued functions on ,(E,)=(l/N)L/L= M/NM. The tran- 
scendental expression for GA,B,f(Ec, w,, PC) (cf. 3.6.6) 

may be rewritten as 

where N: KO -+Q denotes the norm mapping. 
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Conversely, it is well known that any collection of data 

a quadratic imaginary field KO 

an embedding KO c=+ C 
a lattice M cKO 

a function g: MINM--. C with algebraic values 

arises from a suitable I'(N)arith-test object (E, o ,  ,B) over a finite extension 
K of KO, whose underlying elliptic curve has complex multiplication ring 
End (E)  = {aE KO( a M  cM). There is of course a great deal of indeter- 
minacy in choosing the Q such that the lattice QM will define the complexi- 
fication (Ec, a,) of the putative (E, o): any complex number Q E C such that 
both the numbers 

are algebraic will do. 

COROLLARY Given data 4.1.7 a s  above, let Q E C be such that both 4.1.9. 
g,(QM) and g,(QM) are  algebraic. Then for any integers A, B satisfying 
A + B 2 1, B $0 ,  the value 

is a n  algebraic number. 

Chapter V. Review of the p-adic theory 

5.0. Trivializations. 
5.0.0. Fix a prime number p. A ring which is complete and separated 

in its p-adic topology will be called a p-adic ring. Given an elliptic curve E 
over a p-adic ring B, a trivialization of E /B  is by definition an isomorphism 
of formal groups over B, 

For any integer N 2 1, we say that a r(N)a'ith-structure ,B on E / B  is 
compatible with 9 if, when we write N = NOpvwith (p, No) = 1, the com- 
posite map 

ID
/3 ^ N A
5.0.2 P,?c--*E--+ G ,  


is the inclusion. Similary, we say that a I'oo(N)ar'th-structure 


5.0.3 i: px c---,HE 


is compatible with if the composite 
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is the inclusion. (Thus for any r 2 0, a trivialized curve (E, 9 )  admits a 
unique I'oo(pr)a'ith-str~ct~re compatible with 9 ,  and in fact 9 itself if pre- 
cisely a compatible system of I'oo(pr)"rith-structures r 2 0.)on E /B  for all 
Finally, we say that a I'oo(N)n"i'e-structure 

is compatible with 9 if, once again with N = prNo, (p, N )  = 1, the underly- 
ing I'oo(pr)n"ive structure j 1 N,Z/NZ satisfies 

5.1. Generalized p-adic modular functions (compare 2.1 and 2.5). 
5.1.0. The functor "isomorphism classes of trivialized I'(N)a'ith-elliptic 

curves (E, 9 ,  P)" is represented by a p-adic ring V(Zp, I'(N)"rith). For any 
p-adic ring B, the same functor restricted to B-algebras is represented by 

V(Zp, I'(N)"rith) GZpB, sometimes denoted V(B, I'(N)"""). For example, if 
N = 1, we have 

and, viewing 9 as a compatible system of I'oo(p")"rith-structures, 

5.1.2 v(z/~"z,  I'(1)) = lim (the coordinate ring of M(I',,(~')""~~) @, z/pmZ) 
--+ 

v 

= lim RO(z/p"Z, I'oo(pr)"rith) ; 
4 
r 

similarly for I'oo(N)"rith and I'oo(N)naive. 

5.1.3. An element FE V(B, I'(N)"r'th) is called a I'(N)""" generalized p- 
adic modular function. On any trivialized I'(N)ar'th "test object" (E, 9 ,  P) 
over a p-adic B-algebra B', such an F has a value F(E, 9 ,  P) E B', which 
depends only on the isomorphism class of (E, 9 ,  P), and whose formation 
commutes with extension of scalars of p-adic B-algebras. In this optic, F 
"is" its value on the universal trivialized I'(N)"""-curve (E,,,,, F,,~,, PUni,), 
defined over V(B, I'(N)"""); similarly for I'oo(N)"rith and I'oo(N)nai'e. 

Remark 5.1.4. If we restrict N to be prime to p, we also have the 
notion of trivialized I'(N)nai'e-elliptic curves, and the corresponding rings 
V(B, I'(N)n"ive). As explained in 2.0.8, we have 

so that there is nothing essentially "new" here. 
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3.2. q-expansions: the q-expansion principle. 
A dfn

5.2.0. The Tate curve Tate (qN),viewed over Z,((q)) = the p-adic com-
pletion of ~ ( ( q ) ) ,has a canonical trivialization qCan(think of Tate (qN)as the 
quotient of G ,  by the discrete subgroup qNz;its formal group "is" G,), with 
which PC,, is compatible. Evaluation on (Tate (qN),F,,,, PC,,) defines an 
injective q-expansion homomorphism 

5.2.1 V(B, I'(N)"rith)-B((Qh)) 

such that the cokernel B((Q^))/V(B, I'(N)arith)is B-flat. 

5.2.2. If B c B', then V(B, I'(N)ar'th)c V(B1,I'(N)"""), and an element 
FE V(Bt, I'(N)arith)lies in V(B, I'(N)""") if and only if its q-expansion lies 
in B((q^)). 

5.2.3. The corresponding q-expansions for I'oo(N)na"eand I'oo(N)arithare 
defined by evaluating a t  a ate (q"), q,,,, j,,,) and a t  (Tate (q), 9,,,, i,,,) 
respectively. The analogues of 5.2.1 and 5.2.2. hold. 

3.3. The action of the group G(N); weight and nebentypus. 
5.3.0. The group Z," acts on V(B, I'(N)arith)through its action on the 

trivialization 9and its "correcting" action on the p-part of P. More generally, 
consider the subgroup 

5.3.1 G(N) c Z," x (ZINZ)" 

of all elements (a, b) E Z,"x (Z/NZ)xsuch that, writing N =prN0,(p, No)= 1, 
we have b mod p' E a mod p'. Thus G(N)r=Z," x (Z/N0Z)". 

5.3.2. We define the action of G(N) on the rings V(B, I'(N)~'"~),resp. 
roo(N)arithand I'oo(N)nai'; by the formulas 

i[a, b]F(E, 9 ,  P) = F(E ,  a-'9, P o  (b, b-l)) for I'(N)""" , 
5.3.3 [a, b]F(E, 9 ,  i )  = F(E,  a-lq, bi) for I'oo(N)arith, 

[a, blF(E, 9 ,  j)  = F(E,  a-'9, b-lj) for I'oo(N)naive. 
Given a continuous character 

5.3.4 X: G(N) -B x  , 
we say that an element FE V(B, I'(N)""'~) is of weight X if 

5.3.5 [a, b]F = X(a, b)F for all (a, b) E G(N); 

similarly for I'oo(N)arithand I'oo(N)nai'e.If the character X happens to be a 
product X = X, p where 

k E Z, and Xk is the character Xk(a,b) = ak  ,
5.3.6 

,o is a character of finite order of G(N), 



506 NICHOLAS M. KATZ 

then we sometimes say "weight k and nebentypus ,07'instead. 

5.4. Relation to true modular forms, via magic difirentials. 

5.4.0. Given a trivialization 9 :  Ez!,G, on E/B, we can use i t  to pull 

back the standard invariant differential dTl(1 + T) on G,, thus obtaining a 
nowhere vanishing invariant differential ~ * ( d T / ( l  + T)) on E, which is 
necessarily the restriction to E of a unique nowhere vanishing invariant 
differential o, on all of E. 

Notice that if B is $at over Z,, i. e., B c B @ Q, then 9 is uniquely 
determined by the differential w,. Given any nowhere vanishing invariant 
differential w on E ,  one can determine if i t  is magic by picking a formal 
parameter, say u,  for E, integrating o formally over B @ Q, 

5.4.1 w = d+(u), +(u) = Cn2 ,anunwith a, E B @ Q , 
and "checking" to see whether the series 

5.4.2 9(u) eXP (l;p(u)) t 

a priori  in (B @ Q)[[u]], actually has coefficients laying in B. If it does, then 
u t-~ ( u )is the trivialization, and w = q*(dT/(l + T)). 

5.4.3. For example, if B is the ring of integers in a finite extension of 
Q,, with residue field F,, and E/B is an ordinary elliptic curve with differential 
o ,  then there exists a unit c E the completion of the maximal unramified 
extension B, of B such that c o  is magic. Furthermore, if we denote by o 
the Frobenius automorphism of BJB, then, according to Tate [5] 

5.4.4 co/c= the p-adic unit eigenvalue of Frobenius relative to F, on 
the elliptic curve E@ F,, 

and if B = Z, itself, then the magic differentials over B, are exactly the 
differentials cw, where c E Bz satisfies 5.4.4. 

The construction 

5.4.5 (E, 9 ,  P) c-.(E, 9*(dT/(l  + TI), P) 
allows us to define by transposition a ring homomorphism Ft+ P: 

which preserves q-expansions: 

Rs(E, I'(N)"'lth) -V(B,I'(N)arith) 

q-expansion 1 C q-expansion 

A 

B((9))---B((9)) 9 
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similarly for I'oo(N)"rith and I'oo(N)na've. 
Before stating the next compatibility, let us recall the action of 

b E (ZINZ)" on the rings R'(B, I'(N)"""), resp. I'oo(N)"rithand roo(N)"ai*e, 
defined by 

1
[b]F(E, o ,  6)= F(E, w, p 0 (b, b-I)) for I'(N)""" , 

5.4.8 	 [b]F(E, o ,  i )  = F(E,  w, bi) for I'oo(N)arith , 
[b]F(E, o ,  j)  = F(E,  w, b-'j) .for I'oO(N)naive 

An element F in one of these rings is said to be of nebentypus p for 
p E Hom((Z/NZ),, B"), if it satisfies 

5.4.9 	 [blF = P ( ~ ) F  for all b E (ZINZ)". 
LEMMA5.4.10. Under the homomorphisms 5.4.6 for I'(N)arith, I'oo(N)"r'th 

and I',,(N)""'", if F is  a true modular form of weight k and nebentypus p, 
then P is  of "weight k and nebentypus p," i n  the sense of 5.3.6, where po i s  
the character of G(N) defined by po(a, b) = p(b). 

Proof .  This follows from the definitions 5.3.3, 5.3.6, and 5.4.9. Q.E.D. 

Remark 5.4.11. If FE Rk(B, r(N)""") is not of nebentypus, we can 
only assert that FEV(B, r(N)"rith) has weight k over the open subgroup 
Z, x {I}n G ( N )in G(N), in the sense that, writing N = prN, with (p, No) = 1 
we have 

5.4.12 	 [a, ZIP= a k F  if a E z;, a - l(pr) . 
5.5. The Frobenius endomorphism. 
5.5.0. Let (E, F, P) be a trivialized I'(N)arith elliptic curve. We wish to 

define its Frobenius transform (E', F', P'). We define 

5.5.1 	 E' = E/F- ' (~ , )  

and denote by z:E- E' the projection. Its dual 2:E'-+E is 4tale, so we 
can define F' = F Z .  We view P as a pair (PI, P,) consisting of compatible 0 


l?oo(N)arith structures (cf. 2.0.9), which are both compatible and I'oo(N)n"ve 
with F (5.0). Writing N = prN0 with (p, No) = 1, we treat separately the 
two cases (p, N )  = 1and N = p'. In the first case (p, N )  = 1,both and ?i 
are of degree prime to p, so induce isomorphisms n:,EzNE'and 5:,E'zNE. 
We define P:, Pi by requiring commutativity in the diagrams 
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In the second case N = pT, the 6: is already determined; it is ($)-I 
restricted to ppT: 

and Pi is simply the composite n P,: 

Reassembling N = pTNo,we see that P' = P:, Pi is characterized by the 
equations PI = %P:, P: = xPz. 

5.5.5. This construction carries 

(Tate(qN),F c a n ,  P c a n )  to Tate (qpN,Fcan, P m n )  , 
and by transposition, defines the Frobenius endomorphism of V(B, I'(N)"""): 

5.5.6 (Frob F)(E, F, P) F(E', F', P') . 
By 5.5.5, its effect upon q-expansion is simply 

5.5.7 (Frob F)(q) = F(qP); 
similarly for I'oo(N)arithand I'oo(N)nai'e. 

LEMMA5.5.8. The Frobenius endomorphism of V(B, I'(N)"'lth) com-
mutes with the operation of the group G(N); similarly f o r  I'oo(N)arith, 
I'OO(N)naive. 

Proof .  We must check that the two values 

Frob ([a, blF)(E, 9 ,  P) = ([a, blF)(E', 9'9P') 
= F(E',  a-lq', B' 0 (b, b-I)) 

and 
[a, b](Frob F)(E, 9 ,  P) = (Frob F)(E, a-'9, ,80 (b, b-I)) 

= F(E', (a-IF)', (,G' o (b, b-I))') 

agree, for any test object (E, F, p). The defining equation 9' = F 0 2 shows 
that (aT+)' = a-IF'. Viewing ,G' as (PI, Pz)(5.5.2), we see from the defining 
equations PI = jt 0 P: and P: = n 0 P,, that (bp,)' = bpi and (b-'P,)' = b-lp:. 

Q.E.D. 
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5.6. Some "exotic" isomorphisms. 
5.6.0. We can recopy Section 2.3, once we tell how to "push" a trivial- 

ization when we divide by a subgroup p, or ZINZ. Given (E, y )  and a 
subgroup pa,,-E,  let z: E- E/p, denote the projection, and take as 
trivialization on E/,uFL, the composite 90%. Given (E, y )  and a subgroup 
ZINZ c-. E,  let n: E- EIZINZ denote the projection, and take as trivial- 
ization 9'on EIZINZ the unique one such that 9 = 9'0 n. With these rules, 
the isomorphisms 2.3.6 may be transcribed in the p-adic case as inverse 
isomorphisms 

5.6.1 v  ,  r o o ( ~ ) a r i t h )  V(B, r,,(N)""'"') 

which arise by transposition from the inverse equivalences 

divide by Z/NZ 
{trivialized I'oo(N)"rith curves) 'z- {trivialized I',o(N)nai"e curves) . 

divide by p . ~  

The isomorphisms 5.6.1 preserve q-expansion. 
Another exotic isomorphism worth noting arises whenever N = pTNo 

with r 2 1. I t  is characteristic of the p-adic theory. 

LEMMA5.6.3. Let N = pTNo, with r 2 1and (p, No) = 1. There i s  a n  
"exotic", (G(N) 2: G(No) equivarianl, q-expansion-preserving isomorphism 

5.6.4 	 V(B, r(p'~,)"'"~) %V(B, I'(N~)"'"~) . 
Proof-construction. We will in fact construct an equivalence 

5.6.5 {trivialized I'(N0)""" curves) {trivialized I'(pvNo)arith curves) . 
Given a trivialized I'(No)arith curve (E, y ,  p), we can iterate the Frobenius 
construction (5.5.1) r times (which amounts to dividing E by y-l(pPT)), and 
obtain another I'(No)arith curve (E('), y('),P(')). I t  remains to endow E(?)= 
E/pLLp,,with a canonical I'(p')arith structure, or what is the same for a trivi- 
alized curve, with a I'oo(p')naive structure. For this we simply invoke the 
equivalence 5.6.2, in the case N = p'. 

The inverse construction 

5.6.6 {trivialized I'(pTNo)arith curves) i----t {trivialized I'(No)arith curves) 

does not depend on the fact that we have trivializations, and is just the 
"trivialized" version of a modular construction in which pT could be any  
integer N,,and in which the fact that Nois prime to p plays no role: 

5.6.7 {I'(NINo)arith-test 	 test objects) .objects) t--.{I'(No)arith 

Given a I'(NINo)arith-test object of either sort (E, w or y, P), E contains a 
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Psubgroup Z/NIZ, namely the subgroup N,,Z/NoN,Z c Z/N,N,Z c,E. We define 
E' = E/Z/N,Z, and denote by n the Qtale projection. There is a unique dif- 
ferential o' on E' such that n*(w') = o ,  and a unique trivialization 9' on E' 
such that q~= 9' n. The quotient curve E' isomorphically receives Z/NoZ, 0 


through the composite of ,G', with n: 

a:: 4
Z/NoZ -E'. 

The inclusion of p.,.,,,. into E' is defined by 

This construction (E, w or 9 ,  ,G') w (E', w' or F', P') carries Tate curve to 
Tate curve, and so defines by transposition a commutative diagram of 
q-expansion-preserving ring homomorphisms 

,,,,, (divide by Z/NlZ)*
R(B7 VNo) ' ) -R(B, ~ ( N , N ~ ) " " ~ ~ )  

5.6.10 IF-. 

V(B, r ( N )  ' 

(divide by Z/NIZ)*
) -- V(B, I'(N,N~)""~~) . 

In case N,= p', this construction 5.6.6 is easily checked to be inverse to 
that of 5.6.5. Q.E.D. 

Remark 5.6.11. The isomorphisms 5.6.4 for r and r + 1"differ" by an 
isomorphism (which necessarily preserves q-expansions) 

whose inverse is none other than the map 5.6.10 (for N, = p, No = N). 
Because a I ' ( p N ) " r i t h - s t r ~ ~ t ~ r e  determines, by restriction to the subgroup 

,UN x pZ/pNZ, a we a inclusion"l ? ( N ) a r i t h - s t r ~ ~ t ~ r e ,have "natural of 
V(B, I'(N)a'ith) -V(B, I'(pN)""") which has the effect q F+qp on q-expansion. 
The composite 

V(B, ~ ( P N ) " " ~ ~ )  

5.6.13 nat'l incl. Frob isom. 5.6.12/ ke 

V(B, r(~)ar i th)---------PV(B, r(N)arith) 
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is, as labeled, the Frobenius (just check the effect on q-expansion!). 

Interpretatio~z 5.6.14. If we combine 5.4.7 with 5.6.4 and 5.6.10, we get 
a commutative diagram of q-expansion-preserving ring homomorphisms 

F H P
R'(B, I?(P~N,)~"~~) * V(B, ~ ( P ~ N , ) " ' ~ ~ ~ )  

(divide by Z/pTZ)*  (divide b y  p,r);& (divide by Z/pTZ)*  

R'(B, I'(No)arith) 
F H P  V(B, I'(Ng)Brith) 

We can sum this up in the catch phrase "a true modular form of level prN0 
is p-adically modular of level No." 

5.7. Rarnanujan's series P as  the direction of the un i t  root subspace 
(compare 1.3). 

5.7.0. This series is the q-expansion of a (necessarily unique) element 
P E v(Z,, I'(l)"rith) which has weight two. I t  is defined modularly as follows. 
Over the ring V, '2V(Z,, r(l)arith),  we have the universal trivialized elliptic 
curve (Euni,, quni,). I ts  Frobenius transform (E', q'), formed by dividing 
Eunivby its "canonical subgroup" (cf. [13]) ~;,!,~,(p,), is another trivialized 
elliptic curve over V,. The ring homomorphism V,- V, which classifies i t  
is just the Frobenius endomorphism of V,: 

E' = E ' F I O b )
u n l v  . 

5.7.1. The free rank-two V,-module HhR(Euni,/ V,) undergoes a Frob-
linear endomorphism as follows. The projection map 

5.7.2 7 ~ :E,,,i, -E' 

induces by functoriality a V,-linear map F 

H;,(Ed:f:b'/ V,) ;'F 

which we view as a Frob-linear endomorphism of HhR(Euniv/Vl). 

Consider the F-stable Hodge filtration of H;R(E,ni,/ V,), 


---t ---t ---t5.7.4 0 +HO(Q1) HAR H"(OE) 0 . 
The endomorphism F is divisible by p on Ho(Q1), but induces a Frob-linear 
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automorphism on H1(OE). From this i t  follows that there is a unique F-stable 
splitting of the Hodge filtration 

5.7.5 H A R  = HO(Q1)@ U , 
where F induces a Frob-linear automorphism of U (the "unit root part") 
(cf. [13], A2). 

On the purely algebraic side, we are given a basis o = 9*(dT/(l + T)) 
of Ho(Q1),so that after extending scalars from V, to V,[1/6], we can write a 
Weierstrass equation yZ= 4x3- gzx - g3 for Euniv,under which o = dxly. 
The differential of the second kind 7 xdxly forms, with o ,  a basis of 
HAR(E,,i,/V1) @, Z[1/12], and we know that ( a ,  T ) ~ ,  = 1. 

In complete analogy with 1.3.6, we can measure the direction of the 
unit root subspace UcHA, by choosing an arbitrary invertible section u E U, 
and considering the ratio 

(the denominator (u, o),, is necessarily a uni t  in Vl, because o and u are 
invertible sections of HO(Q')and U respectively, which the alternating form 
( , ),, necessarily puts into duality). 

This said, we could define an element P E V,[1/12] by the formula 

LEMMA5.7.8. The element P E V(Zp,I'(l)arith)@, Z[1/12] of weight two 
defined by 5.7.7 above actually lies i n  V(Z,, r(l)arith).I t  q-expansion i s  
given by Ramanujan's series 

5.7.9 P(q) = I - 24 CmZlq"Cd lnd  

Proof.  The q-expansion computation is carried out in ((13), A2.4). It 
shows that in fact P lies in V(Zp,I'(1)) even for p = 2 or 3, by the q-expan-
sion principle. That P is of weight two follows from the cohomological 
expression 5.7.7: Changing 9 to a-'9 changes o to a%, and '7 to av, and 
thus carries P to a2P. 

Remark 5.7.10. The fact that P lies in Vl means that 127 is actually a 
section of HA,(E,,,,/ V,). Explicitly, we have 

5.7.11 127 = Po + l 2  u . 
( a ,  ~ ) D R  

For any N 2 1, we can consider P as an element of V(Zp,I'(N)"""), by 
defining P(E,  9 ,  ,@)= P(E,  9). I ts  level N q-expansion is 
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5.7.12 ' ( q N )'= - 2 4 z n d l q N n z d l n d' 

In the notation of 3.6.11. we have the formulas 

1 
- -P(qN)  = G2,0,c h a r .  f c t  of ZI.\ 10)Z \ 

= G2.0,char.  f c t  o f  10) x Z / I  Z  1 

which should be viewed as the p-adic analogue of the C" formulas 3.6.13. 

5.8. The derivation 0. 

LEMMA5.8.1. For each integer N 2 1,  there i s  a derivation "NO" of 

V ( Z p ( N ) a r i t h ) ,  upon  level N q-expansion i s  q(d/dq), in the sense 
whose e&ct 
that the d iagram below commutes 

NOv(zp,r ( ~ ) ~ ~ ~ ~ ~ )r ( ~ ) ~ ~ ~ ~ ~ )-----,v(zp, 
q-expansion q-expansion 

It i s  of weight two in the sense that  for a n y  element (a ,  b) E G ( N )  (cf. 5.3), 
we have 

5.8.3 [a ,  b] 0 NB = a2NB0 [a ,  b] . 
Proof-construction. The notation "NO" is simply to emphasize the de- 

pendence upon N.under the natural inclusion V(B,l ? ( ~ ) " " ~ ~ )C(B ,l?(NM)arith), 
the subring is stable by "NMB," and "NMB" = MuNB" on it. 

To prove it, we can use the isomorphism 5.6.4 to reduce to the case 
where N is prime to p. In that case, the l?(N)""" moduli problem is e'tale 
over the I'(l)arith SO i t  suffices to treat the case N =moduli problem, 1. 
Deformation theory gives us an isomorphism of V(Z,,  l?(l)""") modules 

5.8.4 ( w E , ~ ~ ~ , v ) "  Q b , ~ p• 

Now o = ~ * ( d T / ( l+ T ) )  is a canonical basis of @, so its square gives a 
canonical basis of which by 5.8.4 gives a canonical basis of QbIZp.The 
dual basis of Der ( V ,  V )  is defined to be 8. In concrete terms, this means 

that I9 is the unique derivation of V ( Z p ,I'(l)arith)
such that under the Gauss- 

Manin connection V on H;R(E,,iV/V(Z,, l?(l))), we have the cup-product 

formula 


That this derivation has the effect q(d/dq) on q-expansions is equivalent to 
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the assertion that on the Tate curve Tate (q), we have 

a formula which is verified in ([13], A1.3.18). 
That 8 has weight two is obvious from its cohomological definition: an 

element [a] c Z; carries q to a-'q, so carries o = q*(dT/(l+ T)) to a-lo, and 
hence carries B w [a]B[a]-' = a2B, as required. Q.E.D. 

5.9. A p-adic graded Z-module (compare 1.6). Let us denote by 
G Vs(ZP, I'(N)arith) the graded subring of the non-graded ring V(Zp, I'(N)arith) 
whose elements in degree k are the elements of V(Z,, I'(N)""") which are of 
weight k under the open subgroup Z," x {I}n G(N) of G(N). Thus an element 
F E V lies in GVk if and only if, writing N = prNo with (p, No) = 1, we have 

5.9.1 	 a E Z,", a = l(pT)=- [a, 1 ]F  = a k F. 
The homogeneity derivation H: G V' -+ GV' is defined by 

5.9.2 	 H(CfJ  = D f t  . 
LEMMA5.9.3. The graded r ing GVs(ZP, T'(N)a"th) @, Z[1/12N] becomes 

a graded 5 module under the assignment 

g, t--.(multiplication by)g, 

g, t--.(multiplication by)g, 

S t--.(multiplication by)P 

H-H 
W-8 

Proof.  Since the operators g,, g,, B - (1/12)PH, H,  8, P a r e  homogeneous 
of weight 4, 6, 2, 0, 2, 2 respectively, the commutation relations between H 
and any other are satisfied. Since G V' is a commutative ring, the commuta- 
tion relations among g,, g,, P are satisfied. Since the operator 8 - (1/12)P.H 
acts stably on the subring R'(ZP[1/12N], I'(N)arith) of "true" modular forms 
as the Halphen-Fricke operator D (cf. 1.5.12), the commutation relations 
between it and g, or g, are satisfied. It remains to check that 

1 	 1i. e., that B(P) - -P. H(P) = -g, - -P2 ,
1 2  	 1 2  
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i. e., that 

i. e., that 

i. e., that 

which is the differential equation established in 1.4.31. Q.E.D. 

5.10. Another modular description of GVa(Z,, T'(N)arith). 
6.10.0. Let B be a p-adic ring, and (E,w, P) a r(N)arith-testobject (cf. 

2.1) defined over B. Assume in addition that the underlying curve E /B  is 
fibre by fibre ordinary. (This last condition is automatic if p divides N.) 
Then over a pro-ind-Qtale over-ring B, (meaning that B, is a p-adic ring, 
and for each n 2 1, B,/pnB, is an increasing union of finite Qtaleover-rings 
of B/pnB) there exists a trivialization 9 on E @  B,/B, with which P is 
compatible. Furthermore, the indeterminacy in the choice of such a g, is 
the group Z,X x (1) n G(N), i.e., with N = pTNowhere (p, No)= 1, the given 
inclusion of p,, c=+ E by P determines the "beginning" of q ~ ,so we can only 
change it by an element a E Z," which is -= 1mod pT. 

Suppose we are given an element F E GVYZ,, l?(N)arith). We want to 
give it a value F(E,  w, P) E B on such a test object. First we will define this 
value as an element of B,. Choose a trivialization 9 over B, with which P 
is compatible. Then we can write w = X9*(d T/(1 + T)) for some unit X E B:. 
We tentatively define 

5.10.1 F ( E ,  w, P) = X-kF(E, 9 ,  P) E B, if w = xy*(dT/(l + T)) . 
This is well defined independent of the choice of q ~ ,for if we change 9 to 
a-'9, with a E Z,", a = l(pr), we have w = a~(a-19)*(dT/(1+ T)), and the 
"definition" 5.10.1 would yield 

F ( E ,  w, P) = ( a W k F ( E ,  P) = x - ~ F ( E ,9 ,  P) , 
because F lies in GVk. I t  follows by a standard &taledescent argument 
that this value, being independent of the auxiliary choice of 9 ,  must itself 
lie in B, rather than B,. Notice that we have lost no information, for when 
we are given a trivialized T'(N)arithcurve (E, 9 ,  P) over B, we have the 
the tautological equality: 

5.10.2 F(E, 9 ,  P) = F ( E ,  9*(dT/(1+ T)), P) 
Thus we have 

LEMMA5.10.3. The above construction establishes a n  isomorphism 
between GVk(Z,, T'(N)a"th)and the p-adic Zp-module of "functions" F which 
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to any  fibre-by-fibre ordinary I'(N)"rith-test object (E, w, P) over any  p-adic 
r ing  B, assign a value F (E ,  o ,  P) E B, such that (compare 2.1.1 and [13], 
Ch. 2) 

F(E,  o ,  P) depends only on the B-isomorphism class of (E, o ,  P) 

F(E,  r l w ,  P) = xkF(E, w, P) f o r  all X E B x  
5.10.4 

formation of F(E,  o ,  P)  commutes with extension of scalars of 

p-adic rings . 
In the language of [13], this lemma says that GVk(Z,, r(N)""") is the 

module of all "p-adic modular forms on I'(N)""" of weight k." 

Remark 5.10.4.1. If we fix a p-adic ground-ring B,, 
we have an analogous modular interpretation of the ring 
G Va(B0, I'(N)"jth) @ G Vk(Zp, & Bo. 

5.10.5. An example: P(compare 5.4.3). Suppose B is the ring of integers 
in a finite extension K of Qp with residue field F,, and (E, o )  is an ordinary 
elliptic curve with nowhere vanishing differential. The 2-dimensional K-space 
H;,(E,/K) undergoes a canonical "qth power Frobenius endomorphism" F,, 
exactly one of whose eigenvalues is a unit a E Z,", the other being qla. (The 
characteristic polynomial (1 - aT)( l  - (q/a)T) is the numerator of the zeta 
function of E @ F,/F,.) If we choose any nonzero eigenvector u in the (unit) 
a-eigenspace, then we have 

5.10.6 	 P(E, a )  = 12 ("' ?)DR 


(u, ~ ) D R  


Tautology 5.10.7. Suppose that B is a p-adic ring, and that (E, w, P) is 
a fibre-by-fibre ordinary I'(N)"rith-test object over B. A necessary and suf- 
ficient condition that obe a magic diferential (i.e., of the form g , * ( d ~ / ( l +  T)) 
for some trivialization g, defined over B) is that the evaluation homomor- 
phism 

5.10.8 	 G vs(ZP, r (NYi th)  
eval. at ( E ,o,p) 

+ B  

be prolongable to a ring homomorphism 

I t  is a tautology in view of the functorial description (5.1.0) of the ring 
V(Zp, I'(N)"""). But in view of the known explicit generators for V as a 
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GV'-algebra (cf. [14]), i t  is also a congruence criterion on the coefficient of 
the power series expansion of o,a t  least when B is flat over Z,! 

5.11. Construction of the p-adic Eisenstein-Ramanu j a n  series Gk,T,f 
and  @,,,, (compare 3.6). 

LEMMA5.11.0. Let f be a Z,-valued function on ZINZ x ZINZ, and  
k 2 1a n  integer. The q-series 

1
-L(O,f(n, 0) + f ( 0 , n )  - f ( -n ,  0) - f(0, -n)) if k = 1 

5.11.1 2Gk,,,f =I I-L(I - k, f (n, 0) - (- l)k-lf (- n,  0)) i f k 2 2  

4- Em,,9" Ed,.=, - (- d)k-lf ( - 4  -d'))(dk-'f (d, d') 

i s  the q-expansion of a n  element 2Gk,,,, s Gvk(zP ,  (F(N)"'lth) @ Q,. 

Proof. For k # 2 and any f ,  and for k = 2 and f ' s  satisfying the 
extra conditions E f ( j ,  0) = Cf(0, 1) = 0, the element G,,,, ,even lies in 
Rk(Qp, l?(N)arith). In the two remaining cases, k = 2 and the functions f ,  = 

the characteristic function of ZINZ x {O} and f ,  = f :, these are the q-expan- 
sions of (-1/24)P and (-N/24)P respectively (cf. 5.7.13). Q.E.D. 

Definition 5.11.2. Let k and r be non-negative integers, and f a 
Z,-valued function on ZINZ x ZINZ. We define the q-series 2@,,,,, by the 
formulas 

Notice that  no ambiguity is caused by the overlapping case k = r = 0, 
because = Gl,o,ft,as is visible from 5.11.1. 

LEMMA5.11.4. F o r k ,  r Z 0 ,  a n d  f a Z,-valued function on ZINZ x ZINZ, 
the series 2@k,,,f i s  the q-expansion on a n  element 

2@,,,, ,s G Vk+'+'(Z,, F(N)"'lth) @ Q, . 
If both k, r 2 1, then 2@k,,,f lies i n  Gv~+'+'(z,, F(N)arith). 

Proof. If k = 0 or r = 0, there is nothing to prove. If k 2 r 2 1, we 
have the q-series equality 
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so that we can modular ly  define 2@,,,,f by 

Similarly, if r 2 k 2 1,  we have the q-series equality 

so that we can modular ly  define 

5.11.8 2@,,,,f (NB)k(2GT+l-k,o,ft) i f r z k z l .  

Since NB increases weight by two, we have @,,,,, E G V ~ + ' + ' ( Z ~ ,I ? ( N ) ' ~ ~ ~ ~ ) @ Q ~ .  
If k ,  r 2 1, then '2@,,,,, has integral  q-expansion, so by the q-expansion 
principle it lies in G Vk+'+'(zp, Q.E.D.I'(N)arith). 

Defini t ion 5.11.9. Let A, B be integers satisfying B 5 0 ,  A + B 2 1, 
and f a Z,-valued function on Z / N Z  x ZINZ.  We define an element 
2GAtB,E G VA(zP,  @ Q pby setting 

5.11.10 	 2G,,B,f = ~ @ A + B - I , - , s f  9 

i. e., 2@k,r,I = 2Gk+~+l,-r,f. 

Notice that if B < -1  and A + B L 2 ,  then 2GASBsf  The
s G V A ( z P ,  I?(N)"""). 
functional equation for @, 

5.11.11 2@,,,,f = 2@,,,,ft 9 k , r 2 O  

(which is obvious from 5.11.3) becomes one for G:  

5.11.12 	 2GA,B,f = 2GA,l-A-B,ft , B d 0 ,  A + B Z 1 . 
The differentiation relation 

5.11.13 	 NB(2@k,r,f)= 2@k+l , r+ l , f  9 k , r Z O  

(also obvious from 5.11.3, cf. 5.11.6-8) becomes 

5.11.14 	 NB(2GA,B,f)= 2GA+,,B-l,f , B d 0 ,  A + B 2 1 . 
To give the transformation properties under the group G ( N ) ,  i t  is 

convenient to introduce a notation. Given b s (ZINZ)"  and a function f on 
ZINZ  x Z I N Z ,  the function [b]f is defined by 

5.11.15 	 [b l f(u,v )  = f ( bu ,  bv) . 
LEMMA5.11.16. The  t rans format ion  property of the @ and the G under  

the group G ( N )  i s  given by the formulas  

[a ,  b1(2@,,,, f )  = ak+'+12@,,T,[~~f , k , r Z O
5.11.17 

[a ,  b1(2GA,B,f) = ,aA2GA,B,[blfB d 0 ,  A + B 2 1 . 

mailto:I?(N)'~~~~)@Q~
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Proof. By 5.11.10, the two formulas are equivalent. We will prove the 
first. By 5.11. 13 and the fact that B is of weight two, we may assume that 
either k = 0 or r = 0. By 5.11.11, we may assume r = 0. Thus we are 
reduced to showing 

5.11.18 	 [a, blGk,o,f = a k G k , o , [ b ~ f  f o r k  2 1.  

If k 	= 2 and f is either the characteristic function of ZINZ x {0), or 
(0) x ZINZ, then f = [b]f and Gz,,,f is a multiple of P ,  which indeed satisfies 
[a, b]P = aZP. 

So we may assume that, if k = 2, the function f satisfies zf ( j ,  0) = 

zf(0, 1) = 0, whence Gk,o,f lies in R~(Q,, l?(N)arith). The entire group Q," x 
(ZINZ)" acts on Rk(&,, I'(N)arith), by the rule 

5.11.19 [a, b]F(E, w, P) = F(E, a-'w, P ~ ( b ,b-I)) . 
Under this action, resticted to the subgroup G(N), the map 

is G(N)-equivariant. Now since Gk,o,f E Rk, we certainly have 

Thus it suffices to check that 

Since the assertion is linear in f ,  we may suppose f to have values in, say, 
Z, then extend scalars to C and view G,,,, as lying in Rk(C, I?(N)""~~). By (2.4), 
we may view G,,,, ,as a function on GL+/I'(N), and for fixed (o,, o,) E GL+, 
the value G,,,, /(w,, w,) is the value a t  s =0 of the entire function swGk,,, ,(o1, 02). 
So by analytic continuation, it suffices to check that 

5.11.22 	 [I ,  b]Gk,,,f = Gk,~,[blf for Re(s) >> 0. 

In view of the definition (3.6.5) of G,,,, ,in terms of q,, 

we must check that 

5.11.24 	 PP'([b]f )0 P-' = (P-'f) 0 (P 0 (b, b-I))-' , 
i.e., P-'([b] f )= (P-'f) 0 (6-', b) . 

By definition, we have 
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1 = - f (bn, bm)C-"
N 
1 

= - f (n, bm)C-*-I"
N 

= (P-'f )(Cr-', bm) 

= (P-'f) 0 (b-', b)(c, m) . Q.E.D. 

Chapter VI. Construction of the Eisenstein-Ramanujan 
measures ,Uj,Yb' and pN 

6.0. Review of p-adic measures. Let X be a compact topological space, 
and denote by Contin (X, Z,) the ring of all continuous Z,-valued functions 
on X. For any p-adic ring B, a Z,-linear map (not assumed to be a ring 
homomorphism) 

6.0.1 p: Contin (X, Z,) -B 

is called a B-valued measure on X. We can also view p as a B-linear map 

Contin (X, B) -+ B, since Contin (X, B) Contin (X, Z,) @ B. For f :  X-+Z, 
a continuous function on X, its image p(f) E B is denoted symbolically 

Notice that p is automatically continuous for the p-adic topologies. 
Let us specialize now to the case when X is the product of a finite space 

T with a finite number n of copies of Z,. By Mahler's theorem [19], any 
continuous function f: (Z,)" x T -B has a unique interpolation series 

where the ail,...,imare Z,-valued functions on T which tend uniformly to zero 

as E;=lij-+ 03,and where the (:) are the binomial-coefficient functions 

(x - I ) - - .(x - (n - I))
6.0.4 

n ! 

which take Z,-values on Z,. Thus a measure p on (Z,)" x T is uniquely 
determined by the sequence of values 

6.0.5 b(il, ..-,i., t, p) \ (::) .(::)x (the char. fct. of a point t E T)dp, 

and any collection {b,,,...,,m,, } of elements of B, indexed by N" x T, arises via-
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6.0.5 from a unique measure on (Z,)" x T.  

6.0.6 If B is flat over Z,, then p is also uniquely determined by its m o m e n t s  

6.0.7 m(i,, . -,in,t ;p )  = \(x,)" ...(x,)'" x (char. fct. of t E T ) d p  . 
However, these moments cannot be prescribed arbitrarily. Let us introduce 
the rational numbers c( j , ,  . , j,; i,,. , i,) defined by 

In terms of these, we have 

LEMMA6.0.9. I f  B i s  a p-adic r i n g  $a t  over Z,, t h e n  a collection 
m(i,,..., i,, t )  of e lements  of  B, indexed by N" x T ,  a r i s e s  a s  the  m,oments 
of a (necessari ly  u n i q u e )  m e a s u r e  o n  (Z,)" x T i f  a n d  o n l y  i f  the  q u a n t i t i e s  

d f n  

6.0.10 b(i,,---,i,,t)=~,,jy,ib~(j,,-..,j.n;il,.-.,i,)m(j,,---,j,,t), 

w h i c h  a pr ior i  a r e  e lements  of B [ l / p ] ,a l l  l ie  in B. 

6.1. Cons truc t ion  of the  m e a s u r e  ,uy,b ' .  

THEOREM6.1.1. L e t  N 2 1 be a n  in teger ,  a n d  ( a ,  b )  a n  element  of the  
group  G ( N ) .  T h e r e  ex i s t s  a v(z,,I'(N)arith)-valuedm e a s u r e  p!$sb' o n  
Z ,  x Z ,  x Z I N Z  x Z I N Z  whose m o m e n t s  are  g iven  by 

where f (u,v )  i s  a n y  Z,-valued f u n c t i o n  o n  Z I N Z  x Z I N Z .  
F o r  a n y  con t inuous  Z,-valued f u n c t i o n  # ( x ,  y )  o n  Z ,  x Z,, the  q-expansion 

o f  I # ( $ ,  y )f (u,v)dp? ''h a s  the  f o r m  

q ( d ,  d ' ) f  ( d ,  d ' )  -q(-d ,  -d ' ) f  (- d ,  -d ' )  
6.1.3 constant  + Ern,,q" E "=,, -a#(ad,  ad ' )f (bd,  bd') 

+a+(-ad, - a d 1 ) f ( - b d ,  -bd') 

T h e  t r a n s f o r m a t i o n  proper ty  of +(x,  y )f ( u ,  v)dpj<sb'u n d e r  a n  element  

[a', b'] E G ( N )  i s  g i v e n  by 
I 

6.1.4 [a' ,  b']\ # ( x ,  y )f (u,v)d,u:O," = \a'#(afx,  a ' y )f (b'u, b'v)dp:", " . 

T h e  func t iona l  equat ion  m a y  be expressed in t e r m s  of the  f u n c t i o n s  

@(x ,  y )  # ( y ,  X )  a n d  f t ( u ,  v )  f ( v ,  U )  by  the  r e l a t i o n  
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6.1.5 St(., = \+'(x, ~ ) f  b ,  .y)f (u, v)dp121b) '(u, v)dpg7 

Proof-construction. Suppose that we already know the existence of a 
measure pjv", b' satisfying 6.1.2. Then 6.1.3-5 are visibly true when the func- 
tion + is a monomial xky', thanks to 5.11.3 and 5.11.16. By linearity, 6.1.3-5 
will remain true when #(x, y) is a finite Z,-linear combination of binomial 

coefficient functions (; )(7),and hence, by Mahler's theorem and the p-adic 

continuity of pg,b', when ~+bis an arbitrary Z,-valued continuous function. 
To show the existence of we use the integrality criterion 6.0.9. 

We must show that for  any Z,-valued function f on ZINZ x ZINZ, whenever 
we write 

the corresponding sum 

enc(n, m; k, r)(2@n, m, J - 2[a, b l @ n ,  m,  f) 

= (1- [a, bl)(2En,,c(n, m; k, r)@n, m , f )  , 
a priori an element of V(Z,, I'(N)"rith) @ Q,, actually lies in v(z,, I'(N)""~~). 
Notice that by 5.11.3, the inner sum 

6.1.7 2Cn ,mc(n ,m; k, r ) a n ,  ,,f 

has a q-expansion which is integral except possibly for its constant term: 
the coefficient of qn for n 2 1is given by 

Thus to conclude the proof, it suffices to apply to this element 6.1.7 the 
following basic lemma (cf. [15], 1.2.1). 

KEY LEMMA6.1.9. Let F be any element of v(z,, @ Q,, whose J?(N)""~~) 
q-expansion has all of i ts  coeficients i n  Z, except possibly for the constant 
term. Then for any  element (a, b) i n  G(N), the diference F - [a, b]F lies 
i n  V(Z,, I'(N)"r'th). 

Proof. Let c EQ, be the constant term. The difference F - c lies in 
v(z,, I'(N)arith)@ Q,, but has integral q-expansion by hypothesis, so must 
be in fact an element of V(Z,, I'(N)""") (lest i t  give a p-power torsion element 

of z ~ ~ ) ) / v ( z , ,  J?(N)arith), cf. 5.2.1 and 1151, 1.2). If we extend by linearity 
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the action of G(N) to V(Z,, I'(N)""") @ Q,, then any constant c E Q, is 
certainly fixed by all of G(N). Therefore 

6.1.10 F - [a, b]F = ( F  - c) - [a, b](F - c) E V(Z,, r(N)arith) . Q.E.D. 

6.2. Relation to the Kubota-Leopoldt measure, and to the "Eisenstein 
measure" 2Hasb of 1151. Given a continuous map n: X - Y of compact 
topological spaces, and a B-valued measure p on X, we obtain a B-valued 
measure r , p  on Y, defined by 

In particular, if we take the map 

pr,: Z, x Z, x ZINZ x ZINZ -Z, x ZINZ , 

(x, I/, u, v) t---t (x, u) , 
we obtain a measure pr,,pI,?,b' on Zp x Z/NZ, defined by 

where, on the right, "$(x)" is the function (x, y)w+(x) ,  and "f(u)" is 
(u, v) w f(u). The moments of this measure are the Eisenstein series G,+l,o,f 
of 5.11.0 

xkf (u)dpr,,pY3 = [a, b])(2Gk+1, (1- o,  
Z p X Z  9 Z  

(where "f" is the function (u, v) w f (u)). Their q-expansions are given by 

6.2.3 xkf (u)dprl.pI,? 
Z p x Z ' V Z  

0 if f is of parity (- l ) l  
L(- k, f (u)) - ak+'L(- k, f (bu)) 
+ 2 E n , ,  qn Ed dk(f (d) -akf1 f (bd)) if f is of parity (- l)k-l. 

These q-expansions are the same as those of the moments of 
V(Zp, I 'oo(N)Bri th)-~al~ed "Eisenstein measure" which was denoted 2Ha9* in 
[15]. To clarify this apparent discrepancy (between considering a given 
q-series as being on r(N)"Ith or on I'OO(N)arith), recall that the construction 
"divide by ZINZ" (cf. 2.3.5, the diagonal arrow) gives by transposition an 
"exotic inclusion" 

aPlth (divide by Z/NZ)*
V(Zm ~ o o ( N )  . ) -+ v(z,, r(iv)"lith) 

which preserves q-expansions. Thus we have 

http:(u)dprl.pI,?
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C o m p a t i b i l i t y  6.2.5. T h e  fo l lowing  d i a g r a m  i s  c o m m u t a t i v e .  

Contin (Z, x ZINZ, Z,)-
2Hapb 

V ( Z p ,~oO(N)~ ' I~~)  

6.2.6 ' )  /(divide by Z/iVZl*1; \ 

Contin ( (Zp)2x (Z INZ) ' ,  Z p ) - V(Zp,I'(N)Brith). 

6.2.7. Let us denote by p.1(K":_*i.the Z,-valued Kubota-Leopoldt measure on 
Z ,  x Z I N Z ,  defined to be the c o n s t a n t  t e r m  in the q-expansion of pr,,pgr " = 

2Ha9b. Thus 

6.2.8 1 xk f (u)dpl.:l:, = L(- k, f ( u ) )  - ak+lL(- k ,  f ( b u ) ). 
Z p Y Z  .VZ 

In terms of the Kubota-Leopoldt measure p!:.*;., we can give a formula for 
the "missing" constant (cf. 6.1.3) in the q-expansion of p?rb). 

LEMMA6.2.9. F o r  a n y  c o n t i n u o u s  Z,-valued f u n c t i o n  +(x,  y )  o n  Z ,  x Z,, 
a n d  a n y  Z,-valued f u n c t i o n  f o n  Z I N Z  x Z I N Z ,  t h e  c o n s t a n t  t e r m  o f  t h e  

q -expans ion  of  +(x,  y )  f (u,v ) d p $  " i s  equal  t o  

6.2.10 j (+(x,  o ) f(u,0 )  i +(O, x ) f  (0 ,  u))dpi?:-Y. . 
zpxzl.\-Z 

Proof .  I t  suffices to check when +(x, y )  is a monomial xky'. When k 2 1 
and r 11 ,  both sides vanish. Since both sides are invariant under +f t-qtf t ,  
it suffices to check the case r = 0 ,  k 2 0 ,  which is taken care of by compar- 
ing the formulas 6.2.8 and 5.11.1. Q. E. D. 

6.3. R e s t r i c t i n g  pj,", " t o  Z," x Z ,  x ( Z / N Z ) 2 ,a n d  i t s  r e l a t i o n  t o  Froben ius .  
Given a compact open set U in a space X ,  the characteristic function of U ,  
xu, is continuous. If X is compact, and p is a B-valued measure on X, we 
define its r e s t r i c t i o n  to U as the measure o n  X defined by 

6.3.1 f +-+ X U ( X ) ~( x ) ~ P ( x )  f ( x ) ~ P ( x )5 5 . 
X U 


Of course, we can also view it as the measure o n  U defined by 

6.3.2 1 g ( u ) d p ( u )91 ( g  extended to be zero outside U ) d p ( x ). 
X 


This should never lead to any confusion. 

LEMMA6.3.3. F o r  a n y  cowt inuous  Z,-valued f u n c t i o n s  + o n  Z ,  x Z,, 
f o n  Z I N Z  x Z I N Z ,  w e  have  t h e  i n t e g r a t i o n  f o r m u l a  

- Frob \ 
( Z ~ ) ~ X ( Z ! N Z ) ~+(px,  ~ ) f  b'( P %  v ) d ~ g 7. 
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Proof. First of all, notice that both sides have the same q-expansion 
coefficients, except possibly for their constant terms, as an immediate compu- 
tation using 6.1.3 shows. Secondly, notice that i t  suffices to treat the case 
when + is a monomial xky', in which case, by 6.1.4, both sides are of weight 
k + r t 12 1under the subgroup Z,' x {1}n G(N) of G(N). So their dif- 
ference is then a constant which is of weight f 0, hence is zero. Q. E. D. 

Remark 6.3.6. Combining the definition 6.3.1 with the formula 6.2.10 
for the constant term, we see that the constant term in the q-expansion of 

is equal to 

6.3.7 1,;xz.,vz $(x, O)f (u, O)d,@:!i. 

Combining this with 6.3.3, we obtain a well-known integration formula for 

PK. -L .  
COROLLARY For any continuous Zp-valued functions + on Zp and 6.3.8. 

f on ZINZ, we have 

Proof. View and f as functions on Z, x Z, and ZINZ x ZINZ respec- 
tively, through projection on the first variable: +(x, y) =+(x), f (u, v) =f (u). 
If we equate the constant terms in 6.3.4, and use 6.3.7, we get an identity, 

in which the +(0, x) f(0, u) term cancels the +(PO, x) f (PO, u) term to give 
the assertion. Q. E. D. 

Remark 6.3.11. We can use the functional equation 6.1.5 of the measure 
p9,''to deduce analogues of 6.3.4 and 6.3.7 for restriction to  Z, x Z,"x (ZINZ)'. 
The result is 

j (x ,  y) f(u,  v)dpFb) - Frob +(x, P Y ) ~  (u, pv)dp!?*' 
( z , ) ~ x ( z  S Z )  

= 5 Z; ( j (0 ,  x)f (0, u))dp$:Y + higher terms (in q-expansion) .x ~ l . \ - ~  

mailto:O)d,@:!i
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If we combine 6.3.4 and 6.3.12, we get a formula for restricting p!$jb) to 
(Z,")2x (ZINZ) ' .  The result is 

6-3.13 \ ( , ; ) z X ( ,  .Vz) +(x,  y ) f  (u,v ) d p Y 8b ,  

= I + ( x ,  y ) f  (u,v)dpF,b ,  - Frob I+(px,  y )  f ( d u ,  v)dp:", b ,  

- Frob !+(x, p y ) f  (u,pv)dp:">b ,  

+ Frob2\+(px, P Y ) ~( P U ,  pv)dp.? b ,  . 
If we apply these formulas to functions + on Z ,  and f on Z I N Z ,  pulled 

up to functions on Z ,  x Z ,  and Z / N Z  x Z I N Z  respectively by pr,, i.e., +(x, y)= 

+(x) ,  f ( u ,  v )  = f (u),we get the integration formulas 

6.3.14 S +(x )  f ( ~ ) d p ! ; , ~ )  \= + ( x ) f  ( u ) d ( 2 H a z b )  7 
( z p ) 2 x ( z 1 3 - z ) 2  z p x z / 3 - z  

6.3.15 1z ; x z p x ( z  . y z ) 2  = 1,~x , , , ,+ ( x ) f  ( ~ ) d p : " , ~ '  + ( x ) f ( u ) d ( 2 ~ ~ , ~ )  

6.3.16 x (,I.yZ) + ( x ) f  (u)dpl"zi) = (1- Frob) \ ,x,,,z ,l z p X z ;  + ( x ) f  ( ~ ) d ( 2 H " , ~ )  

6.3.17 1z ; x  z ; x ( z  2 v z )  + ( % I f  ( ~ ) d p . ? ~ )= (1- Frob) 1z;xz,,.z$(x)f . 
6.4. Res t r ic t ion  to  (Z,")2 x (Z /NZ)2;  the  measure  p,,. 
6.4.0. Let k and r be non-negative integers, and f a Z,-valued function 

on Z / N Z  x Z I N Z .  We define the q-series 2@,",,,,by the formula 

6.4.1 2@,",, , f=Cn,1 C n = d d , ( d k ( d l ) r f ( d , d l ) - ( - d ) k ( - d l ) r f ( - d ,  - d l ) ) .  
( P , l z ) = l  

LEMMA6.4.2. F o r  k ,  r non-negat ive  in tegers ,  a n d  f a Z,-valued func-  
t i o n  o n  Z I N Z  x Z I N Z ,  the  series 2@,",,,, i s  the  q-expansion of a n  e lement  of  
G V k + r + 1 ( zp,I'(N)arith).F o r  a n y  element  (a,, 1 )  E G ( N )n ( Z ,  x { I ) ) ,  w e  have 

6.4.3 x k y r f(u,v)dpFo") . 
T h e  t r a n s f o r m a t i o n  property  of 2@,X,,, ,u n d e r  ( a ,  b) E G ( N )  i s  g iven  by 

6.4.4 [ a ,  b](2@:,,,,) = k , r , [ b l fa k f r f 1 2 @ *  -
Proof .  From 6.2.10, we see that ! (z,,z) +(x, y ) f  (u,v)dp? ' )always 

has constant term zero in its q-expansion. The truth of 6.4.3 as an identity 
of q-series then follows from 6.1.3. Choosing any a ,  E Z," so that (a,, 1)E G(N)  
and a,k+'+' # 1, we can read 6.4.3 as defining 2@,",,,, as an element of 
G V k + r + l  (Z,, I'(N)"'lth) Q p ,which by 6.1.4 will enjoy the transformation law 
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6.4.4. Finally, the fact  tha t  2@:,,,, has integral q-expansion shows that  in 
fact  i t  lies in GVk+'+'(ZP, I'(N)arith). 	 Q. E. D. 

The functional equation 

results immediately from its  q-expansion formula 6.4.1, as  does the differen- 
tiation formula 

THEOREM6.4.7. Let N 2_ 1be a n  integer. There exists a v(z,, I'(N)a"th)-
valued measure p, on (2;)' x (Z/NZ)2, whose monzents a r e  given by 

where f(u,  v) i s  a n y  Zp-valued function on ZINZ x ZINZ. 
F o r  a n y  continuous function +(x, y) on Z, x Z,, we have the q-expan- 

sion formula 

Tlze transformation property under (a, b) E G(N) i s  

The relation between p, a n d  the restriction of p.;,b' to (2,")' x (ZINZ)' 
i s  given by the formula 

Proof. The existence of a measure p, on Z, x Z, x ZINZ x ZINZ 
satisfying 6.4.8 follows immediately from the integrality criterion 6.0.9 and 
the simple q-expansion formula for  2@;,,,, much as  in the proof of 6.1.1, 
except that  here there is no constant term to worry over. The formula 6.4.9 

is valid for lip of the form xky', so by linearity for  Q of the form ( x ) ( y )  , 
and then by Mahler for  all continuous +; similarly for  6.4.10. To prove 
6.4.11, we check i t  in q-expansion, using 6.4.9 and 6.4.10 to compute the left 
side, and using 6.1.3 and 6.2.10 to  compute the right. Q.E.D. 

COROLLARY F o r  a n y  (a, b )  E G(N), we have the integration6.4.12. 

formula 
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= !I)(%, r ) f  (u, v) dp'3 - Frob [+(px, y)f (pu, ~ ) d p : " , ~ )  

- Frob +(x, P Y ) ~  (u, pv)dp!"; b 1  

+ Frob2 S+(PX, P Y ) ~ ( P ~ ,  .~v)dp : " ,~ )  

Proof. Combine 6.4.11 with 6.3.13. 

COROLLARY Fork ,  r non-negative integers, and f any  Z,-valued 6.4.14. 
function on ZINZ x ZINZ, we have a n  equality i n  GVa(Z,, I'(N)a'ith) @ Qp: 

6.4.15 @,",,,f= @ k , r , f  - pkFrob (@k,r,f (pu,vI) - pr (@k,r,f!u,pu)) 
+ P ~ ' ~Fr0b2(@k,r,f (pu,pv)). 

Proof. This is 6.4.13, if we take x"yr for I), (a, b) = (a, 1) E G(N) n 
(Z," x {1}), and divide through by the common factor 2(1 - akfr+') which 
occurs. 

Oversight 6.4.16. The behaviour of p ,  under the derivation NO is given 

by 

as follows immediately from 6.4.9. 
The analogue of 6.3.17 is the formula 

Chapter VII. Construction of p-adic L-functions: generalities 

7.1. Definition of $(x,f).  Let W be a complete rank one valuation 
ring with residue field of characteristic p, and fraction field of characteristic 
zero. We take "rank one" instead of "discrete" to allow, for instance, the 
ring of integers in the completion of the algebraic closure of Q,. 

The measures pi;' b1 and p, allow us to integrate W-valued continuous 
functions on (2,)' x (Z/NZ)' and (Z,")' x (Z/NZ)' respectively; their integrals 
will be elements of V( W, I'(N)arith) W, cf. 6.0.1 and = V(Z,, I'(N)arlth) hZp 
5.1.0. In particular, if E Hom,,,,,,(Z," x Z,",W x )is any continuous character 
(i.e., multiplicative homomorphism) of the group Z," x Z,", and f is any 
W-valued function on ZjNZ x ZjNZ, we can consider the integral 
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We denote this integral S(X, f ) ,  and view the construction (x, f )  ++S(X, f )  
as a V(W, l?(N)ar'th)-valued function on the space Ho~,,,,~,(Z," x Z,", Wx) x 
Maps(Z/NZ x ZINZ, W). This function S(X, f )  we call the ("two variable") 
p-adic L function. I t  is essentially the Mellin transform of the measure p,,. 

Knowledge of S(X, f )  is equivalent to knowledge of the measure p , ,  
viewed as a measure on (Zp)2 x (Z/NZ)2 which is supported in (2,")' x (Z/NZ)2. 
Indeed, if we denote by x,,, the character 

7.1.2 X k ,  r(x, Y) = xkyr k, r € Z, 

then the L-values {S(X,,,, f)k,rPo are precisely the moments of the measure 

PN-
The fact that S(X, f )  is  the Mellin transform of a measure implies a 

number of striking congruences between the values of S a t  different charac- 
ters (and conversely, by 6.0.9). Let us pause briefly to recall one such 
congruence. 

LEMMA7.1.3. If (k, r )  and (k', r') a re  pairs  of integers satisfying 

(k, r )  = (k', r') mod (p - 1)p" , 
then for any  W-valued function f on Z/NZ x Z/NZ, we have 

S(xk,r, f )  - S(~k,,r ' ,f )  mod P"+' . 
Proof. Because (Z/pn+'Z)" has order (p - l)p", the hypothesis on the 

indices implies that the characters x,,, and x,,,,, are congruent modulo pn+' 
as functions on Z," x Z,". This congruence of functions in turn implies the 
same congruence between their integrals. 

In fact, the original point of view of Kubota-Leopoldt [I71 when 
confronted with a function f(k, r )  on, say, Z,, x Z,,, which satisfies the 
congruence of 7.1.3 (i.e., f (k, r )  r f (k', r') mod p"+' if (k, r )  - (k', r'), mod 
(p - l)pn), was this. For each of the (p - 1)"esidue classes (a, b) of 
Z%od p - 1, let S(a, b) denote the subset of Z x Z consisting of pairs (k, r )  
with k 2 0, r 2 0, and (k, r )  = (a, b) mod(p - 1). Then S(a, b) is uniformly 
dense in Z, x Z,, and the function f(k, r )  extends to a (very) continuous 
function on all of Z, x Z,. We will not pursue this point of view. 

7.2. Relation to the "one-variable" p-adic L-function [15]. In [15], we 
constructed a p-adic L-function, which we will denote L temporarily to 
distinguish it from 2. I t  is the function 

7.2.1 Horn,,,,,, (G(N), Wx) - {trivial character) 

defined by 
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Remark. The apparent ambiguity between the insistence on G(N) in 
7.2.1, and the integration over all of Z," x (ZINZ)" is actually harmless, 
because when the measure 2Hu,"s restricted to Z," x (ZINZ)", i t  is in fact 
supported on the open subgroup G(N). This last fact is obvious for the 
coefficients of q" with n 2_ 1, which are sums of point evaluations a t  points 
(d, d') E G(N); i t  then follows for the constant term by a consideration of the 
transformation property of L under G(N). 

The q-expansion of L(+ .p) was given explicitly by 

Applying 6.2.5, we can express L(+ p), viewed as an element of 
V(W, I'(N)""") @ W[l/p] by means of the "exotic inclusion" 6.2.4, by an 
integral over Z," x Z, x (Z/NZ)2: 

(In the second integral, we can integrate over all Z," x ZINZ instead of just 
Z," x (ZINZ)", because by convention p is extended by zero to all of ZINZ.) 

Our two-variable 8,however, is obtained by integrating over (Z,")2x 
(ZINZ)', or, what is the same for the function (x, y)-++(x)/xwhich is already 
supported in Z," x Z,, only over Z, x Z", (Z/NZ)2. Applying 6.3.12, we see 
that 

Comparing 7.2.4 with 7.2.5, and remembering 6.4.11, we find 

7.2.6 (1- [a, b]){@p(u)dp, = 2(1 - +(a)p(b))(l - Frob) L(+. p)
X 

which gives 

LEMMA7.2.7. ~ ( @ p ( u ) )  = 2(1 - Frob) L(+p) . 
X 

A caution 7.2.8. The moral is that we should not be too quick to forget 
entirely the one variable L function L, since when it  "applies" it gives a 
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more sensitive tool than the restriction of 2. For example, the constant 
term in the q-expansion of L is the highly non-trivial Kubota-Leopoldt p-adic 
Dirichlet L-series, for abelian extensions of Q. The passage to Sby applying 
(1 - Frob) obliterates this constant term! 

7.3. Useful 2-identites. These are all immediate consequences of the 
definition (7.1) of 2 ,  and the properties (6.4.7-18) of p,. We list them for 
ease of reference. 

7.3.1 (transformation under G(N)) [a, b]S(x, f )  = ax(a, a)S(x, [b l f )  ; 

7.3.2 (functional equation) S(X, f )  = S(xt, f t ) ,  where 
xt(x, y) = x(y, x) 
f"u, V) = f(?f, u) ; 

7.3.3 (action of NO) NOS(X, f )  = S(xyX, f )  ; 

7.3.4 (moments) S(xk,,, f )  = @T,,,f for k, r 2 0 ; 

7.3.5 (q-expansion) 
q x ,  f > = C,,,q"E,=,,,(x(d, Of (d, dr) - x(-d, -d')f (- d, -dl)) 

(where is extended by zero to all of Z, x Z,) . 
Chapter VIII. p-adic L-functions for  quadratic imaginary 

fields where p splits 

8.0. The p-adic analogue of Damerell's theorem. 
8.0.1. We return to the situation of 4.0.1. Thus K is a finite extension 

of Q and (E, w, ,B) is a I'(N)"'lth-test object over K, such that E has complex 
multiplication, which we assume defined over K. The action of End (E )  
on Ho(E, QL,,) allows us to view End(E) as an order in a subfield KO cK, 
which must be quadratic imaginary over Q. The non-trivial automorphism 
of KO is written a t.a. Given an element a E End(E) cKOcK, we denote 
by [a]  the corresponding endomorphism of E ,  but think of a itself as an 
element of KO c K. Thus [a]*(w) = aw. 

Now choose any place @ of K which satisfies the following conditions: 
8.0.2. (E, w, ,#) has good reduction a t  @,in the sense that there exists a 

I'(N)arith-test object over the ring (3, of @-integers in K which gives (E, w, P )  
by extension of scalars 8,-K. 

8.0.3. The curve E has ordinary reduction a t  @.(This is equivalent to  
the hypothesis that the rational prime p under @ splits completely in the 
multiplication field KO.) 

If we choose such a p we can pass from (3, to its completion 6,.We have 
a corresponding inclusion of the ring of true modular forms into the ring of 
p-adic ones: 
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8.0.4 R.(K, I ? ( N ) ~ ~ ~ ~ ~ )  r ( ~ ) ~ ~ ~ ~ ~ )cR.($, 
= Re(Z,, I'(N)arith) @ &cG V'(Zp, r(N)"'jth) @ & . 

The algebra Z acts on G V e @ &  (cf. 5.9), but does not act stably 
on the sub-ring R'(K, l?(N)"rith). As explained in 5.10, an element of 
GVe(zP, I'(N)arith) has a value, in a,, on the test object (E, w, P),  and 
therefore any element of GV. @ & has a value, in &, on (E, o,P). 

Suppose we also choose a complex embedding K G  C. The inclusions 
8.0.4 are the p-adic analogues of the inclusions (cf. 4.0.3), 

8.0.5 Rs(K, r(N)""") cRs(C, I'(N)arith) c Cm(GL+/r(N)). 
The action of Z dn GVS(Z,, r(N)arith) @ & not respecting RS(K, I'(N)""") 
is the p-adic analogue of its action on Cm(GL+/I'(N)), not respecting 
Rs(K, I'(N)"""). For complex multiplication curves, the analogy is perfect, 
as we shall see below. 

Let Fe Rk(K, I'(N)""") b e a true modular form defined over K, and let 
Z EZ be an element of Z. Let us denote by 

8.0.7 (ZF), E G VS(Z,, r(N)arith) @ I?&, 

the image under Z of F ,  viewed as itself lying in GVa(Z,, I'(N)arith) @ q, 
using the Z-module structure 5.9.3. Let us denote by 

8.0.8 ( 2 ~ ) ~ ~E c ~ ( G L + / ~ ( N ) )  

the image under Z of F ,  viewed as itself lying in Cm(GL+/r(N)), with the 
Z-module structure 1.6. Let (o,, w,) E GL+ represent the test object (E, o ,  P), 
(cf. 4.0.2). We have already proved (4.0.4) that the complex value 
(ZF)cm(ol, w,) lies in K, and that, considered as an element of K, it is inde- 
pendent of the choice of the embedding Kt- C. 

COMPARISONTHEOREM With hypotheses and notations a s  above, 8.0.9. 
for any place p of K satisfying 8.0.2 and 8.0.3, the value 

(ZF),(E, o ,  P)  EZ, 
i n  fact lies i n  K, and, a s  a n  element K, i t  i s  independent of the choice of 
p satisfying 8.0.2 and 8.0.3. This common value i s  none other than the 
"complex" value 

(ZF),-(o,, a,) 

for any  embedding of K c-. C. 

Proof (compare that of 4.0.4). By linearity and 1.6.3, we may assume 
that the operator Z is a monomial Sag:g",dHe. The operators H, D, g,, and 
g, are stable on Re(K, I'(N)"rith) in both the "classical" and the p-adic actions, 



533 

8.0.10 

P-ADIC INTERPOLATION 

and when restricted to Rs(K, I'(N)arith), they act the same in both the classical 
and p-adic actions. So replacing F by gb,g",d(kT) E R4b+Bc+2d+k(K, I'(N)a"th), 
we may assume that the operator Z is a power of S, say S". Then 

(ZF), = S"FE C"(GLf /l?(N)) t (ZF),  = P"FE G Ve(Z,, I'(N)arith) @ & . 
The assertion of the theorem is essentially tautologous for F itself, so 

we are reduced to "comparing" P and S. It is a t  this point that the hypothesis 
"complex multiplication with good and ordinary reduction a t  p" will be used. 

We have already seen (4.0.6-7) how to compute the value of S on 
(E, w, P),: simply choose any [a] E End(E) with a G Z, and any non-zero 
vector v E HAR(E/K) such that [a]*(v) = Zv. Then in terms of the basis 
w = dxly and 7 = xdxly of H;,(E/K), the cohomological expression for S is 

What about P? After the extension of scalars K-  KP, the qth power 
Frobenius endomorphism F, (q = #ap/@)operates on 

with distinct eigenvalues, one a unit a E Z,", the other qla. If we choose 
a non-zero vector u E Hh,(E/K) @ & lying in the (unit) a-eigenspace 
UpcHkR(E/K)@ KP, we have the cohomological formula (cf. 5.10.5) 

So it  remains only to see that the vector v figuring in 8.0.11 can serve as 
our u. This results from the following lemma, analogue of 4.0.7. 

LEMMA8.0.13. With hypotheses as  above, the subspace 

Upn HAR(EIK)cHhR(EIK) 

i s  non-zero, and i s  independent of the choice of place p satisfying 8.0.2-3. I n  
fact, for any [a] E End(E), i t  i s  the Z-eigenspace of [a]* on HhR(E/K), and 
for any embedding K -C ,  i t  coincides with the antiholomorphic subspace 

Ho,'(Ec)n Hh,(E/K). 

Proof. Let p, denote the place of KO induced by p. I t  is thus one of the 
two places of KO which lie over p. As a prime ideal in a,,, p, may not be 
principal, but certainly its hth power (h = class number of KO) is. Let n E a,, 
be a generator of (Po)'. The element nmay not lie in the order End(E) cOK,, 
but there exists an integer f 2 1(the conductor) such that End(E) = Z + 
fa,,. So we can consider n as an element of End, ( E )  @ Q ,  and we can speak 
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of its reduction mod p as an element of End,, ( E  QepF,) Q,Q. According to 
complex multiplication theory, some power n" of n is equal to some power 
F," of the Frobenius endomorphism F, of E QepF,: the equality takes place 
in End,, ( E  OeoF,) @ Q. Clearing denominators, we find an equality of 
endomorphisms 

8.0.14 	 fn" = fFr for some integers f, 12, m 2 1. 

The endomorphism F, of HAR(E/K) @ & had two distinct eigenvalues, 
a E Z; and q/a. Let 

HAR(E/K)@KO= Up@ Up) 

be the corresponding decomposition into eigenspaces (U, the unit root 
eigenspace). Then f (F,)" respects this eigendecomposition, it acts as fam 
on Up, and as fqm/am on U,'. Thus Up is the eigenspace of f (F,)" correspond- 
ing to the eigenvalue of f(F,)" of smaller ordinal. 

The equality 8.0.14 then allows us to characterize the intersection 
Upn HhR(E/K) as the eigenspace of [fn"] on HAR(E/K) whose eigenvalue 
has smallest p-adic value. The eigenvalues of [fn"] on Hh,(E/K) are fn" 
and fZ" respectively; p-adically, n is a power of a uniformizing parameter, 
while Z is a p-adic unit. Thus Up n HhR(E/K) is the fZ"-eigenspace of [fn"] 
on Hk,(E/K). Since fn" 6f Z, we have KO= Q[fnm], and hence U, n HhR(E/K) 
is also the a-eigenspace of any [a]E End(E), a 4 Z. The final assertion of 
the theorem is just a reminder of what we already proved (4.0.7). Q.E.D. 

8.1. Concrete applications; the GA,,,,. 
LEMMA8.1.0. Let (A, B) be a pa i r  of integers satisfying A -k B 2 1, 

B S 0, and f a  K-valued function on Z/NZ x ZINZ. The C" modular form 
G:l,B, ,constructed i n  3.6.5 "corresponds," via 8.0.9, to the p-adic modular 
form G;,B,, constructed i n  5.11.9. 

Proof. If B = 0, and A # 2, we have G;',,, ,= GI,B,,is a true modular 
form belonging to RA(K, I'(N)"""). If B=0 and A =2, then G,",l0,and Gi,o, are 
the sum of a common element of R'(K, I'(N)""") and of a common K-multiple 
of S (resp. P) (cf. 3.6.9, 3.6.13 and 5.7.13). If A -k 2B 2 1and B 5 0, then 

while if A t 2B 5 1, A + B 2 1, we apply the functional equation (3.6.7, 
5.11.12) to obtain 
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Since the p-adic operators 0 and P correspond to the C" operators W and S 
under 8.0.9, the result follows. Q.E.D. 

COROLLARY With the hypotheses and notations of 8.0, we have 8.1.3. 
a n  equality i n  K between the "complex" number Gi,B,f((E, w, P),) and the 
"p-adic" number G;,,,/((E, w, P);,), whenever A + B 2 1, B 5 0, and f is  
a K-valued function on (Z/NZ)2 (cf. 4.1.6 for the explicit transcendental 
formula for G:l,B,f((~, w, P),) i n  terms of "the" period and a period 
latt icec KO.) 

8.2. Interlude: a minor compatibility. 
8.2.0. Up to now, we have worked exclusively with arithmetic, rather 

than naive, level N structures, even when N = Nois prime to p. The chief 
benefits were an irreducible moduli problem, and the attendant pleasures of 
level-N q-expansions with Z coefficients. However, when we study complex- 
multiplication elliptic curves via their period lattices, the notion of arithmetic 
level N structure appears much less natural than the naive notion. Strictly 
speaking, the arithmetic notion remains reasonable provided that all the 
primes dividing N are split in the multiplication field. But this last condi- 
tion is first of all highly unnatural in a p-adic theory, and secondly, even 
the simplest examples, such as Q(i), show the practical need for considering 
worse N's ( N  = 4 for Q(i) arises naturally, cf. [15]). 

8.2.1. As we have already explained in 2.0, once we are given a naive 
level N structure a: (Z/NZ)" ,vE, we can deduce from it  both a primi- 
tive Nth root of uvity det(a),  and an arithmetic level N structure 
,B,(det (a)", m) = a(n,  m). 

An isogeny n: E--, E' of degree prime to N, n induces an isomorphism 
,E 2; ,E'. This allows us to define a naive level N structure a' = n . a on E': 

This construction does not preserve determinants, but rather 

8.2.3 	 det (na) = det (a)deg (R) . 
Compatibility 8.2.4. Let B be a p-adic ring, No2 1an integer prime to 

p, (El q ,  a )  a trivialized r(N)""'"" elliptic curve over B, and (El q ,  ,BE) the 
trivialized l?(N)arith curve over B deduced from (E,q ,  a )  by the construction 
a rB,. Let n: E--1E' %' E/qP1(pp)be the projection, let (E', q' = qoZ, (P,)') 
be the Frobenius transform of (E, q ,  P,). Then 
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i.e., under the construction a w ,BE,the operation a 4 n .  a goes over into 
the operation P i- ,Bf defined by Frobenius. 

Proof. By definition, %P'(<, 0) = ,B(<,O), and P'(1, m) = nP(1, m). Since 
p = deg n = njt: is prime to No, this first equation can be rewritten pp'(<, 0) = 

np(<, 0), or, better yet, P'(cdet ",0) = np(<,O). Thus ,Bf(Tdega, =m) nP(<, m). 
Taking < = det (a)", this becomes Pf(det(na)", m). When P is P,, 

nP,(det (a)", m) na(n, m) = ,B,,(det (na)", m) . Q.E.D. 
8.2.6. Afinal word. For the rest of this chapter, any "n" occurring in 

a formula is 3.1415. . . . 
8.3. The setting for the L-function: a review of the relevant class-field 

theory (cf. [32]). Fix 

a quadratic imaginary field KO, given with complex embedding 

i 
[.PC. 

a prime ideal pcO,, of norm p (i.e., we assume that p splits in 
8.3.1 

KO, and we choose one of the primes lying over it, the other 
being 0). 

\ an  integer N, 2 1, prime to p. 

We will consider triples (M, @, a )  where 
( M c K ,  is an invertible OK,-module, i.e., a fractional ideal of KO. 

@ is an isomorphism Qp/Zp 2; U",, 9-"M/M (such 5exist because 
8.3.2 

@ is unramified and of norm p). 

[ a is an isomorphism (Z/N,Z)" (l/N,)M/M. 

Notice that if c OK, is an integral ideal which is prime to N,P, then 
the natural inclusion OK, c%-' may be tensored with M to give an inclusion 
M ca-'M which induces isomorphisms 

, Urn8-"M/M ;U M/%-I M 

If we compose @ and a respectively with these isomorphisms, we obtain 
composite isomorphisms 
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The construction (M, +, a )  ++(a-'M, C1@,%-'a) is a multiplicative action 
of integral ideals prime to No@ on the space of all triples (M, +, a). 

For any integral ideal 5% of KO, we let K(%) denote the corresponding 
ray class field of conductor % over KO, and write simply K for the Hilbert 
class field. We will be particularly interested in the field Urn,,K(NojP), which 
we denote simply K(NOPw). According to the theory of complex multiplica- 
tion, any triple (My +, a )  determines (a complex embedding of) the field 
K(N0Vm) as follows: Consider the complex elliptic curve CIM, which is 
endowed with a I'oo(p")nai'e-structure $3, and a I'(No)nai'"-structure a. Then 
K(NoVw)is the smallest overfield (in C) of KO over which (CIM, $3, a )  can be 
defined. 

More precisely, consider the sub-ring of C generated by the values of 
all the modular functions 

on the complex test object (CIM, +, a). This ring is the ring of all "integers 
outside of N0V9 in the field K(No$"). It is the smallest sub-ring of C over 
which there exists a I'(No)nai'e n I'oo(p")naive-elliptic ancurve (E,$3, a )  plus 
action of OK, which gives back (CIM, @, a )  af ter  extension of scalars. Of 
course the embedding K(N0Pm) +C depends upon the choice of triple (M, $,a). 

The Artin symbol provides a multiplicative homomorphism 

{integral ideals of KO, prime to No$} -Gal ((No#")/Ko) , 

whose image is a dense subgroup of Gal. If 

then the action of Galois on its value F(C/M, +, a )  is specified by the formula 
K(.VOSmlIKO

8.3.7 F(C/M, +, a)( ) = F(C/L-'M, %-I+, %-la) .8 

8.3.7.1. If the ideal % is principal, say U= (a) with a s OK, prime to No$, 
then (W'M, W1+,W ' a )  maps isomorphically by "multiplication by a" to 

(M, a@, aa).  Notice that the "a" in a+ is the image of a in (8,)"2:Z,", while 
the "a" in a a  is the image of a in (O,o/NoOKo)x. Therefore 

If we think of Z,"z(8,)"sitting as the subgroup (1, ..., 1, @-units a t  $, 
1, ..., 1, ...) of the ideles of KO, then norm residue symbol defines a 
homomorphism 
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such that ,  for F as above, 

8.3.10 F(C/M, 9, ,)La] = F(C/M, a-l?, a) . 
8.3.11. Now let us choose a place p, of K(N0Pm)lying over p, and denote 

by O,_ its valuation ring. The decomposition group a t  p is topologically 

generated by ( K N ~ K O ) ,the unique automorphism of Ova inducing 

absolute Frobenius on the residue field. Each triple (M, $5, a)provides the 
following: 

8.3.12. An elliptic curve E,, definable over K n O,_, with an action of 
Ox, such that  its representation on HO(Q')is the inclusion Ox, c-.K. Over 
O,_ n K(No), E,, acquires a I'(No)na""-structure a. We fix a choice of model 
of E,, over K n O,_. 

8.3.13. Because (p) = pp in Ox,, with p and p relatively prime, there is 
a canonical splitting over Ova n K of the p-divisible group of E,, into the 
product of i ts  p and #-divisible groups. 

UnKer(pEl")= U, Ker(#") x U,Ker(#") . 
8.3.14. We are given an isomorphism of p-divisible groups over O,_, 

@: Qp/Z, L22 U Ker (p") = U, p-" M/M . 
8.3.15. We have an isomorphism of p-divisible groups over O,_, 

9: UnP-nM/M = UnKer (pn);ppm, 
obtained as the Cartier dual of 8.3.14 via the ep, pairings, so that  
9-' x $3: ppwx Qp/Zp UUsKer(pn) induces an arithmetic level p"-structure 
for all n 2 1. 

It will also be convenient to apply the functor Hom(Qp/Zp,-) to these 
last two isomorphisms, obtaining isomorphisms, still noted @ and 9 ,  

8.3.14. bis @ :  ZpLX, M? ; 

8.3.15. bis 9:M, Tp(Gm)= lim pPn, 
where M, and M, denote the p-adic and p-adic completions of M. Let us now 

A 

pass over to if),_, the p-adic completion of a,_. Then the isomorphism 

8.3.16 9: U n  Ker (V)-PPm 
becomes equivalent to a trivialization 

A A 

8.3.17 9:E~ 2G,  over a,_ . 
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So we also have at  our disposal a magic diferential q*(dT/(l  + T)) on E,,, 

defined over a,-. I t  is surely not defined over Op_,so let us choose 

8.3.16. A unit c E (a,_)" such that the differential w cq*(dT/(l + T)) 
is defined over 13,- n K (this makes sense because E,, is itself defined over 
13,- n K, cf. 8.3.12). 

Since the differential w is defined over 13,- cK(N@")cC, we can extend 
scalars and compare w, to the standard differential dx on CIM. We can 
write 
8.3.17 o,= Qdx for some Q E C "  , 
and hence the period lattice of (E,,, w,) is QM. 

To summarize briefly: the construction 

allows us to attach to any triple (M, @, a )  as in 8.3.2 a trivialized l?(NO)arith 

curve (E,,, q ,  pa) over 6,_.The ring 6,- is Galois over Z, = 6,,with Galois 

group topologically generated by the Artin symbol 
P 

trivialized l?(NO)arit'Qurvededuced from (E,,, q ,  Pa) by extension of scalars 
(3,- 2;13,_ by this Artin symbol is precisely the one attached to the triple 
(P-'M, P-'@, p-'a): symbolically 

KiYOpm)  KO 

8.3.19 (E.+I,9 ,  Pa)( 1 -- (Ep-l.v,P-'Q),Pp-la) 

Notice also that (E,-I.~,.P-'9, PP-1.) is just the Frobenius transform of 

(Ed,, 9 ,  Pa), 

Given an element F E V(Zp,r(NO)arith),we will abuse notations and write 

8.3.21 F(M, 6 Pa) %F(E.w, 9 ,  Pa) 
Compatibility 8.3.22. For any F E V(Zp,r(NJarith), the action of 

~al(?I,_/z,)on its value F(M, @, a )  is given by the formula 
Ki.YOpwlK 

F(M, +, a)(-) = ~ ( p - l ~ ,p - l + ,  p-la) 

= (Frob F)(M, Zj, a )  . 
Proof. The first equality results from 8.3.19 and the compatibility of 

F with extension of scalars, the second from 8.3.20 and the definition of 
Frob F. 

8.3.24. Another remark, which we will need, is this. The trivialized 
l?(NO)arithcurve attached to (M, +, a)carries a canonical l?(p")arith-structure, 
as explained in 8.3.15. In 5.6.4, we constructed an isomorphism 
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which was G(N) zG(No) equivariant and preserved q-expansions, by trans- 
posing a physical construction (E,9 ,  @)F+ (E"),p"), @'") which amounted 
to iterating the Frobenius construction r times, and observing that E'') = 

E/,upr picked up a canonical subgroup Zip'Z (the kernel of the dual of the 
projection map E--+E(')). When (E, 9 ,  P )  comes from an (M, @, a ) ,  this 
construction just amounts to applying $I r times, and remembering that the 
curve attached to (pT'M, p-'9, @-'a) carries a canonical I'(pn)""" structure 
for all n ,  in particular for n = r. Thus we have: 

LEMMA8.3.25. Suppose we are  given a n  element FE V(Zp, J?(p'No)a"th), 
and a triple (M, @, a).  Let FsrJE v(ZP, I'(No)arith) be i ts  image under the 
canonical isomorphism 5.6.4. Because the curve attached to any  triple 
(M, +, a )  carries a I ' (pp)ar i th -s t r~c t~re  every r ,  both F and F"' havefor 

A 

values, i n  8 on (M, @, a), and they a re  related by ,cG, 

I I 
(R(50p")1KF(M, +, a )  7) 

(This lemma will be particularly useful when we t ry  to calculate 
d3(~k,.E,f )  where E is a variable character of finite order of Z," x z,".) 

Let us close with another compatibility (compare 8.3.10). 

LEMMA8.3.27. For FE V(Z,, I'(p'No)""th), and  (a, b) E G(No), we have 

([a, b]F)(M, $5, a )  = F(M, a-'@, a 0 (b, b-')) . 
Proof. The only point is that on the curve (E,, p ,  6,) attached to 

(M, +, a) ,  9 is the dual of @, and a-'$5 is indeed the dual of a-'9. Q.E.D. 

8.4. The L-function associated to (M, +, a).  
8.4.0. We retain the setup of the previous Section 8.3, and fix a triple 

(M, @, a) .  We will need to work over a much bigger ring than 6,_, which, 
being absolutely unramified, contains almost no p-power roots of unity and 
consequently receives very few characters of finite order of Z," x Z,". So let 
us choose an algebraic closure of K(Nobm), a complex embedding 
pig cl  + C which induces on K(N0Gm) the one provided by (M, @, a )  and a 

place p2gc' of Kalgc' which lies over the place p, of K(N0Pm). We will take 
for W the p-adic completion of the valuation ring of I t  will also be 
convenient to choose an automorphism o of Kaigc' which lies in the decom- 
position group of @ " _ " I ,  induces absolute Frobenius on the residue field a t  
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p"&", and fixes all p-power roots of unity in Ka'gcl.Notice that o auto-

matically induces the Artin symbol (K(NOr)lKO) on K(N~@-). 

8.4.1. Evaluation a t  (M, +, a )  gives a homomorphism 

8.4.2 	 V(W, J?(N0)""") -W . 
By composition, p?ib) and p,,, give rise to 1'-valued measures 

pgib)(M,@, a )  and p,,,,(M, +, a) ,  and our two variable L-function $(x, f )  
gives rise to a W-valued L-function 

8.4.3 	 %x, f ;  M, @,a )  Sn%, f )(M, @, a )  

which is just the Mellin transform of the measure p,,(M, 	 @, a). 
We propose to give explicit "transcendental" formulas for all values 

where k, 1 2_ 0, and E is a character of finite order of Z,' x Z,". 

Remark 8.4.4. By evaluating a t  any trivialized r(NJarith curve over W, 
we could define an associated L-function. But it is only in the complex 
multiplication case that we have any  idea of what this L-function is! 

8.5. 	 Explicit fo~mulas :  the method. 
8.5.0. The method is based on a "changing level" trick. Suppose we 

have an integer No2 1prime to p, a W-valued function f on (Z/NoZ)2, a 
continuous W-valued function +(x, y) on Z, x Z,, and a locally constant 
W-valued function E on Z, x Z,. Then for r >> 0, E is constant on cosets mod p'. 
For any such r ,  we can consider E as a function on Z/pTNoZ x Z/prN0Z. This 
possibility allows us to consider various integrals: 

(The notation is slightly abusive: the (a, b) in dp'$bl is the element (a, b) of 
G(No)= Z,"x (Z/NoZ)', while the (a, b) in dpb",:;; is the corresponding element 

of 

G(N) c Z," x (ZlpriVoZ)x- Z," x (Z/prZ)" x (Z/NoZ)' , 

mailto:K(N~@-)
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whose expression in triple coordinates is (a, a mod pT, b).) 

LEMMA8.5.3. Under the isomorphism (5.6.4) between V(W, l?(p'~o)arith) 
and V( W, ~(No)a" th) ,  tothe integrals 8.5.2 correspond respectively the 
integrals 8.5.1. 

Proof. It suffices that they have equal q-expansions. For p,,,, and p,,, 
this is obvious from 6.4.9. For and p?;" this is obvious except for the 
constant terms, by 6.1.3. On the other hand, for fixed E, f ,  it suffices to 
check for all 9 ' s  of the form xkyl, with k 2 0, I 2 0. Then both integrals 
are of weight k + 1 + 1 under the action of the subgroup (1 + prZP)x 
{I}c G(N), so their difference, a constant, is necessarily zero. (In view of 
the explicit formula 6.2.10 for the constant term, this proves a similar, but 
in that case obvious, invariance property for the Kubota-Leopoldt measures 
pl.hL.on Z, x ZINZ as N varies.) Q.E.D. 

COROLLARY With hypotheses a s  above, let E be a locally constant 8.5.4. 
W-valued functin on Z, x Z, which is  supported i n  ZZ," x Z,". Let r > 0 be 
such that E i s  constant modulo pT. F o r  any integers k 2 0, 1 2 0, and any  
W-valued function f on Z/NoZ x Z/NoZ, the element 

8.5.5 2Q,, L,  ,f E V( W, ~ ( P ' N o ) " " ~ ~ )  

corresponds, via the isomorphism 5.6.4, to the element 

I n  case E i s  a character of ZZ,"x 2," of finite order, extended by zero to all  of 
Z, x Z,, this last element i s  by definition 

8.5.7 EX,, ,, f)E v(w ,  r ( ~ ~ ) ~ ~ ~ ~ ~ )  . 
Proof. The equality of 8.5.6 and 8.5.7, when E is a character of finite 


order, is put just as a reminder. So let us prove that 8.5.5 and 8.5.6 corre- 

spond. Except possibly for their constant terms, they have the same 

q-expansion, the coefficient of q" being 


8.5.8 (dk(d')'g(d, d') f(d, d') - d')l~(-d,  -dl) f(-d, -dl)) . 
(Since E is supported in Z," x Z,", this vanishes identically unless (p, n)  = 1.) 
Since both are of weight k + 1 + 1 under the subgroup (1+ p'Z,) x 
{I}cG(No), their difference, a constant, is necessarily zero. Q.E.D. 

8.6. Explicit formulas: application of the method. If we combine 8.5.4, 
in the case of a character, with 8.3.25, we get an explicit formula for 

S(&~k,l ,  a).f ;  Mt @t 
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THEOREM8.6.0. Let k, 1 be non-negative integers, and f a W-valued 
function on (Z/N0Z)'. Let E be a W-valued character of Z; x Zg which is  of 
finite order. Let r 2 1be a n  integer such that E i s  constant on cosets modulo 
pT. Denote by ~fthe function on (Z/p'NoZ)2defined by (u, v) w ~ ( umod p', 
v mod pT)f(umod No,v mod No), where i t  i s  understood that E(U,v) = 0 
unless both u and v are  prime to p. Then f o r  any  triple (M, +, a )  as  i n  8.3, 
we have the formula 

8.6.1 S ( E X ~ , ~ ,f ;  M, i;, a )  = 2@k,,,,,(P-'M, T i ; ,@-'a) . 
To use this effectively, we need the following a-linear version of 8.3.26. 

LEMMA8.6.2. =_ V(Z,, r(pTNo)arith)Let F E V(W, r(p'No)arith) 6W and 

denote by Fathe efect of applying 16a to F. Then 

8.6.3 o(F(M, @, a) )  = Fa(p-'M, #-I+, p-'a) . 
Proof.  For F E V(Z,, I'(p'No)"rith),we have Fa= F ,  and the values lie 


in 6,_,
on which a is the Artin symbol of p, so we are only restating part of 
8.3.26. The result follows for any F because both sides are a-linear in F. 

Q.E.D. 

Notice that as a fixes p-power roots of unity, as well as p - 1" roots 
of unity (these lie in Z,), i t  fixes our character 6. I t  may move the function f. 

Thus 8.6.1 yields 

To continue the computation, we will view @k,1,,,0-7as a "p-adic modular 
form of weight k + 1 + 1"in the manner of 5.10.3. Let us denote by P; the 
canonical l?(pT)arithstructure (9-' x i; restricted to ppTx Z/pTZ,cf. 8.3.15) 
carried by the curve E, attached to (M, @, a).  We readily compute 

8-6-5 @k,t,tfa-r(M,@,a )  = @k,L,:f0-r(Ex9q ,  PGx Pa) 
= @k,l,rfu-'(Etf,q*(dT/l  + TI, P; X Pa) 
= @k,l,rfu-'(E~tc - ' ~ ,PZX Pa) (by 8.3.16) 
-- ckfl+l@k,l, tf~-~(E.w,0 ,  P; x Pa) 

0 ,  P: X Pa) (cf. 5.11.10).-- C ~ + ' " G ~ + ~ + ~ , - ~ , ~ ~ ~ - T ( E + ~ ,  

8.6.6. As already remarked, both the curve E, and the differential o 
are defined over 0,-n K(Nopr). To fix ideas, let us suppose that the function 
f: (Z/NZ)'--+W assumes algebraic values, and let L be the finite algebraic 
number field obtained by adjoining to K(Nojf)the values of 6f and the pTNo 

mailto:l+l@k,l,tf~-~(E.w
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roots of unity. Then W n L is a valuation ring in L over which (E,, W,P;, P,) 
has ordinary reduction, and the field L comes equipped with a pre-chosen 
(8.0) complex embedding. So we may apply 8.0.9 and its Corollary 8.1.0 to 
Gk+l+l,-l,EfO-r(EM,W,P: x Pa); i t  lies in L ,  and in L it  is equal to the complex 
number of the same name. 

8.6.7. The period lattice of (EM,w), is QM (cf. 8.3.17). The partial 
Fourier transform P-'(Ef u-r) is a function on p,~,,,,x Z/N0prZ, which by 
means of @; x P, becomes a function on the group of points of order prNo 
on (EM),, i.e., i t  becomes a certain function g on M/pTNoM,which 
we will determine explicitly below. The transcendental expression for 
2Gk+l+l,-~,ef~-r(EM,W, ,8; X pa) is then (cf. 4.1.6) 

a complex number which lies in the number field L,  and whose p,-adic expres-
sion is 

8.7. Truly explicit formulas, when p i s  principal and M i s  prime to 

p. For the remainder of this section, we will make the following hypotheses 
8.7.1-4. 

8.7.1. The invertible C",, module M c KOis prime to p,  in the sense that 
in KO@ Z,, we have M @ Z, = OK, @ Z,. 

Thus M @ Z, is a ring, and the decomposition M @ Z, 2: M, x M, expres-
ses M @  Z, as a product of rings, each of which is canonically Z,. 

8.7.2. The given isomorphism +: Z, z;M,  (cf. 8.3.14 bis) is the unique 
ring isomorphism. 

If we compose the unique ring isomorphism Z, z M ,  with the given 
(8.3.15 bis) isomorphism q:M,2;Tp(Gm),we obtain an isomorphism Zp2;Tp(Gm), 
under which the element 1E Z, goes to an element (, -,<,, .), with <, a 
primitive path root of unity. Given a character E ,  on (ZlpaZ)", we denote 
by g(Ca,E,)the Gauss sum 

We will systematically use the equality M, = Z, (in the p-adic completion of 
KO)to view characters of Z," as characters of M;. We will then ues the 
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composite ring isomorphism 

to transport characters of Zf x Z," (extended by zero Z, x Z,) to M @  Z,. 
Thus given two characters X, and x2of Z,", the product character xl(x)x2(y) 
becomes the function on M @ Z, whose restriction to M is 

The ideal p of OK, is principal . 
Our previous choice of a model EMfor C / M  over K n O,, determines 

a canonical generator X of p, as follows. Because p is principal in KO, it 
splits completely in the Hilbert class field K,  and hence the residue field of 
K n O,, is F,. So the special fibre EM@ F, is an ordinary elliptic curve over 
F,, with complex multiplication by OK,. The numerator of its zeta function is 
(1 - kT)(l  - XT), with X and X in OK,, and one of them, say X,a generator 
of p. From the p-adic point of view, the unit root is then X, so that the unit 

c in 6,-of 8.3.16 satisfies c/co = X (cf. 5.4.4). To avoid confusion, we will 
denote by (X) E Z," the quantity "X viewed p-adically" equal to "X viewed 
p-adically." 

Given a function f on Z/NoZ x Z/N,Z, we denote by g(m) the function 

on M/NoM which, when transported to p,?,,x Z/NoZ by the composite 

isomorphism @, 


becomes the inverse partial Fourier transform P-'f of f :  

8.7.4. The function g on M/NoM transforms under (OKo/NoOKo)x aby 
W-valued character p: 

d a m )  = ~ ( a )  for a E (OKo/NoOKo)xd m )  . 
8.7.5. Formulas (under the hypotheses 8.7.1-2-3-4). Let k ,  I be non- 

negative integers, E, and E, W-valued characters of finite order of Z,", and 
E = E,(x)E,(Y) their product. Then we have the following transcendental 
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formulas for the algebraic number 

8.7.6. Case I: E,, E, both trivial: 

8.7.7. Case 11: E, non-trivial, exact conductor pa; E, t r ivial :  

8.7.8. Case 111: E, t r iv ia l ,  E, non-trivial: 

8.7.9. Case IV: E,, E, both non-trivial, E, of exact conductor pa: 

Remark 8.7.10. These formulas can also be obtained by using 6.4.15 to  
reduce the calculation of a Q* to that  of several a ' s .  An advantage of this 
method is that  the Euler factors which appear when either E, or E, is trivial 
seem somewhat less artificial. Compare [15], 3.7.3 and 3.8, where this 
approach is carried out for the one-variable Eisenstein measure. 

8.8. VeriJication of the formulas of 8.7. Let us use X to  recalculate 
S ( E X ~ , ~ ,  We have f ;  M, +, a) ,  beginning again a t  8.6.1. 

(compare 8.6.5). 

To proceed further,  we must analyse the relation between P(2.,; x Ply, 
and P; x P,. By definition, the latter sits in a commutative diagram 
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The product structure P,,.); x P,., sits in an analogous diagram, with 
isomorphisms 

01.: Pp..voX Z/prNOZN,M/prNoM, 
8.8.3 	 01.: Pp. x Z/prZ N,M/prM , 

031.: P.vox Z/NoZ %M/N& , 
deduced from P,,.,; x PA.,, Po.,:, and P1., respectively, as in 8.8.2. They are 
related to their brethren @, @, 0of 8.8.2 by the formulas 

011.(C1, bl) = @(C$""), (hr)bl) , 
8.8.4 	 @lr(Cfr, b,) = hr@(C,, b,) (because det(a)Pr = det(hTa)), 

01~(0(C1, b1) + @(Cz, bz)) = No@~v(Cl, bl) -'r p r @ ~ ~ ( C 2 ,b,) . 

We now introduce the functions 


8.8.5 

defined by 

Just as in 8.6.8-9, the transcendental expression of the P-value involves the 
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function h"): the algebraic number 

is given transcendentally as 

PROPOSITION8.8.8. The function h(p '  i s  given in terms of E,, E, and g by 

where e l (m)  i s  the following function: 

8.8.9. I f  6, i s  t r iv ia l ,  then el has exact support +Y-'M = x'-'M, and 

1 - 1  i f m e p M  

e1(XT-'m)= 
P 

i f  not . 
8.8.10. I f  E ,  i s  non-trivial ,  of exact conductor pa, then el has exact 

support +Y-aM - +Y+l-aM, and for m e M - pM, we have 

el(Xr-am)= g(Ca, el)& 1 ( ( ~ ' - ~ ) )  

The formulas given in 8.7 now follow by direct substitution of 8.8.8 
into 8.8.7. The calculation is left to the reader. 

To prove 8.8.8, we begin by expressing h") in terms of e and g. 

LEMMA8.8.11. W e  have the formula 

Before giving the proof of 8.8.11, we need two sublemmas. 

SUBLEMMA I f  & &,(x)&,(y) x (Z/pTZ)" ,8.8.12. = i s  a character of (Z/pPZ)" 
extended by zero, the function p-'(e) on  ppr x Z/pTZ satisfies 

P-'(e)(Ca, bn) = -&2(b)P-'(&)(C,n)
&'(a) 

for a n y  a ,  b in (Z/pTZ)" .  

Proof. This follows immediately from the definition (3.6.1) of P-'(E). 

SUBLEMMA Given8.8.13. 

( C l ,  bl) ppr x Z/prZ and (C,,  b2)  pnrox Z/NoZ , 
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we have 

P-Ycf  )(D(Cl,bl) + G(C2,b2))= P-l(&)(Cl,Noh) .  p-Yf X C 2 ,  pTb2) * 

Proof. Simply compute:  

d f n- 1 
--

prNo 
C,,,a pr,o ( & f)(a, Nob1 + pVb2)(C1C2)-" 

- 1 
- -Galmod pr ( Ef ) (N,a,  + p'a,, Nobl + p'b2)(ClC2)--'~0"1-P'az

prNo a 2 m o d X o  

- 1 &(Noal ,  	 P ' ~ , ) C ~ ~ ' " ~- -Gal ,,, pr Nobl)C;"oa1f(~'a2,
prNo a 2 r n o d S o  

= p-l(&)(61,Noh)P - ' ( f  ) ( C z ,  prbZ). Q.E.D. 

W e  can now prove 8.8.11. W r i t e  m = No%, + p'm,, so t ha t  t h e  asser-
tion becomes 

8.8.14 h trr (Noml+ p'm,) = 	 e (Noml )g (h - ' p rm , ) .
&l((hr))&z((hr))  

W e  m a y  wr i te  

/ ml = OF( C , ,  bl)mod P'8.8.15 
7 m, = @Av(62,b2)mod No. 

Then  

( b y  8.8.4) 
( b y  8.8.6) 

( b y  8.8.13) 

-	- P-l(&)(i:ol(ir<N o ( x ' ) b l ) P - l ( f ) ( i ,prb2) ( b y  8.8.12) 
& l ( ( ~ ' ) ) & 2 ( ( ~ T ) )  

-- l e(@(<foxiq,~ , ( h ' ) b , ) ) ~ ( @ ( C , ,  ( b y  8.8.6)o pTb,)) 
&1((kT))&2((hT)) 

--	 bz))e(NoBAT(Cl,b l ) )g(x-Tpr@~~(C2,  ( b y  8.8.4)
&l ( (~r ) )&2( (hT) )  

-- e ( N o ~ l ) ~ ( h - r p r ~ z )  ( b y  8.8.15). 
& 1 ( ( ~ ~ ) ) & 2 ( ( ~ ' ) )  

Q.E.D. 

LEMMA8.8.16. The  func t ion  e (m)  i s  a product func t ion  e,(m)e,(m), 
where 



550 NICHOLAS M. KATZ 

8.8.17. e,(m) i s  the $-adically continuous,  locally constant func t ion  o n  
M obtained by t ranspor t ing  E,  v ia  the given i somorphism +: Z, 2;MT. S O  
w i t h  the conventions of 8.7, we have e,(m) = &,(+Ti). 

8.8.18 e,(m) i s  the func t ion  desc~ibedin 8.8.9-10. 

Proof.  Because E is a product function E , ( x ) E , ( ~ ) ,P- ' (E)is itself a product 
function on p,r x Z/prZ: 

P- ' (&)(I ,b) = t ,(C)~,(b) 
where 

The isomorphism @ sits in the commutative diagram 

$D-lx+A 
P' 

rV 
P ' 

rV 
&T x Z/prZ -P-'M/M x F- 'M/M -~ ' M / ~ ' Mx P'M/prM 

8.8.19 I@ @xnod p r  1 mod FT 

MIP'M 
(mod Pr,mod 5 7 )  

M/PTMx M/bTM. 
Thus e ( m )  = e,(m)e,(m), where 

e l (m)= i , ( [ )  if pry- ' ([)  = m mod p' 
8.8.20 e,(m) = ~ d b ) if p'+ (--)b -= m mod 'p. . 

P 

The t ru th  of 8.8.17 now follows from this last formula, and the defini-
tion (8.3.14 bis) ofi$. To prove 8.8.18, we consider the commutative diagram 

the ring isom. 

% H E :  
rV rVZ/prZ-p P r  AM/PrM 

8.8.21 1 u I~ 7 - a= <,p-a>;lr-a 

/V rVz / p a z-----, 
\ n ~ t :!.'pa 7M/PaM 

9 u 
the ring isom. 

By transport of structure, the function e,(m) corresponds to  the func-
tion k ,  on p,, defined above. The assertions 8.8.9-10 become the following 
standard facts about Gauss sums (cf. 1321, p. 91), whose proof is left to  the 
reader. 
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LEMMA8.8.22. Let E, be a character of (Z/prZ)". Then: 

8.8.23. Fo r  b E (Z/prZ)' and C E p,., we have 

8.8.24. If E, is  tr ivial ,  then 

if cP= 1, but i# 1 

8.8.25. If E, i s  non-trivial, of exact conductor pa, then d1(c) = 0 unless 
I: has exact order pa, and the restriction of 2, to ,up, is independent of the 
auxiliary r 2 a used to define it. 

Chapter I S .  Yet another measure, and passage to the limit 

9.0. A critique of p , .  The measure pAV, while magnificently suited to 
q-expansion computations, is somewhat clumsy when it comes to "transcen- 
dental" calculations, as we saw in the last chapter, where both the level 
"N" and a persistent partial Fourier transform (g) occurred in the formulas 
for S ( X ~ , ~ ,  f ;  M, +, a). In this chapter, we will outline an artifice for correct- 
ing these defects, and a t  the same time "beautifying" the formulas of Sec- 
tion 8.7 for ~ ( E X , , , ,  f ;  M, @, a) .  The idea is simply to replace the "f" in the 
nomenclature by the "g" to which it gives rise, and to divide by 6,(N,)N,kf' 
to get an expression which is "independent of No." I t  is obvious from the 
explicit formulas of the last section that this "works" for (M, +, a) 's but we 
will see that it is a special case of a modular construction. 

9.1. Construction of Y , .  For the rest of this chapter, N denotes an 
integer prime to p. We will construct a V(Zp, l?(N)na'ie)-valued measure Y , ~  

on (Z,")' x (ZINZ)' out of p,, by the following artifice. 
Given a trivialized l?(N)""'"" curve (E,9,a )  over a p-adic ring B, and a 

B-valued function f on (Z/NZ)2, we can define two new B-valued functions, 
P,f and f,, on (ZINZ)" the partial and the symplectic Fourier transforms, 
by (compare 3.2.1, 3.0.1) the formulas 

9.1.1 (Pcf >(n, m) = C.,,, .,f (a, m) det (a)an , 

Definition 9.1.3. The V(Zp, l?(N)naive)-valued measure vaV on (Z,")' x 

(ZINZ)' is defined by 
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The following proposition results from the definition, and the analogous 
properties of p ,  (cf. 6.4.17 and 6.4.5). 

PROPOSITION T h e  behaviour  of u n d e r  the  d e r i v a t i o n  0 of9.1.5. u ,  
V ( Z , ,  I'(N)""'"")i s  g i v e n  by  

F o r  a g i v e n  test  object (E,9,a),w e  have  the  f u n c t i o n a l  equa t ion  

It remains to discuss t r a n s f o r m a t i o n .  The group which replaces G ( N )  
is the group 

9.1.8 H ( N ) %' Z," x Aut ( ( Z / N Z ) 2 ), 
an element ( a ,  g )  of which operates on V ( Z , ,  I ' (N)nai"e)  by the rule 

9.1.9 ( [ a ,  g ] F ) ( E ,  9,a)(2F(E, a - ' ~ ,a o g )  . 
9.1.10. Given an element b E ( Z I N Z ) ' ,  we denote by ( b )  E Aut ( ( Z I N Z ) ' )  

the automorphism (b ,  b-'), i.e., ( x ,  y )  t- (bx ,  b t 'y) .  Then G ( N )+H ( N )  by 
( a ,  b) -+ ( a ,  ( b ) ) ,  and clearly Pa,,,, = P, o (b,  b-'). 

PROPOSITION U n d e r  the  a c t i o n  of H ( N ) ,  w e  have  the  t r a n s f o r -  9.1.11. 
m a t i o n  f o r m u l a  

Proo f .  For g = ( b ) ,  this follows from 6.4.10 and the definition of u ,~ .It 
remains to  check elements of the form (1 ,  g ) ,  with arbitrary g E Aut ( ( Z I N Z ) ' ) .  
This is proved by a "reduction to  the transcendental case" argument similar 
to  that  given in 5.11.16. To carry i t  out in detail involves introducing a 
measure u:'," on (Z,)2 x ( Z / N Z ) 2  analogous to  p:r"," (to which u, is related 
by the analogue of 6.4.11), and using the "reduction to  moments," 9.1.6, 
and 9.1.7, to  reduce to chezking i t  for the t r u e  modular form 

I x"'('(u, v )dv;<"E R"+'(Z,, I'(N)"""") . 
r z p , ? r  7 \ Z  2 

We omit the details. 

R e m a r k  9.1.12. An alternate proof could be based on the Zariski 
denseness of those trivialized I'(N)""'" curves arising from triples (M, @, a )  



553 p-ADIC INTERPOLATION 

over variable quadratic imaginary fields in which p splits. The point is 
that  in the formulas of 8.7 for 

= & l ( ~ ) ~ k + l j ~ ( x ,  V ) ~ Y ~ ( M ,Y)x~Y~(P;~~)(u,  +, a) 

with k , 1 2  0, i t  is only the function (P;'f) .a-I which enters, so that  the 
t ru th  of the proposition results from the identity 

(P;'f) o ( a  0 g)-' = ((P;'f) 0 g-') 0 a-' for g E Aut ((ZINZ)" . 
9.2. Independence of N. Here are two equivalent descriptions of how 

a naive level N M  structure a,, induces a naive level N structure a,. 

19.2.1 	 F i r s t :  View ayMas (- z/z)' 1,.v.E 
N M  

and restrict -(; Z/Z 
Y 

9.2.2 	 Second: View a,, as (Z/NMZ)2 5,,E and reduce mod N

1r e d  m o d N  1mult. by M 
a 

(ZjNZ)' 3E,. . 
For our purposes, i t  will be more convenient to work systematically with 
the second. 

9.2.3. The construction a,, t-.a ,  determines an inclusion of rings 
V(Zp, I'(N)""'"") c V(Zp, I'(NMna'""), F--p, defined modularly by 

9.2.4 	 REl 9 ,  ax,) = F(E1 9 ,  ax) • 

We will drop the - notation, and view V(Zp, I'(N)""'"") as canonically 
sitting inside V(Z, I'(NM)"""") as the invar ian t s  under the subgroup 

I'(N)/I'(NM) c Aut ((ZINMZ)') . 
Similarly, the map "reduction mod N" 

9.2.5 (ZINMZ)' -(Z/NZ)2 

gives an inclusion: "functions on (ZINZ)'" c "functions on (Z/NMZ)2"; for a 
function f on (ZINZ)', we still denote by f the function on (ZINMZ)' given 
by (u, v) F+f (u mod N ,  v mod N).  

PROPOSITION Let f be a function on (ZINZ)". F o r  a n y  M prime9.2.6. 
to p,  we have a n  equality 
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Proof. We will use a q-expansion argument. Recall that 

where Z[l/N, C,,,] 9, means the ring Z[l/N, X]/(#,(X)), the Nthcyclotomic 
polynomial. By the q-expansion principle for V(Zp, I'(N)arith), it follows that 

A 

an element of V(Zp, r(N)"""") is determined by its value in zP((q)) @, Z[l/N,C,,,] 
A 

on the test object (Tate (qS), F,,,, a, : (n, m)-+9:qm) over zP((q)) @, Z[l/N, C,]. 
On the other hand, the natural  inclusion V(Zp, I'(N)n"'"e) -+ 

V(Z,, ~(NM)""'"~) is not compatible with this notion of q-expansion, but 
replaces q by qv  (once 9, and C,,, are "normalized" so that (C,,)l' = C,,,). If 

we vieu7 [+(x, y)f(u, v)dv, E v(ZP, J?(N)nal'e) as lying in v(z,, I?(NM)""") 

by the natural inclusion, its q-expansion is 

whereas +(x, y)f (u, v)dv,, € V(Zp, r(Zp, J?(NM)"""")) has q-expansion S 


In fact, the individual terms match up, as follows: 

I 0 unless d = 0 mod M 

when f is periodic mod N (it is the "periodicity -- support" duality of Fourier 
transform). To check 9.2.10, we may assume f is a product function f (n, m)= 
A(n)B(m). Then 

(Pa, ,f )(d, d') = As +f(d)B(d1), (PC, f )(dl d') Ax(d)B(d') , 
where 

9.2.11

.,.., modC,  

A.,,(d) = C,,,, ,A(a)CY . 
ASJl(d)= A(a)C?dlI 



p-ADIC INTERPOLATION 

Because A is periodic mod N, we can write 

A, .(d) = (C::o' A(a)ca\dv)C;:;l cb\,+: 
= (C,'zo1A ( ~ ) c a \ ~ ~ )Cb':i19:: 

0 if 5%# 1, i.e., if d $ O(M) 

A x M ( ~ )= 1ME::: A ( ~ ) c ~ ' J " '= MA if d - O(M). Q.E.D. 

Remark 9.2.12 (compare 9.1.12). This "independence of N" is obvious 
from the transcendental formulas 8.7.6-9 for values on (M, $, a)'s. 

9.3. Passage to the limit: definition of the measure v and the modified 
63 function 2,. Given an elliptic curve E over a ring B, we define a 
I'(not p)""'""structure on E to be a compatible system of isomorphisms 

9.3.0 a,: (ZINZ)" C$, E  

for all Nprime to p (compatibility in the sense of 9.2.2), which we abbreviate 
as a single isomorphism 

9.3.1 a: (n1,,zL)2EZnl#,T ~ E )  

I ( 1  dfn 

(znotp~ 5 Tnot p ( ~ )  

9.3.2. The corresponding moduli problem "trivialized T'(notp)""'"" 
curves" is represented by a ring V(Z,, I'(not p)""""), which is none other 
than the p-adic completion of the ring 

9.3.3 UN V(Zp,r(N)"""'") . 
(,,TI=' 

The group Z," x AU~((Z, ,~ , )~)operates on v(z,, I'(not p)"""") by the rule 

9.3.4 [a, g]F(E, 9 ,  a )  F(E,  a-'9, cr g) . 
For any integer N prime to p, the ring V(Z,, I'(N)"""") sits inside 
V(Z,, I'(not P)"""~)as the group of invariants of the subgroup 

{ l ]  x (Kernel: Aut ((z,,, ,)2) -Aut ((ZINZ)")). 
9.3.5. The measures v ,  for variable N prime to p form an inverse 

system of measures on the spaces (2,")" x (Z/NZ)2,each of which we can view 
as taking values in the single ring V(Z,, I'(not p)naive).By passage to the 
limit, they define a single measure v on the space 

(Z;)" x (z,,, ,)" = lim,,,.,,=,(Z,")' x (ZINZ)' 

with values in v(Z,, I'(not p)""""). 
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PROPOSITION The v(z,, r(not p)n"ive)-valued measure v on9.3.6. 

(Z,")2x (znot p)2 en joys the following properties: 

9.3.7 (Transformation). F o r  any (a, g) EZ: x Aut ((~,,,,)2), 

La, slj +(x, y ) f  (u, 2odv = Ia+(ax, al/)(f o g-')(u, v)dv . 
9.3.8 (Differentiation). The derivation 0 of V(Zp, r(not P)"""~) acts on 

v by 

Proof. This follows immediately from its finite-level analogues 9.1.5 
and 9.1.12. Q.E.D. 

Remark 9.3.7. Notice that we "lose" the functional equation 9.1.7, 
which a t  finite level N depended upon N (cf. 9.1.7). 

Dejinition 9.3.8 (compare 7.1). For x E HomConti,((Z,")2,W), and any 

continuous W-valued function f on (z,,, ,), we define 

9.3.9 Sx(x, y)f(u, v)dv 2T?(x, f )  E v ( z ~ ,  not p)naiR). 
9.4. Evaluation of S,(X, f)(M, +, a )  with @ principal and M prime to 

p. We return to the setting of Section 8.7, but now consider triples (M, $, a )  
with a an isomorphism 

Combining this isomorphism with the ring isomorphism 

9.4.2 Z p x Z p =  M , x  M , Z M , x  MT-M@Z,  

(m1, m2) -(m1, m2) 

gives a single isomorphism 
.-. 

9.4.3 (z)" M @ Z . 
This allows us to view v as being a V(Zp, r(not p)nai'e)-valued measure 

on M @ Z, which is supported in the open set (M @ Z,)" x (M@ zn0,,). By 

evaluation a t  (M, +, a), we get a W-valued measure on M@Z. This measure 
depends only on M (because @ is determined by M (cf. 8.7.2), and a "occurs 
twice" in its definition). We denote it v(M), and denote its Mellin transform 

5 3 x 7  s)(M): 

9.4.4 
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for is ((M@ Z,)" , W ")x e H~m,,, t ,~ 
~ ~ o n t i n ( ~ @ i , , , , ,W) . 

9.4.5. Formulas. We suppose that the hypotheses 8.7.1-2-3 hold, and 

that the function g on M @  z,,,, is locally constant, has algebraic values, 

and transforms under the group (a,, @ z,,, ,)" by a W-valued character p. 
Let k, 1 be non-negative integers, and E ,  and E, W-valued characters of 

finite order of Z,". When E, is non-trivial, its exact conductor is denoted pa. 
Then we have the following explicit formulas for the algebraic number 

1 d f n  1 

9.4.6. Case I: E,,E, both trivial: 

9.4.7. Case 11: E, non-trivial, exact conductor pa; E, tr ivial  

9.4.8. Case 111: E, trivial, E, non-trivial: 

9.4.9. Case IV: E,, E, both non-trivial, E, of exact conductor pa: 

9.4.10. Relation to "grossencharacters of type A,." Let KObe a quad- 
ratic imaginary field, given with a complex embedding KO+C .  Given an 
ideal Q ca,, and two integers (a, b), we have the notion of a grossencharacter 
x of (not necessarily exact) conductor Q, and type (a, b): this means that x 
is a C-valued multiplicative function on the group of functional ideals of KO 
which are prime to Q, such that if a e KOis = 1 mod G, then 

~ ( ( a ) )= aaBb. 
We can define a function $r, on the group {m e Kt I m is prime to G} by 

setting 

?Ir,(m) = x((m))Imamb. 
This is a multiplicative function, trivial on m's - 1mod 6 , hence +, is just 
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a character of the finite group ((3,,/Q)", which we extend by zero to all of 

(3KO/Q.  

The fact that m"mb$,(m) is a multiplicative function of the ideal (m) 
shows that for any unit e e a,,, we have 

eaCb$%(e)= 1. 
Conversely, given a character + of such that the above equality 
holds for all units e ,  then + is of the form +, for some x of conductor 0.and 
type (a, b) and this x is unique up to multiplication by a character of the 
absolute ideal class group of KO. 

The Hecke L-series L(s, X) attached to x is defined to be the Dirichlet 
series 

1 

p prime to  

Let at, . . .,ahbe a set of prime to Q representative ideals TiicOK, for the 
absolute ideal class group of KO. Then the U;' are also a set of representa- 
tives, and any integral ideal ca,, can be written U = (mi)Uil for some 
unique i and some element mi e U,, determined uniquely up to a unit of a,,. 
Then we can rewrite L(s, X) as 

9.4.31 	 1 h X(QI,)-I m"fiib+,(m) 

L(sf ') = # units in K, NU,)-^ ~ ( m ) '  


9.4.32. The value a t  s = 0 of each inner sum comes under our p-adic 
theory, provided that p splits in KO. To fix ideas, suppose that the primes 
p, p lying over p are principal ideals. (This is not essential, but slightly 
simplifies the formulas.) We may always choose the representative ideals 
a, to be prime to p. To fix ideas, let us also suppose that p divides the (not 
necessarily exact) conductor Q; a t  worst this amounts to discarding the 8 
and p Euler factors from L(s, X). We can decompose the character $,(m) of 
13,,/Q(3,,)" into a product of its p, p, and prime-to-p component characters 

9.4.33 	 = &,(m)&,(*)gx(m). 

Then the inner sum becomes 


In the quadrant b 2 0, a 5 -1, the value a t  s = 0 of this sum is p-adically 
interpolated by the p-adic L-function 

$,(&~~~zX-1-a,b, gx)(Ui) 


in the sense that the formulas 9.4.6-9 hold. 
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9.5. Relation to the measure of Maxur-Swinnerton-Dyer and  Manin 
(1201, 1211, 1251). The above named authors consider an elliptic curve E over 
Q which is "uniformized by ro(N)" for a suitable integer N, outside of which 
N t h e  curve has good reduction. For each prime p not dividing N a t  which 
the curve has ordinary reduction and each integer f o  prime to Np, they 
construct a p-adic measure on the multiplicative group Z," x (Zl f0Z)". 

9.5.1. To relate their theory to ours, we must a t  present limit the 
discussion to elliptic curves E over Q with complex multiplication, and it 
seems plausible that  this is the only case where there is a simple relation. 
To further simplify, we will suppose that  End (E,) is the full  ring of integers 
OK, in the quadratic imaginary multiplication field KO. The fact that  E is 
defined over Q implies that  KO has class number one (since its Hilbert class 
field is Ko(j(E))). Such a curve is well-known to be uniformized by r 0 ( N )  
for some N (cf. [33]), so that  the Manin-Mazur-Swinnerton-Dyertheory 
applies. We will briefly explain their construction in this particular case. 

For each prime number 1 which is unramified in KO, and a t  which E 
has good reduction, we consider the n u m e ~ a t o r  of the zeta function of 
E @  F,, as a polynomial in the quantity 1-". 

9.5.2 P,(1-7 = 1- a(1)l-" + 1'-2" 

where a(1) = 1+ 1 - #E(F,)  = trace of Frobenius on E @ F, . 
The Dirichlet series 

9.5.3 L(EIQ, 3) = n,u n r s m .  in  K~ --I afP C a(n)nvd 
E good r ed .  at 1 Pl(l-') 

is called the L-series of EIQ. It is defined for any  curve over Q .  Because 
we are in the situation of complex multiplication, the L-series L(E/Q, s) can 
be rewritten as an "L-series with grossencharacter" of the field KO as  
follows. 

9.5.4. For each prime ideal q of OK, which lies over some prime 1 of 
the above type, we can define a canonical generator ~ ( q )  E OK, by the follow- 
ing device: 

9.5.5. If q = (1) is a rational prime which stays prime in KO, then its 

residue field is F,z, and the Frobenius endomorphism of E@ F,z is the scalar 

-1 (i.e., a(1) = 0 if 1 stays prime in KO). We take ~ ( q )  = -1 if q = (I). 


9.5.6. If q has residue field F,, then the polynomial X 2- a(1)X + 1 
factors in OK,, and exactly one of its roots generates q; the other root 
generates q. We define ~ ( q )  E OK, to be that  zero of X" a(1)X + 1 which 
generates q. Thus ~ ( q )  = X(Q), and X" a(1)X + 1 = ( X  - x(q))(X- ~ ( q ) ) .  
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(Thus ~ ( p )= X in the notation of 8.8.) 
Thus in either case we have 

9.5.7 P,(1-9 = IT,,,(l- x(q)N(q)-=) . 
so that we can rewrite 

I t  is a fundamental theorem of Deuring that the assignment 

9.5.9 q +--+ x(q) 

is a KO-valuedgrossencharacter of KO. Concretely, this means that there 
exists an integer N, divisible precisely by those primes which either ramify 
in KOor a t  which E has bad reduction, such that when we extend x by 
multiplicativity to all fractional ideals of KOprime to N, then 

9.5.10 	 ~ ( ( a ) )= a if a E KO,and a r 1mod N . 
Equivalently, this means that there is a KO-valuedDirichlet character 

of OK, mod N, 

9.5.11 	 @x: ( (3~oIN(3~o)X-(OKO)*9 

such that 

9.5.12 	 ~ ( ( 6 ) )= P.lrx(P) if P E OK, is prime to N . 
Caution. This N is not the N figuring in r0(N),  but it has the same 

prime factors. According to [33], if we denote by the ideal of OK, which 
is the exact conductor of X, and by -D the discriminant of KO,then our 
curve is uniformized by ~,(DN(%)).  

Thus we can rewrite the L-series L(E/Q, s) in the form 

9.5.13 L(E/Q, s) = 
1 Cme,,, m$-z(m)N(m)-* = C a(%)%-'# units in OK, m pr ime  t o  

(replacing m by m,and using +x(fi)= +,(m)) 

Now let p: (Z/f Z)" 3Ci be an ordinary Dirichlet character, of exact 
conductor f prime to N. Then one defines the p-twist of L(E/Q, s), noted 
L(E/Q, p, s), to be the Dirichlet series 

-- 1 
C m E C K O  m?;rdm)p(Nm)Nm-"# units in O K 0  ,prime ton.  
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Let us denote by w a chosen Neron differential on E/Q (unique up to 
+I),  and by 52 e C the constant (unique up to a unit of OK,) such that QO,, 
is the period lattice of (E, w),. By Damerell's theorem, the ratio 

is algebraic. 
In terms of this, we can describe the Mazur-Swinnerton-Dyer and 

Manin measure MMSW as follows. Fix an integer f ,  prime to Np, and let 
p,: (Z/f ,Z)" -W xbe a character of exact conductor f ,. Let s: Z," -+ WXbe a 
character of finite order, of exact conductor pa. Then the measure MMS W f o  

on Z," x (Zlf ,Z)" satisfies (cf . 1231 and 1251) 

rzb 'pa fo )  L(E/Q, EP,, s)(,=, - (Camod fops (&~O)-l(b)e~- -xa 52 

If we write out the series for L(E/Q, sp,, s), but sum over 6,we get 

9.5.17 L(E/Q, &Po, S) = z p,o fi?x(m)&(m)&(E)~o(N(m))N(m)-~ 
m prime to S p  

whence 

9.5.18 L(E/Q, &PO, = ( c , .~~~ p0(N(m))1 -s)ls=o &(fi)qx(m) 
m prime to .vp ~- l (m)mN(m)~ ,s=o 

Comparing this with 9.4.9, we see that the above value is one of our 
2-values, with k = I = 0, and E, = 8- ' ,  8, = 8 .  Explicitly we have 

(In transcribing 9.4.9, the apparent denominator is 
-
xapo(N(xa)) $x(~")&1((~"))&2(<~")) . 

But cl = &;I, SO the s's go out, and l;rx(X) = x(p)/X = 1, so the $, goes out.) 

We can transform the Gauss sum occurring in 9.5.16 by writing 


6 = -fobl - pabz. The result is easily seen to be 


mod gopa (&pO)-l = 
mod pa~-l(bl)e-zxibllpa)9.5.20 zb (b)eZaib/fopa 1 (Cbl 

&( -fo)Po(-pa) 

(Cb2 po-l(bz)e-ZZibdfo) . mod f o  
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To compare the first factor in this decomposition to pag(ca, 6-I), we introduce 
the p-adic unit A E Z," which relates the two bases (. ..,eZzilpa,. . .) and 
( a  . a ,  La, . . .) to Tp(G,) (cf. 8.7.2), i.e., 

9.5.21 ca = e 2 a i ( A  mod pa)/pa for a = 1, 2, .... 
An easy computation gives 

9.5.22 Cb mob pa s-l(b)e-2aib/pa = &-'(A)pag(ca, &-') . 
Putting i t  all together, we find 

9.5.24. Let us denote by m --+ film the continuous mapping (M @ Z,)" -+ 

Z,"2;M; which sends m E Mto film. In terms of the isomorphism (M@Z,)" 
M; x M," riZ," x Z,", it is (x, y)- ylx. 

COMPARISONTHEOREM9.5.25. Let f be a continuous W-valued function 
on Z,", and let p,: (Z/ f,Z)" 4Wx be a primitive character modulo f ,, with 
f ,  prime to pN. Then we have the integration formula 

-1 
c 1,;
 f (fi/m)Tx(m)p,(N(m))dv(M). 

Proof. For f = 6 a character of finite order, this is just 9.5.23. Any 
locally constant W-valued function in Z",s a W @ &,-linear combination of 
E ' S  of finite order, so the theorem holds for f locally constant, and locally 
constant functions are uniformly dense in Contin(Z,", W). Q.E.D. 

9.5.27. Remark. The p-adic unit A E Z," is given explicitly in terms of 
the unit root (h) and the area a(OKo) by the formula (h)2A = Im (h"/a(@,,), 
as follows immediately from computing ePm(X/pn, h/pn) using 2.0.2. 

Chapter X. The p-adic analogue of Kronecker's 
second limit formula 

10.0. The Siege1 functions H5,sand H5 a s  "true" modular functions. 
Fix an integer N 12. Given a ring B, an Nthroot of unity C G pN(B), and 
an integer s 2 0, we form the infinite product 
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This product depends only on s modulo N. For s = 0 and 5 = 1, the product 
is zero. In terms of these products, we define 

10.0.2 Hc(q) = n:=:'H:,8(q) ; 

an easy calculation then gives the formula 

10.0.3 H:(d = qN[(l- C)nn, , ( l  - qnC)(l- q"C-1)]12N 

LEMMA10.0.4. The products H,,,(q) (resp. ~ , ( q ) )a re  the q-expansions 
of elements of RO(B,I'(N)a'ith) (resp. roo(N)a'ith).If s # 0 mod N, then HC,, 
i s  a unit  i n  RO(B,r(N)"""). If 1- C i s  a unit  i n  B, then (resp. H:) i s  
a unit  i n  RO(B,I'(N)arith)(resp. I'oo(N)arith). 

Proof. This is proved when B = C in Lang ([18], p. 262). I t  follows 
over any sub-ring of C by the q-expansion principle, then over any B by 
"reduction to the universal case." 

COROLLARY10.0.5. If B i s  a n  integral domain, and C, C' E p.,.(B) are  
both # 1,  and if 1- C / 1  - 5' lies i n  B and i s  a unit  i n  B, then H,,,/H,,,, 
(resp. Hc/Hct)is a unit  i n  RO(B,I'(N)""") (resp. I'oo(N)arith). 

Proof. This follows from 10.0.4 and the q-expansion principle 2.2.8, 
applied to B cB[1/(1 - C)]. 

LEMMA10.0.6 (Transformation). Under the action (5.4.8) of the group 
(ZINZ)" on RO(B,I'(N)ar'th)and on R'(B, ~ o o ( ~ ) a ' i t h ) ,the elements H,,,, H, 
transform by 

Proof. If we use 10.0.2, the second formula is a consequence of the first. 
By the standard reductions, it suffices to prove the first over C. But given 
a I ' ( N ) a ' i t h - ~ ~ r ~ e(E, ,B) over C, the transcendental description of H:,,(E, 6) 
shows that it depends only on the division point P(C, s). This makes the 
assertion obvious from the definition of [b]. Q.E.D. 

10.1. Logarithms of ratios of Siege1 functions as  p-adic modular 
functions. Fix a complete p-adic mixed characteristic valuation ring W as 
in 7.1, and denote by p its maximal ideal. For any W-flat p-adic W-algebra 
B, the logarithm 

defines a group homomorphism from the multiplicative group 1+ pB to the 
additive group B @  Q. I t  extends uniquely to the multiplicative group 
{g,E B13n 2 1with g," E 1+ pB}, by defining 
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Given any homomorphism a: B B' of such rings, we have -+ 

10.1.3 	 log(a(g,)) = ~( logg , )  for any g, as in 10.1.2. 

Now we will consider RO(W, I'(N)""") as a subring of GVO(W, I'(N)""") 
(cf. 5.9, 5.10) and similarly for their I'oo(N)""th analogues. Recall that by 
the q-expansion principle (5.2.1), any element of GvO(W, I'(N)""") whose 
q-expansion lies in 1+ pW((q)) itself lies in 1+ pGVo(W, I'(N)arith), and 
similarly for I'oo(N)arith. Looking a t  q-expansions, we get the next lemma. 

LEMMA10.1.4. If i ,  i'E pAV(W),C = C' mod rp and s 0mod N, then 
H,,,/H,,,,lies i n  1+ GVO(W, I'(N)"""). 

10.1.5. I ~ C , C ' E ~ , ( W ) , C # ~ ,  C=C'modP,andif(l-C)/(l-8 ')C'#1, 
lies i n  Wx,  then a power of H,,,/H,,,,lies i n  1+ p GvO(W, I'(N)"'"~), and a 
power of H,/H,, lies i n  1+ P GVO(W, I'oo(N)arith). 

10.1.6. If s $ 0  mod N, then f o r  any C E p,(W), (H,,,)P/Frob(H,p,,) lies 
i n  1+ p GVO(W, I'(N)"""). 

10.1.7. If C E p,(W), Cp # 1, then (H,,o)p/Frob(Hlo) lies i n  1+ 
pG VO( W, I'(N)"""), and (H,)p/Frob (Hcp) lies i n  1+ #GvO( W, I'oo(N)"rith). 

The power is needed in 10.1.5 when i: and C' are non-trivial p-power roots 
of unity of exactly the same order. Then (1 - C)/(1- C') is a unit in W, but 
modulo p W it may be any element of F,. So in fact the p - 1"power will do. 

10.2. Application to the "one-variable" L-function L (cf. 7.2), and 
Leopoldt's formula (cf. [12]). Let p: (ZINZ)" -+WX be a character of exact 
conductor N. Then L(p) lies in GVO( W, I'oo(N)"rith) @ Q, and it has nebentypus 
p (5.3.4). If p is an odd character (p(-x) = -p(x)), then L(p) = 0, simply 
because ( - 1, -1) E G(N) acts trivially on G VO. We henceforth assume that 
p is even. By 7.2.3, the q-expansion of L(p) is given in terms of an auxiliary 
element (a, b) E G(N) by the formula 

Recall that for k 2 0, we have the formula (6.2.8) 

where L(-k, p) is the value a t  -k of the classical Dirichlet L-function. 
We will give a "modular" formula for L(p) in terms of logarithms of 

ratios of Siege1 functions. Comparing constant terms in the q-expansions 
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will give Leopoldt's formula for "p-adic L (1, p)." 
Recall that  for a function f on ZINZ, its Fourier transform f̂  is the 

function on pNdefined by 

The original f may be recovered from f by the formula 

10.2.4 f (b) = C:,. . v f ^ ( ~ ) ~ b  

When f is a character p: (ZINZ)" -W of exact conductor N, then is 
supported in p.t-, the set of primitive Nth roots of unity. If we choose a 
primitive C = C,, then 

p-'(a)p^(C) for a E (ZINZ)"
P ( c " ) = ~  

if (a, N) > 1. 
THEOREM10.2.6. S u p p o s e  t h a t  N 2 2 i s  p r i m e  t o  p ,  a n d  p: (ZINZ)" -+W 

i s  a n  e v e n  charac ter  o f  exact conduc tor  N. S u p p o s e  t h a t  W c o n t a i n s  t h e  
Nth roots  o f  u n i t y .  T h e n  L(p) i s  g i v e n  by t h e  f o r m u l a  

I f  w e  choose a p r i m i t i v e  Nth root o f  u n i t y  C, w e  c a n  r e w r i t e  t h i s  

Proo f .  The two assertions are obviously equivalent, in view of 10.2.5. 
Notice that  both sides of the asserted equality are of weight zero and neben-
typus p, thanks to 10.0.7. Since a non-zero cons tan t  cannot be of nebentypus 
p, (p  being non-trivial), it  suffices to show that  the difference of their 
q-expansions is a constant. This results immediately from the explicit 
formulas 10.2.1 (for ~ ( p ) ) ,10.0.3 (for Hc)and 5.5.7 (for Frob). The actual 
calculation is left to the reader. Q.E.D. 

Comparing constant terms gives Leopoldt's formula (cf. [12]): 

COROLLARY10.2.9 (Leopo ld t ) .  With hypotheses  a s  in 10.2.6, w e  h a v e  
t h e  f o r m u l a  

10.2.10 

5 1 1 
-p(u)d~$:-~,L.= --Cc ps(pr . ,  

1 -

1 - p(b) z : x z ' ~ z  x P :p r i m i t i r e  
P(C)log (( )

1 - rp 
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(To get the second expression, notice that for 9 cp , (W)  not of p-power 
order, 1 - 9 lies in W x  and a power of i t  lies in 1 + pW. Thus log ( 1  - C )  
i s  defined, and log ( (1- - 9") = p log (1  - 9 )  - log ( 1  - Cp) . )  

10.2.11. We now turn to the case where p divides N. We write N = Nopr, 
and we choose a primitive p'th root of unity C,. For each primitive Nth 
root of unity 9 ,  we denote by 9' the primitive Nth root of unity which 
satisfies (C'),' = cpr,  (C')*O= ( 9 1 ) N ~ .Then 1 - 911 - 9' is a unit in W, and 
9 3 C' mod p. 

THEOREM10.2.12. Suppose that p divides N, and that p: (ZINZ)"- + W  
i s  an  even character of exact conductor N .  When W contains the Nth 
roots of un i ty ,  L(p) i s  given by the formula 

10.2.13 L ( P )= $c,",,-,~,P(C) log (Hc/Hc,) 
C pr imi t ive  

I f  we choose a primitive Nth root of un i t y  C"o =[;Yo,then we can rewrite 
this as 

- 110.2.14 = =(C. ,,, ,P(~)C-~)C.,,,,,,,, p-'(a) log (H,./H~.~), 

where a,' = a mod No, a' = 1 mod pr. 

Proof. The proof is identical to that of 10.2.6: the hypothesis that p 
has exact conductor N assures that for each fixed a' E (ZINZ)",  a' = 1 (pr ) ,  
the sum Cp-'(a) (extended to all a c (ZINZ)" with a = a' mod No)vanishes, 
so that the right-hand side is independent of the initial choice of 9,  used to 
define i:++C'. This means that formally (but in no other sense), we have 

10.2.15 (formal) U P )= ~c~~~~~~P (̂i)log Hc . Q.E.D. 
:pr imi t ive  

10.2.16. To exploit the above formal formula, we resort to Iwasawa's 
"log," artifice. Given a complete valued overfield K of Q, with value group 
contained in Q and residue field algebraic over F,, there is a unique group 
homomorphism 

10.2.17 log,: K X-K +  
satisfying 

log, ( P I  = 0 
log, (1  + x)  = log ( 1  + x)  if ord ( x )> 0 . 

With this function, we can nicely write the constant terms. 

COROLLARY10.2.18 (Leopoldt). W i t h  hypotheses as in 10.2.12, we have 
the formula 
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10.2.19 1
-p(u)~p:.~:. = -Cc e , x , , v ,  P(i) log, (1 - C) . 

1 - ~ ( b )1 Z;XZ,XZ x c primit ive 

Notice that this formula is formally identical to 10.2.10, because by 
convention p(p) = 0 when p divides N. 

10.3. Applications to the two variable L-functions 2 and 2,. Fix an 
integer N >= 2. In view of the explicit formulas of Chapters 8 and 9 in the 
complex multiplication case, the p-adic analogue of an abelian L-series of a 
quadratic imaginary field a t  s = 1is an integral 

while the analogue of "s = 0" is an integral 

In the p-adic setting these integrals are related by the functional equation 
(7.3.2): 

which should be interpreted as the p-adic analogue of the classical s -1- s 
functional equation. 

In the following, we will consider only the second integral 

Its q-expansion is given explicitly by (cf. 7.3.5) 

f(d, d') + f ( -d ,  -dl) 
C ( p , n ) = l q n C n = d d 1  

d 

so we will henceforth suppose f even. To further simplify, we will suppose 
that 

f(pu, v) = f (u ,  pv) = 0 for all u, v E ZINZ .i P N  
We write N = NOpvwith (p, No) = 1. 

The inverse partial Fourier transform P-'f on ,usx ZINZ will then 
satisfy 

P-'f ( i ,  0) = 0 because f(n,  0) = 0 for all n 
10.3.7 C,,,,I P-'f (CC,, s) = 0 because f (P', s) = 0 . 

http:10.2.10
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10.3.8. Let W be a complete mixed characteristic p-adic valuation ring 
containing the Nthroots of unity. For any 5 E p-4 W), let Teich (5) E p, (W) 
be the unique root of unity of order prime to p with 5 = Teich (5) mod b (so 
5 = C,.Teich(C), for some p-power root of unity 5,). 

THEOREM10.3.8. With hypotheses as  above (10.3.6), we have a n  identity 
i n  GVO( W, I'(N)""") @ Q:  

Proof. Both sides have the same q-expansion! Q.E.D. 

In view of 10.3.7, we can formally rewrite this as 

Suppose now that we have N = Nopr, and are given 

10.3.10 ( E: Z,X x Z,X -+ WX, a character mod pr 

1 f ,: (Z/N0Z)'-W an arbitrary function . 
Then we can look a t  the integral 

10.3.11 \*fo ( ~ ,  .v)dpNo
X 

We know that if we are given a trivialized I'(No)arith-curve (E, q ,  P), then 
by "dividing r times by the canonical subgroup" we get a trivialized 
I ' (N)a r i t h - c~ r~e(E"', q ( r l ,  ,B(r)), and (cf. 8.5.3, 8.6.1) 

The right-hand integral may then be "evaluated" by 10.3.9. 
Finally, when we are given an integer No prime to p, a W-valued 

function g on (Z/N0Z)', and a possibly trivial character ~ ( x ,  y) E,(X)E,(Y)= of 
(Z/prZ)" x (Z/prZ)", for some r >= 1, we can form 

10.3.13 g(u, v)dv\. , 

whose value on a trivialized I'(No)arith-curve (E, q ,  a) is given by (9.1.4) 

10.3.14 \E1(x)E2(u) q ,  a)g(u, v)dv,,(E, 
X 

We can evaluate this last integral using 10.3.9. 
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10.4. Special values i n  the case of complex multiplication. We have 
already noted that for fixed N the value Hc,,(E,P) depends only on the 
division point P = P(C, s), so we write it 

10.4.1 H1""(P: E )  = H,,,(E, P) if P(C, s) = P E , E . 
The formal exponent 12N serves to remind us that if N = NlN2, and if P 
has order N,, then 

10.4.2 (HlZN1(P,E))IVz = H121V(P,E) 

(a property which follows from the transcendental definition of H,,,, and 
which could have been stated in 10.0). Thus given an elliptic curve E over 
a reasonable p-adic field K as in (10.2.16), and a point P E E(K)  of finite 
order N, P f 0, the value HlZN(P;E )  lies in K x ,  and the quantity 

is independent of the auxiliary choice of N. Thus we may define 
dfn  1

10.4.4 log, H(P, E )  = -log, (H12"(P, E)) E K 
12N 

We will also make use of the following compatibility with isogeny (easily 
checked transcendentally using the product formula 10.0.1). 

Let G cE(K) be a finite subgroup, and let P E E(K) be a point of finite 
order not lying in G. Let n: E- E/G denote the projection. Then 

10.4.5 C,,,log, H ( P  + g, E )  = log, H(n(P), E/G) 

We now apply this in the complex multiplication case. For simplicity, 
we adopt the notations and hypotheses of 9.4.5. If P is a point of finite order 
N on the curve EM= C/M corresponding to m/N, we write log,H(m/N, M) 
instead of log, H(P, EM). 

Let Nobe a prime-to-p not necessarily exact conductor for the function 
g. As already noted above (10.3.14), we have 

Using 10.3.9, together with 8.8.11, we find that this is equal to 

Substituting the value of el(m) given by 8.8.9-10, and using (10.4.5), we 
obtain explicit formulas. The actual computation is left to the reader. 

Formulas 10.4.8. With hypotheses as in 9.4.5, let No be a prime-to-p 
conductor for g. Then we have the following formulas for 
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10.4.9. Case I. E ,  n o n - t r i v i a l ,  exact conductor pa, ~ , n o n - t r i v i a l  of exact 
conductor pb: 

-g(Ca, &I) 
C m e  v ~ a ; b \ ~ ' iE2(")g(m) 108, H(G,M )  .

~ ( ~ " ) ~ 1 ( ( h " ) ) ~ z ( ( h ~ ) )m e.iu 
m e 7 v  

10.4.10. Case 11. E ,  n o n - t r i v i a l ,  exact conductor pa, E, t r i v i a l :  

-g(Ca, EL) P(X) c 	 M )  .mj d m )  log, H(z,
m e  W I ) ~ J  lipp(ha)E1(<ha))(' - m e l + r  E1(m) haNo 

10.4.11. Case 111. E ,  t r i v i a l ,  E, n o n - t r i v i a l ,  exact conductor pa: 

10.4.12. Case IV. E,, E,  both t r i v i a l :  
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