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Introduction

The first half of this paper is devoted to working out a correspondence
between real analytic Eisenstein series on congruence subgroups of SL,(Z)
and Ramanujan series [27], the latter viewed as p-adic modular forms. To
give the simplest non-trivial example, let, k¥ and ! be strictly positive inte-
gers, withk +1=1+ 3, and k + 1 — I even. Then the real analytic Eisen-

stein series on SL,Z) of weight b + 1 + 1
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n k! )
o5 (z )dilc ! (n + m7)

T=0+1
gyt OO ()i’ v,

corresponds to the Ramanujan series

(Dk,l(Q) = Enal qn En:dd' dk(d’)l .
What gives substance to this correspondence is the fact that both sides agree
on all complex-multiplication curves on which both are defined. Let us try
to make this precise.
To begin, we view ®;, homogeneously, as a function of lattices M c C.
For any lattice M < C, we denote by a(M) the area of a fundamental paral-
lelogram. (Thus a(Z + Zz) =y if t =« + 1y). Then we define

k!l
o7 (M
k,l( ) ( (M)) EmeM
If we are given a complex elliptic curve E with a non-zero invariant dif-
ferential w, we can form the lattice M(E, w) of all periods of @ over elements
of H(E, Z). This allows us to view @7, as a function of pairs (E, w), by
defining

mrt! :

wi(E, ) = O3, (M(E, w)) .

Suppose now that (E, w) is defined over a finite algebraic number-field
K c C, and that it has complex multiplication which is defined over the same
field. Let p be any prime of K such that (F, w) has “good reduction” at p,
and such that the underlying rational prime p splits in the multiplication
field. Then E has ordinary reduction at p, and so it makes sense to evaluate
any p-adic modular form, e.g., ®,,, at (E, w) viewed p-adically: the value
D, (E, w) will be a p-adic integer in the p-adic completion K,. The precise
result (cf 4.1, 4.8) is that the complex number @5 ,(E, w) lies in K, the p-adic
number @, (E, ») lies in K, and the two are equal. (That ®;,(E, ) lies in
K is a fundamental result of Damerell [2]).

In the second half of the paper, we use this correspondence to develop
a fairly complete theory of the p-adic L-functions (including the I' factor)
attached to a quadratic imaginary field K, in which p splits. We obtain the
L-functions as the “Mellin transforms” in the sense of Mazur-Swinnerton-
Dyer of a p-adic measure in two variables, whose moments are essentially
the values of the Ramanujan series ®@,; on suitable “trivialized elliptic
curves” with complex multiplication by K,.

Construction of such p-adic L-functions amounts to a problem of p-adic
interpolation of special values of Hecke L-series attached to grossencharac-
ters of type A, of the field K, (cf. [31], p. 262-263). In this form, the problem
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had already been solved by Manin-Vishik [22] (except that their p-adic
L-functions exist only as p-adically continuous functions of two variables,
but not as the Mellin transforms of measures in two variables). In fact,
their solution of the problem, by techniques quite different from those used
here, was the psychological starting point of this work.

Here is a brief description of the various chapters. The first chapter is
devoted to the study of the Halphen-Fricke differential operator on analytic
and C* modular forms. It was very strongly influenced by Weil’s Fall 1974
lectures “Elliptic Funtions According to Eisenstein” at the Institute for
Advanced Study. The second chapter reviews the interplay between the
algebraic and analytic approaches to modular forms. The third chapter
constructs real analytic Eisenstein series as special values of Epstein zeta
functions. Following Hecke ([10], pp. 450-453 and 468-476), we give a fairly
thorough account of holomorphic Eisenstein series in weights one and two.
The formulas in this chapter show that in passing from the additive form
of Eisenstein series with level (a sum over the lattice) to their g-expansions,
an intrinsic partial Fourier transform takes place. Keeping track of this
will plague us in later chapters, especially VIII, because our whole technique
of studying Eisenstein series is through their g-expansions, while their
number-theoretic interest (their relation to Hecke L-series with grossen-

character of type A,) is apparent only when they are written in additive
form.

Chapter IV gives a mild generalization of Damerell’s theorem. The proof
we give shows that Damerell’s theorem is “also” true for elliptic curves over
number fields whose de Rham cohomology looks as though the curve has
complex multiplication (cf. 4.0.8 for a precise statement). The fifth chapter
reviews the p-adic theory of modular forms. The last five chapters are
devoted to the construction and over-detailed explication of the p-adic
L-functions attached to quadratic imaginary fields in which p splits. The
last chapter, giving a Kronecker “second limit formula” for our p-adic
L-functions, was directly inspired by conversations with Lichtenbaum.
This formula is a generalization to quadratic imaginary fields of Leopoldt’s
p-adic L(1, X) formula for the rational field. In fact, our modular proof
also provides a simple proof of Leopoldt’s formula.

Chapter I. Review of the classical theory

1.0. The space GL*. We will work with the space GL* of all oriented
R-bases of C. Thus

1.01 GL* = {(®, ®,) € C’|Im (w,/®,)> 0}
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is also the space of all “lattices with oriented bases” in C. A point
(w,, @,) € GL* may also be viewed as a triple (K, w; 7,, 7,) consisting of a
complex elliptic curve E/C together with a nowhere-vanishing invariant
differential @ and an oriented basis 7v,, 7, of H,(E, Z). The correspondence

between the last two points of view is given by the mutually inverse con-
structions :

(0, w,) +——(C/Zw, + Zw,, dz; w,, ®,),
1.0.2
0 {(S w, S w)<—4(E, ; Yy, Yy) .
1 T2

The group SL(2, Z) acts freely on the right on GL*, by

b
1.0.3 (0,, ) — (@, ,) (a ) .
c d

The quotient space & = GL*/SL(2, Z) is the space of all lattices in C. A point
Le L is alattice L C C, and may be viewed as a pair (¥, @) consisting of a
complex elliptic curve E/C together with a nowhere-vanishing invariant
differential w. The correspondence is given by the mutually inverse con-
structions

L +—— (C/L, dz) ,
1.0.4
{

Ta)"r ¢ H(E, z)} — (B, ).

Weierstrass theory gives us a pair of global coordinates g,, g, on £ in
the well-known manner: to the lattice L € £ we attach the elliptic curve
with differential (y* = 42* — g, — g,, dx/y) where

x =¥, L)= ;12‘ + EleL,l¢0{(_z-i_l)z - 712“} ’
1.0.5 ¥y =¥ L),
9: =603, .., 1/l
g: =1403 . . 1/I°.
Thus £ becomes the open set of C? defined by

1.0.6 £ 2~ {(9x 9:) € C*| g5 — 273 0}
over which (y* = 42® — ¢,& — ¢,, dx/y) sits as the universal elliptic curve
with (nowhere-vanishing invariant) differential.

The action of C* on GL* by homothety, (v,, ®,) — (A ®,, A®,), commutes
with the action of SL(2, Z). For the elliptic-curve point of view, it is the
action (E, w; 7, 7,) — (E, vw; 7,, 7,). On the space £ it is the action L+ AL,
or (g, gs) > (A7*gs, X 7°g5).
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1.1. Functions on GL*. A function F(w, ®,) is said to be of weight
k € Z if it satisfies the functional equation

1.1.1 F(wo,, M\@,) = V' F(w,, @,) forall xeC*.
More generally, it is said to be of weight (k, s) € Zx C if it satisfies
1.1.2 F(Oww, M@,) = N ¥\ F(w,, »,) for all e C*.

Suppose F(w,, ®,) is a holomorphic function on GL* which for some
1N

integer N=1 is invariant by (0 1 ), i.e., satisfies F'(w,, w,+ Nw,)=F(w,, ®,).
Then the function on the upper half-plane

1.1.3 ‘ T — F(2rt, 2t N7T)

is invariant by z—7 + 1, so is an analytic function of ¢ = ¢*** for 0 <|¢|< 1.
Its Laurent series development

1.14 F(2ri, 2niNT) = ), ., 0.0"

is called the g-expansion of F'(relative to N). If we too generously replace
N by its multiple N- M, then we make a change of variable ¢ — ¢¥ in the
g-expansion. Notice that if F' is of weight k€ Z, then it is completely
determined by its g-expansion:

115 B, 0) = 0t P, 0/e) Zwﬂ ) P2, 2miN( i )

*\ k
= (—2—07;:_1/) Enezan exp (277,"”?/(02/Na)1) *

For example, the function w, has weight — 1, and g-expansion 271.

A holomorphic function F on GL™ is said to be a modular form of weight
konT'(N) = the kernel of SL(2, Z) - SL(2, Z/NZ) if it is invariant by T'(V),
of weight &, and if it and all of its transforms by SL(2, Z)/T'(N) ~SL(2, Z/NZ)
have meromorphic (i.e., finite-tailed) g¢-expansions. For example, the
j-invariant is a modular form of weight zero on I'(1) = SL(2, Z), but exp (J)
is not.

A C>-function on GL* which is of weight (k, s)€Z x C and invariant
by T'(N) will be called a C*-modular form of weight (k, s) on I'(N). For
example the function on £,

1.1.6 a(L) = area of C/L = Im (&,0,) = %—((Dlwz - 0,@,) ,
(3

is a C~-modular form of weight (0, — 1) on I'(1).

1.2. H!, periods of the second kind, and Ramanujan’s series P. Let
(E, w) be a complex elliptic curve with differential, corresponding to the



p-ADIC INTERPOLATION 465

period lattice L = {S wlv € H(E, Z)}. The first complex cohomology group
H'(E, C) may be viev:red transcendentally as Hom, (L, C), or algebraically as
Hix(E/C) = meromorphic differentials of the second kind (d.s.k.), modulo
exact ones. Let us recall how a d.s.k. £ on E gives rise to a cohomology
class in Hom,(L, C). By definition, £ becomes exact on the universal covering
C of E, say & = df for some meromorphic function f on C. Since & = df is
invariant by L-translation, f itself can only transform by a constant:

1.2.1 f(z + 1) — f(z) = constant .
The cohomology class of ¢ is the element of Hom,(L, C) given by

1.2.2 I f(z + 1) — f(2) = Si“s - Sle.

In terms of the Weierstrass form (y* = 4a° — g, — g,, dx/y) of (E, w),
a standard basis of Hjx(E/C) is given by w = dx/y and 7 = xzdx/y. The
cohomology class of w = dz is the given inclusion L <> C, while thecohomology

class of 7 = xdx/y = $(z; L)dz arises from translating the negative of the
Weierstrass zeta function

-1 -1 .,z 1
1.2.3 C(z’ L) - 2 + El;to {z +1 + B 1 } ’
which integrates 7 = —d{. Thus the cohomology class of 7 is

dfn

1.2.4 I—{(z L)—Lz+ L LYy=xn{l;L).

The Legendre period relation asserts that if (w, ®,) is any positively
oriented basis of L, then

1.2.5 d t( @ @ ) 27i
2. e = 271 .
(wy; L) n(w,; L)
In terms of the topological cup-product {, >, on H?, defined by
e e
1.2.6 <§1, 52>rop = det o 2

Lo s

this says simply {®, 7)., = 27i. In terms of the De Rham cup-product
< ’ >DR = (1/2777:)< ’ >top’ it says <w’ 7]>DR =1

The “periods of the second kind” 9(w,; L) and n(w,; L) are holomorphic
functions on GL*, of weight one. Indeed, from their definition in terms of

translating the Weierstrass zeta function, we easily obtain the series repre-
sentations
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. _ 1
o 77((01, Za)1 -+ sz) = —o, Em 27;;%#0 if m=om !

Wy Zo, + Zw,) = —® , v
77( 2 1 2) 221;»2”.71#:0 lfm_o(”?la)1 +n0)2)2

Let us define two holomorphic functions of weight one on GL*

128 {m = (@, 0) = 70, Zo, + L))
7, = D@y, @,) = YW, Zw, + Zw,)
and a function of weight two
1.2.9 Af@y @) = 32, 3o 16 mes 1 .
(mw, + nw,)?
Thus

1.2.10 {771(0)1; wz) = _w1A2(w1’ wz)

V@, @;) = — W, A — 0, @)

and Legendre’s period relation

1) 1)
1.2.11 det( ' ? ) = 27
_w1A2(a)1’ wz) “szz(”'wz, w1)
is equivalent to the functional equation
1.2.12 A, @) — A(— o, o) = 25 .
,0,

The series definition of A, makes it obvious that A, is invariant by
(% i), i.e., A, ®,) = A(w,, @, + ®,). Its g-expansion is given explicitly
by

1.2.13 A(2mi, 2mit) = :—21 +2Y. 0" ,.d
—1
=__"P(q),
> (9)
where P(q) is Ramanujan’s series P(q) =1 — 243 ..9"2,.d.
1.3. The function S, and the position of the antiholomorphic subspace

H*' c Hjy. It follows from the functional equation

1.3.1 A, @) — Af—w, ®) = j’z

that the C~ function S(w,, ®,), defined by

—1 dafn Tw Tw
1.3.2 —S W, @) = A Wy, @,) — t = Az @y, ;) — = L -
12 ( ) 2( ) a)la'(L) ( ) (01((01&)2 - 0)1(02)
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is invariant under (»,, w,) — (®w,, —®,). As it is also invariantun der <% 1),
it is invariant under all of SL(2, Z), hence is a C~-modular form of weight
two on SL(2, Z).

We now wish to relate S to the position of the subspace H*' c H!
spanned by the antiholomorphic differential @. As an element of Hom,(L, C),
@ is the map I —I. The cup-product (@, ®).., is thus equal to

- dfn a—)l wz . — .
1.3.3 (B, W), = det( w) = 2t Im (@,0,) = 2ta(L) .

1 2,

In particular, {®, w).,, is always non-zero.
In terms of the basis w, 7 of H!, we can express ®:

1.34 @& =aw+ by.
Because (w, ) = 0 and {w, »).,, = 27i, we can solve for a and b:
2wib = <0), w>top = —-<(l), w>top .

Thus b can never be zero, and the direction of the line C - @ in H!, measured
with respect to the basis ®, 7, is completely determined by its slope a/b =
- <(1_), 77>top/<a_)y 0)>top-

LEMMA 1.3.6. The direction of H*' in H*, measured relative to the basis
, 7, 18 given by — (1/12)8S, in the sense that

_1 = @, Moy _ D, Por
1.3.7 —S(@, ;) = Z@—:]wp = @_?m :
Proof. The last equality holds simply because <, dpr = (1/27%){ , Diop-
To verify the first, we simply compute the cup-product expression, using
the functional equation 1.3.1 of A4,:

I 3.8 <—, 7;>L0p — ( : )
a‘1112(a‘ 1y 042) a‘2‘12( QZ’ a‘l)

= d-)16024‘12(—602: 0)1) - w1@2Az(wu 0)2)

— 2711, —
= w1w2(A2(wn wz) - ) - 0)1(”214-2((01’ wz)
0,0,

= ((51(02 - 0)1(1_)2) Az(wu 0)2) - m ’
1
while
_ @, O, _ _
1.3.9 (@, w) = det = 0,0, — 0,0, ,
PO

so that
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1.3.10 _ LD M pw, @) — 271 @, 1S, ).
(B, ®) p (@ @) (0,0, — ©,0,) 12 ( 2

Q.E.D.

Remark 1.3.11. Another proof of the modular invariance of S is due to
Hecke ([9]) who showed that in fact

1 . 1
1.3.12 ——8(w,, ®,) = lim .
12 (@, @,) m Lm0 (nw, + mw,)*| nw, + mw,|**

For full details, see Rademacher [26], pp. 126-131.

1.4. The Halphen-Fricke operator D (compare [7], Ch. IX, pp. 300fF).
It is the holomorphic derivation on GL* defined by

1.4.1 D = 9w, wz)%l- + 7@, wz)aiz :
For any of the functions Il = nw, + mw, € Zw, + Zw,, we have
1.4.2 D(l) = n(; L), D(1)=0.
We will develop the basic properties of D in a series of lemmas.

LEMMA 1.4.3. D is SL(2, Z)-invariant in the sense that it commutes
with the action of S1(2, Z) on functions defined by

b b
144 ([9)F)(w, w,) = F((®,, w,)g) = F ((a)l, ,) (Z d)) for g = (Z d) .

Proof. For fixed g € SL(2, Z), both D and [¢g™']- D - [g] are holomorphic
derivations, so it suffices to check that they agree on the coordinate func-
tions F(w,, w,) = w, or F(w,, w,) = w,. We carry out the computation only
for F(w,, ;) = w,; the other case is similar.

D([9]F)(w,, w;) = D(F(aw, + cw,, bw, + dw,))
= D(aw, + cw,)
= Naw, + cw,; L)
= ([91771)(0)1’ ;)
= [9l(DF)(w,, ®,) . Q.E.D.
LEMMA 1.4.4. D is of weight two in the sense that under the action of
N € C* on functions defined by
(IMF )@, @) = F(V 0, MV 'wy)
we have
[M-D-[N1 =MD Jor all » e C*,
i.e., N(DF) = MD([MF)  for all neC*, all F'.
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Proof. As in the previous lemma, it suffices to chek the coordinate
functions F = o, or FF = w,, We carry out the computation only for
F(w, 0,) = o,; the other case is similar.

[k'](DF) = [)‘*]ﬂl(wu wz) = 7]1(7\'—10)1, )"_10)2)
=N\ 01(0)1, wz)
=N ANTID(F)
= ND(\'F)
= MD(INF) . Q.E.D.
The next lemma identifies D with the operator ¢ of Serre [30].
LEMMA 1.4.5 (¢-expansion of D). Let F(w,, ®,) be a holomorphic func-

tion on GL™ of weight k€ Z, which is invariant under ((1) lif ) Let F(q)
denote its q-expansion (relative to N):

1.4.6 F(q) = F(2ri, 2niN7) = 3. ., a.q" , q = e

Then DF, which by the two previous lemmas 1s a holomorphic function of

weight k + 2 invariant by <(1) lif ), has q-expansion given by

1.4.7 (DF)(q) = DF(2ri, 2ni N7) = ——q (F(q)) P(q”) -F(q).

Proof. We first express F' via its g-expansion:

— *\F . . (2w ke . .
1.4.8 F(o, @) = 21 F2rio, 2ri,) = (T> F(2ri, 2mim,/m,)

= (%)kzuan exp (2rinw,/Nw,) .
Thus
149  DF(w, ) = (2(70” )kzn G * 271’3” D(w,/w,) - exp (2Tinw,/ Nw,)

1

~\k
. 8)”)21 N(w,, @)Y a,exp(2rinw,/Nw,) .

We simplify the first sum by using Legendre’s period relation:

' D(@) — 0.D(@) _ o7 — o, __2ri
1.4.10 D(w,jw,) = LD, 2 L =

(@) = (0, (@) (@,)
and in the second sum we substitute 7,(®,, ®,) = —w,A,(w,, ®,). Thus we get
ami \*t .
DF(w,, ) 2, n-a,exp (2rinw,/Nw,)

4 (B5Y Ao 09- Eo, e Esinan.

1
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Recalling (1.2.13) that the g-expansion with respect to 1 of A, is — (1/12)P(q),
we see that

DF(q) = (DF)2ri, 27iN7) = %q-{%—l-F(q) _ -I%P(q”) .F(¢g). Q.E.D.

COROLLARY 1.4.11. The operator D maps modular forms of weight k
on I'(N) to modular forms of weight k + 2 on I'(N), and the g-expansion
coefficients of 12 NDF lie in the Z-submodule of C generated by the g-expan-
siom coefficients of F..

The operator D, being SL(2, Z)-invariant, necessarily “descends” to a
derivation on £ = GL*/SL(2, Z).

LEMMA 1.4.12. The expression of D in the coordinates (g,, g;) on £ is
0 £l
09, 09,

Proof. Up to constant factors, the forms g,, g;, (9,)* are the unique
modular forms of weights 4, 6, and 8 on SL(2, Z), whose g-expansions are

holomorphic. Therefore, we necessarily have D(g,) = constant X g,, and
D(g,) = constant X (g,)’. Using the g-expansions (with respect to N = 1)

9:(q) = —11-2-<1 + 2403 ..¢" 7,4,

1.4.13 D = 6g,

+ _1‘(92)2 *
3

1.4.14 .
95(q) = 2—1—6(1 — 50437 ..¢" 2,9,

and Lemma 1.4.5, we see that

_ . d _ 4 - —1 . ...
(Dg.)(q) = ¢ i (9:()) = P(9)g.(q) o ,
1.4.15

_ 4.9 _ 6 -1 ...
(Dgs)(q) = q—@—(gs(Q)) TRALLY) e

Thus we conclude that
Dg, = 6g,

1.4.16 Dg, = %(gz)z .

Q.E.D.

To relieve the aridity, we recall one of the standard applications of this
last lemma (compare [17], p. 301).

COROLLARY 1.4.17 (g-expansion of A). The g-expansions of A = (9.)* —
27(gs)* is given by

1.4.18 Alg) = q]I,., A —a»*.
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Proof. From the expressions of D in terms of g, ¢g;, we see that
D((9.)" — 27(g5)*) = 0. Interpreting this in ¢g-expansion, we find

1.4.19 0= ngI—A(q) — P(q)A(g) ,
1.e.,
1.4.20 qa‘%log Al)=1-243%3  .9"3,.d

dd
:1—24Z‘,RIqud—,

which integrates to give

1.4.21 A(g) = constant x ¢ JT,., (1 — ¢™)*.
The constant is one, because (g.(¢))* — 27(9:(9))* = ¢ + - - -, as follows imme-
diately from 1.4.15. Q.E.D.

LEMMA 1.4.22. For any of the functions | = mw, + me,, n, m € Z, we
have

1.4.23 D¥(l) = —_ll-ggzz, i.e., D(7(; L)) = —ll—zgzl.

Proof. By additivity, it suffices to prove that

Dy, = —L g,
U TRA
1.4.24

1
Dy, = ————gq,w, .
P 12 9.0,

Notice that if we apply D to Legendre’s period relation w.7, — w,n, = 271,
we obtain

0. D) + 11, — 0, + 0,D(,) =0, e,

1.4.25 D) _ D)
o, w,

If follows that the ratio

1.4.26 D¥l) _ D(nn, + m1n,)
l nw, + mw,

is independent of (m, m) == (0, 0). We next conclude that the ratio D’w,/w, =
Dn,/w, is invariant by SL(2, Z). For if g = (g' 3) e SL(2, Z), we have

([ )@, ®,) = N(aw, + cw, bo, + dw,)
= 7](&(01 + cw,, Zw, + sz) =an + ¢,
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while [g](®w,) = aw, + cw,, and thus

D¥(w,)\ _ Dx,\ _ D(gln) _ D(an, + c7,)
1427 [g]< o, )_ [g]< o, )_ [slo, a0, + co,

is independent of the choice of g. Thus D%w,)/w, is SLy(Z)-invariant, and
of weight four. To identify it as — (1/12)g,, we compute its g-expansion.

The function w, is (é i)—invariant and of weight —1, and its g-expansion is
27i. So by 1.4.5, we have

1.4.28 (Dw,)(q) = q—(%—(2rti) + L P(@eri = 274 228 P(g) -

Now Dw, is <(1) i)-invariant of weight 1 = —1 + 2, so again by 1.4.5 we have

1.4.29 (D@))0) = 14 (ELP@) - -P@ELP@) .
Thus D*w,)/w, has g-expansion

D? (col) d _ 1 1 ...
1430 (Zed)@) = e fP@) - o (P@F = — T +

Thus D¥(w,)/w, is a weight four modular form on SL(2, Z) with holomorphic

g-expansion, so a multiple of ¢,, and comparing constant terms in the

g-expansions 1.4.14 and 1.4.30 shows that it is — (1/12)g,. Q.E.D.
Looking at the g-expansion formula 1.4.30, we obtain

COROLLARY 1.4.31. Ramanujan’s series P satisfies the differential
equation

1.4.32 12q_§q_P(q) — (P(a)) = —1244(q) -

1.5. The Weil operator W, and the function S. W is the C* derivation
on GL* defined by

_ T 0 - 0
1.5.1 W= — 5 <w1 -+ @ M)

where a(L) is the area function (1.1.6). For any of the functions | = nw, +
mw,, n, mecZ, we have

w() = ——=~
1.5.2 ® a(L)

wad)=0,

and these formulas uniquely determine W.
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Notice that

1.5.3 W(a(D) = W (-5 @0,~ 0)) = 0
1

and hence

1.5.4 wil)=0.

We will develop the basic properties of W in a series of lemmas,
analogous to those concerning D.

LEMMA 1.5.5 (analog of 1.4.3). W s SL(2, Z)-invariant.

Proof. Since the function —x/a(L) is itself SL(2, Z)-invariant, the
formulas 1.5.2 which characterize W are themselves SL(2, Z)-invariant.

Q.E.D.
LEMMA 1.5.6 (analog of 1.4.4). W is of weight two.
Proof. We simply compute
- A e (I
W) = WL = (a(L) r),
while
. — \e—=ov_  —7l (=7l _ .
(W (@) = [A] (m)(x )= ST al) x( - (L)> = NW([ME)
and
(W (D)) = NW(NT)=0. Q.E.D.

1.5.7. Thus W maps C= modular forms of weight (¥, s) on I'(NV) to C*
modular forms of weight (k + 2, s) on I'(N).
Let us denote by H the holomorphic homogeneity operator

1.5.8 HE 9, 0 9,0 .
0w, 0w,

The operator H is SL(2, Z)-invariant and of weight zero, characterized by
the conditions

1.5.9 H(l)=—1,H(l)=0.
If F is a C~ function on GL* of weight (%, s), then
1.5.10 H(F)=(k + s)F .

More generally, if X is any differential operator (of any order) on GL*
which is of weight (%, s), then

1.5.11 [H, X]=(k + 9)X.
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LEMMA 1.5.12 (analog of 1.4.5). The Halphen-Fricke operator D 1is
expressed in terms of the operators W, H, and (multiplication by) S by the
formula

1.5.13 D=WwW--LS8.H.
12

Proof. Comparing coefficients of 0/0w, and 6/0w,, we reduce this to the
assertion

1.5.14 @, 0,) = —"_ &, + %S(wl, w) fori=1,2,

a(L)

or equivalently to the assertions

Az W, W) = 7'[.'6)1 - —LS @, ’
( 2) o.a(L) 12 (@, @)
1.5.15 & 1
A(—w,, =" ! S, w).
2( 2 wl) a)za,(L) 12 ( 1 2)

The first is the definition 1.8.2 of S, and the second is its invariance under
(0)1, (02) = ((02, _wl)' Q.E.D.

Heuristic 1.5.16. It is perhaps more enlightening to explain the cohomo-
logical apparatus which underlies such identities as 1.5.13. Over GL* sits

the universal elliptic curve E.;, EN GL*, whose “H* along the fibre” R'f,C
is a canonically trivialized flat holomorphic vector bundle. The cohomology
classes @ and 7 define homomorphic (but not flat) cross-sections, while @
defines only a C™ cross-section. In terms of the canonical trivialization, a
section & is just a pair (£, &,) of functions on GL*, namely the periods of ¢,

1.5.17 g, = SWE'

The Gauss-Manin connection V is the action of the derivations of GL* on the
cross-sections, defined by differentiating the periods

1.5.18 Sin(X )E) = X(§5> .

Formulas 1.4.2, 1.4.22, 1.6.2, 1.5.9-10 reappear in this context as

1.5.19 V(D)w) =7, V(D)7 = —-llggzw, V(D)@) =0,

1.5.20 V(W) (w) = a"(lff) », V(W)@) =0,

1.5.21 V(EH)w) = —0, VH)7) =7 VH)@) =0.
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The cup-product of two sections &, & is the function on GL* defined by

, £ &
1.5.22 & & = det(a 5;> .
In terms of this, Legendre’s period relation reappears as
1.5.23 (W, Dep = (@, V(D)@)Dop = 275 .
Remembering that
1.5.24 (@, ®)o, = 21a(L) ,
we obtain
1.5.25 (@, V(W)@ wp = <co, . (I’f) w> — omi .

Comparing 1.5.23 and 1.5.25, we see that
1.5.26 {w, V(D)) — V(W (®))10p = 0
which implies that V(W )(w) — V(D)(w) is a multiple of v, i.e.,

1.5.27 T o= 0.
i) W ="+
Taking the cup-product with 7, we find
. — T -~ — 271D, Do
1.5.28 2ni? = (—— @, — d b,
it = (o ”> (@, @er

Comparing this with the cohomological expression 1.3.7 for S, we see that
? = — (1/12)S, whence

- - 1 .
=17 — —So, i.e.,
a(L)w 7 12 e

1.5.29
V(W )(w) = V(D)) + le- SV(H)(®) .

This shows that D and W — (1/12)S - H have the same effect, under V,
on both w and @. But because the periods of ® and @ are global C*-coordi-
nates on GL*, we certainly know a C* derivation when we know its effect,
under V, on both ® and &@. Therefore we again conclude that D = W —
(1/12)S- H.

LEMMA 1.5.30 (analog of 1.4.31). The function S satisfies the differential
equation

1.5.31 12W(S) — S* = —12¢g,,
or equivalently,

1.5.32 12D(S) = —S* — 12g, .
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Proof. The two formulations are equivalent by 1.5.12, since S has
weight two. To prove the second, we apply D to the cohomological expres-
sion for S.

_ (@, 7>
1.5.33 D(S) = D(lzz_—’—->—>
_ 19 L@, V(D)ny (@, ) /=
=12 5, o5 m«:>wuwm>

because V(D)(®) = 0.
Remembering that V(D)) = 7, and V(D)(n) = — (1/12)g,w, this be-
comes

D(S) = —g, — 1—12—82. Q.E.D.

1.6. Interpretation in terms of a certain algebra of operators Z. Let
Z denote the associative Z[1/12]-algebra generated by symbols

1.6.1 yz; ga, Dy Hr W7 S

subject only to the relations
D=W--L8H,
12

[S, g:] =[S, 9] =[9, 9] =0,
— gy 1
[D’ S] - yz 12 S ’

[Dr gz] = 69, ,
1.6.2 D, 9. = L@

[H, S] =28,

[H7 gz] = 492 ’

[H, g;] = 69, ,

[H, D] = 2D .

If we assign the weights 4, 6, 2, 0, 2, 2 to g,, g;, D, H, W, and S respectively,
then Z becomes a graded algebra, whose graded pieces are the eigenspaces
of ad(H). As a Z[1/12]-module, Z is free, with basis the monomials

1.6.3 S*gtgsDH, a,b,c d,eintegers =0.

Our previous computations may be summarized by saying that the ring
of C~ functions on GL* has the structure of a Z-module, in which the symbols
9. 9, D, H, W, 8 operate as g,, g5, D, H, W, S.



p-ADIC INTERPOLATION 477

Chapter II. Review of the algebraic theory
2.0. Level N structures. Let E be an elliptic curve over a ring B.
For each integer N =1, we denote by yE the (scheme-theoretic) kernel of
multiplication by N. It is a finite and flat commutative group-scheme over
B, of rank N2 The e, pairing is a canonical alternating pairing

2.0.1 eN: NE X NE—) #N
which identifies yE with its own Cartier dual.

When B = C, and we view E transcendentally as being C/L, then yFE
“is” the group (1/N)L/L, and the ey-pairing is given by the explicit formula

I, 1 T Tl — 11
2.0.2 b _2_> - (_ ) _1_2___12> )
6”<N N/ TN T @

Over any ground-ring B, a naive level N structure on E/B is an isomor-
phism of B-group-schemes
2.0.3 a:Z/NZ x Z/NZ —~, ,E .
Its very existence implies that N is invertible in B. Its determinant det («)
is the primitive N’th root of unity ey(a(1, 0), (0, 1)). We will refer to a
pair (E, @) as a naive level N curve, or as a I'(IN)"*'"*-curve.

2.0.4 For arithmetic purposes, it is convenient to define an arithmetic level
N structure on E/B to be an isomorphism

2.0.5 B: Uy X ZINZ =~ \E

under which the e, pairing becomes the standard symplectic autoduality of
Uy X Z|NZ defined by

2.0.6 <(Cu n)’ (CZ’ m)>5td = Cl;n/C; °

A pair (E, B) will be referred to as an arithmetic level N curve, or as a
T(N)*"*2-curve.

When N is invertible in B, then a naive level N structure « gives rise
to both a primitive N’th root of unity det («) and to an arithmetic level N
structure G,, defined by

2.0.7 Be(det ()™, n) = a(m, n) .
This construction establishes a bijection

{naive level N
structures on E/B
a — (det(a), B.) ,

arithmetic level N }

~ prim B X
} 7™ (B) {structures on E/B

2.0.8

whenever B3 1/N.
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We can think of an arithmetic level N structure B as being a pair of
inclusions B,: tty = yE, B.,:Z/NZ <> K such that

2.0.9 ex(B4C), Bo(n)) = C* .

So it is natural to define a ' (N )**"*"-structure on E/B to be an inclusion
2.0.10 Y

and a T (N)"*"*-structure on E/B to be an inclusion

2.0.11 J:Z/NZ— E .

2.1. Level N test objects, and modular forms.

2.1.1. AT(N)*"-test object overa ring B is a triple (¥, w, GB) consisting
of an elliptic curve E/B, a nowhere-vanishing invariant differential @ on E,
and a T'(N)**"-structure 8 on E/B; similarly for T'(N)"*"°, T (N)*"**, or
FOO(N)nalve.

A T(N)*"® modular form of weight kcZ defined over a ring B is a
“function” F which assigns to any T'(N)*!"-test object (E, w, B), defined
over a B-algebra B’, a value F(E, w, 8) € B'. This value is to depend only
on the B’-isomorphism class of the test object. It is to depend on the choice
of w, which is indeterminate up to a unit A € (B’)*, by the rule

2.1.2 F(E,\'w,B) = NF(E, v, p).
Finally, its formation is to be compatible with extension of scalars of
B-algebras. Similarly for T'(N)®*"¢, or T'y(N)**2, or T (N)**'7°.

2.1.3. We denote by R'(B, T(N)*"**) the graded ring of I'(V)**** modular
forms defined over B. Similarly for T(IN)**'*e, Ty(N)* 2, or T'y(N)**'7e.

2.2. g-expansions.

2.2.1. The Tate curve Tate (¢”) over Z((g)), viewed as “G../¢"*”, carries a
canonical invariant differential ®.,., deduced from “dx/x” on G,, and a
canonical arithmetic level N structure B..., defined by

2.2.2 Bean(C, m) = Cg*  “mod ¢V .

Thus (Tate (¢%), Weany Bean) is a T(N )**'*"-test object over Z((g)). We denote
DY Jean: Z/NZ — 5 Tate (¢¥) the canonical T'\(N)**'*® structure defined by

2.2.3 Jean(n) = ¢* “mod ™",

50 that (Tate(q™), @eany Jean) 18 @ To(N)**'"*-test object over Z((q)).

Finally, we denote by 4c.n: £y = y Tate(q) the canonical T'y(N)***** struc-
ture on Tate (q) defined by

2.2.4 Tean(C) = € “mod ¢*” .

Notice that Tate (¢) = Tate (¢V)/jcan (Z/NZ), and %.., is the composite
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’l:cnn

iy 2% Tate (¢) — Tate (")) joulZ/NT) .

Thus (Tate (q), @een, Gean) is @ Too(N)*™® test object over Z((g)).
Evaluation at the relevant Tate curve defines ¢g-expansion homomor-
phisms

R'(B, F(N)arith).
2.2.5 R'(B, Tu(N)™*) — B® Z((9)) < B((9)) .
R-( B, Poo( N)arlth)

According to the g-expansion principle [16], we have
2.2.6 If we fix the weight & € Z, each of the g-expansion maps

R"(B, F(N)aruh)

2.2.7 R"(B, To(N )“““) = B((q))
R"(B, Foo(N)amh)

is wmJective.

2.2.8 If BC B, then R*B, T(N)****) = R¥B’, T(N)***) (and similarly
for T, (N)*'" and T,(N)*"*), and an element f € R*B’, T(N)*"") lies in
R¥B, T(N)*"*) if and only if its g-expansion lies in B((¢)) (and similarly for
I‘OO(N)nrith’ FOO(N)nalve).

2.3. Some interrelations. We first define a natural map (of stacks)

2.3.1 {T(IN)=it2-test objects} —— {T,(N)™*1">-test objects}
by sending
2.3.2 (E, w, B)—— (B, v, B|Z/NZ) .

It carries (Tate (¢"), @ean, Bean) to (Tate (¢%), @ean; Joan)-

We next describe a pair of mutually inverse equivalences
2.3.3 {To(N) 2 7e-test objects} > {T,,(INV)***"-test objects} .
Beginning with a T (N)**'"*-test object (E, w, j: Z/NZ < yE), we let
E’' = E/j(Z/NZ), and denote by m: E— E’ the projection. Because 7 is étale
(its kernel being Z/NZ), there is a unique invariant differential ®’ on E’ such
that 7*(0') = w. By Cartier-Nishi duality, the kernel of the dual map
7. E'— E is dual to ker () = Z/NZ, hence “is” g¢,. We normalize i: gy = E’
by decreeing that #({) = m(t), where ¢ is any section of yFE (defined over some
f.p.p.f. overring) such that ey(t, j(n))z = {* for all n e Z/NZ. This con-
struction

(E; @, j)__) (E" CO’, 7:)
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is the upper of the maps 2.3.3. It carries (Tate (@), Weany Jean) tO (Tate (9),
@eany Tean)e

The inverse map is quite similarly defined. Starting with a Ty (N)***"-
test object (E, , 1), we define E' = E/i(¢ty), and denote by n: E— E’ the
projection. Since ker () =~ gy, we have ker (#: E' — E) =~ Z/NZ. Thus 7 is
étale, and we may define @’ = #*(w). Finally, we normalize the inclusion 5
of Z/NZ = ker () = E’ by decreeing that j(n) = m(t), where ¢ is any section
of yE such that eN(i(C), t)r = ¢ for all { e p,,. This construction

(B, w, 1) —— (E', @, J)

defines the lower of the maps 2.3.3. It carries (Tate (@), Wean, im) to
(Tate (¢™), ®eans Fean)-

Finally we combine 2.3.1 with the upper arrow of 2.3.3 to define a map
2.3.4 {T(N)*r'"-test objects} —— {To(N)*"*2-test objects}
defined by

(E, w, 8)— (E/B(ZINZ), &', w- 8| tty) .
The maps thus sit in a commutative diagram

{T(N)**" test objects}

forget half of 8

2.3.5
divide by ey

{To(IN )12 test objects} {To(IN )7 test objects} |

divide by Z/NZ
which by transposition yields a commutative diagram of ring homomorphisms

R.(B, F(N)arlth)

2.3.6 “exotic inCIusio/
~

R'(B, To(N )= *) = R'(B, To(N)™"™) ,

“natural inclusion”

which all preserve q-expansions.

LEMMA 2.3.7. When N = p" is a prime power, and p s nilpotent in
the ring B, the “natural inclusion” (2.3.6) R*(B, Ty(p")**'"*)—R'(B, T(p")*:)
18 an isomorphism (and hence so is the “exotic inclusion” by 2.3.6).

Proof. In fact, we will show that the map 2.3.1 on test objects is an
equivalence. Given a B-algebra B’, and a I (p")**'"*-test object (E, v, j:
Z/p"Z <= ,E), we must show that there exists a unique

it ftyr = - such that e,(2(0), j(n)) = {* for { e pt,- and n e Z/p"Z .
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Unicity is clear, for the difference of two such i’s is a map of < ,-F
whose image is orthogonal under e,- to j(Z/p"Z), hence whose image lies in
J(Z/p"Z). But over any ring B’ where p is nilpotent, Hom.(¢,-, Z/p"Z) = {0}.
As for existence, notice that the existence of j implies that E/B is fibre by

fibre ordinary, and therefore that ,.E sits in an auto-dual short exact
sequence

2.3.8 0 E E—(,E)—0,

" "

where prE' is the kernel of p” in the formal group of E. We know that ,,TE'
is a twisted form of -, and that (,-E)**' is the dual twisted form of Z/p"Z.
But the inclusion Z/p'Zé ~F necessarily projects to give an isomorphism
Z/p"Z >~ (,-E)*, whose Cartier dual is the inverse of the required isomorphism
it tyr = oo E.

2.4. Comparison with the transcendental sttuation, and applications.
Let (E, o, B) be a T'(IN)*"-test object over C. Using the primitive N’th
root of unity e**¥, we may identify (cf. 2.0.8) & with a naive level N
structure a of determinant ¢**¥, Transcendentally, this datum (E, w, «)

corresponds to a lattice L < C together with a basis [,/N, /N of (1/N)L/L
such that

2.4.0 exp (% %) = exp (2wi/N) .

Now if the vectors [,, [, € L formed an oriented basis of L, the above condi-
tion 2.4.0 would be automatic. Because SL(2, Z) maps onto SL(2, Z/NZ), we
can in fact choose an oriented basis w,, ®, of L such that w,/N = [,/N mod L
fori=1, 2.

2.4.1. If F e R¥C, T(N)>*"*"), then the function on GL*

2.4.2 F(w, 0,) = F(C/Za)l + Zw,, dz, B(e/¥, b) = L ;\; bw2>

is a “modular form of weight & on I'(IN)” in the sense of (1.1). The key
GAGA-type result is that a “modular form of weight k¥ on I'(IN)” in the sense

of (1.1) is always of the form F'** for a unique element F e R¥(C, T'(N)*"'*).
This correspondence F'—F'°" preserves g-expansion:

2.4.3 F*(2ri, 2niN7) = F(Tate(q"), ®eany Bean)y 9 = € .

If we combine this with the g-expansion principle, we see that if B is
any subring of C, then elements of R*B, I(N)*"**) are just those “modular
forms of weight k¥ on T'(N)” in the sense of (1.1) whose g-expansion coef-
ficients happen to lie in B. Further, if (E, w, 8) is any I'(N)***"-test object
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over B, whose complexification (E,, @, B¢) corresponds to the point (w,, w,) €
GL*/T(N), then for any F'e R¥B, ['(N)*"*) we have the equality of values

2.4.4 F(E, 0, B) = F*"(w,, »,)

(which shows that F**(w,, »,) lies in B, the characteristic rationality property
of a modular form defined over B).

2.4.5. As another application, we see by 1.4.11 that if B is any sub-
ring of C, then this Halphen-Fricke operator D maps R*B, I'(N)*"**) to
(1/12N)R*+2 (B, T'(N)****). Of course this last fact is also a (more elementary)
consequence of the expression 1.4.13 of D in terms of ¢, and g,, at least when
12 is invertible.

2.5. Aremark. We formulated the algebraic definition of modular form
in terms of “test objects” to avoid technical questions of representability.
In fact, for N = 3, the functor “isomorphism classes of I'(IN)*!*® elliptic
curves” is represented by a smooth affine curve M(I'(N)****) over Z, with
geometrically irreducible fibres, and the corresponding I'(N)**!*® functor is
represented by Z[1/N, {y] ®, M(T(N)*="**). Similarly, for N = 4, the functor
“isomorphism classes of Ty, (N)**!" (resp. ['y(N)*"**)-elliptic curves” is repre-
sented by a smooth affine curve M(T,(N)**'™) (resp. M(Ty(N)***)) over Z,
with geometrically irreducible fibres. The g-expansion principle 2.2.6 is a
consequence of the irreducibility (cf. [16]). Each of these modular curves
M carries an invertible sheaf w, defined in terms of the universal elliptic
curve f: E—M as ® = f4(Q%,x). The corresponding ring of modular forms
R*(B, ?) is the graded ring @,., H(M(?) ®, B, ®*).

Over Z[1/12], the functor “isomorphism classes of T'(N)™"*® (resp.
T(N)='°, resp. [y(N )2, resp. [y (V)™*™)-test objects” is itself represen-
table by a smooth affine surface M**(?) over Z[1/12], for any N = 1. The
coordinate rings of these surfaces are just the corresponding rings of modular
forms over Z[1/12]. So in those cases where the scheme M(?) exists (i.e.,
N =38 for T(N), N =4 for T\(N)), its coordinate ring, over Z[1/12] is the
subring of the above ring consisting of modular functions (= modular forms
of weight zero).

For example, when N =1, M%%(I(1)) is (the spectrum of) the ring
Z[1/12, g,, g;, 1/A], with universal test object (E,.i\, ®) = (¥* = 4a* — g,x —
gs, dx/y). The surface M (T'(N)*™'*) is then obtained as the affine quasi-
finite covering of M**(I'(1)) given by

Mdlff(l“(N)arlth) — ISOMudiff(ru));eN(ﬂN X Z/NZ, yE) ,

the “scheme of arithmetic level N structures on the curve E,..” and
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similarly for T'(N)*'". The surface M (T, (N )*'**) is the fppf quotient of
M (T(N)=*) by gty = Hom(Z/NZ, y), the indeterminacy in completing a
Co(N)™** structure to a T'(N)*'*® structure. From this surface we obtain
the (isomorphic) surface M (I'w(N)™!") by 2.3.3.

Chapter III. Review of the Epstein zeta function
and Eisenstein series

3.0. The Epstein zeta function; definition and functional equation.
Fix an integer N = 1. Given a function f on Z/NZ X Z/NZ, we define its
symplectic Fourier transform f on Z/NZ x Z/NZ by the formula

-~

. .
3.0.1 Fle,d) = 2 T men s F(a, B exp (il’fr_’” (ad — bc)) .
Notice that

3.0.2 F=r

as an immediate computation shows.

Let (w,, »,) € GL*, and k € Z. The k’th Epstein zeta function {.(s; ®,, @, f)
is defined for Re(s) > 1 by the series

f(n, m)

3.0.3 Nz .
+ mw,)*| nw, + mw,|**

E(%,"”)# (0,0) (nw
1

It is known (cf. [34], pp. 70-72) that

3.0.4. {u(s; 0, @, f) extends to the whole s-plane as a meromorphic
function of s. For k=0, it is an entire function of s, while for k& = 0, it has
(at worst) a first-order pole at s = 1 with residue Nz/a(L)-7(0, 0), (a(L)
denoting as before (1.1.6) the area of C/Zw, + Zw,).

In order to state the functional equation, it is convenient to introduce
the auxiliary meromorphic function

305 Adso, 00 HET(s+ L)L 00,0, 1)

It is known (cf. [34], pp. 70-72) that

3.0.6. For k> 0, ¢,(s; w,, ,, f) is an entire function of s.

3.0.7. For k =0, ¢(s; 0, w,, f) = f(0, 0) _ £(0, 0) -+ an entire fct.
S

s—1
I'(s — L]
3.0.8. For k < 0, the function ——-—-zk——tp,, is entire.

The functional equation has the simple form
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3.0.9 Puls; 0, @, f) = Pl — 53 0, @, F) .
Remark 3.0.10. To give a more intrinsic description, let L be any lattice
in C, and f a function on (1/N)L/L. The ey-pairing

3.0.11 " ex(l/N, I/N) = exp (N (L)( 1 zz)>

makes the group (1/N)L/L into its own dual. We define the Fourier trans-
form 7 on (1/N)L/L by the formula

3.0.12 FUIN) = L5, s o FUN)esUN, L/N)
and define

) _ S(/N) .
Ck(S, L, f) - Ez;eo (Z/N)kll/le.s—k !

Pisi Ly £) = T(s + L) (ALY 15 1, ).

The asymmetry in 3.0.6-3.0.8 between k& and —k comes about because of a
symmetry in {,, as follows. Given a function f on (1/N)L/L, consider the
complex conjugate lattice L and the function T'f on (1/N)L/L defined by

3.0.13

3.0.14 Tf(I/N) = f(I/N).
Then we have
3.0.15 Cu(s; L, f) =L u(s; L, Tf)

as results immediately from the definition 3.0.3.

3.1. The Epstein zeta function: special values. The functions

3.1.0 iCk(S; wly (.02, f) ’ k +* 0 ’
(8 - 1)Co(s; W,, Wy, f)

are entire functions of s. Viewed as functions on C X GL*, they are C~
functions of the three complex variables s, w,, ®,, which are holomorphic in
the first variable s. For fixed s, they are I'(N)-invariant functions on GL*
of weight (k, s — k/2). We are interested in special values of s, for which
we obtain analytic functions on GL*. Since an analytic function can have
weight (k, s — k/2) only if s = k/2, our only hope is to put s = k/2. This
usually works. ‘

Lemma 3.1.1 (3.1.1.1). For k= 2, (,(k/2; w, w, f) ts an analytic
function on GL*. For k <0, it vanishes identically, and for k = 0, it s
the constant — £(0, 0).

(8.1.1.2) For k=2, C(k/2; w, W, f) is analytic if and only if
£(0,0) = 0.
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Proof. In terms of the C” coordinates w,, w,, @, @,, we define

S —
D =& Oy ,

' Yom, + * 0,

3.1.2 5 s
D, =w 0] ,

: Yom, + "o,

whose simultaneous kernel consists of the analytic functions. If follows
immediately from the series definition 3.0.3 that

: — (s _Fk :
Dick(s’ a)u 0)2’ f) - (S 9 )Ck(sv a)u (t)z, f) ’

. _ (= EB\e
Dids 0, 04 f) = ~(s = L) 0, (510, 0, 1),

first for Re(s) > 1, then for all s by analytic continuation. Now for % == 2,
both {; and ,_, are entire functions of s, and so 3.1.3, evaluated at s = %/2,
gives the desired analyticity. For k = 2, we still get D,({(1; @, w,, f)) = 0,
while

3.14 Dz(Cz(l; @,, W,, f)) = - (3 - l)Co(S; @, @,, f)ls:1 = ;(_JI\JI)TC_f(O’ 0) .

It remains to see that (.(k/2; ®, w,, f) is constant for k¥ = 0, and
vanishes for ¥ < 0. For k = 0, the functional equation is the statement

1—

3.1.5 F(s)(%)sco(s; ,, 0y, ) =T — s)(%\%)) - s 0, o, 7).
Multiplying both sides by s gives

1—s

a(L)Y - Y105 — 7
3.16 T + (XL ¢, 0, @, /) = T - 9 M) st — 5,0, 0, ).
Letting s — 0 gives
3.1.7 C0; w, @, f) = -“75,—];7) X (residue at s = 1 of {|(s; w,, @, f))

= —f(0,0) by3.0.4.

For k < 0, the vanishing of {,(k/2; w,, w,, f) will result from the T’
factors. To simplify matters, let us use the trick 3.0.15 to shift to & > 0.
Then the assertion becomes

3.1.8 c,,(—%; o, o, f) -0 fork>0.
But the product
k )
F<3 + ?)Ck(sv wu a)zy f)
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is an entire function of s for & > 0, which shows that in fact {, has “trivial
zeroes” at s = —k/2, —k/2 — 1,---. Q.E.D.

Remark 3.1.9. Under the Weil operator W, the @, satisfy the pleasing
equation

3.1.10 'N- W(@k(s; @,, @,, f)) = ¢k+2(8; @y, Wy, f) .

3.2. q-expamsions of special values: the easy case k = 3. Given a func-
tion f on Z/NZ X Z/NZ, we define its partial Fourier transform Pf on
Z/NZ x Z/NZ by the formula

3.2.1 P, m) = 3, ..y v Fl@, m)e=en/y
The inverse partial Fourier transform is defined by the formula

3.2.2 (P70, ) = 2= T g @y oo

The flipped function f* on Z/NZ x Z/NZ is defined by the formula
3.2.3 f‘(n, m) = f(m, n).
LeMMA 3.2.4. For any function f on Z/NZ x Z/NZ, we have
P} = (Pf) .
Proof. Write { for ¢*“/¥, and compute:

(PF)(n, d) = 3, fle, A = %z;c g3, fla, byged

=22 fla, b)cad% ¥ e

= Ea f(a, n)¢* = Pf(d, n)

= (Pf)(n, d) . QED.
LEMMA 3.2.5. Let k=38, f a function on Z/NZ X Z/NZ. Then the

g-expansion (with respect to N) of

(142 0, @y F) = (~ 1k = DI E 7l )

CRE)

18 given by
0 if f(—=n, —m) = (=1)**" f(n, m) ,
3.2.6 L(l — k Pf(n, 0)) + 23 . "2, _ .0 & (PS)d, &)
of f(=n, —m) = (=1)*f(n, m) .
Proof. When we replace f(n, m) by f~(n, m) = f(—n, —m), we get
@3, ®, @y, [7) = (—1)ps; w, ®, f). Sowe get 0 when f has the “wrong”
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parity. It remains to treat the case when f(—n, —m) = (—1)*f(n, m). By

definition, the g-expansion in level N is evaluation on (27%, 27iN7). So we
must compute

(Z1Hk — 1)l 5~ f(n, m)
(27”:)1, (n,m) =+ (0,0) <_ﬁ 4 mz-),,
N
_ 2(=1)"(k — 1)! f(n, 0) | 2(=1)k — 1)! f(n, m)
iy (g) Gy e T (_n_ n m)"
N N

_2(=N)k — 1)12@1 f(n, 0)

(2mi)* n*

2(—1)¥(k—1)! Nt f(4, m)
+——(277."i)k Emg125=o "eZ (y + j/N + mo)* :

Invoking the Lipschitz formula, valid for Im(z) > 0 and &k = 2,

—1)*k —1)! 1 1 i
3.2.7 ( 225.”:)15 ) Enel(n + 2)* = Edg1dk e,

we obtain

2(_1\8ng— 1)!L(k, f(n, 0)) + Em;1 Ej’:—ol f(3, m) Edgl dr-igid gam

_2(=N)"& — 1)!L
(2mi)k

(k, f(n,0)) + 22, 22, (PF)E, m)d*~q*™ .

That the constant term is correct results from the functional equation of
L-series (cf. [15], A. 15). Q.E.D.

3.3. q-expansions; the case k = 2. Here we must suppose f(O, 0) =0 to
get an analytic function, but to get a nice formula we must also assume
f(0,0) = 0.

LEMMA 3.3.1 Let f be a function on Z/NZ x Z|/NZ, which satisfies

£(0,0) = f(0,0)=0.

Then the q-expansion of

) _ 1 f(n, m)
(—‘1)2472(1, @,, Wy, f) = llma—»l E(n,m)#(o,o) (nw1 N mG)z)z nw, + mw, 28—2
N N N

18 still given by the formula 3.2.6.

Proof. The first step is to prove that @,(1; ®,, ®,, f) may be expressed
in terms of the ¥-function by the formula

3.3.2 PyL; @yy Dy £) = 30 moa v (s m)ﬁ’(—”—"—’—‘—;—@l: L) ,



488 NICHOLAS M. KATZ

a formula which makes sense because f(0, 0) = 0. To prove it, let « denote
a non-zero element of (1/N)L/L. Then by definition

3.3.3 ?1; ®,, @,, ) = lim,_, EleL{Ez(l + x);fl‘(lxl xl”‘z}

while, remembering that Y _f(x) = NF(0, 0) = 0, we have

3.5.4 . @9 1) = B.5@ (2 + Dy, (G2~ )
=SSy

So we must show that
3.3.5 0 = lim, ., [ 1 1 ] .
o ZleL{E*f(x) (C+ Pl + 2 @+ }
It suffices to treat the case when f is the difference of two characteristic
functions of points # and ¥; then the claim is that

3.3.6 0= lim,, : - .
" E'“jl(z T (e o T

1 1
+ - .
@+ oy a+m3
This will certainly be established if we can establish an estimate for the
general term of the shape

3.3.7 1 _ 1 g1 1
C+apll+a> (C+yl+y*? (C+yr (42

O((log | ll Il)|(ss — 1))

for s near 1, Re(s) > 1, and || > 0. By the mean value theorem, it suffices
to show that the derivative with respect to s satisfies an estimate

3.3.8 l_ 2logll + | 2 log| +y| =O(loglglll)

C+apll+aP (C+y)Pl+yl
To simplify, let us check separately for x and y that

for s near 1, (Re(s) > 1, and [1]| > 0).

log | 1] log|l + x| _ Aflogll]
3.3.9 — =0(—=1),
l2|l|28—2 (l + x)2|l + x|28—2 < l3 )
i.e.,
logll + -2;-1
1+ ——
_ log |1 _ofLLr

3.3.10 1 L= o).

1+—l-

G+ )
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But for || > 0 and Re(s) > 1, s near one, we obviously have

whoz o)

3.3.11 1+—W—=1+—@—fﬁ—=1+0(|—“{-]>,
and

3.3.12 (1+—“l”-)2|1+—9;-|2"2=1+0(]-”;_‘),

which proves 3.3.11, even with an O(1/|1]) estimate.

Now that we have the ¥-expression 3.3.4 for @,(1; w,, w,, f), we compute
as before. Asin the proof of 3.2.5, we may limit attention to the case when
f is an even function.

1; 273, 2mi N7, . fG. 0
& = (2m)22 {E”’m"”(j/N +n+ 0+ Nm)r)z}

LTty Don D g LY

= _—2 » m n 2
(27i) (———9 JEVN” L0+ Nm)z-)

E E f(n, m) .
<N+mz'>

3, Sf(n, 0) 227:;212 f(n, m) _.
(2m) (N> (27r ) (N 4 mr)

From this point on, the proof is identical to the proof of 3.2.5. Q.E.D.

(2 m)2

3.4. g-expansions; the case k = 1: reductions via the Weierstrass zeta
Sfunction. We will eventually prove

LEMMA 3.4.1. Let f be a function on Z/NZ X Z/NZ. The q-expansion
of
(= 1)¢1< F @y @y f) = E(n.m)#(o 0 f(n, m)

’ (na)1 + ma)2> nw, + mw,
N N

28—1

8=1[2

1s given by the formula

J 0 if f is even
L(0, (Pf)(m, 0) + (P)O, m)) + 235, 9" 2. .o (PF)G, &) if fis odd .

Proof. Clearly @(s, ®, @, f) =0 for f even. However, we will not
immediately suppose f odd, but we will suppose that f(0, 0) = 0. In fact,
let us begin by supposing that f is the characteristic function of a non-zero
element x € (1/N)L/L, and write ®@,(s; L, «) instead.
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3.4.3 @,(s; L, x) = @,(s; ,, ,, the char. fct. of x).

Thus

3.4.4 (s; L, 2) = 1 for Re(s) > 1,
P V=L gran s o Re®

and foranyx € C,x ¢ L, theseries 3.4.4above extends toanentire function of s.

We will begin by comparing the value ®,(1/2; L, x) to the value of the
Weierstrass zeta function

n 1 1
3.4.5 £(a; L)"i,==+z;m< L T“L%)'

KEY LEMMA 3.4.6. For variable x € C, x ¢ L, the difference
dfn 1,
A 2z, L) — oL Ly @)
18 additive:
A(x +y) = A(x) + A(ty) ifxeL,yeL,x+yeL.

Proof. Fix xe€C, x¢ L. To simplify, we make a change of variable
t = s — 1/2. Let us define some series:

3.47 o) = + Y., i o 111 T for Re(t) > —;_ :
1 1, w1 _1
348 @=L+ E,ﬂ( A _lz_>| - forRe(d) > — .,
_ 1 1 1\ 1 -
3.4.9 g(t, x) = " + E‘*"(x il > G for Re(¢) > 0

3.410  h(t, ) = 916 + Em( for Re(t)>%,

(w+l)fl|“

3.4.11 i) = Dﬂﬁlﬁ_ for Re(t) > _;_ ,

3.4.12 k(t) = E’“zz

We know that
@(t; %), 7(t), and k() extend to entire functions of ¢, and j(¢) = 0,

g(t, ) has an analytic continuation to Re(t) > — %, namely

3.4.13 C(@, x) — xk(t) ,

HE for Re(¢) > 0.

h(t; ) has an analytic continuation to Re(¢) > — —;—, namely

9(t; ) + i) (= g(¢, »), because j(¢) = 0).
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We now compute

3.4.14 L@, 2) — Pt x) = h(tix) — §(t) + xk(t) — 2(¢, @)
= h(t; x) — P(t, x) + xk(t) ,

an equality of functions analytic for Re(t) > —1/2. Therefore,
3.4.15 A(x) = &(z, L) — 9(0, x) = lim:_.o (R(t, ) — P(¢, ) + xk(0)) .
>0

dfn

We next derive a series for a(t; ) — @(¢; x), valid for ¢ > 0: For Re(t) > 1/2,
we can write

3.4.16 h(t; x) — @(t; x)

‘EM(-HWW @+0Q+u0+(§—ﬂﬁﬁ'

The general term of this series may be estimated for Re(t) > 0, |¢| < 3/4,
by

3.4.17 1 - 1
@+ DI (x+ Dlx+ 1

- _1
llllzt

TIE @ﬂﬁ‘@‘%+0%wo—%+%%W]
=l HO T+ o)
=ﬁw%+%+%%ﬂ

AU

This shows that the series 3.4.16 converges for Re(t) > 0, and so provides
an explicit analytic continuation of A(t; x) — ®(t; «) to Re(t) > 0, |t]| > 3/4.
Because the series

k( ) = El*olz'lizt 1

3.4.18

n(t) = Ez#o#ﬁ ’

themselves converge absolutely and uniformly in Re(¢) > ¢ > 0, we can write,
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for Re(t) > 0, |t]| < 3/4,

3.4.19 (t, x) — P(t, x) = % — 7!-1{ + wth(t) + Ttn(t) + O(F) .

Now the function k() prolongs to an entire function of ¢, therefore
3.4.20 lim, ., tk(t) = 0.

The function n(t) prolongs to a meromorphic function of ¢, with only a
simple pole at ¢ = 0; therefore

3.4.21 lim,_, tn(t) exists .
So taking the limit as ¢ — 0 in 3.4.19 gives
_t

|llzt+z *

3.4.22 RO, ) — ®(0, x) = Flim,_, D,

Combining this with 3.4.14, we even obtain an explicit formula for A(x).

3.4.23 A(z) = ¢(; L) — 2(0, x)—thMEmlz +mim,qozmmg+_z.

Q.E.D.

COROLLARY 3.4.24. In the notations of 3.4.4, suppose x € (1/N)L, x ¢ L.
Then for any z€C, z ¢ L, we have the formula

3.4.25 qn(%; L o) =@ L) + = L& L) — e + N 1) -

|llzt

Proof. Notice that for any le L, @s; L,z + 1) = p.(s; L, z); this is
clear for Re(s) > 1 from the series, and so follows for all s by analytic con-
tinuation. In particular, ‘

3.4.26 %(—12—; L2+ Nx) =¢1(_;_; L z> .
Now simply compute ’

(@i L) = ou(2i Loo) + 4@,
1 . 1 1. 1
Lt L) = Lo (S L) + 146,

‘——;’-C(z + Nu; L) = —N;ol( L2+ Nx) — L AG+ No).
Adding vertically and using 3.4.26 and the additivity of A give 3.4.25.

Q.E.D.

3.5. g-expansion for k = 1; the end of the proof. We have already
remarked that the double series ¥
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3.5.1 Aw, 0,) = TR S
2( 1 2) Em En, n#0 if m=0 (ma)2 + nwl)z
converges. Since the Weierstrass zeta function
3.5.2 z;L=i+ (—1——i+—z—)
« ) z 2oy z+1 l [z

is absolutely and uniformly convergent on compact subsets of C — L, it
follows that the double series

1 1
+ EmEn:n#O lfm=0< - >

2+ mw, + nw, Mma, + nw,

353 F(zw0,0,)= _;_

converges uniformly on compact subsets of C — L, to {(z, L) — zA)(w,, ®,).
LEMMA 8.5.4. F(z; w, w,) satisfies the functional equation

F(z + nw, + mw, 0, w,) = F(z; 0, 0;) — 2mim

1

Proof. Since the terms in the formula are all of “weight one,” it is
equivalent to prove

3.5.5 Fiz+n+mt;1,7)= F(z; 1, 7) — 2mim

for Im (z) > 0. For translation by 1, this is easy. For convenience, we will
write F'(z) for F(z; 1, 7).

F(z + 1) — F(2)

1 1 1 1
z+1 P E"‘Ehoim:oz—l—n—i-l—)—mz' z2+mn+ mc
_ lim,__ S ( 1 _ 1 >
2, limy E“Nz—l—mr—l—n—i-l 2+mc+n
=3 lim W( 1 _ 1 )
2, limy z+mr+ N+ 1 z+mr — N
=>,0=0.
For translation by 7, we must use the cotangent identity
271z
3.5.6 limy_. 3F — reot(nz) = miL T L
N En=—-N z + n ( ) 62,‘:1,2 —1
valid for z ¢ Z.
We compute
F(z +7)— F(2)
1 1 1 1
--ienr, )
z+7T 2 E"‘Eﬁoumo z+n+m+1)r 24+ n+me
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-Z. 2 ! P —

z+n+m+ 1) z+4+n+ mr
=3 (meot(n(z + (m + 1)r)) — weot (n(z + m7)))
= lim,... 2", (T cot (zz + (m + 1)z) — 7 cot (n(z + m7)))
= lim,_.. (7 cot (72 + (M + 1)r) — 7 cot (xz — M)
_ limM_.w<Tci 62-iqull+1 + 1 . ﬂ/l: 62nizq~2ll + 1)

e2mqu+1 —1 627rizq~M —1
M+1 2 iz 2712 M
— lim, . (mug ~ lim,_. (ﬂiu_L>
q 2712 1 62mz — qM
= —7i — i = —27t because [q|<1. Q.E.D.

COROLLARY 3.5.7. In the motations of 3.4.4, let xe (1/N)L, x ¢ L; then
for any oriented basis (w,, w,) of L, we have

@1(—;—-; L, (E) F(x, w]_, a)z) + (F(z wl) a)2) - F(z + Nx a)l’ 0)2))

Proof. This follows from 3.4.25, simply because { and F differ by an
additive function (in this case 24,(w,, ®,)).
Thus if we write

x = @ + mw,
N ’
then 3.5.4 gives the “explicit formula”
3.5.8 (L5 1, me ko mes) _ p(n0t ey, ) + 2mim
P 2 N N 2 No,

In view of this, we next compute the ¢g-expansion of F(nw,+mw,/N; w,, ®)
(which makes sense because, by 3.5.8, it is invariant under (®, ®,)—
(w0, ©, + Nw)).

LEMMA 8.5.9. Let 0= 4, l £ N — 1, and assume (7, 1) = (0, 0). Write
C — 621:1:/1\!.

The q-expansion of F((jo, + lw,)/N; w,, ®,) is given by the series

v 2l —1
3'5'10 Enqu (En—dd de - En:dd' C_id) *
_% ?»f 10 1 mod N d’=—lmod N

Proof. We simply compute :
F( 2 4 amile; 2, 2m'N‘:>

1 J .
=L F(d 4,
o (N+zz Nt)
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1 1 1 1
—|= + 2.2, - -
2T L—‘zr— + Iz nrolt m=°<i +lc+n+mNe 7T mNz')jl

>

N
1 1 1 1
=Ll +E,,¢o<—.——~————ﬂ

2Ty J J "
Lv-l—lz' N+lf+n
1 1 1

| 2o 2 [ = - .
2”{ (% + It + n + mN7T n—i—mNrﬂ

Using symmetric (lim,_.. > " ) summation on the inner sums allows us
to use the cotangent identity 3.5.6, and rewrite this as

- 2%(75 cot <rc<liv + Iz >> + limy... Y7, i)

nz0 N

+ E%Emﬂ(rc cot <rc <% + Iz + mNr)) — mweot (n(mNr))) .

Now using symmetric summation (lim,_,.. E”_’M) once again, the fact that
the cotangent is an odd function gives

3.5.11 = 5717'_—,£lim,,,.“,° EZEMT:cot(rc(% + 1t + mNz')) .
If I = 0, this is

3.5.12 zim‘:ﬁ cot <EJ\?—>

+limy., Yo7 (rc cot (% + nmNr) — mweot <——Nﬂ + rcmNr))] .

If 1+0, we would like to run the tnner sum from —M — 1 to M. This
involves adding a term:

3.5.13 7 cot <n<% + It — (M + 1)N7>> = 11 @ II/NHID g~ (MFON |

@FII/N D g = (MADN g

.627ti(]/N+l1.‘) + q(M+1)N

62zi(i/N+lr) _ q(M-H)N
which tends to 7 as M — o (since |g| < 1).
So for | = 0, we add the term 3.5.12, and subtract its limit, to get

=L 4 Ly n J
3.5.14 = + m;hmMm D me—y T COt (ﬂ(N + @1+ mN)z-)

3.5.15

Il

1 1 . P %) .
—— 4+ —lim,.., _ t (— l N >
» + p imy.. >, _, {rc co i + 7(l + mN)t

— ncot( —l\;[j +a(N—-1+ mN)r)} .
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Writing 7 cot (72) in terms of ¢***, we have

2riz >
3.5.16 7 cot (w2) = e Tl g 2m
ezmz —1 1 — eZmz

and abbreviating ¢**/¥ as {, we can rewrite 3.5.12 and 3.5.15 as

1 8+1 1 1 .
— — _ — . fl=0,
2 Cj -1 Emgl( 1 — C"qu 1 — C_aqu> 1 l

1 1 1 .
__2' - Emzo< 1 — Cightmy 1= C—qu—l+mN> ifl+0.

The desired formula 3.5.10 follows immediately upon expanding the indi-
vidual terms as power series in ¢ and collecting terms (the resulting double
series in powers of q converges absolutely in |¢g| < 1, so there is no subtlety
in doing this!). Q.E.D.

It now only remains to combine 3.5.8 and 3.5.9, in order to prove 3.4.1.
We may and will suppose f odd. By definition,

3.5.17

3.5.18 (1)%( , o, wz,f)

B zm( onan F 1)

= E” . [271'%l+p<;7_w_lli\;_£‘ﬁ,w“ w, ] (by 3.5.8) .

Passing to g-expansion, we obtain from 3.5.10,

3519 (=D, (i . 971, 21iNT, f)

— - LT, - TG0 )C -

+— E“ o S0 1)

+ Zﬁmq e (275 U, AN = 32 G, —d)TH)

Since f is odd, we have
3.5.20 Ej,l f@, D=0

1#0

and we can rewrite 3.5.19 in terms of Pf (cf. 3.2.1):

3.5.21 = — —2 “LIPF(0, 1)

~ LR G, 055 4 2 0 D PAG ).
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To conclude, we must check that the constant term is correct, i.e., that for
f odd, we have

L(0, PF(0, n)) = — %E?’; UPSYO, 1),
3.5.22

L(0, (P)m, 0) = —— T3 G, 0552

Recall that for any odd function g(n) on Z/NZ, we have

N n
3.5.23 LO, 9) = “3,z 9(0)” = 32, 6T = %d%‘%T—
T=1 - T=1
- —Fl ¥ ng(n) (by I’Hépital).

This formula, applied to Pf(0, n), gives the first part of 3.5.22. Applied to
Pf(n, 0), it gives

3.5.24  L(0, Pf(n, 0))

— ﬁ > "' nPf(n, 0)

- ‘JIVEZ n 3o, f(d, 00X

= o C s o S O + £(=5, 0L7])
_ -1 . . i e

- WE] mode(J, 0) En:l n( )

(because f is odd),
and it remains only to check that for j=1,---, N—1

.5.25 —-LCJ_‘_l::_l_ N1 nj __ —ni,
3.5.2 ST o e MET —C)

i.e.,
NE@ +1) =327 n(C — )&~ 1)
We compute
N@E +1) = Yo (L — g g g — G mi)
— Ej:z (,n _ 1)Cm‘ _ Ei\’—l nlm + E;";l ng—™
— 2o+ 1)
= =2 YN =N 4 (N — 1)
— C:‘ + N — Ci + C—(N—x)j + (N _ 1)C—(N-—1).1'
=N+ +(N-—-1)=N1+ 8. Q.E.D.
3.6. Algebrifying the Eisenstein series @ (k/2; w, w,, f); the forms
Gt,s,5- Asalready remarked (8.0.10), it is more natural to think of @,(s; L, f),
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where L is a lattice in C and f is a function on (1/N)L/L. It is even better
to think of this as @.(s; E, w, f), where (E, w) is an elliptic curve with
differential over C, and f is a function on the group yE.

Now intrinsically, we can view the partial Fourier transforms P~ and P
(3.2.1,3.2.2) as carrying functions on Z/NZ x Z/NZ to functions on £, X Z/NZ,
and inversely: given f on Z/NZ x Z/NZ, P'f is the function on gy X Z/NZ,

3.6.1 (P f)(E, m) = ﬁ 3 moa v S (1, M,

and given g on gty X Z/NZ, Pg is the function on Z/NZ X Z/NZ
3.6.2 (Pg)(n, m) = ECGFN 9(C, m)¢~ .
Now suppose (E, o, 8) is a T'(N)*"*>-test object over C, and f is a function on
Z/NZ x Z/NZ. Then P~'f is a function on gy x Z/NZ, which we transport
by B: tty X Z/NZ =~ yE to a function on yE. This allows us to form
3.6.3 Pds; B, o, P7'f o 7).
If we think of the test object (E, w, B) over C as varying, it is natural to
view the construction
3.6.4 (E, w, B)r—> @(s; E, w, P~'f - 87
as providing a sort of “C> modular form of weight & on T'(IN)*i.”
At the risk of deranging the reader, it will also be convenient to make

a shift in the variable s, so that s = 0 rather than s = k/2 becomes the
“good” point.

Definition 3.6.5.
al—1)F
Go (B, 0, B) S (-21—)¢k(s + g; E, 0, (P"f):87) .

In terms of the lattice L corresponding to (E, ), (P~'f)°8* becomes a
function g(!/N) on (1/N)L/L, and for Re(s) > 1 — k/2, we have the series
representation

3.66  Gi.,(B 0 8) = (—_51—)"?“ k) (%?)E(U—Ji’,()% '

The functional equation 3.0.9 becomes

3.6.7 Gror = Grymsirt -
The differentiation formula 3.1.10 becomes
3.6.8 NW(Gk,a,f) = Gk+2,a—1,f .

We may sum up the main results of Sections 3.2-3.5 in the following
theorem.




p-ADIC INTERPOLATION 499

THEOREM 3.6.9. Let k= 1. Let f be a complex-valued function on
Z/NZXZ/NZ. In the exceptional case k=2, suppose also that Zj f(j,0)=
2., f(0,1) = 0. Thenthe value Gyor = Gy, zls=0 s @ modular form of weight
k on T(N)*™, defined over Q [the values of f], whose g-expansion is given
by the formulas:

3.6.10 G, ;(Tate(q"), ®eans Bean)
0 f even ,

= %L(o, f(n, 0) + f(0,n)) + 3..,0" 0,0 Fd, &) f odd,

and for k=2,

3.6.11 Gy r(Tate(q"), @ean Bean)
0 wf fisof parity k— 1,

_ %L(l — & f(1,0) + X,..0" 2, o 77 (@, &)

of fisof parity k.

Proof. Given the g-expansion computations of 3.2-3.5, everything fol-
lows from the g-expansion principle and GAGA (cf. 2.4). (The restrictions
on f in case k = 2 are just the partial Fourier transforms of those occurring
in 3.3.1.)

Remark 3.6.12. In the case k = 2, the two forbidden functions are f,=
the characteristic function of Z/NZ x {0}, and f, = (f))’. Their partial
transforms P~'f, and P!f, are respectively the characteristic function of
(0, 0) and the constant function 1/N. Referring to the series definition 3.6.6,
we see that in terms of the lattice L corresponding to (E, w), we have

1. 1
Gz,o, char. fet. of Z/NZx {0} (Ey w, 18) = ?hm"’ozhﬁol—zﬁ = —ES(L) ’

3.6.13

1, 1/N N
Gz,o, char. fet, of {0} XZ/NZ (E', , :8) = ?hma—’ozl*om = _ES(L) ’

where S(L) is the “position of H**” C* modular form (cf. 1.3).

Chapter IV. Damerell’s theorem

4.0. Formulation and proof the theorem.
4.0.1. Let N =1 be an integer, K a finite extension of Q, and (E, w, 5)
a ['(IV)**™-test object over K. We assume that the curve E has complex
multiplication, and that all of its complex multiplications are defined over
K. The representation of End(E) on H(E, Q% x) allows us to view End(E)
as an order in a subfield K, © K, which we know to be quadratic imaginary
“over Q. We denote by ai— @ the unique non-trivial automorphism of K,.
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Given an element @€ End(E)C K,, we denote by [a] the corresponding
endomorphism of E, but we think of « itself as an element of K, K. Thus
[a]*(w) = aw.

4.0.2 If we choose an embedding K = C, we obtain by extension of
scalars a T'(INV)*'®-test object (E¢, w¢, Bc) over C, which we may view
transcendentally as being a point (w,, ®,) € GL*, well defined mod I'(N') (cf.
2.4). We also obtain inclusions of rings of modular forms
4.0.3 R(K, T(N)™'®) = R*(C, T(N)*"**) = C=(GL*/T(N)) .

The Z[1/12] algebra of operators Z introduced in 1.6 operates on the
ring C=(GL*/T(N)), but of course it does not leave stable the subring
R'(K, T(N)***). We denote by ZR"(K, I'(N)) the smallest Z-submodule of
C=(GL*/T'(N)) which contains R'(K, T'(N)"*).

THEOREM 4.0.4. Hypotheses and notations as above, let F' be an element
of ZR'(K, T(N)*™*™). Then the complex number

F(wlv wz) = F(EO wC9 :8(2)

lies in K, and, as an element of K, is independent of the choice of the
embedding K = C.

Proof. According to 1.6.3, any element of Z is a Z[1/12] linear combi-
nation of the monomials S°gtg;D*H°. Since the operators H, D, and (multipli-
cation by) g,, g; are all stable on R*(K, T'(IV)*"*), it follows that any element
of ZR'(K, T(N)*"") is a sum of elements of the form

S* x an element of R'(K, ['(N)*"), n=20,12 ---.

The assertion of the theorem is essentially tautologous for
FeR(K, I(N)*"") (compare 2.4), so we are reduced to checking its truth
for the function S. It is at this point that we use the hypothesis of complex
multiplication. The chosen embedding K = C allows us to speak of the
usual singular cohomology group H...(E., C), which we can also view as
algebraic de Rham cohomology:

4.0.5 H;ing(Ee, C) == Hpr(E/C) ==, Hor(E/K)®xC .
The subspace Hpx(E/K) sits in Hjn(E¢, C) as the K-span of the cohomology
classes of w = dz/y and 7 = x2dx/y (compare 1.2). The de Rham cup-product
{Yor=(1/271){, Y1op ON Hiing( E¢, C) takes values in K on the subspace Hix(E/K)
(in fact it is the unique alternating form satisfying <@, 7)oz = 1). The
cohomological expression (1.3.6) for S

— <(Dv 7]>DR
4.0.6 S(L) = 1zm
does not change if we replace @ by any non-zero element of H*(E.). Sowe
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need only see that there is a non-zero element & € Hjx(E/K) which, for any
embedding K< C, lands in H*'(E) under the isomor phism 4.0.5. This results
from the following lemma.

LeEMMA 4.0.7. Hypotheses as above, the subspace

H"(E:) N Hiz(E/K) C HIlJR(E/K)
18 non-zero, and it 18 independent of the choice of embedding K = C. In
Sfact, for any [a] ¢ End(E) with a ¢ Z, it is the &-eigenspace of [a]* acting
on Hpr (E/K).

Proof. The endomorphism [@] acts (as [@]*) on both H}x(E/K) and on
H...(E, C), compatibly with isomorphism 4.0.5. It has the distinct eigen-
values @ and @. Because the action of [@] on H},..(E., C) respects Hii. (B¢, Z);
it commutes with complex conjugation. So from the tautological relation
[a]*(w) = aw we deduce that [a]*(®) = &®. Thus the Hodge decomposition
Hl..(E, C) = H*(E;) @D H"(E,) is simply the eigenspace decomposition of
[a]*. In particular, the subspace H"'(E:) N Hpx(E/K) is just the @-eigen-
space of [a]* on Hiz(E/K). An explicit rational projector onto it is
(V@ — a))([a]* — ). Q.E.D.

4.0.8. Question. The proof we have given actually shows that Damerell’s
theorem is true for any lattice L < C such that g,(L), g«L), and S(L) are
simultaneously algebraic. Does any such lattice L have complex multipli-
cation? Equivalently, if an elliptic curve E over a number field K has the
Hodge decomposition of its complex H' induced from a splitting of its
algebraic de Rham H'® over K, does E have complex multiplication?

4.1. Concrete applications.
LEMMA 4.1.0. Let (A, B) be a pair of integers satisfying A + B=1,

B < 0. Then for any K-valued function f on Z/NZ x Z|NZ, the C* modular
fO'rm GA,B,f lies mnm zR°(K’ I‘(N)arith).

~J
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Proof. For k=1, we know that G, , is either itself an element of
R(K, T(N)**), if k = 2, or is the sum of such an element and a K-multiple
of S (cf. 3.6.12). Thus G, lies in ZR(K, T(N)*"*) for k = 1. For each
integer r = 0, the differentiation formula (cf. 3.6.8)

4.1.1 N'W(Gro5) = Grsari—r.s

shows that G,.,,,_,, s lies in ZR*(K, T(N)*'*) for k=1, r = 0. The funec-
tional equation (3.6.7) gives

4.1.2 Gk+2r,—r,f = Gk+2r,1—k—ryft

which shows that G4 s lies in ZR(K, T(N)*™*) for k=1, r 2 0. If
we put (4, B) = (k + 2r, —r), the conditions £ = 1, » = 0 become the condi-
tions A + 2B=1, B<0. If weput (4, B) = (k + 2r, 1 — k — r), the condi-
tions &£ =1, r = 0 become the conditions A + 2B<1, A+ B=1. Q.E.D.

Applying 4.0.4 to the G, ; ;, we find

COROLLARY 4.1.8. Hypotheses as in 4.0, let A, B be integers satisfying
A+ B=1, B<0. Then for any K-valued function f on Z/NZ X Z/NZ,

the complex numbers G, 5 [(E¢, w¢, Bc) lie in K, and there they are indepen-
dent of the chosen embedding K= C.

We now turn to the explicit transcendental expression of the functions
G55 Let L denote the period lattice of (Ec, w:). Because E has complex
multiplication, the two-dimensional Q-space L Q,Q is a one-dimensional
K,-space, with basis any period Q = S w of w; over a non-zero element
v en(Ec). Thus ’

4.1.4 L=QM

where M is a lattice which lies in the subfield K, < C.

Now suppose in addition that K3{,, a primitive N’th root of unity.
Then as f runs over all K-valued functions on Z/NZ X Z/NZ, g = P™'f- 87!
runs over all K-valued functions on ,(E¢.)=~(1/N)L/L=M/NM. The tran-
scendental expression for G, 5 ;(E¢, @, Bc) (cf. 3.6.6)

P )

a1s @+ By (22 (E g(m)

Nz mid! (Qm )" Qm
N
may be rewritten as

N
(—1)*A4 + B — 1)IN***a(M)” g(m)
4.1.6 i (Z}#M mAN(m)B+.>

where N: K,— Q denotes the norm mapping.

2B

Qm
N

$=0

8=0
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Conversely, it is well known that any collection of data

a quadratic imaginary field K,

an embedding K,= C

a lattice M c K,

a function g: M/NM — C with algebraic values

arises from a suitable I'(N)***-test object (E, w, B) over a finite extension
K of K, whose underlying elliptic curve has complex multiplication ring
End(F) = {a¢ e K,|aM c M}. There is of course a great deal of indeter-
minacy in choosing the Q such that the lattice QM will define the complexi-

fication (E¢, w¢) of the putative (F, w): any complex number Q € C such that
both the numbers

4.1.8 gom) =8y L | gs(QM)———%,fi =

4 meM 4 meM 6
Q me0 M meo M

4.1.7

are algebraic will do.

COROLLARY 4.1.9. Given data 4.1.7 as above, let Q € C be such that both

9:(QM) and g(QM) are algebraic. Then for any integers A, B satisfying
A+ B=1,B<O, the value

1 ) g(m)
Q4g? =nid mAN(m)E+*|, -,
1s an algebraic number.
Chapter V. Review of the p-adic theory

5.0. Trivializations.

5.0.0. Fix a prime number p. A ring which is complete and separated
in its p-adic topology will be called a p-adic ring. Given an elliptic curve E
over a p-adic ring B, a trivialization of E/B is by definition an isomorphism
of formal groups over B,

5.0.1 p: £ ~,G,.

For any integer N = 1, we say that a I'(INV)*"*"-structure 8 on E/B is
compatible with @ if, when we write N = N,p" with (p, N,) = 1, the com-
posite map
5.0.2 p, <t B2,
is the inclusion. Similary, we say that a T (N )**"*"*-structure
5.0.3 1y = B
is compatible with @ if the composite
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5.0.4 = BE=5 G,

is the inclusion. (Thus for any » = 0, a trivialized curve (E, ) admits a
unique Ty(p")**-structure compatible with @, and in fact @ itself if pre-
cisely a compatible system of I'y(p")***-structures on E/B for all r = 0.)
Finally, we say that a T (IN)*"*-structure

5.0.5 J:ZINZ = yE

is compatible with @ if, once again with N = »"N,, (p, N) = 1, the underly-
ing Ty(p™)™1* structure j| N,Z/NZ satisfies

5.0.6 en(@7HQ), G(NY) =C  forall {ep, .

5.1. Generalized p-adic modular functions (compare 2.1 and 2.5).

5.1.0. The functor “isomorphism classes of trivialized I'(IN)*'*"-elliptic
curves (E, @, B)” is represented by a p-adic ring V(Z,, [(N)****). For any
p-adic ring B, the same functor restricted to B-algebras is represented by
V(Z,, T(N)=) ®zp B, sometimes denoted V(B, I'(N)*'*). For example, if
N =1, we have

5.1.1 V(Z,, T(1)) ==, lim V(Z/p"Z, T(1))

and, viewing @ as a compatible system of T'j(p")*"**-structures,
5.1.2 V(Z/p"Z, T(1)) = lim (the coordinate ring of M(T'w(»")*""**) R, Z/p"Z)

= lim R(Z/p"Z, Tu(p")*"") ;

»r

similarly for To(N)*'** and T',(N)**'™.

5.1.3. An element F e V(B, ['(N)*'*) is called a I'(N)**'** generalized p-
adic modular function. On any trivialized T'(IN)*"™® “test object” (E, ®, 8)
over a p-adic B-algebra B’, such an F has a value F(E, ®, 8) € B, which
depends only on the isomorphism class of (E, ®, 8), and whose formation
commutes with extension of scalars of p-adic B-algebras. In this optic, F'
“is” its value on the universal trivialized T'(N)*'*-curve (Euniv) Punivs Buniv)s
defined over V(B, I'(N)*"*); similarly for To(N)*** and To(N)™'".

Remark 5.1.4. If we restrict N to be prime to p, we also have the
notion of trivialized T'(IN)'"°-elliptic curves, and the corresponding rings
V(B, T(N)™"). As explained in 2.0.8, we have

5.1.4.0 V(B, T(N)™") =~, V(B, T(N)*")®, Z[1/N, {y] if (p, N) =1,

so that there is nothing essentially “new” here.
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5.2. q-expamnsions: the qg-expansion principle. P

5.2.0. The Tate curve Tate (¢”), viewed over Z,((g)) = the p-adic com-
pletion of Z((¢)), has a canonical trivialization @... (think of Tate (¢") as the
quotient of G,, by the discrete subgroup ¢*%; its formal group “is” @,,,), with
which B... is compatible. Ewvaluation on (Tate(¢"), Peany Bean) defines an
injective g-expansion homomorphism
5.2.1 V(B, T(N)=*) = B((§))
such that the cokernel B((§))/V(B, T'(N)*'*) is B-flat.

5.2.2. If BC B', then V(B, T(N)*'*)c V(B’, T(N)*"*), and an element
Fe V(B, I(N)**) lies in V(B, I'(N)*) if and only if its g-expansion lies
in B((q)).

5.2.3. The corresponding g-expansions for I'(N)**'"® and T'((N)*"*" are

defined by evaluating at (Tate(q"), Peans Jean) and at (Tate(q), Pesny Tean)
respectively. The analogues of 5.2.1 and 5.2.2. hold.

5.3. The action of the group G(N); weight and nebentypus.

5.3.0. The group Z; acts on V(B, I'(N)**'*) through its action on the
trivialization ¢ and its “correcting” action on the p-part of 5. More generally,
consider the subgroup
5.3.1 G(N)C Z; x (Z/NZ)*
of all elements (a, b) € ZX X (Z/NZ)* such that, writing N = p"N,, (p, N,) =1,
we have bmod p” = amod p". Thus G(N) = Z} X (Z/N,Z)*.

5.3.2. We define the action of G(N) on the rings V(B, ['(N)**™), resp.
TW(N)*=™ and T (N)*'"°, by the formulas

[a, b]F(Ey P, B) = F(E, a”'®, Bo (b, b_l)) for I"(N)arlth ,

5.3.3 [a, BIF(E, @, i) = F(E, a~'p, bi) for T, (N
[a, B]F(E, ®, j) = F(E, a™'®, b7'j) for Ty (N)=eive,
Given a continuous character
5.3.4 X: G(N)— B>,
we say that an element F'e V(B, T(N )=i) is of weight X if
5.3.5 | [a, B]F = X(a, b)F for all (a, b) € G(N);

similarly for T(N)*=* and Ty (N)™!". If the character X hapbens to be a
product X = X, - o where

keZ, and X, is the character X,(a, b) = a*,

© is a character of finite order of G(N),

5.3.6
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then we sometimes say “weight k& and nebentypus 0” instead.

5.4. Relation to true modular forms, via magic differentials.

5.4.0. Given a trivialization ¢: £ ~ G, on E/B, we can use it to pull
back the standard invariant differential dT/(1 + T') on G.., thus obtaining a
nowhere vanishing invariant differential o*(dT/(1 + T)) on E, which is
necessarily the restriction to E of a unique nowhere vanishing invariant
differential w, on all of E.

Notice that if B is flat over Z,, i.e., BC B Q, then @ is uniquely
determined by the differential w,. Given any nowhere vanishing invariant
differential @ on E, one can determine if it is magic by picking a formal
parameter, say w, for E’, integrating @ formally over B Q,

5.4.1 o = dy(u), y(u) =3 . au" withae,cBRQ,
and “checking” to see whether the series
5.4.2 P(u) = exp (v(u)) ,

a priori in (BQ Q)[[«]], actually has coefficients laying in B. If it does, then
u— @(w) is the trivialization, and @ = *(dT/(1 + T)).

5.4.8. For example, if B is the ring of integers in a finite extension of
Q,, with residue field F,, and E/Bis an ordinary elliptic curve with differential
, then there exists a unit ¢ € the completion of the maximal unramified
extension B, of B such that cw is magic. Furthermore, if we denote by ¢
the Frobenius automorphism of B,/B, then, according to Tate [5]

5.4.4 ¢’/c = the p-adic unit eigenvalue of Frobenius relative to F, on
the elliptic curve EQ F,,

and if B = Z, itself, then the magic differentials over B, are exactly the
differentials cw, where ¢ € BX satisfies 5.4.4.
The construction

5.4.5 (B, », B) — (E, *(dT/(1 + T)), B)
allows us to define by transposition a ring homomorphism F— F:

5.4.6 4 R:(B, T(N)*"'*) — V/(B, T(N)*"*)

dfn

F(E, p, )= F(E, p*@T/1 + T), 8) ,
which preserves g-expansions:

R*(E, T(N)*'*) — V(B, [(N)>")
5.4.7 g-expansion l f g-expansion

B(()) =——— B((@)) ;
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similarly for T'y(N)*"™ and T',(N )",

Before stating the next compatibility, let us recall the action of
be(Z/NZ)* on the rings R*(B, T(N)™), resp. Ty(N)™'™ and T, (N)™',
defined by

[B]F(E, o, B) = F(E, o, B~ (b, b)) for T(N) i,
5.4.8 [b]F(E, w, 1) = F(E, w, bi) for T (N)=i
[b]F(E, w, 7) = F(E, w, b~'7) for T' (N )ive.
An element F' in one of these rings is said to be of mebentypus p for
p € Hom((Z/NZ)*, B*), if it satisfies
5.4.9 [b]F = p(b)F for all be (Z/NZ)~.

LEMMA 5.4.10. Under the homomorphisms 5.4.6 for T'(IN)>'®, T' (N )™

and To(N)Y=¢, if F is a true modular form of weight k and nebentypus p,

then F is of “weight k and nebentypus 0. in the sense of 5.3.6, where 0, s
the character of G(N) defined by pa, b) = o(b).

Proof. This follows from the definitions 5.8.3, 5.3.6, and 5.4.9. Q.E.D.

Remark 5.4.11. If F e R¥B, I'(N)*") is not of nebentypus, we can
only assert that Fe V(B, I(IN)**) has weight k over the open subgroup
Z, x {1} N G(N) in G(N), in the sense that, writing N = p"N, with (p, N;) =1
we have
5.4.12 [a, l]F = a*F if acZ}, a=1(p").

5.5. The Frobenius endomorphism.

5.5.0. Let (E, @, B) be a trivialized T'(IN)**"® elliptic curve. We wish to
define its Frobenius transform (E’, ', 8). We define
5.5.1 E' = Elp™'(u,)

and denote by 7: E— E’ the projection. Its dual #: E'— E is étale, so we
can define @' = po7. We view B as a pair (8,, B,) consisting of compatible
To(N)™*™ and T (N)™"° structures (ef. 2.0.9), which are both compatible
with @ (5.0). Writing N = p"N, with (p, N,) = 1, we treat separately the
two cases (p, N) =1 and N = p". In the first case (p, N) = 1, both 7 and %
are of degree prime to p, so induce isomorphisms 7: yE~ yE' and %: (B ~ ,F.
We define 8;, B; by requiring commutativity in the diagrams

5.5.2 s 2 2/N7 z -

XNE' XN B

a$€
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In the second case N = p", the B; is already determined; it is (@)
restricted to g ,:

5.5.3 o, z . 8.
P
T ~p— *

and B; is simply the composite 7 - 8,:

5.5.4 Z/v"Z T

4 Jos

Reassembling N = p"N,, we see that B8’ = B, B, is characterized by the
equations B, = B!, B} = npB,.
5.5.,5. This construction carries

(Tate (g™), Peans Bean) to Tate (477, Peany Boan) 5
and by transposition, defines the Frobenius endomorphism of V(B, I'(IV)>*):

5.5.6 (Frob F)(E, , B) = F(E', #', B) .
By 5.5.5, its effect upon ¢g-expansion is simply
5.5.7 (Frob F)(q) = F(q*) ;

Similarly for FOO(N)arith and I‘OO(N)naive.

LeEmMMA 5.5.8. The Frobenius endomorphism of V(B, T(N)*"*) com-
mutes with the operation of the group G(N); similarly for Ty(N)=',
FOO(N)nalve-

Proof. We must check that the two values

Frob ([a, DIF)(E, ®, B) = ([a, bIF)(E', ', 8)
= F(E', a”'¢’, B (b, b))
and
[a, b](Frob F)(E, , B) = (Frob F)(E, a™*®, B°(b, b))
= F(E', (a'®), (B (b, b))
agree, for any test object (E, ¢, 8). The defining equation ¢’ = ¢ o% shows
that (a™'¢) = a™'¢’. Viewing B as (8, B.) (5.5.2), we see from the defining
equations B, = o B] and B} = wo B,, that (bB8,) = bB; and (b7'8,) = b5,
Q.E.D.
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5.6. Some “exotic” isomorphisms.

5.6.0. We can recopy Section 2.3, once we tell how to “push” a trivial-
ization when we divide by a subgroup gy or Z/NZ. Given (E, ) and a
subgroup uy< E, let w: E— E/py denote the projection, and take as
trivialization on E/g, the composite po%. Given (E, ¢) and a subgroup
Z/NZ <> E, let n: E— E|Z/NZ denote the projection, and take as trivial-
ization ¢’ on E|Z/NZ the unique one such that ¢ = ¢’ oz, With these rules,
the isomorphisms 2.3.6 may be transcribed in the p-adic case as inverse
isomorphisms

5.6.1 V(B’ FOO(N)arlth) — V(B, I‘OO(N)nalve)
which arise by transposition from the inverse equivalences

5.6.2

L ) divide by Z/NZ .
{trivialized T',(N)**** curves} —— — {trivialized T'(N)™'"® curves} .
divide by gen

The isomorphisms 5.6.1 preserve g-expansion.
Another exotic isomorphism worth noting arises whenever N = p'N,
with » = 1. It is characteristic of the p-adic theory.

LEMMA 5.6.3. Let N = p"N,, with r =1 and (p, N;) = 1. There is an
“exotic”, (G(N) =~ G(N,) equivariant, g-expansion-preserving isomorphism
5.6.4 V(B, T(»"N)™*™) =, V(B, T(N)™™) .

Proof-construction. We will in fact construct an equivalence
5.6.5  {trivialized I'(N,)*""** curves} , =, {trivialized I'(p"N,)*""** curves} .

Given a trivialized T'(N,)*** curve (FE, ¢, 8), we can iterate the Frobenius
construction (5.5.1)  times (which amounts to dividing E by ¢7*(,-)), and
obtain another I'(N,)*'® curve (E”, o™, 8). It remains to endow E™ =
Efp,., with a canonical T'(p7)**™*® structure, or what is the same for a trivi-
alized curve, with a Ty (p")"*"® structure. For this we simply invoke the
equivalence 5.6.2, in the case N = p".

The inverse construction

5.6.6 {trivialized I'(p"N,)***** curves} — {trivialized I'(N,)*""** curves}

does not depend on the fact that we have trivializations, and is just the
“trivialized” version of a modular construction in which p” could be any
integer N,, and in which the fact that N, is prime to p plays no role:

5.6.7 {T(N.N,)"**-test objects} —— {T'(N,)*""*® test objects} .
Given a T'(N,N,)***"-test object of either sort (E, w or ¢, 8), E contains a
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subgroup Z/N,Z, namely the subgroup N,Z/N,N,ZCZ/N,N,Z é E. Wedefine
E' = E[Z/N,Z, and denote by © the étale projection. There is a unique dif-
ferential @' on E’ such that 7*(«') = w, and a unique trivialization ¢’ on E’
such that ¢ = ¢'ox. The quotient curve E’ isomorphically receives Z/N,Z,
through the composite of B, with «:

ZINNZ<" E
5.6.8 l,,
L,

Z/NZ <> E'.
The inclusion of g, r,-into E’ is defined by

#N()Nl Lﬁ];—) E
5.6.9 U lﬂ
ﬂNo 1’,—) E"
A

This construction (&, ® or ¢, 8)— (E’, @ or ¢', B') carries Tate curve to
Tate curve, and so defines by transposition a commutative diagram of
g-expansion-preserving ring homomorphisms

)(divide by Z/N\Z)* R(

R(B, F(No)arith B, F(NlNo)arich)
5.6.10 lFHF lFI——)F

V(B, F(N)”i“‘) (divide by Z/N,Z)* V(B, F(NINO)”M) .
In case N, = p’, this construction 5.6.6 is easily checked to be inverse to
that of 5.6.5. Q.E.D.

Remark 5.6.11. The isomorphisms 5.6.4 for » and » + 1 “differ” by an
isomorphism (which necessarily preserves g-expansions)
5.6.12 V(B, T(pN)**) =, V(B, T(N)*")
whose inverse is none other than the map 5.6.10 (for N, = p, N, = N).
Because a I'(pN)***-structure determines, by restriction to the subgroup
Uy X PZ/pNZ, a T(N)**"-gtructure, we have a “natural inclusion” of
V(B, T(N)***) = V(B, ['(pN)**'*) which has the effect ¢ — ¢” on g-expansion.
The composite

V( B, F(p N)ar!t.h)
5.6.13 nat’l incl. \the isom. 5.6.12

V(B, D(Vymier)-- -T2 - > V(B, T(Ny=)
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is, as labeled, the Frobenius (just check the effect on g-expansion!).

Interpretation 5.6.14. If we combine 5.4.7 with 5.6.4 and 5.6.10, we get
a commutative diagram of g-expansion-preserving ring homomorphisms

R.( B, F( pr No)arith) Fo V( B, F( pr No)amh)

(divide by Z/p"Z)* (divide by ge,r)* kz 2\ (divide by Z/p"Z)*
FF

R'( B, I‘( No)arlth) V( B, F( No)arith)

We can sum this up in the catech phrase “a true modular form of level p"N,
is p-adically modular of level N,.”

5.7. Ramanujan’s series P as the direction of the unit root subspace
(compare 1.3).

5.7.0. This series is the g-expansion of a (necessarily unique) element
Pe V(Z,, I'(1)*"*) which has weight two. It is defined modularly as follows.
Over the ring V, = V(Z,, T(1)*""*), we have the universal trivialized elliptic
curve (E.niv,) Puniv)- Its Frobenius transform (E’, ¢’), formed by dividing
E..., by its “canonical subgroup” (cf. [13]) @i (&,), is another trivialized
elliptic curve over V,. The ring homomorphism V,— V, which classifies it
is just the Frobenius endomorphism of V:

B = B
5.7.1. The free rank-two V -module H}g(E.../V,) undergoes a Frob-
linear endomorphism as follows. The projection map
5.7.2 7 By — E'

induces by functoriality a V,-linear map F'

TT*: HBR(E’/ Vl) H]%R(Eunlv/ V1)
5.7.3 Hin(BEIV) /7
H(Banss] V)T

which we view as a Frob-linear endomorphism of Hjr(FEniv/ V).
Consider the F-stable Hodge filtration of Hiz(E.niv/ V),

5.7.4 0 — HY(Q') — Hi}p > H(Oz) — 0 .
The endomorphism F'is divisible by » on H°(Q'), but induces a Frob-linear




512 NICHOLAS M. KATZ

automorphism on H'(Og). From this it follows that there is a unique F-stable
splitting of the Hodge filtration

5.7.5 Hyr = H( QYD U,
where F' induces a Frob-linear automorphism of U (the “unit root part’)
(cf. [13], A2).

On the purely algebraic side, we are given a basis @ = o*(dT/(1 + T'))
of HYQ'Y), so that after extending scalars from V, to V,[1/6], we can write a
Weierstrass equation ¥* = 4a®* — g,& — ¢; for E,.;,, under which o = dx/y.
The differential of the second kind Y]dg xdx/y forms, with w, a basis of
Hin(E i/ V) @2 Z[1/12], and we know that (w, 7)pr = 1.

In complete analogy with 1.3.6, we can measure the direction of the
unit root subspace U < H3y by choosing an arbitrary invertible section u € U,
and considering the ratio

5.7.6 = Mom oy [ L]

{U, ®)pr 12

(the denominator (u, @)pr is necessarily a unit in V,, because @ and u are
invertible sections of H%(Q') and U respectively, which the alternating form
{, pr necessarily puts into duality).

This said, we could define an element P V,[1/12] by the formula

5.1.7 P(E, ) = 123% Dor E“ ’7>>DR

LEMMA 5.7.8. The element P e V(Z,, I'(1)*'™) @, Z[1/12] of weight two
defined by 5.1.7 above actually lies in V(Z, T(1)*™*). It g-expansion is
given by Ramanujan’s series

5.7.9 P@)=1-24% q"3,.d

Proof. The g-expansion computation is carried out in ((13), A2.4). It
shows that in fact P lies in V(Z,,, I'(1)) even for p = 2 or 3, by the g-expan-
sion principle. That P is of weight two follows from the cohomological
expression 5.7.7: Changing ¢ to ¢ '¢ changes  to ¢ 'w, and 7 to a77, and
thus carries P to a’P.

Remark 5.7.10. The fact that P lies in V|, means that 127 is actually a
section of Hix(E.niv/ V). Explicitly, we have

5.7.11 127 = Po + —22 4.,
7= (W, w)pr

For any N =1, we can consider P as an element of V(Z,, ['(N)*'"), by
defining P(E, ¢, B) = P(E, ¢). Its level N g-expansion is
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5.7.12 Pl@")y=1-— 242@1q””2md .
In the notation of 3.6.11, we have the formulas

1
- E‘;P(qN) = Gz,o, char. fet of Z/NZx {0}
5.7.13
""NP Ny — G
24 (q ) - 2,0, char. fet of {0} XZ/NZ 9

which should be viewed as the p-adic analogue of the C~ formulas 3.6.13.
5.8. The derivation 6.

LEMMA 5.8.1. For each integer N =1, there s a derivation “N6” of
V(ZAN)=), whose effect upon level N g-expansion is ¢(d/dq), in the sense
that the diagram below commutes

Nbo

V(Z,, T(N)=) V(Z,, D(Ny=+)

5.8.2 g-expansion g-expansion
d

Z,((2)) Z,((9)) -

It is of weight two in the sense that for any element (a, b) € G(N) (cf. 5.3),
we have

5.8.3 [@, b] e N6 = a®*N6+]a, b] .

Proof-construction. The notation “N§” is simply to emphasize the de-
pendence upon N: under the natural inclusion V(B, I'(N)™***) (B, T(NM)*),
the subring is stable by “NM06,” and “NM6#” = M*“N@” on it.

To prove it, we can use the isomorphism 5.6.4 to reduce to the case
where N is prime to p. In that case, the I'(IN)*** moduli problem is étale
over the I'(1)***® moduli problem, so it suffices to treat the case N = 1.
Deformation theory gives us an isomorphism of V(Z,, I'(1)*****) modules

5.8.4 (QEuniv/V)@)2 = Qi’/zp *

Now @ = @*(dT/(1 + T)) is a canonical basis of w, so its square gives a
canonical basis of ®®?, which by 5.8.4 gives a canonical basis of @z, The
dual basis of Der (V, V) is defined to be . In concrete terms, this means
that 6 is the unique derivation of V(Z,, I'(1)*'®*) such that under the Gauss-
Manin connection V on Hjw(Euniw/V(Z, I'(1))), we have the cup-product
formula

5.8.5 (p*(dT/(1 + T)), V(ONP*(dT/(L + T)))dor = 1.

That this derivation has the effect q(d/dq) on g-expansions is equivalent to
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the assertion that on the Tate curve Tate(¢), we have

5.8.6 <wm, V(qdiq)(wc,m) >DR =1

a formula which is verified in ([13], A1.3.18).

That 6 has weight two is obvious from its cohomological definition: an
element [a] € Z; carries ¢ to a ™', so carries ® = @*(dT/(1 + T)) to o 'w, and
hence carries 6+ [a]6[a]™! = a’F, as required. Q.E.D.

5.9. A p-adic graded Z-module (compare 1.6). Let us denote by
GV*(Z,, T(N)>"") the graded subring of the non-graded ring V(Z,, T(N)=*)
whose elements in degree k are the elements of V(Z,, I'(N)*"") which are of
weight k£ under the open subgroup Z; x {1}NG(N) of G(N). Thus an element
F e V lies in GV* if and only if, writing N = p"N, with (p, N,) = 1, we have

5.9.1 acl;, a=1(p") =—[a, 11F = o*F .
The homogeneity derivation H: GV*— GV is defined by
5.9.2 H(3 f) = Xafe

LEMMA 5.9.3. The graded ring GV*(Z,, T(N)*"'*) @, Z[1/12N] becomes
a graded Z module under the assignment

g. —— (multiplication by)g,
g, +—— (multiplication by)g,
S +—— (multiplication by)P
5.9.4 <{H+—H

W+—9¢

D—0—L1P.H.
12

Proof. Since the operators g,, g,, ¢ — (1/12)PH, H, 6, P are homogeneous
of weight 4, 6, 2, 0, 2, 2 respectively, the commutation relations between H
and any other are satisfied. Since GV is a commutative ring, the commuta-
tion relations among g,, g,, P are satisfied. Since the operator ¢ — (1/12)P-H
acts stably on the subring R*(Z,[1/12N], (N )*"*) of “true” modular forms
as the Halphen-Fricke operator D (cf. 1.5.12), the commutation relations
between it and g, or g, are satisfied. It remains to check that

[?—LR&P]=—%—iP,
12 12

i.e., that O(P) — LP.-H(P) = —g,— ~P*,
i.e., tha ()12 (P) %= =
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i.e., that o(P) — 2P = — g, — 1P,

i a ()12 %= =

i.e., that 6(P) — éPZ =—4¢,,

. d 1

.e., that — (P ——P P = — 2 ’

i.e., tha "4 (P(@) TRAL 9:9)

which is the differential equation established in 1.4.31. Q.E.D.

5.10. Another modular description of GV*(Z,, T(N)='™).

5.10.0. Let B be a p-adic ring, and (E, w, 8) a T'(IN)***-test object (cf.
2.1) defined over B. Assume in addition that the underlying curve E/B is
fibre by fibre ordinary. (This last condition is automatic if p divides N.)
Then over a pro-ind-étale over-ring B, (meaning that B, is a p-adic ring,
and for each n = 1, B../p"B.. is an increasing union of finite étale over-rings
of B/p"B) there exists a trivialization ¢ on E ) B./B. with which 8 is
compatible. Furthermore, the indeterminacy in the choice of such a ¢ is
the group ZX x {1} N G(N), i.e., with N = p"N, where (p, N,) = 1, the given
inclusion of p,» = E by B determines the “beginning” of @, so we can only
change it by an element a € Z; which is =1 mod p".

Suppose we are given an element F € GV*(Z,, [(N)*"*). We want to
give it a value F(E, w, B) € B on such a test object. First we will define this
value as an element of B.. Choose a trivialization ¢ over B., with which 8
is compatible. Then we can write @ = Ap*(dT/(1 + T)) for some unit \ € Bx.
We tentatively define

5.10.1 F(E, , B) = \*F(E, ¢, B) € B.. if = zMp*(dT/(1 + T)).
This is well defined independent of the choice of ¢, for if we change @ to
a"'p, with a € Z¥, a = 1(p"), we have w = aMa'p)*(dT/(1 + T)), and the
“definition” 5.10.1 would yield

F(E, , B) = (aN)"F(E, a”'p, B) = N *F(E, 9, B) ,
because F' lies in GV*. It follows by a standard étale descent argument
that this value, being independent of the auxiliary choice of ¢, must itself
lie in B, rather than B,.. Notice that we have lost no information, for when
we are given a trivialized T'(INV)***® curve (E, ¢, 8) over B, we have the
the tautological equality:
5.10.2 F(E, p, B) = F(E, *(dT/(1 + T)), B) .
Thus we have

LEMMA 5.10.3. The above construction establishes an tsomorphism
between G VHZ,, T(N)*'**) and the p-adic Z,-module of “functions” F which
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to any fibre-by-fibre ordinary T'(N)*'*™-test object (E, w, B) over any p-adic
ring B, assign a value F(E, o, B) € B, such that (compare 2.1.1 and [13],
Ch. 2)
F(E, w, B) depends only on the B-isomorphism class of (E, w, 8)
F(E, »'w, 8) = MF(E, w, B) for all » € B*
formation of F(E, w, B) commutes with extension of scalars of
p-adic rings .

In the language of [13], this lemma says that GV*(Z,, T(N)*"") is the

module of all “p-adic modular forms on I'(N)****® of weight k.”

5.10.4

Remark 5.10.4.1. If we fix a p-adic ground-ring B,
we have an analogous modular interpretation of the ring
GV'(BO, F(N)amh) dfn ® GVk(Z,,, F(N)amh) & B,.

5.10.56. An example: P(compare5.4.3). Suppose B is the ring of integers
in a finite extension K of Q, with residue field F,, and (E, ®) is an ordinary
elliptic curve with nowhere vanishing differential. The 2-dimensional K-space
H}x(Ex/K) undergoes a canonical “q"™ power Frobenius endomorphism” F,,
exactly one of whose eigenvalues is a unit a € Z;, the other being q/a. (The
characteristic polynomial (1 — aT)(1 — (¢/a)T) is the numerator of the zeta
function of E ® F,/F,.) If we choose any nonzero eigenvector « in the (unit)
a-eigenspace, then we have

5.10.6 P(E, ) = 125% 1o
%, W)Ypr
Tautology 5.10.7. Suppose that B is a p-adic ring, and that (E, w, 8) is
a fibre-by-fibre ordinary I'(N)**'®-test object over B. A necessary and suf-
ficient condition that @ be a magic differential (i.e., of the form p*(dT/(1+ T))
for some trivialization ¢ defined over B) is that the evaluation homomor-
phism

5.10.8 G V'(Zp’ F(N)Iarith) eval. at (E, o, /8) R

be prolongable to a ring homomorphism
l’

V(Z,, T(N )“i“‘) —> B

5.10.9 U

B

eval. at (E, v, )
GV’(Z,,, F(N)arm:)

It is a tautology in view of the functorial description (5.1.0) of the ring
V(Z,, T(N)>'*). But in view of the known explicit generators for V as a
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G V-algebra (cf. [14]), it is also a congruence criterion on the coefficient of
the power series expansion of w, at least when B is flat over Z,!

5.11. Comnstruction of the p-adic Eisenstein-Ramanujan series G, s
and @, . ; (compare 3.6).

LEMMA 5.11.0. Let f be a Z,valued function on Z/NZ x Z/NZ, and
k=1 an integer. The q-series

%L(o, f(n, 0) + £(0, n) — f(—n, 0) — f(0, —m)) if k=1
5.11.1 2G5 =

+ Eng1 q Edd':n (dk_lf(d» d’) - (_d)k_lf(_dy _d’))
is the g-expansion of an element 2G,,, ; € GVHZ,, (T(N)*""*) ® Q,.

Proof. For L+ 2 and any f, and for &k = 2 and f’s satisfying the
extra conditions )_f(4, 0) = 3>_f(0,1) = 0, the element G,, , even lies in
R¥(Q,, T(N)*="*). In the two remaining cases, ¥ = 2 and the functions f, =
the characteristic function of Z/NZ x {0} and f, = f, these are the g-expan-
sions of (—1/24)P and (— N/24)P respectively (cf. 5.7.13). Q.E.D.

Definition 5.11.2. Let k& and r be non-negative integers, and f a
Z,-valued function on Z/NZ x Z/NZ. We define the g-series 2@, , ; by the
formulas

2Gii10,5 ifr=20

5.11.3 20,, , — 4 20riost it k=0
Y0 D e (@@ F(d, &) — (=d)(—dY f(—d, —d)

ifk,r=1.

Notice that no ambiguity is caused by the overlapping case k= r = 0,
because G,,,,; = G, s, as is visible from 5.11.1.

LEMMA 5.11.4. Fork, r=0, and f a Z,~valued function on Z/NZ X Z/NZ,
the series 20, , ; is the g-expansion on an element

2q)k,r,f e Gvk+r+1(zp, F(N)arnh) ® Qp .
If both k, r = 1, then 2®,,, ; lies in G V*"(Z,, T(N)>").
Proof. If k=0 or r = 0, there is nothing to prove. If k= » > 1, we

have the g-series equality

5.11.5 D,,.r= (Qj—q> (2Gr1-r,0,7)
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so that we can modularly define 20, . ; by

dfn

5.11.6 20, , ; L (NOY (2Gs11_r.0.5) fh=>r=>1.

Similarly, if » = k = 1, we have the g-series equality
d k

5.11.7 20ss = (0-2) Grivcsors) ifr=k>1,
dq

so that we can modularly define

dfn

5.11.8 20, ; = (NOY2G 11—t ) ifr=k>1.

Since N0 increases weight by two, wehave @, , € GV**"*(Z,, T(N)*'"")QQ,.

If k,r=1, then 2®,, ; has integral g-expansion, so by the g-expansion

principle it lies in G V**"*(Z,, T(N)*"®). Q.E.D.
Definition 5.11.9. Let A, B be integers satisfying B<0, A+ B>=1,

and f a Z,valued function on Z/NZ x Z/NZ. We define an element

2G 457 € GV4Z,, T(N)**")® Q, by setting

5.11.10 2GA,B,f = 2(DA+B—1,—B,f ’

i.e., 20,,,,; = 2Gk+r+1,—r,f .

Notice that if B< —1 and A + B=2, then 2G, ;€ GV4Z, T(N)*"*™). The
functional equation for @,

5.11.11 20, , ;= 20,/ , k,r=0
(which is obvious from 5.11.3) becomes one for G:

5.11.12 2G, 5, =2Gsrsnst, B=0, A+B=1.
The differentiation relation

5.11.13 NO6Q2D,,,.;) = 2@ 110415 » k,r=0
(also obvious from 5.11.3, cf. 5.11.6-8) becomes

5.11.14 N6(2G 4 5,) = 2Gy05-rs, B=0, A+ B=1.

To give the transformation properties under the group G(N), it is
convenient to introduce a notation. Given b€ (Z/NZ)* and a function f on
Z/NZ x Z/NZ, the function [b]f is defined by

5.11.15 [b1f (u, v) = f(bu, bv) .

LEMMA 5.11.16. The transformation property of the ® and the G under
the group G(N) is given by the formulas
[ay b](zq)k,r,f) = a'k+r+12®k,r,[b]f ’ ky r Z. 0

5.11.17
{[a, bl(2G 4 5.s) = 0*2G 4 5ms, B=0, A+ B=1.
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Proof. By 5.11.10, the two formulas are equivalent. We will prove the
first. By 5.11. 13 and the fact that 6 is of weight two, we may assume that

either k¥ =0 or » = 0. By 5.11.11, we may assume r = 0. Thus we are
reduced to showing

5.11.18 [0/, b]Gk,o,f = a/ka’o,[b]f for k = 1.

If ©=2and f is either the characteristic function of Z/NZ x {0}, or
{0} x Z/NZ, then f = [b]f and G,,, ; is a multiple of P, which indeed satisfies
[a, B]P = a*P.

So we may assume that, if k& = 2, the function f satisfies Y f(4, 0) =

3= £(0,1) = 0, whence G, , lies in RQ,, T'(N)*'*). The entire group Q; X
(Z/NZ)* acts on R¥(Q,, T(N)*"*), by the rule

5.11.19 [a, B]F(E, ®, B) = F(E, a”'w, Bo(b, b7")) .
Under this action, resticted to the subgroup G(N), the map
RYQ,, T(N)™"*") — GVHZ,, I(N)"'*) ® Q,

is G(N)-equivariant. Now since G, ; € R*, we certainly have

5.11.20 [@, B]G 10 A(E, ®, B) = Gy o A E, a”'w, Bo(b, b))
= a*Gyo,/(E, @, Bo(b, b))
= a"[1, b]Gy., /(E, ©8) .

Thus it suffices to check that

5.11.21 [1, b]Gy0,r = Gro,1505 -

Since the assertion is linear in f, we may suppose f to have values in, say,
Z, then extend scalars to C and view Gy, ; as lying in R¥(C, T'(N)*'*). By (2.4),
we may view Gy, s as a function on GL*/T'(N), and for fixed (®, w,) € GL™,
the value G, ,, (®,, ,) is the value at s=0 of the entire function s—G,,,,(®,, ;).
So by analytic continuation, it suffices to check that

5.11.22 [1, b]Gy...r = G noin1y for Re(s) > 0.
In view of the definition (3.6.5) of G, ; in terms of ¢,

5.11.23 Gunsd B, 0,8) = o, (s + £ B 0, (Pmp)o67),
we must check that

5.11.24 PY([b]f)eB™ = (P f)o(B(b, b)),

ie., P([b1f) = (P'f) (b7, b) .

By definition, we have
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P(BIf)E, m) = % ([B1f)(n, m)¢—™
= %E”f(bn, bm)C "

= %En fn, bm) >

= (P, bm)
= (P7f)e (07, b)(E, m) . Q.E.D.

Chapter VI. Construction of the Eisenstein-Ramanujan
measures 2" and gy

6.0. Review of p-adic measures. Let X be a compact topological space,
and denote by Contin (X, Z,) the ring of all continuous Z,-valued functions
on X. For any p-adic ring B, a Z,linear map (not assumed to be a ring
homomorphism)
6.0.1 p: Contin (X, Z,) — B
is called a B-valued measure on X. We can also view ¢ as a B-linear map
Contin (X, B) — B, since Contin (X, B) ~ Contin (X, Z,) ® B. For f: X—1Z,
a continuous function on X, its image ¢#(f) € B is denoted symbolically

6.0.2 Lfdp, or Sf(x)d,a(ac).

Notice that ¢ is automatically continuous for the p-adic topologies.

Let us specialize now to the case when X is the product of a finite space
T with a finite number »n of copies of Z,. By Mahler’s theorem [19], any
continuous function f:(Z,)* X T — B has a unique interpolation series

6.0.3 f(@y «eey @, 1) = Eil """ inz0 Pt nial®) (fl) o (f“)

n

where the a,,,...,;, are Z,-valued functions on T which tend uniformly to zero
as EZ;I 1; — oo, and where the (2) are the binomial-coefficient functions

(oc)z @—1)-(2—(n—1))

6.0.4 ,
n ne

which take Z,-values on Z,. Thus a measure ¢ on (Z,)" X T is uniquely
determined by the sequence of values

n

6.0.5 B(iyy «+ -, iy, ) = S(”) e (”) % (the char. fet. of a point ¢ € T)dz,

1

and any collection {b,,....,;, } of elements of B, indexed by N* x T, arises via
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6.0.5 from a unique measure on (Z,)" x T.

6.0.6 If Bisflat over Z,, then ¢ is also uniquely determined by its moments
6.0.7  m(iy -+, iy, t: 1) = S(xl)i‘ <+ (@) % (char. fet. of t € T)dp .

However, these moments cannot be prescribed arbitrarily. Let us introduce
the rational numbers ¢(j,, ---, 7.; %, * -, 1,) defined by

& Ty . .. . i i
6.0.8 (tl) e (7’ ) = Eogjyéi" c(.?n ey Jur ty 0ty ?’n)(xl) Pees (xn) "
1 n
In terms of these, we have

LEMMA 6.0.9. If B is a p-adic ring flat over Z,, then a collection
Mm(ty, + -+, i t) of elements of B, indexed by N™ X T, arises as the moments
of a (necessarily unique) measure on (Z,)" X T if and only if the quantities
6.0.10 b(iu ) 'Lm t) = EOSJ,,SI c(jv ) jn; iu ) in)m(jn D) jm t) ’
which a priori are elements of B[1/p], all lie in B.

6.1. Construction of the measure pi".

THEOREM 6.1.1. Let N =1 be an integer, and (a, b) an element of the
group G(N). There exists a V(Z,, [(N)*')-valued measure p® on
Z,x Z,x Z/NZ x Z/|NZ whose moments are given by

6.1.2 Sxkyff(u, Ve = 20, , ; — 2a, DO, ..,

= 20,,,,; — 20" @y, 1y

where f(u, v) is any Z,-valued function on Z/NZ x Z/NZ.
For any continuous Z,~valued function y(x,y)on Z, x Z,, the g-expansion
of Snjr(x, NS (u, v)ApE® has the form
yv(d, d)f(@, &) — y(—d, —d)f(—d, —d')
6.1.3 constant + 3 . "33 .| —av(ad, ad)f(bd, bd')
+ay(—ad, —ad')f(—bd, —bd’)

The transformation property of Sn/r(x, Y)f(u, v)dps? under an element
[, '] € G(N) is given by

614 [0, V1| vo, 0)f(w, o)y = (@@, @y @u, Vo)dp

The functional equation may be expressed in terms of the functions
a2 y) a,lr(y, x) and fi(u, v) f('v, u) by the relation
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6.1.5 Salr(x, U (u, v)dpfp® = S«/»‘(x, Y, v)dp? .

Proof-construction. Suppose that we already know the existence of a
measure ¢ satisfying 6.1.2. Then 6.1.3-5 are visibly true when the func-
tion +r is a monomial x*y", thanks to 5.11.3 and 5.11.16. By linearity, 6.1.3-5
will remain true when (z, ¥) is a finite Z,-linear combination of binomial

coefficient functions ( f )( ?j/ ), and hence, by Mahler’s theorem and the p-adic

continuity of ¢, when 4 is an arbitrary Z,-valued continuous function.

To show the existence of pi®, we use the integrality criterion 6.0.9.
We must show that for any Z,-valued function f on Z/NZ x Z/NZ, whenever
we write

6.1.6 (Z)(i) = Egé%’; c(n, m; k, r)x"y™ ,
the corresponding sum
>, .c(n, m; k, 7)(20,, ., ; — 2[a, D], . )
= (1 — [a, BI)(2XC, . c(n, m; b, 1)@, m, ) »

a priori an element of V(Z,, ['(N)***) ® Q,, actually lies in V(Z,, T(N )™ ).,
Notice that by 5.11.3, the inner sum

6.1.7 ZE“ymc(ny m; kr ,r)(Dn, m, f

has a g-expansion which is integral except possibly for its constant term:
the coefficient of ¢" for n» = 1 is given by

a\/d —ad\/—d"
6.1.8 Eﬂ=dd,((k)(r>f(d,d’)~( . )( d)f(—d, —d)

r
ad\ [ad , —ad\[{—ad’ n)
—a,(k )(T)f(bd,bd)+a( . )( 5 )f(—bd,—bd))

Thus to conclude the proof, it suffices to apply to this element 6.1.7 the
following basic lemma (cf. [15], 1.2.1).

KEY LEMMA 6.1.9. Let F be any element of V(Z,, T(N)*'*) ® Q,, whose
g-expansion has all of its coefficients in Z, except possibly for the constant
term. Then for any element (a, b) in G(N), the difference F' — [a, b]F lies
in V(Z,, T(N)="*®).

Proof. Let c€Q, be the constant term. The difference F' — ¢ lies in
V(Z,, T(N)*™*) ® Q,, but has integral g-expansion by hypothesis, so must
be in fact an element of V(Z,, T(N)*"*") (lest it give a p-power torsion element
of Z:(\(q))/ V(Z,, T(N)*>"*), cf. 5.2.1 and [15], 1.2). If we extend by linearity
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the action of G(N) to V(Z,, I'(N)*'*)®Q,, then any constant ccQ, is
certainly fixed by all of G(N). Therefore

6.1.10 F —[a, b]F = (F — ¢) — [a, BI(F — ¢) € V(Z,, T(N)™*). Q.E.D.

6.2. Relation to the Kubota-Leopoldt measure, and to the “Eisenstein
measure’ 2H*® of [15]. Given a continuous map 7: X— Y of compact
topological spaces, and a B-valued measure ¢ on X, we obtain a B-valued
measure 7./t on Y, defined by

6.2.0 |, fdr.pw) = | rr@)due .
In particular, if we take the map
pr:Z, X Z, X Z|NZ x Z|]NZ — Z, x Z/|NZ ,
(=, y, u, v) — (2, u) ,

we obtain a measure pr, p%* on Z, X Z/NZ, defined by

621 IICUOL AR @) f (w)dpss”

(Zp)2X(ZINZ)?

where, on the right, “y(x)” is the function (x, y¥)+— ¥(x), and “f(u)” is
(4, v) — f(u). The moments of this measure are the Eisenstein series G, s
of 5.11.0

6.2.2 at f(w)dpr e = (1 — [a, b])(2Gris,o, 1)

SZI,XZINZ

(where “f” is the function (u, v)— f(u)). Their g-expansions are given by

6.2.3 ot f(u)dpr p ¥

SZPXZINZ
0 if f is of parity (—1)*
S {L(-k, fw) = a*L(—k, f(bw))

+23 ..4" 2, 4 f(d)—a*"f(bd)) if f is of parity (—1)*".
These g-expansions are the same as those of the moments of
V(Z,, Too(N)=™)-valued “Eisenstein measure” which was denoted 2H*® in
[15]. To clarify this apparent discrepancy (between considering a given
g-series as being on T'(N)*"® or on I'y(N )“‘"‘), recall that the construction
“divide by Z/NZ” (cf. 2.3.5, the diagonal arrow) gives by transposition an

“exotic inclusion”

ivide by Z/NZ)*
6.2.4 V(Z,, To(N)yner) (QVide by BNV, o

which preserves g-expansions. Thus we have

Zp’ F(N)arlth)
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Compatibility 6.2.5. The following diagram is commutative.
. ) Ha,b
Contin (Z, X Z/NZ, Z,) 2> V(Z,, Tu(N)=H2)

6.2.6 prk propf?  |(divide by Z/NZy*

/‘5\?'6)

Contin ((Z‘,)2 X (Z/NZY, Z,)_‘“" V(Z,,, T( N)arlth) ]
6.2.7. Let us denote by % the Z,-valued Kubota-Leopoldt measure on

Z, x Z|NZ, defined to be the constant term in the g-expansion of pr, ui " =
2H**. Thus

6.2.8 atf(u)dpe?). = L(—k, f(u)) — a*" L(—Fk, f(bu)) .

Sz,,lezvz

In terms of the Kubota-Leopoldt measure ¢t , we can give a formula for
the “missing” constant (ef. 6.1.3) in the g-expansion of .

LEMMA 6.2.9. For any continuous Z,~valued function y(x, y) on Z, X Z,,
and any Z,-valued function f on Z/NZ x Z/NZ, the constant term of the

g-expansion of Sn/r(ac, Y)f(w, v)dui” is equal to

6.2.10 [, . (e 00, 0) + %0, O, w)di.

Proof. It suffices to check when +(x, %) is a monomial #*y". Whenk =1
and r = 1, both sides vanish. Since both sides are invariant under +.f — ¥*f*,
it suffices to check the case » = 0, k = 0, which is taken care of by compar-
ing the formulas 6.2.8 and 5.11.1. Q.E.D.

6.3. Restricting (s to Zy X Z, X (Z/NZ), and its relation to Frobenius.
Given a compact open set U in a space X, the characteristic function of U,
Av» is continuous. If X is compact, and ¢ is a B-valued measure on X, we
define its restriction to U as the measure on X defined by

6.3.1 fi— Sxxv(x)f(x)d/x(ac) s SUf(x)d;z(x).

Of course, we can also view it as the measure on U defined by

6.3.2 gU g(u)dp(u) S S (g extended to be zero outside U)du(x) .
X

This should never lead to any confusion.

LEMMA 6.3.3. For any continuous Z,valued functions « on Z, X Z,,
fon Z/NZ x Z/|NZ, we have the integration formula

634 {1 e ¥@ VI, g = | Vs, D, v)dps

— Frob g (0, ¥).f (D, v)dEE? .

(Zp)2x(ZINZ)?

(Zp)2x(Z|NZ)2
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Proof. First of all, notice that both sides have the same g-expansion
coefficients, except possibly for their constant terms, as an immediate compu-
tation using 6.1.3 shows. Secondly, notice that it suffices to treat the case
when + is a monomial «*y", in which case, by 6.1.4, both sides are of weight
k + r + 1 = 1 under the subgroup Z; x {1} N G(IN) of G(N). So their dif-
ference is then a constant which is of weight = 0, hence is zero. Q.E.D.

Remark 6.3.6. Combining the definition 6.3.1 with the formula 6.2.10
for the constant term, we see that the constant term in the ¢g-expansion of

Sz;xsz(zmz)?q‘lf(x’ y)f(u’ ’U)d#%” !
is equal to
6.3.7 [ s ¥, O, O)pie?

Combining this with 6.3.3, we obtain a well-known integration formula for
Uk.-1.

COROLLARY 6.3.8. For any continuous Z,~valued functions + on Z, and

fon Z/NZ, we have
639 |, Lv@fdme = (H@f@ — yoafou)d.

Proof. View +r and f as functions on Z, X Z, and Z/NZ x Z/NZ respec-
tively, through projection on the first variable: ¥(x, y)= (), f(u, v)=f(u).
If we equate the constant terms in 6.3.4, and use 6.3.7, we get an identity,

6310 |, ¥ 0, 0)dpit

=, e (V@ 0@ 0) + (0, 270, Wi,

=, (lwm, 0f(pu, 0) + (p0, (PO, W)dpit.
pX
in which the (0, x)f(0, ») term cancels the (0, )f(p0, %) term to give
the assertion. Q.E.D.

Remark 6.3.11. We can use the functional equation 6.1.5 of the measure
¢ to deduce analogues of 6.3.4 and 6.3.7 for restriction to Z, X Z; X (Z/NZ).
The result is

6312 |, . e ¥(&, D, 0)dpe

i

v, y)f(w, v)dpi® — Frobs ¥z, py)f(u, pv)dpi?

§<zp)2x (ZINZ)2 (Zp)2X(Z|N2Z)

SZ;XZ va (v(0, )£(0, u))dpie: ") + higher terms (in g-expansion) .
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If we combine 6.3.4 and 6.3.12, we get a formula for restricting p{® to
(Z;)* X (Z/NZ)*. The result is

6313 | usn ¥ D, V)Y
= {w(a, 0w, v)dps ¥ — Frob [z, »)f(du, v)dp”
— Frob [ (@, p)f(u, po)dps®
+ Frob* [v(ws, pu)f(pu, podpes? .

If we apply these formulas to functions ++ on Z, and f on Z/NZ, pulled
up to functions on Z, x Z, and Z/NZ x Z/ NZ respectively by pr,, i.e., ¥(x, y)=
¥(x), f(u, v) = f(u), we get the integration formulas

6.3.14 Y(@)f (w)dpd" = Sz g V@ (W)A(2H)

S(z,,)zx(zum2

6315 [,y V@S @Y = (., v(@F(0)d(EE)
6.3.06 [, v yyaae V@S = (1= Frob)|, , (@) (u)d(2H"),

B30T [, e PO = (L~ Frob) | .., ¥(@ 7 @)H)

6.4. Restriction to (Z;) X (Z]NZY; the measure fiy.
6.4.0. Let k and r be non-negative integers, and f a Z,-valued function
on Z/NZ x Z/|NZ. We define the g-series 2®5 , ; by the formula

641 207, =%, L. . (@) S &)~ (~df(=dY f(~d, ~d).

=

LEMMA 6.4.2. For k, r non-negative integers, and f a Z,~valued func-
tion on Z/NZ X Z|NZ, the series 207, ; is the q-expansion of an element of
GV rt(Z,, T(N)™®). For any element (a, 1) € G(N) N (Z, x {1}), we have

6.4.3 (1 —ast )20, , = S(Z;)Zx(z/Nzﬂxkyrf(ur v)dpyo .

The transformation property of 20F,. , under (a, b) € G(N) is given by
6.4.4 [a, b](2D% ., ;) = a**" " 20% , 1y

Proof. From 6.2.10, we see that S(z;)zx(wz)z (@, ¥) S (w, v)dps® always
has constant term zero in its g-expansion. The truth of 6.4.3 as an identity
of g-series then follows from 6.1.3. Choosing any a, € Z; so that (a,,1) € G(N)
and af*"*' 1, we can read 6.4.3 as defining 20y, ; as an element of
GV Y(Z,, T(N)**) ® Q,, which by 6.1.4 will enjoy the transformation law
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6.4.4. Finally, the fact that 207, ; has integral ¢-expansion shows that in
fact it lies in G V**"*Y(Z,, T(N)>'*), Q.E.D.
The functional equation

6.4.5 205, ; = 207,

results immediately from its g-expansion formula 6.4.1, as does the differen-
tiation formula

6.4.6 NOQ2OZ, ;) = 20F,1 ,41,;

THEOREM 6.4.7. Let N =1 be an integer. There exists a V(Z,, D(N)>i)-
valued measure tty on (Z;) x (Z/NZ), whose moments are given by

6.4.8 Sxkyff(u, v)dpy = 20F,, .

where f(u, v) is any Z,~valued function on Z/NZ x Z/NZ.
For any continuous function y(x, y) on Z, X Z,, we have the q-expan-
ston formula

6.4.9 [ 1, ap,
= Enganznmw’ ("/’(d’ d’)f(dv d’) - "f”(_d» ——d')f(—d, —d’)) .

(p,mn)=1

The transformation property under (a, b) e G(N) is
6.4.10 [a, b]S«F(w, Y (w, v)dpy = Saw’f(ax, ay)f (bu, bv)dsy .

The relation between fty and the restriction of p" to (Zy) x (Z/NZ)
18 given by the formula

6.4.11 (1 - [0/, b])g "l"f(x’ y)f(u’ v)dtuN = S(Z;)Zx(z/xvz)f"r(x’ y)f(ur v)d#%' o,

Proof. The existence of a measure py on Z, X Z, X Z/NZ X Z/|NZ
satisfying 6.4.8 follows immediately from the integrality criterion 6.0.9 and
the simple ¢g-expansion formula for 2®j, ; much as in the proof of 6.1.1,
except that here there is no constant term to worry over. The formula 6.4.9

is valid for 4 of the form x*y", so by linearity for + of the form <%>< ';"{ ) ,

and then by Mahler for all continuous +; similarly for 6.4.10. To prove
6.4.11, we check it in ¢-expansion, using 6.4.9 and 6.4.10 to compute the left
side, and using 6.1.3 and 6.2.10 to compute the right. Q.E.D.

COROLLARY 6.4.12. For any (a,b)cG(N), we have the integration
formula
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6.4.13 (1 — g, b])gw(x, Wf(w, v))d;zN
= |v(@, 0, 0)dges" — Frob |v(ps, »)f (o, v)py
— Frob [(@, py)f(u, po)dsy®
+ Frob?® Sw(px, pY)f (pu, pv)dps® .

Proof. Combine 6.4.11 with 6.3.13.

COROLLARY 6.4.14. Fork, r non-negative integers, and f any Z,~valued
Sfunction on Z/NZ x Z/NZ, we have an equality in GV*(Z,, T(N)™™) ® Q,:
6.4.15 Ok ,.r = Oy, r — D*Frob (®y,, s ou,n) — 2" Frob (O, rw,om)

+ ¥ Frob*(®,.,. f pu,p0) -

Proof. This is 6.4.13, if we take z*y” for +, (a,d) = (a,1)eGN)N
(zy x {1)), and divide through by the common factor 2(1 — a**"*') which
occurs.

Oversight 6.4.16. The behaviour of p, under the derivation N8 is given
by

6.4.17 No (e, ) f(a, v) s = [y, ) fu, v)dpey

as follows immediately from 6.4.9.
The analogue of 6.3.17 is the formula

6.4.18 (L= 13, B) s g e @ (WL
= (L = Frob) |, ., W@ (w)d(@H") ,

Chapter VII. Construction of p-adic L-functions: generalities

7.1. Definition of L£(x, f). Let W be a complete rank one valuation
ring with residue field of characteristic p, and fraction field of characteristic
zero. We take “rank one” instead of “discrete” to allow, for instance, the
ring of integers in the completion of the algebraic closure of @,.

The measures ¢4 * and z, allow us to integrate W-valued continuous
functions on (Z,)* X (Z/NZ)* and (Z;)* X (Z/ NZ)’ respectively; their integrals
will be elements of V(W, T(N)*™*) = V(Z,, [(N)*"'*) ®,, W, cf. 6.0.1 and
5.1.0. Inparticular, if y € Hom ounin (Z X Z5, W) is any continuous character
(i.e., multiplicative homomorphism) of the group Z; x Z;, and f is any
W-valued function on Z/NZ x Z/NZ, we can consider the integral

7.1.1 [, £, v e VW, T .
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We denote this integral £(y, f), and view the construction (x, f)— £(x, 1)
as a V(W, [(N)*"*)-valued function on the space Homonua (Z) X ZJ, W*) X
Maps(Z/NZ x Z/NZ, W). This function £(y, f) we call the (“two variable”)
p-adic L function. It is essentially the Mellin transform of the measure /.

Knowledge of £(y, f) is equivalent to knowledge of the measure g,
viewed as a measure on (Z,)* x (Z/NZ)* which is supported in (Z5)* x (Z/NZ).
Indeed, if we denote by Y., the character

7.1.2 Ye, (2, ¥) = xFy” k, reZ,
then the L-values {£()x,r, S}, .20 are precisely the moments of the measure
Hu-

The fact that £(y, f) 7s the Mellin transform of a measure implies a
number of striking congruences between the values of £ at different charac-
ters (and conversely, by 6.0.9). Let us pause briefly to recall one such
congruence.

LEMMA 7.1.8. If (k, ) and (K, ') are pairs of integers satisfying
(k, r) = (K, ") mod(p — L)p",
then for any W-valued function f on Z/NZ x Z/NZ, we have
LWe,rs [) = wr,r, £) mod p™* .

Proof. Because (Z/p""Z)* has order (p — 1)p", the hypothesis on the
indices implies that the characters ¥, and X, are congruent modulo p**
as functions on Z; x Z*. This congruence of functions in turn implies the
same congruence between their integrals.

In fact, the original point of view of Kubota-Leopoldt [17] when
confronted with a function f(k, ) on, say, Z, X Zz,, which satisfies the
congruence of 7.1.3 (i.e., f(k, r) = f(¥, ") mod p*** if (k, ) = (¥, 1), mod
(p — 1)p™), was this. For each of the (p — 1)* residue classes (a,d) of
Z*mod p — 1, let S(a, b) denote the subset of Z x Z consisting of pairs (k, r)
with k=0, r =0, and (%, r) = (a, b))mod(p — 1). Then S(a, b) is uniformly
dense in Z, X Z,, and the function f(k, ) extends to a (very) continuous
function on all of Z, X Z,. We will not pursue this point of view.

7.2. Relation to the “one-variable” p-adic L-function [15]. In [15], we
constructed a p-adic L-function, which we will denote L temporarily to
distinguish it from £. It is the function

7.2.1 Homouun (G(N), W*) — {trivial character}
—_— V( w, FOO(N)arith) ® Wl:-zl,—]
defined by
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7.2.2 Ly - 0) = @p(u)d(ﬂavb) .

1

1 — ¥(@)o(b) S/

Remark. The apparent ambiguity between the insistence on G(N) in
7.2.1, and the integration over all of Z} x (Z/NZ)* is actually harmless,
because when the measure 2H*® is restricted to Z; x (Z/NZ)*, it is in fact
supported on the open subgroup G(N). This last fact is obvious for the
coefficients of ¢ with » = 1, which are sums of point evaluations at points
(d, d’) € G(N); it then follows for the constant term by a consideration of the
transformation property of L under G(N).

The g-expansion of L(+ - 0) was given explicitly by

7.2.3 - «/rta)p(b) B"/'g(cx)p(u)dﬂ}?:_”i.]

+ Tt Ty (B0(0) + ¥ Dp(—a)) .
(p,d)=1 d d
Applying 6.2.5, we can express L(y -p0), viewed as an element of

V(W, T(N)**) @ W[1/p] by means of the “exotic inclusion” 6.2.4, by an
integral over Z; X Z, X (Z/NZ)*:

7.2.4 Sz" “'[f—(x—)p(u)dp;:”” -9

X
PXZpx(Z/NE Sszzuvz

= 2(1 — y(a)o(®))L(v - p) .
(In the second integral, we can integrate over all Z; X Z/NZ instead of just
Z; X (Z/NZ)*, because by convention o is extended by zero to all of Z/NZ.)
Our two-variable £, however, is obtained by integrating over (ZX)* x
(Z/NZ)Y, or, what is the same for the function (x, y¥)— +(x)/x which is already
supported in Z; X Z,, only over Z, X Z5 X (Z/NZ)*. Applying 6.3.12, we see
that

Y o))

7.25 | Y& gy = (1 - Frob) | YD p(upapp» .

X X 2
(z,,)2><(z11vz)2 ZyxZpx (ZINDE I

Comparing 7.2.4 with 7.2.5, and remembering 6.4.11, we find
7.26  (1—[a, b])S"/’—g(:czp(u)de = 2(1 — ¥(a)o(®))(L — Frob) L(y - o)
which gives

LEMMA 7.2.7. 3(“”_9(:“2,)(@0)) — 2(1 — Frob) L(yp) -

A caution 7.2.8. The moral is that we should not be too quick to forget
entirely the one variable L function L, since when it “applies” it gives a
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more sensitive tool than the restriction of £. For example, the constant
term in the g-expansion of L is the highly non-trivial Kubota-Leopoldt p-adic
Dirichlet L-series, for abelian extensions of Q. The passage to £ by applying
(1 — Frob) obliterates this constant term!

7.3. Useful L£-identites. These are all immediate consequences of the
definition (7.1) of £, and the properties (6.4.7-18) of xy. We list them for
ease of reference.

7.3.1 (transformation under G(N)) [a, b]&(x, f) = ax(a, @)&(x, [b]f) ;
X', v) = 1y, )
S, v) = f(v, u) ;
7.3.3 (action of N6) N6 Ly, f) = L=y, 1) ;

7.3.4 (moments) LN pr [) =O*,; fork,r=0;

7.3.5 (g-expansion)
«Q(X, f) = Eng1qn2n=dd’(X(d’ d')f(d’ d') - X(_dr _d')f(_d’ _d'))
(where 7 is extended by zero to all of Z, X Z,) .

7.3.2 (functional equation) £(x, f) = £, f*), where

Chapter VIII. p-adic L-functions for quadratic imaginary
fields where p splits

8.0. The p-adic analogue of Damerell’s theorem.

8.0.1. We return to the situation of 4.0.1. Thus K is a finite extension
of Qand (E, w, B) is a I'(N)**"-test object over K, such that E has complex
multiplication, which we assume defined over K. The action of End (%)
on H(E, Q%) allows us to view End(E) as an order in a subfield K, C K,
which must be quadratic imaginary over Q. The non-trivial automorphism
of K, is written a—&. Given an element @ € End(EF) C K, C K, we denote
by [«] the corresponding endomorphism of E, but think of « itself as an
element of K, K. Thus [a]*(w) = aw.

Now choose any place p of K which satisfies the following conditions:

8.0.2. (FE, w, B) has good reduction at p, in the sense that there exists a
L(N)**-test object over the ring O, of p-integers in K which gives (E, w, B)
by extension of scalars O, — K.

8.0.3. Thecurve E has ordinary reduction at p. (This is equivalent to
the hypothesis that the rational prime p under p splits completely in the
multiplication field K,.)

If we choose such a p we can pass from O, to its completion @p. We have
a corresponding inclusion of the ring of true modular forms into the ring of
p-adic ones:
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8.0.4 R(K, T(N)=i®) ¢ R*(K,, T(N)=')
= R'(Z,, I(N)"*)® K, c GV*(Z,, (N ® K, .

The algebra Z acts on GV‘@IZ’, (cf. 5.9), but does not act stably
on the sub-ring R*(K, ['(N)*'*). As explained in 5.10, an element of
GV*(Z, [(N)***) has a walue, in O, on the test object (E,w, 8), and
therefore any element of GV* IZ',, has a value, in K,, on (E, w, B).

Suppose we also choose a complex embedding K =>C. The inclusions
8.0.4 are the p-adic analogues of the inclusions (cf. 4.0.3),

8.0.5 R(K, T(N)*"*) c R*(C, [(N)*'*) < C*(GL*/T(N)) .

The action of Z on GV*(Z,, [(N)**)® K, not respecting R*(K, T(N)=®)
is the p-adic analogue of its action on C°°(GL+/F(N)), not respecting
R'(K, NG )”‘”‘). For complex multiplication curves, the analogy is perfect,

as we shall see below.
Let F' e R¥K, T(N)™'*) be a true modular form defined over K, and let

Z € Z be an element of Z. Let us denote by
8.0.7 (2ZF), e GV*(Z, T(N)"*) ® K,
the image under Z of F, viewed as itself lying in GV*(Z,, (N )“‘”‘)@Iﬁ,,
using the Z-module structure 5.9.3. Let us denote by
8.0.8 (ZF)o~ € C*(GL*/T(N))
the image under Z of F, viewed as itself lying in C°°(GL+/F(N )), with the
Z-module structure 1.6. Let (w,, ®,) € GL* represent the test object (E, w, 8)¢
(cf. 4.0.2). We have already proved (4.0.4) that the complex value
(ZF)o~(w,, ,) lies in K, and that, considered as an element of K, it is inde-
pendent of the choice of the embedding K+ C.

COMPARISON THEOREM 8.0.9. With hypotheses and notations as above,
for any place p of K satisfying 8.0.2 and 8.0.3, the value

(ZF)(E, », B) e K,
in fact lies in K, and, as an element K, it is independent of the choice of
p satisfying 8.0.2 and 8.0.3. This common value is mone other than the
“complex” value
(ZF )e=(®,, @)

for any embedding of K< C.

Proof (compare that of 4.0.4). By linearity and 1.6.3, we may assume

that the operator Z is a monomial S®gig;D*H°. The operators H, D, g,, and
g; are stable on R*(K, T(N)*'**) in both the “classical” and the p-adic actions,
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and when restricted to R*(K, T'(N)*"), they act the same in both the classical
and p-adic actions. So replacing F by g¢lg;D*(k*F') € R¥*ortk(K, T(N)*t2),
we may assume that the operator Z is a power of S, say S". Then

(ZF)., = S*F € C*(GL*/T(N))

(ZF), = P"F e GV*(Z,, [((N)""*) R K, .

The assertion of the theorem is essentially tautologous for F' itself, so
we arereduced to “comparing” Pand S. It is at this point that the hypothesis
“complex multiplication with good and ordinary reduction at »” will be used.

We have already seen (4.0.6-7) how to compute the value of S on
(E, w, B)¢: simply choose any [a] € End(F) with @ ¢Z, and any non-zero
vector ve Hpx(E/K) such that [@]*(v) = &v. Then in terms of the basis
o = dx/y and 1 = xdx/y of Hix(E/K), the cohomological expression for S is

_ {v, Por
8.0.11 S((E, w, B)c) = 12m .

What about P? After the extension of scalars K= K,, the ¢*® power

Frobenius endomorphism F', (¢ = #0,/p) operates on

HinE®8,/0,)® K, = Hi(EIK) ®« K, ,
with distinct eigenvalues, one a unit a € Z;, the other g/a. If we choose

a non-zero vector u e Hjx(E/K)® K, lying in the (unit) a-eigenspace
U,C Hix(E/K)® IZ}, we have the cohomological formula (cf. 5.10.5)

8.0.10 {

QY — {u, 77>DR
8.0.12 P8, 0, HR) = 1288 Don

So it remains only to see that the vector v figuring in 8.0.11 can serve as
our %. This results from the following lemma, analogue of 4.0.7.

LEMMA 8.0.13. With hypotheses as above, the subspace
U, N Hyx(E/K) € Hio(E/K)
18 nom-zero, and is independent of the choice of place p satisfying 8.0.2-3. In
fact, for any [a] € End(FE), it is the &-eigenspace of [a]* on Hye(E/K), and
for any embedding K = C, it coincides with the antiholomorphic subspace
H"(Ec) N Hix(E/K).

Proof. Let p, denote the place of K, induced by p. It is thus one of the
two places of K, which lie over p. As a prime ideal in O, b, may not be
principal, but certainly its A* power (2 = class number of K,)is. Let 7€ O,
be a generator of (p,)*. The element 7 may not lie in the order End(E) < Og,,

but there exists an integer f =1 (the conductor) such that End(E) = Z +
SOk, So we can consider 7 as an element of End,(E)® Q, and we can speak
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of its reduction mod p as an element of Endy (E ®@’ F,) ®,Q. According to
complex multiplication theory, some power ©" of 7 is equal to some power
F? of the Frobenius endomorphism F, of E ®@’ F,: the equality takes place
in End; (B ®0, F,)®Q. Clearing denominators, we find an equality of
endomorphisms

8.0.14 fn~ = fFy for some integers f, n, m = 1.

The endomorphism F', of Hje(E/K)® K, had two distinct eigenvalues,

a €Zy and g/a. Let

Hix(BIK)QK, = U, U,
be the corresponding decomposition into eigenspaces (U, the unit root
eigenspace). Then f(F,)™ respects this eigendecomposition, it acts as fa™
on U,, and as fg™/a™ on U;. Thus U, is the eigenspace of f(F,)™ correspond-
ing to the eigenvalue of f(F,)™ of smaller ordinal.

The equality 8.0.14 then allows us to characterize the intersection
U,N Hix(E/K) as the eigenspace of [fz"] on Hpr(E/K) whose eigenvalue
has smallest p-adic value. The eigenvalues of [f7"] on H}z(E/K) are fr*
and f7" respectively; p-adically, 7 is a power of a uniformizing parameter,
while 7 is a p-adic unit. Thus U, N Hiz(E/K) is the fT™-eigenspace of [fz"]
on Hix(E/K). Since fn" ¢ Z, we have K, = Q[f7"], and hence U, N Hjz(E/K)
is also the @-eigenspace of any [a]e End(E), o ¢ Z. The final assertion of
the theorem is just a reminder of what we already proved (4.0.7). Q.E.D.

8.1. Concrete applications; the G, g ;.

LEMMA 8.1.0. Let (A, B) be a pair of integers satisfying A+ B=1,

B <0, and f a K-valued function on Z/NZ X Z/NZ. The C* modular form
¢ 5s constructed in 3.6.5 “corresponds,” via 8.0.9, to the p-adic modular
form G* 5 ; constructed in 5.11.9.

Proof. If B=0, and A+2, we have G%;,;=G% 5 is a true modular
form belonging to R4(K, ['(N)***). If B=0and A=2, then G5\ ;and G}, ; are
the sum of a common element of R*K, I'(N)****) and of a common K-multiple
of S (resp. P) (cf. 3.6.9, 3.6.13 and 5.7.13). If A + 2B=1 and B < 0, then

A B,f — (NW) B(GA+2B() f) by 4.1.1
B = = (NO) 2(G 4425,0,7) by 5.11.13

while if A +2B=<1, A+ B=>=1, we apply the functional equation (3.6.7,
5.11.12) to obtain

8.1.1 i ifA+2B=1,B=<0,

8.1.2 { EIB = GA 1-4—B,ft = (NW)A+B—1(G —A- zBoft)

GA,B,f = GA,l—A—B,f‘ = (NB)‘HB 1(Gz—A—zJ.ﬂz,o,f‘) .
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Since the p-adic operators 6 and P correspond to the C” operators W and S
under 8.0.9, the result follows. Q.E.D.

COROLLARY 8.1.3. With the hypotheses and notations of 8.0, we have
an equality in K between the “complex” number G4 5 :((E, @, B)) and the
“p-adic” number Gz ;((E, ®, B)@b)» whenever A+ B=1, B0, and f 1s
a K-valued function on (Z/NZ) (cf. 4.1.6 for the explicit transcendental
formula for G35 ,((E, w, B):) in terms of “the” period Q and a period
latticeC K,.)

8.2. Interlude: a minor compatibility.

8.2.0. Up to now, we have worked exclusively with arithmetic, rather
than natve, level N structures, even when N = N, is prime to p. The chief
benefits were an irreducible moduli problem, and the attendant pleasures of
level-N g-expansions with Z coefficients. However, when we study complex-
multiplication elliptic curves via their period lattices, the notion of arithmetic
level N structure appears much less natural than the naive notion. Strictly
speaking, the arithmetic notion remains reasonable provided that all the
primes dividing N are split in the multiplication field. But this last condi-
tion is first of all highly unnatural in a p-adic theory, and secondly, even
the simplest examples, such as Q(7), show the practical need for considering
worse N’s (N = 4 for Q(¢) arises naturally, cf. [15]).

8.2.1. As we have already explained in 2.0, once we are given a naive
level N structure a:(Z/NZ) ~ yE, we can deduce from it both a primi-
tive N root of unity det(a), and an arithmetic level N structure
B.(det(a)*, m) = a(n, m).

An isogeny 7w: E— E' of degree prime to N, @ induces an isomorphism
~E = yvE'. This allows us to define a naive level N structurea’ = 7-a on E":

44 T
8.2.2 (ZINZY — yE =5 yE'
o’ =qna

This construction does not preserve determinants, but rather
8.2.3 det (ma) = det ()5,

Compatibility 8.2.4. Let B be a p-adic ring, N, =1 an integer prime to
p, (E, @, @) a trivialized T'(N)™*"° elliptic curve over B, and (E, ¢, B,) the
trivialized I'(N)*"** curve over B deduced from (E, @, @) by the construction
a— B,. Letw: E— E' = E/p~'(s,) be the projection, let (B, @' = poF, (B.))
be the Frobenius transform of (E, ¢, B.). Then
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8.2.5 (Bo) = Bra
i.e., under the construction a+ B,, the operation a —x -« goes over into
the operation S+ B’ defined by Frobenius.

Proof. By definition, 78'({, 0) = B(¢, 0), and B'(1, m) = xB(1, m). Since
» = degw = nx is prime to N,, this first equation can be rewritten pB’'(¢, 0) =
nB(E, 0), or, better yet, B'({*" ", 0) = #B(¢, 0). Thus B'((%c", m) = nB(L, m).
Taking { = det (a)", this becomes 5'(det(za)*, m). When B is 8,,

7B(det ()", m) = ma(n, m) = B.(det(ze)", m) . Q.E.D.

8.2.6. A final word. For the rest of this chapter, any “z” occurring in
a formula is 3.1415. . ..

8.3. The setting for the L-function: a review of the relevant class-field
theory (cf. [32]). Fix
a quadratic imaginary field K,, given with complex embedding
K,=C.

a prime ideal pC Oy, of norm p (i.e., we assume that p splits in
K,, and we choose one of the primes lying over it, the other
being p).

an integer N, = 1, prime to p.

We will consider triples (M, ¢, @) where

McCK, is an invertible O -module, i.e., a fractional ideal of K,,.
# is an isomorphism Q,/Z, ~ .., ™" M/M (such ¢ exist because
p is unramified and of norm p).

a is an isomorphism (Z/N,Z)* ~ (1/N,)M/M.

Notice that if A < Ok, is an integral ideal which is prime to N,p, then
the natural inclusion O,, C U™ may be tensored with M to give an inclusion
M c UM which induces isomorphisms

J U.p"M/M =, Up A MAM
8.3.3 (%OM/MZ_, -l%r;s)l-lM/%t—lM.
If we compose ¢ and « respectively with these isomorphisms, we obtain
composite isomorphisms '

8.3.2

S‘é -
Q,/Z;, =5 p"M/M =5 U praun MU M

T2

8.3.4
2. __1__ _— _Lgl—lM %I—lM .
(Z/NZ) N, M/M N, /

A la
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The construction (M, ¢, a)+— (A M, A 'p, A 'e) is a multiplicative action
of integral ideals prime to N,b on the space of all triples (M, ¢, «).

For any integral ideal 2 of K,, we let K(%) denote the corresponding
ray class field of conductor A over K,, and write simply K for the Hilbert
class field. We will be particularly interested in the field U, ., K(N;p"), which
we denote simply K(N,p*). According to the theory of complex multiplica-
tion, any triple (M, ¢, @) determines (a complex embedding of) the field
K(N,jp~) as follows: Consider the complex elliptic curve C/M, which is
endowed with a Iy (p~)**"e-structure ¢, and a I'(N,)**'">-structure «. Then
K(N,p™) is the smallest overfield (in C) of K, over which (C/M, ¢, &) can be
defined.

More precisely, consider the sub-ring of C generated by the values of
all the modular functions

8.3.5 Fe Un;lRO(OKO[]-/NO], I‘(No)ns.ive n I‘oo(pn)naive)

on the complex test object (C/M, @, «). This ring is the ring of all “integers

outside of N, p” in the field K(N,p™). It is the smallest sub-ring of C over

which there exists a I'(IN,)™*!"® N Ty(p™)**!**-elliptic curve (E, ¢, @) plus an

action of O, which gives back (C/M, , a) after extension of scalars. Of

course the embedding K(N,p™)<=>C depends upon the choice of triple (M, , «).
The Artin symbol provides a multiplicative homomorphism

{integral ideals of K,, prime to N,p} — Gal ((N,p")/K,) ,

8.3.6 9 (K(Ng:[“)/Ko)

whose image is a dense subgroup of Gal. If
Fe Un21R0<®K0[N :\ F(N )nalve n Foo(p )naive) ’
then the action of Galois on its value F(C/M, ¢, @) is specified by the formula

8.3.7 FCIM, 3, )\ ) = F(C/UM, A5, Aar) .

8.3.7.1. If the ideal % is principal, say A= (a) with a € O, prime to N,p,
then (UM, A 'p, A*a) maps isomorphically by “multiplication by a” to
(M, ap, ac). Notice that the “a” in a is the image of @ in (@a)x o~ 7%, while
the “a” in aa is the image of @ in (Og,/NOk,)*. Therefore
8.3.8 FC/M, 3, ) = F(C/M, ap, ac)

3. , P, , 4P, .

If we think of Z} :_',(@5)* sitting as the subgroup (1, ---, 1, p-units at b,
1, -..,1,-.-) of the ¢deles of K, then norm residue symbol defines a
homomorphism

Nov°°)/Ko
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Z; ==, (6;)" — Gal(K(Nyp~)/K,)
a+——[a]

8.3.9

such that, for F as above,
8.3.10 F(C/M, ¢, )1 = F(C/M, " 'o, @) .

8.3.11. Now let us choose a place p., of K(N»™) lying over p, and denote
by O,_ its valuation ring. The decomposition group at p is topologically
generated by (K(N+W)/K°>, the unique automorphism of O,  inducing

absolute Frobenius on the residue field. Each triple (M, ¢, @) provides the
following:

8.3.12. An elliptic curve E, definable over KN O,_, with an action of
O, such that its representation on H’(Q') is the inclusion Of = K. Over
0,. N K(N,), E, acquires a ['(N,)*'">-structure a. We fix a choice of model
of E,over KNO,_.

8.3.13. Because (p) = pp in Ok, with p and p relatively prime, there is
a canonical splitting over O, N K of the p-divisible group of E, into the
product of its p and p-divisible groups.
U.Ker(p*) = U. Ker(p") x U.Ker(p") .
8.3.14. We are given an isomorphism of p-divisible groups over O,_,
P Q,/Z, =, U Ker (‘pn) = Un py"M/M .

8.3.15. We have an isomorphism of p-divisible groups over O,_,

@: Un v M/M = U, Ker (i) == pt,..
obtained as the Cartier dual of 8.3.14 via the ¢, Dpairings, so that

P X @i e X Qy/L, 25 U, Ker (p”) induces an arithmetic level p*-structure
foralln = 1.

It will also be convenient to apply the functor Hom(Q,/Z,, _) to these
last two isomorphisms, obtaining isomorphisms, still noted ¢ and o,
8.3.14. bis @:Z, =~ M, ;
8.3.15. bis p: M, =~=, T)(G,) = lim ftn ,
where M; and M, denote the p-adic and p-adic completions of M. Let us now
pass over to O,_, the p-adic completion of O,_. Then the isomorphism

8.3.16 p: U, Ker(p*) — ¢,

becomes equivalent to a trivialization

A~

8.3.17 @: E‘M -~ @,,, over O,

oo M
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So we also have at our disposal a magic differential p*(dT/(1 + T)) on E,,
defined over @)%. It is surely not defined over O,_, so let us choose

8.3.16. A unit ¢e (O, )" such that the differential w = cp*(dT/(1 + T))

is defined over O, N K (this makes sense because E,, is itself defined over
0,. N K, cf. 8.3.12).
Since the differential w is defined over O, < K(Np~) < C, we can extend

scalars and compare w. to the standard differential dz on C/M. We can
write

8.3.17 w; = Qdz for some Qe C*,
and hence the period lattice of (£, w:) is QM.

To summarize briefly: the construction
8.3.18 (M, 3, &) — (B, @, B.) over O,_
allows us to attach to any triple (M, ¢, @) as in 8.3.2 a trivialized T'(N,)*i*
curve (Ey, ¢, B.) over @,m. The ring @,m is Galois over Z, = @J,ﬁ, with Galois
group topologically generated by the Artin symbol (K—(li"g—)l&) The
trivialized T'(N,)*"*® curve deduced from (E,, ¢, 8.) by extension of scalars
0,.0,. by this Artin symbol is precisely the one attached to the triple
™M, p'p, p'a): symbolically

(K(Novw) Ko)

8.3.19 (EM, P, Ba) (E 1y ‘p @) Bv“la)

Notice also that (E,-i, p'@, B,-1.) is just the Frobenius transform of
(EM) @9 1801)’

(K(Nopwnx(,) -

8.3.20 (Ev @, Ba) (B 'y B2) -
Given an element F' € V(Z,,, I‘(No)“‘“‘), we will abuse notations and write
8.3.21 FM, ¢, B.) & F(E,, , B.) -

Compatibility 8.3.22. For any Fe V(Z, T(N,)*"*"), the action of
Gal (@,w/Z,,) on its value F' (M, ¢, c) is given by the formula

5°°)IK)

FM, o, a) > =FOp'M,y'9, pa)
= (Frob F)(M, ¢, ) .
Proof. The first equality results from 8.3.19 and the compatibility of

F with extension of scalars, the second from 8.3.20 and the definition of
Frob F.

8.3.24. Another remark, which we will need, is this. The trivialized
T(N,)*** curve attached to (M, $, @) carries a canonical I'(p~)*'"*"-structure,
as explained in 8.3.15. In 5.6.4, we constructed an isomorphism

8.3.23
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V(Zp, l“(prNo)nrlth) :} V(Zp’ P(No)arlth)

which was G(IN) =~ G(N,) equivariant and preserved g-expansions, by trans-
posing a physical construction (E, ¢, 8) — (E™, ™, ') which amounted
to iterating the Frobenius construction » times, and observing that E" =
E/p,, picked up a canonical subgroup Z/p’Z (the kernel of the dual of the
projection map E— E”). When (E, ¢, 8) comes from an (M, §, @), this
construction just amounts to applying p r times, and remembering that the
curve attached to (b™"M, p~"¢, p~"a) carries a canonical I'(p™)*'** structure
for all », in particular for n = . Thus we have:

LEMMA 8.8.25. Suppose we are given an element F € V(Z,, T(p"N,)*),
and a triple (M, p, @). Let F'™ e V(Z,, T(N,)*™*®) be its image under the
canonical tsomorphism 5.6.4. Because the curve attached to any triple
(M, ¢, @) carries a T(p*)*"*-structure for every r, both F and F™ have
values, in @,w, on (M, ¢, @), and they are related by

8.3.26 FO(M, $, @) = F(b™" M, p" ¢, p"a) = (Frob) F(M, ¢, @)
|

o (K(Noi;“’)/K)
F(M’ Ps C() [
(This lemma will be particularly useful when we try to calculate
L()x..¢, f) where ¢ is a variable character of finite order of Z; x Z.)
Let us close with another compatibility (compare 8.3.10).

LEMMA 8.3.27. For F e V(Z,, T'(p"N,)*"*), and (a, b) € G(N,), we have
(la, BIF )M, ¢, @) = F(M, o™}, ao(b, 7)) .

Proof. The only point is that on the curve (E,, ¢, GB.) attached to
(M, ¢, ), @ is the dual of ¢, and a™'p is indeed the dual of ¢7'¢p. Q.E.D.

8.4. The L-function associated to (M, p, o).

8.4.0. We retain the setup of the previous Section 8.3, and fix a triple
(M, ¢, ®). We will need to work over a much bigger ring than @,m, which,
being absolutely unramified, contains almost no p-power roots of unity and
consequently receives very few characters of finite order of ZX x Z;. Solet
us choose an algebraic closure K*¢° of K(N,~), a complex embedding
K*&°! = C which induces on K(N,p”) the one provided by (M, #, @) and a
place psc of K*'¢° which lies over the place p.. of K(Np~). We will take
for W the p-adic completion of the valuation ring of p=&°, It will also be
convenient to choose an automorphism ¢ of K*'¢° which lies in the decom-
position group of px&°', induces absolute Frobenius on the residue field at




p-ADIC INTERPOLATION 541

pLEe!, and fixes all p-power roots of unity in K“¢<. Notice that o auto-
matically induces the Artin symbol (K_@ﬁ;__)[&) on K(N,p).

8.4.1. Evaluation at (M, ¢, @) gives a homomorphism
8.4.2 V(W, T(Ny)="t) — W .

By composition, p§;” and py, give rise to W-valued measures
LM, @, @) and py (M, ¢, @), and our two variable L-function £(y, f)
gives rise to a W-valued L-function

8.4.3 LG, fi M, $, ) 2 Ly, )M, p, @)

which is just the Mellin transform of the measure py (M, ¢, @).
We propose to give explicit “transcendental” formulas for all values

£(GXA:, ly f; M) é) a')
where k, 1 = 0, and ¢ is a character of finite order of Z; X Zj.

Remark 8.4.4. By evaluating at any trivialized T'(V,)**"** curve over W,
we could define an associated L-function. But it is only in the complex
multiplication case that we have any idea of what this L-function is!

8.5. Explicit formulas: the method.

8.5.0. The method is based on a “changing level” trick. Suppose we
have an integer N, =1 prime to p, a W-valued function f on (Z/N,Z)?, a
continuous W-valued function (2, y) on Z, X Z,, and a locally constant
W-valued function ¢ on Z, X Z,. Then for >0, ¢ is constant on cosets mod p".
For any such 7, we can consider ¢ as a function on Z/p"N,Z X Z/p"N,Z. This
possibility allows us to consider various integrals:

S"',’f(.%‘, y)é(x, y)f(fu,, p)dﬂx’zéb)
8.5.1 < =] V(W, P(No)arith) ,
S“/f(w, y)e(w, y) f(w, v)dpy,

Sq}r(x, Y) f (%, v)e(u, v)dpsy)

8.5.2 \ e V(W’ F(prNo)arith .

vt 00 0, et o1t

(The notation is slightly abusive: the (a, b) in du§;" is the element (a, b) of
G(N,) = Z; xX(Z/N,Z)", while the (a, b) in d) is the corresponding element
of

G(N) C Z; x (Z|p'NZ)* = L3 x (Z|p"Z)* X (Z|N.Z)" ,
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whose expression in triple coordinates is (@, a mod p", b).)

LEMMA 8.5.3. Under the isomorphism (5.6.4) between V(W, T(p"N,)*")

and V(W, I‘(NO)“‘“‘), the integrals 8.5.2 correspond respectively to the
integrals 8.5.1.

Proof. It suffices that they have equal g-expansions. For -y, and gy,
this is obvious from 6.4.9. For g0’ and p4;" this is obvious except for the
constant terms, by 6.1.3. On the other hand, for fixed ¢, f, it suffices to
check for all ¥’s of the form «*y', with k=0, 1 = 0. Then both integrals
are of weight £ + [ + 1 under the action of the subgroup (1 + p"Z,) X
{1} © G(N), so their difference, a constant, is necessarily zero. (In view of
the explicit formula 6.2.10 for the constant term, this proves a similar, but
in that case obvious, invariance property for the Kubota-Leopoldt measures
pxt, onZ, x Z/NZ as N varies.) Q.E.D.

COROLLARY 8.5.4. With hypotheses as above, let € be a locally constant
W-valued functin on Z, X Z, which is supported in Z; x Z;. Let r > 0 be
such that ¢ is constant modulo p*. For any integersk =0, 1 =0, and any
W-valued function f on Z/N,Z X Z|/N,Z, the element

8.5.5 20, ,,.; € V(W, T(p"N,=*)

corresponds, via the isomorphism 5.6.4, to the element
8.5.6 Sx"y’ &(x, ¥) f(u, v)dtty, € V(W, TNy .

In case ¢ is a character of Z; X Z; of finite order, extended by zero to all of
Z, x Z,, this last element is by definition

8.5.7 L1y ) € V(W, T(N) ) .

Proof. The equality of 8.5.6 and 8.5.7, when ¢ is a character of finite
order, is put just as a reminder. So let us prove that 8.5.5 and 8.5.6 corre-
spond. Except possibly for their constant terms, they have the same
g-expansion, the coefficient of ¢ being

8.5.8 Y. _..(dd)e(d, d)f(d, d) — (—d)(— d)e(—d, —d)f(—d, —d")).
(Since ¢ is supported in Z; X Zj, this vanishes identically unless (p, n) = 1.)

Since both are of weight k¥ + [ + 1 under the subgroup (1 + p"Z,) X
{1} € G(N,), their difference, a constant, is necessarily zero. Q.E.D.

8.6. Explicit formulas: application of the method. If we combine 8.5.4,

in the case of a character, with 8.3.25, we get an explicit formula for
$(8Xk,b f; My é’ a)'
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THEOREM 8.6.0. Let k, | be non-negative integers, and f a W-valued
Junction on (Z/N,Z)*. Let e be a W-valued character of Z} x Zx which is of
finite order. Let r =1 be an integer such that € is constant on cosets modulo
. Denote by ¢f the function on (Z/p"N,ZY defined by (u, v)+— &(uw mod p",
v mod p")f(w mod N,, v mod N,), where it is understood that &(u, v) =0

unless both u and v are prime to p. Then for any triple (M, ¢, @) as in 8.3,
we have the formula

8'6°1 £(8Xk,ly f; My éy a) - 2(Dk,l,sf(’pwrM9 p—ré’ p—ra) .

To use this effectively, we need the following o-linear version of 8.3.26.

LEMMA 8.6.2. Let F'e V(W, T(p"Nyy™') == V(Z,, T(p"N)"*) ® W and
denote by F° the effect of applying 1 ® o to F. Then

8.6.3 o(F(M, p, @)) = F°(b"' M, ™' ¢, b ) .

Proof. For Fe V(Z,, T'(p"N,)*"**), we have F° = F, and the values lie
in O,_, on which ¢ is the Artin symbol of p, so we are only restating part of
8.3.26. The result follows for any F because both sides are o-linear in F'.

Q.E.D.

Notice that as o fixes p-power roots of unity, as well as »p — 1* roots

of unity (these lie in Z,), it fixes our character . It may move the function f.
Thus 8.6.1 yields

8°6°4 $(5Xk,19 f; M9 éy a) = 2(Dk,l,sf(p_rM9 p—ré, p—ra)
= 20"(®y1,.10-"(M, @, @)) by 8.6.3.
To continue the computation, we will view @, , .;.- as a “p-adic modular
form of weight & + I + 1” in the manner of 5.10.3. Let us denote by By the
canonical I'(p”)*™** structure (™' X ¢ restricted to g, x Z/p"Z, cf. 8.3.15)
carried by the curve E, attached to (M, ¢, ). We readily compute
8'605 (Dk,l,efa_r(Mr ér a) = (Dk,l,sf”_r(EMy Py B;o X Ba)
= (Dk,l,ef"_r(EAH ¢*(dT/1 + T)’ B; X Ba)
= (Dk,l,ef"_r(EMy c_lwy B% X Ba) (by 8.3.16)
= ck+l+1(Dk,l,ef‘7_r(EMy , :85 X :804)
= ck+l+1Gk+,+l,_.l,s,-a—r(EM, , B‘; X Ba) (Cf. 5.11.10).
8.6.6. As already remarked, both the curve E, and the differential w
are defined over O, N K(N,p"). To fix ideas, let us suppose that the function

S (Z/NZ)— W assumes algebraic values, and let L be the finite algebraic
number field obtained by adjoining to K(N,p") the values of ¢f and the p"N,
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roots of unity. Then W N L isa valuationring in L over which (E, @, 83, B.)
has ordinary reduction, and the field L comes equipped with a pre-chosen
(8.0) complex embedding. So we may apply 8.0.9 and its Corollary 8.1.0 to
Griisr—1,ero-7(Ey, @, By X B,); it lies in L, and in L it is equal to the complex
number of the same name.

8.6.7. The period lattice of (Ey, w). is QM (cf. 8.3.17). The partial
Fourier transform P~'(ef° ") is a function on gy ,r X Z/N,p"Z, which by
means of By X B, becomes a function on the group of points of order p"N,
on (E,)., i.e., it becomes a certain function g on M/p"N,M, which
we will determine explicitly below. The transcendental expression for
2Gii1i1,—1,er0-"(Ey, @, B¢ X B,) is then (cf. 4.1.6)

(— 1)+l (p7 N+ ot _g(m)(m)'
8.6.8 a(M) Q-1+ (E,’:ig’ m"“N(m)")

’
|s=0

a complex number which lies in the number field L, and whose p..-adic expres-
sion is
1, . .
8.6.9 Wa (LCxe s 1 M, p, @) .
8.7. Truly explicit formulas, when p is principal and M is prime to

p. For the remainder of this section, we will make the following hypotheses
8.7.1-4.

8.7.1. The invertible O, module M C K, is prime to p, in the sense that
in K,Q®Z,, we have MQQ Z, = Oy, ® Z,.

Thus M ® Z, is a ring, and the decomposition M & Z, = M, X M; expres-
ses M X Z, as a product of rings, each of which is canonically Z,.

8.7.2. The given isomorphism ¢: Z, ~ M; (cf. 8.3.14 bis) is the unique
ring isomorphism.

If we compose the unique ring isomorphism Z,~ M, with the given
(8.3.15bis) isomorphism ¢: M,~T,(G,), we obtain an isomorphism Z,~T,(G.),
under which the element 1< Z, goes to an element (, ---, {,, - ++), with {, a
primitive p°th root of unity. Given a character ¢, on (Z/p°Z)*, we denote
by g(C., €,) the Gauss sum

g(Ca’ 81) = e En mod pael(n)cgn .

1
D (n,p)=1

We will systematically use the equality M, = Z, (in the p-adic completion of
K,) to view characters of Z; as characters of M. We will then ues the
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composite ring isomorphism

M®Z, =M, x M, =~, M, x M,
(m,, my) —— (m,, M,)

to transport characters of Z; x Z; (extended by zero Z, X Z,) to M Q Z,.

Thus given two characters ¥, and ¥, of Z}, the product character x,(x)x.(¥)
becomes the function on M R Z, whose restriction to M is

m —— 1(m) (7R) .
8.7.3 The ideal p of Ok, is principal .

Our previous choice of a model E, for C/M over K N0, determines
a canonical generator » of b, as follows. Because p is principal in K, it
splits completely in the Hilbert class field K, and hence the residue field of
KnNno,, is F,. So the special fibre £, @ F, is an ordinary elliptic curve over
F,, with complex multiplication by O.,. The numerator of its zeta function is
(1 = AT)1 — XT), with » and X in O, and one of them, say \, a generator
of p. From the p-adic point of view, the unit root is then X, so that the unit
¢in @,w of 8.8.16 satisfies ¢/c’ = X (cf. 5.4.4). To avoid confusion, we will
denote by (A) € Z} the quantity “\ viewed p-adically” equal to ‘A viewed
p-adically.”

Given a function f on Z/N,Z x Z/N,Z, we denote by g(m) the function

on M/N,M which, when transported to gy, X Z/N,Z by the composite
isomorphism ®),

iy % ZINZ = MINM

LR e

Z/N.Zx Z/N,Z —’-:—,’ 7VLM/M

0

(det(a))*1>n

b

becomes the inverse partial Fourier transform P7'f of f:
Pif=g-®.
8.7.4. The function g on M/N,M transforms under (Ox,/N,Ox)* by a
W-valued character p:
g(am) = p(a)g(m) for a € (Ok,/NOx,)* .
8.7.5. Formulas (under the hypotheses 8.7.1-2-3-4). Let k, | be non-

negative integers, ¢, and ¢, W-valued characters of finite order of Z}, and
€ = &,(x)&(y) their product. Then we have the following transcendental
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formulas for the algebraic number
i e N, B, @)

8.7.6. Case I: ¢, ¢, both trivial:
(No)"‘“(— 1)k+l+1 k! (1 _ Ak )(1 _ AL p(x) >< E g(m)m’ )

a(M)le+l+1 Xl+1p(x) Xk+l %ig{ mk+1N(m)a
8.7.7. Case II: €, non-trivial, exact conductor p*; &, trivial:

(NN 8 DO (—) il ) (O
&(No)( ) pazsl(<7\la>)p(>\la) a(M)’QkH‘H( 61(<>\l>)7\'k+1>

1 (S Y

mean &(m)m* ™ N(m)*

8.7.8. Case III: ¢, trivial, &, non-trivial:

(—1)F gl A (m)e(m)m'
N+ (=1) klz 1 — — g 2 )
o e ( N {(n) pOV) NS mF N (m)” )
8.7.9. Case IV: ¢, ¢, both non-trivial, ¢, of exact conductor p*:

(NN 9(Ce, 81)(7\'a)k+1+1 (— 1)+l
) e O e )

(g pmetmm )

men &(m)m* T N(m)*

1s=0

.
|8=0

Remark 8.7.10. These formulas can also be obtained by using 6.4.15 to
reduce the calculation of a ®* to that of several ®’s. An advantage of this
method is that the Euler factors which appear when either ¢, or ¢, is trivial
seem somewhat less artificial. Compare [15], 3.7.3 and 3.8, where this
approach is carried out for the one-variable Eisenstein measure.

8.8. Verification of the formulas of 8.7. Let us use A to recalculate
LYy, [3 M, o, @), beginning again at 8.6.1. We have
8°8°1 ‘Q(SXI:,!’ f; M, é: a) = 2(Dk,l,ef(‘p_rM’ ‘p_réy ‘p_ra)
= 20, .AM, (\)"p, Na) (by 8.3.7.1)
= 20, (E,, N, Barss X Bira)
= 2N T (B, @*(@T/(L+T)), Barsg X Bira)
c k+1+1
= 2(@7;) Grvirr, -1, e (Eyy @, Baryy X Bira)
(compare 8.6.5).

To proceed further, we must analyse the relation between Bury X Bir,
and By X B,. By definition, the latter sits in a commutative diagram
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" ’

8.8.2 PTMIM X B MIM-"Z b MM x pTMjp"M
/%: \Nidition
PR @ MipM
©
incl| © Ny /__\ % pry
4 PR 2
Korny X Z|p"N,Z p’N M/p’NM—-—> M/p"M x M|N,.M
0
inel ® pr \ /
iy X Z[N,Z MINM

. Ny
det(a)*1—>n id
\\ ) /
Z/N,Z x Z/N,Z =% -1\17_M/M
0

The product structure Buny X B, sits in an analogous diagram, with
isomorphisms
Ot ey X LD NI 2, MIp'NM
8.8.3 @i Upr X Z/pL ~, M|p"M ,
® fh, X ZINZ ==, MINM
deduced from Bgry X Bire Barys, and B;r, respectively, as in 8.8.2. They are
related to their brethren @, ®), © of 8.8.2 by the formulas
®(Cy b)) = (L™, (DB
8.8.4 ®wlCE, b)) = N B(y b) (because det (@) = det (V' )),
©ir(DEy b)) + By b)) = Nu®;r(Cyy b) + 9" ®ir (o b2)
We now introduce the functions
hy R on M/p"N.M
8.8.5 e on M/p"M
g on M/NM
defined by
ho© = P (ef) = b o Oy
8.8.6 eo@ = P (e)
g-® = P7'(f).

Just as in 8.6.8-9, the transcendental expression of the £-value involves the
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function A": the algebraic number
r k+1+1
('@TZ) g(eXk, ly f: My éy a)

is given transcendentally as
(_1)k+t+1k! (prNo)kﬂn.l( h(r)(m)(m)l>

a(M) QF+t+ med ket N(m)* /,,, *
PROPOSITION 8.8.8. The function h'® is given in terms of €,, €, and g by

&, (Ny)
() e(D) (W)

where e,(m) 18 the following function:

8.8.9. If e, is trivial, then e, has exact support p" M = \""'M, and

8.8.7

B (m) = - e)(m) e () g(m)

1-L ifmepMm
e(\""'m) = P
=1 if not .

8.8.10. If ¢, ts monm-trivial, of exact conductor p°, then e, has exact
support P M — pt~*M, and for m € M — M, we have

otv-rm) = SO e)

The formulas given in 8.7 now follow by direct substitution of 8.8.8
into 8.8.7. The calculation is left to the reader.
To prove 8.8.8, we begin by expressing %" in terms of ¢ and g.
LeEmMMA 8.8.11. We have the formula
& (N,)
e((D)e( (VD) o(V)
Before giving the proof of 8.8.11, we need two sublemmas.

SUBLEMMA 8.8.12. Ife = &,(x)e,(y) 1s a character of (Z)p*Z)* X (Z/p"Z)*,
extended by zero, the function p~'(€) on p,r X Z/p"Z satisfies

R (m) = e(m)g(m) .

P (e)(Ce, bn) = %Pﬂ(sxc. n)

for any a, b in (Z/p"Z)*.
Proof. This follows immediately from the definition (3.6.1) of P~'(¢).
SuBLEMMA 8.8.13. Given
(&, b) e,y X Z/p"Z and (&, by) € tty, X ZIN,Z ,
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we have

P ND(E, b) + ®(Ce b)) = PHENC, Nby) - PN 97D2)
Proof. Simply compute:

P (N0, b) + B, b))
= P_l(ef)(C1C2, N0b1 + prbZ)
dfn 1

= —:—Ea mod p"N (Sf)(a,, Npb, + p"b.)E,L) "
p"N, °
- ?]anl mod p7 (ef)(Noaq + pa,, Nob1 + prbz)(C1C2)—N001—praz
0 ag mod Ny
N pr]i\f Eal mod p” e(Noa'n Nobl)Ci_Noalf(prazy prbz)CZ—praz
0 ag mod N

= P71 (e)(Cyy Nob)) P ()&, 27D,) Q.E.D.

We can now prove 8.8.11. Write m = Nym, + p™m,, so that the asser-
tion becomes

8.8.14 RO (Nym, + p™my) = ?(o»“%%%&@‘)emm) g0 my) .

We may write

8.8.15 m; = ®;-(£,, b,) mod p”
m, = ®2’(C2, bz) mod No .

Then

R (Nym, + pm,)
= B (N@:lCy b) + 2" @Gy b))

= (O (O b) + By b)) (by 8.8.4)
= P_l(ef)(®(Cu b) + ®(&, bz)) (by 8.8.6)
= P (e}, Nb)PH(f)E:, p70s) (by 8.8.13)
= &) poyey(croa N (VIB)PHF)E, b)) (by 8.8.12
SO O) (&)™, NoOVHB,)P(f)(& p7b:) (by )
= _&N) ___@(croan, Ny, » ', by 8.8.6
YR <7M,»e(@( , No(vb,))g(B(E, 97D,)) (by )
= ——————————el(NO) NO ar b s AT\s2 bz b 8'8'4
SOl <X,>)e( @y, 0))g(N " B®r(Coy D)) (by )

— sI(NO) —T T
= W@(Noml)g(x ™M) (by 8.8.15).
Q.E.D.

LEMMA 8.8.16. The function e(m) is a product function e(m)e,(m),
where
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8.8.17. ey(m) is the p-adically continuous, locally constant function on
M obtained by transporting €, via the given isomorphism ¢: Z,~ M;. So
with the conventions of 8.7, we have e(m) = &, ().

8.8.18 ¢,(m) is the function described in 8.8.9-10.

Proof. Because ¢isa product function ¢,(x)e,(y), P7(¢) is itself a product
function on g,r X Z/p"Z:

P(e)(E, b) = &,(8)e,(b)

where
él(c) = ﬁ:za mod p"‘sl(a)c—a .

The isomorphism @ sits in the commutative diagram

1
PTIX P ,
for X Z|0"Z ——Z> prMIM x p~"M/M —Z p'M/p"M X p"M/p"M
8.8.19 l }
@ mod P* | mod 7
MM {mod ¥7, mod ?) MIpM % MPM.

Thus e(m) = e,(m)e,(m), where
e(m) = E(L) if p'p7H() = m mod p”
8.8.20 {ez(m) = g(b) if p’é)(—b—r> =m mod¥" .
D
The truth of 8.8.17 now follows from this last formula, and the defini-
tion (8.3.14 bis) of{p. To prove 8.8.18, we consider the commutative diagram

the ring isom.

AP
2/~ phyr My
8.8.21 I pf-a U ]p"‘":(l"”’)l"“ .

Z/p°L L p,e —Z M/peM

\\nr—» & P"so”/v

the ring isom.

By transport of structure, the function ¢,(m) corresponds to the funec-
tion &, on - defined above. The assertions 8.8.9-10 become the following

standard facts about Gauss sums (cf. [32], p. 91), whose proof is left to the
reader.
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LEMMA 8.8.22. Let ¢, be a character of (Z/p"Z)*. Then:
8.8.23. For be(Z/p"Z)" and £ € p,», we have

Aoy 10 2
EI(C —gl‘(_'b)‘l(C)'

8.8.24. If ¢, is trivial, then
1-L ire=1
D

GO=9Z1 o=t butl=1
VY
0 ifir=1.
8.8.25. If ¢, is non-trivial, of exact conductor p*, then (L) = 0 unless
€ has exact order p°, and the restriction of & to . is independent of the
auxiliary r = a used to define it.

Chapter IX. Yet another measure, and passage to the limit

9.0. A critique of tty. The measure ft,, while magnificently suited to
g-expansion computations, is somewhat clumsy when it comes to “transcen-
dental” calculations, as we saw in the last chapter, where both the level
“N” and a persistent partial Fourier transform (g) occurred in the formulas
for &%, f; M, ¢, ). In this chapter, we will outline an artifice for correct-
ing these defects, and at the same time “beautifying” the formulas of Sec-
tion 8.7 for £(ex.., 3 M, @, &). The idea is simply to replace the “f” in the
nomenclature by the “g” to which it gives rise, and to divide by &,(N,)N¢*
to get an expression which is “independent of N,.” It is obvious from the
explicit formulas of the last section that this “works” for (M, ¢, @)’s but we
will see that it is a special case of a modular construction.

9.1. Construction of vy. For the rest of this chapter, N denotes an
integer prime to p. We will construct a V(Z,, [(N)™"'*)-valued measure vy
on (Z3) x (Z/NZ)* out of ty, by the following artifice.

Given a trivialized T'(N)™"® curve (E, ¢, a) over a p-adic ring B, and a
B-valued function f on (Z/NZ)*, we can define two new B-valued functions,
P.f and f,,, on (Z/NZY, the partial and the symplectic Fourier transforms,
by (compare 3.2.1, 3.0.1) the formulas

9.1.1 (Pf)n, m) = 37, a v fla, m)det (@)™,
9.1.2 fde, d) = %Eam”f(a, b) det ()** .

Definition 9.1.3. The V(Z,, I'(N)™'*)-valued measure vy on (Z;)* X
(Z/NZ) is defined by
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9.1.4 (S W, 1) f(w, v)va>(E, ?, @)

dfn

2 (|2 Al N, Y)Pu ot 0)dpey B, 2, ) -

The following proposition results from the definition, and the analogous
properties of #, (cf. 6.4.17 and 6.4.5).

PROPOSITION 9.1.5. The behaviour of v, wunder the derivation 6 of
V(Z,, T(N)™™) is given by

9.1.6 o[ i, w7, v ) = (ay@, 1)f @, vidv, .
For a given test object (E, @, @), we have the functional equation
0.1.7 (| vz, 0w, v, )(E, 9, @) = ([4@/N, Ny, v)dvy )(B, 9, @) .

It remains to discuss transformation. The group which replaces G(N)
is the group

9.1.8 H(N) = Z; x Aut ((Z/NZY),
an element (a, g) of which operates on V(Z,, I(N)***) by the rule
9.1.9 (e, 9IFNE, @, @) = F(B, a”'p, aog) .

9.1.10. Given an element b € (Z/NZ)*, we denote by <b) € Aut ((Z/NZ))
the automorphism (b, b7'), i.e., (x, ¥)— (bx, b~'y). Then G(N)<=> H(N) by
(@, b) — (a, <b)), and clearly B.osy = Bao (b, b7).

PRrOPOSITION 9.1.11. Under the action of H(N), we have the transfor-
mation formula

0.012 (a0 v, 0) flw v)dvy = [avias, an)(f o g™)w, )iy -

Proof. For g = {b), this follows from 6.4.10 and the definition of v,. It
remains to check elements of the form (1, g), with arbitrary g € Aut ((Z/NZ)’).
This is proved by a “reduction to the transcendental case” argument similar
to that given in 5.11.16. To carry it out in detail involves introducing a
measure vy on (Z,) X (Z/NZ)* analogous to p{" (to which vy, is related
by the analogue of 6.4.11), and using the “reduction to moments,” 9.1.6,
and 9.1.7, to reduce to checking it for the true modular form

| 2 £ (u, v)dvi € REY(Z,, T(NY™™).
(Zp)2x(2/N2Z)2

We omit the details.

Remark 9.1.12. An alternate proof could be based on the Zariski
denseness of those trivialized I'(N)™"® curves arising from triples (M, ¢, @)
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over variable quadratic imaginary fields in which p splits. The point is
that in the formulas of 8.7 for

et N, 3, @) = (e(o, ey, V)M, , @)

= &(N)N "“SS(% Y& Yy (P f)(u, v)av (M, p, @)
with &, 1 = 0, it is only the function (P;'f)oa™* which enters, so that the
truth of the proposition results from the identity
(Piif)e(aog)™ = ((Piif)og™Y)ea™ for g e Aut((Z/NZy).
9.2. Independence of N. Here are two equivalent descriptions of how

a naive level NM structure a,, induces a naive level N structure «a,.

9.2.1 First: View ay, as <N1M‘ 7/ ) ~, .E

U U
[44
and restrict (% Z/Z )2 _"_‘N/_, B .

9.2.2 Second: View ay, as (Z/NMZ)Y —~, ,,FE and reduce mod N
l red. mod N l mult. by M
a
(Z/NZy ==, E, .

For our purposes, it will be more convenient to work systematically with
the second.

9.2.3. The construction a,,— a, determines an inclusion of rings
V(Z,, T(N)™*) C V(Z,, T(NM™*), F — F, defined modularly by
9.2.4 F(E, ¢, ayy) = F(E, , ay) .
We will drop the ~ notation, and view V(Z, I'(N)™"™) as canonically
sitting inside V(Z, T(NM)™"") as the invariants under the subgroup

I'(N)/T(NM) c Aut ((Z/NMZy) .

Similarly, the map “reduction mod N”
9.2.5 (Z/NMZy: —> (Z/NZYy
gives an inclusion: “functions on (Z/NZ)*’ C “functions on (Z/ NMZ)*’; for a

function f on (Z/NZ)?, we still denote by f the function on (Z/NMZ) given
by (u, v) — f(uw mod N, v mod N).

PROPOSITION 9.2.6. Let f be a function on (Z/NZ):. For any M prime
to p, we have an equality
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9.2.7 e 10f uy )y = [ote, 9)F , D)

m m
V(Zm F(N)naive) cC V(Zp’ I‘(NM)naive) .
Proof. We will use a g-expansion argument. Recall that

V(Zy, TNY™) = V(Zy, TN)I™) @, 2| %, L |

where Z[1/N, {;] means the ring Z[1/N, X]/(¢x(X)), ¢y the N* cyclotomic
polynomial. By the g-expansion principle for V(Z,, ['(N)**®), it follows that
an element of V(Z,, [(N)™!") is determined by its value in Z/\p((q)) XL Z[1/N, 4]
on the test object (Tate (¢”), Pean, Xy: (7, Mm)—L%q™) over Z;(\(q)) Xz Z[1/N, L]
On the other hand, the natural inclusion V(Z,, T(N)™i*) —
V(Z,, T(NM )™"¢) is not compatible with this notion of g-expansion, but
replaces q by ¢* (once Cy and £y, are “normalized” so that ({y,)* = ¢ N). If
we view S«,k(x, Y)f (u, v)dvy € V(Z,, T(N)™") as lying in V(Z,, T(NM)=i™)
by the natural inclusion, its g-expansion is
9.2.8 T O Toae (54N, NP, G, @)

(p,m)=1

1 ’ ’
— SH—dIN, &) Po )(—d, ~d)),
whereas S«/r(x, Y)f (u, v)dvy, € V(Z,, T(Z,, T(NM)™°)) has g-expansion

9.2.9 Y <Krlﬁ V(d/NM, &')(P,,,f)d, d')

(p,n)=1
— < W dINM, —d)(P.,, ) ~d, —d')) .
In fact, the tndividual terms match up, as follows:
0 unless d = 0 mod M

9.2.10 (P.,, )@ &) = MPaN( % , d'> if d=0mod M

when f is periodic mod N (it is the “periodicity < support” duality of Fourier
transform). To check 9.2.10, we may assume fis a product function f(n, m)=
A(n)B(m). Then

(PayySN@, &) = Ayu(d)B(d'), (Pa,Sf)d,d) = Ax(d)B(d),
where
Ayy(d) = Ea mod N M A(a)CHy

9.2.11
AN(d) = Ea mod NA(a’)Cng .
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Because A is periodic mod N, we can write
Asu(d) = (3277 A(@)CF) :’;‘ s
= (0, Ala)Css) 2o, G
0if {5 #+ 1, i.e., if d = 0(M)
Avuld) =3 pry~v= g @)z = MAN< J‘fl) if d=0(M). Q.E.D.

Remark 9.2.12 (compare 9.1.12). This “independence of N is obvious
from the transcendental formulas 8.7.6-9 for values on (M, ¢, @)’s.

9.3. Passage to the limit: definition of the measure v and the modified
L function £,. Given an elliptic curve E over a ring B, we define a
T'(not p)™'*° structure on E to be a compatible system of isomorphisms

9.3.0 ay: (Z/NZy} ~, \E

for all N prime to p (compatibility in the sense of 9.2.2), which we abbreviate
as a single isomorphism

9.3.1 a (L., Zy == 11.., TdE)
dfn ] dfn
oY =5 Tawis(E)
9.3.2. The corresponding moduli problem “trivialized I'(not p)™*'*°

curves” is represented by a ring V(Z,,, ['(not p)““""), which is none other
than the p-adic completion of the ring

9.8.3 U»r V(Z,,, I‘(N)nalve) .
(p,N)=1

The group Z; X Aut((inm)z) operates on V(Z,, T'(not p)™'*) by the rule
9.3.4 la, g]F(E, ¢, @) = F(E, o™, acg) .
For any integer N prime to p, the ring V(Z, T(N)™'°) sits inside
V(Z,, T'(not p)**'*°) as the group of invariants of the subgroup
{1} % (Kernel: Aut((Zuo,,)?) —> Aut((Z/NZY)) .

9.3.5. The measures v, for variable N prime to p form an inverse
system of measures on the spaces (Z})* X (Z/ NZ)?, each of which we can view
as taking values in the single ring V(Z,,, ['(not p)**'™*). By passage to the
limit, they define a single measure v on the space

(Z3) X Zoor ) = El_n(p,zv)=1 (Z;) X (Z|NZy
with values in V(Z,, T'(not p)**'*°).
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PROPOSITION 9.3.6. The V(Z,, I'(not p)*'**)-valued measure v on
(Zx) x (Zm ) enjoys the following properties:

9.3.7T (T'ransformation). For any (a, g) € Z; x Aut ((Znot )
[, 9} ¥(@, 9w, v)dy = [av(as, ay)(F =97, vy .
9.3.8 (Differentiation). The derivation 6 of V(Z,, T'(not p)*'°) acts on
v by

o\ i, )£, )y = oy, )7, v .

Proof. This follows immediately from its finite-level analogues 9.1.5
and 9.1.12. . Q.E.D.

Remark 9.3.7. Notice that we “lose” the functional equation 9.1.7,
which at finite level N depended upon N (cf. 9.1.7).

Definition 9.3.8 (compare 7.1). For y e Homeonua((Z3), W), and any
continuous W-valued function f on (Zm ,), we define

9.3.9 Sx(x, ¥ f(w, v)dy E &1, f) € V(Z,, T(not p)y™i*°).

9.4. Ewaluation of £,(x, fYM, ¢, @) with p principal and M prime to
p. We return to the setting of Section 8.7, but now consider triples (3, ¢, «)
with @ an isomorphism

9.4.1 @ Zonor o) = Mioip = Mz Zinorp -
Combining this isomorphism with the ring isomorphism
9.4.2 Z,xZ,=M,xM, =~ M xM,=MZ,

(my, my) —— (Mm,, My,)
gives a single isomorphism
9.4.3 Zy ~MRZ.

This allows us to view v as being a V(Z,, ['(not p)**'"*)-valued measure
on M@ Z, which is supported in the open set (M QR Z,)* X (MR Zonor ). By
evaluation at (M, ¢, ), we get a W-valued measure on M Q) Z. This measure
depends only on M (because ¢ is determined by M (cf. 8.7.2), and « “occurs

twice” in its definition). We denote it ¥(}), and denote its Mellin transform
L. 9)M):

9.4.4 &0 90 = | _amgm)dx)
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X € HoMeonun (M @ Z,)*, W)

g€ Contin (M ® Zuoi»y W) .
9.4.5. Formulas. We suppose that the hypotheses 8.7.1-2-3 hold, and
that the function g on MK an is locally constant, has algebraic values,
and transforms under the group (Ox, ® Zoi )" by a W-valued character p.

Let k&, | be non-negative integers, and ¢, and ¢, W-valued characters of

finite order of Z3. When ¢, is non-trivial, its exact conductor is denoted p°.
Then we have the following explicit formulas for the algebraic number

for

st 9D mSmel(m)ez(n-z)mwg(m)dv(M) :

9.4.6. Case I1: ¢, ¢, both trivial:

(—1)F+ gl ot _ A _ sz(x) g(m)m!
a(M)lQ"H’“ (1 X1+1‘0()\')><1 N+t )<Eﬁig[ m"“N(m)‘>
9.4.7. Case II: ¢, non-trivial, exact conductor p*; &, trivial
9%, &)Y (1) Rl (1 _ PO >
ale (<)\1a>)p(7\'a) a(M)le+l+1 61(<7\,>)_?;k+1
il
X (5, 0 ol )

mein €, (m)mE N(m)®

1s=0

.
18=0

9.4.8. Case III: ¢, trivial, &, non-trivial:

(— 1)kl 1— A g(m)e(m)m!
a(M)sz+z+1 ( Nite (<7\'>)p()\')><z:me M k+1N(m) )
9.4.9. Case IV: ¢, ¢, both non-trivial, €, of exact conductor p*:

9(&, )y (—1)"”“10!77’(2 g(m)e(m)m' >
P o()e (V) )e( (V) a(M)'Q+H+ e in €(m)m* N(m)®

9.4.10. Relation to “grossencharacters of type A,.” Let K, be a quad-
ratic imaginary field, given with a complex embedding K,= C. Given an
ideal € c O, and two integers (a, b), we have the notion of a grossencharacter
% of (not necessarily exact) conductor €, and type (a, b): this means that %
is a C-valued multiplicative function on the group of functional ideals of K,
which are prime to €, such that if @ € K, is = 1 mod €, then

1(@) = ata® .

We can define a function +, on the group {m € K3 |m is prime to €} by
setting

|8=0

|8=0

P (m) = x((m))/mem’ .
This is a multiplicative funection, trivial on m’s = 1 mod €, hence +r, is just
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a character of the finite group (Ok,/€)*, which we extend by zero to all of
O, /€.

The fact that m*m'+,(m) is a multiplicative function of the ideal (m)
shows that for any unit ¢ € O, we have

e’ (e) =1.
Conversely, given a character + of (Og,/€)* such that the above equality
holds for all units ¢, then + is of the form +, for some y of conductor € and
type (a, b) and this ¥ is unique up to multiplication by a character of the
absolute ideal class group of K,.

The Hecke L-series L(s, %) attached to ) is defined to be the Dirichlet
series

AN) 1
9.4.30 L(s, ) = 2 4uc X = rimeto € iy
( X E% p?lllgxoe to 6 N%[' HFP ' (1 — X(‘p)>
Ny’
Let %, ---, A, be a set of prime to € representative ideals A, < Ok, for the

absolute ideal class group of K,. Then the A;* are also a set of representa-
tives, and any integral ideal A < Oy, can be written A = (m,;)A;* for some
unique ¢ and some element m, € ;, determined uniquely up to a unit of O,.
Then we can rewrite L(s, ¥) as

_ 1 o X(A) M, (m)
9.4.31 Ls, 1) = ¥ units in K, Liies (N)™ <me% ™ N(m)

9.4.32. The value at s = 0 of each inner sum comes under our p-adic
theory, provided that p splits in K,. To fix ideas, suppose that the primes
p, p lying over p are principal ideals. (This is not essential, but slightly
simplifies the formulas.) We may always choose the representative ideals
A, to be prime to p. To fix ideas, let us also suppose that p divides the (not
necessarily exact) conductor €; at worst this amounts to discarding the p
and p Euler factors from L(s, X). We can decompose the character ,(m) of
Ok,/€0k,)* into a product of its p, p, and prime-to-p component characters
9.4.33 Ym) = g(m)e(m)gx(m) .

Then the inner sum becomes

en m m'e,(m)e(m)g(m)
m#0 N('m)8
In the quadrant b = 0, a < —1, the value at s = 0 of this sum is p-adically
interpolated by the p-adic L-function

‘gy(sl—lszx—l—a, by gl)(mi)
in the sense that the formulas 9.4.6-9 hold.




p-ADIC INTERPOLATION 559

9.5. Relation to the measure of Mazur-Swinnerton-Dyer and Manin
([20], [21], [25]). The above named authors consider an elliptic curve E over
Q which is “uniformized by T'(N)” for a suitable integer N, outside of which
N the curve has good reduction. For each prime p not dividing N at which
the curve has ordinary reduction and each integer f, prime to Np, they
construct a p-adic measure on the multiplicative group Z; x (Z/f,Z)*.

9.5.1. To relate their theory to ours, we must at present limit the
discussion to elliptic curves E over Q with complex multiplication, and it
seems plausible that this is the only case where there is a simple relation.
To further simplify, we will suppose that End (E.) is the full ring of integers
Ok, in the quadratic imaginary multiplication field K,. The fact that E is
defined over Q implies that K, has class number one (since its Hilbert class
field is K(j(E))). Such a curve is well-known to be uniformized by T'(N)
for some N (cf. [33]), so that the Manin-Mazur-Swinnerton-Dyer theory
applies. We will briefly explain their construction in this particular case.

For each prime number ! which is unramified in K,, and at which E
has good reduction, we consider the numerator of the zeta function of
EQ®F,, as a polynomial in the quantity *.

9.5.2 Pl =1—a()l ™+ '

where a(l) =1+ 1 — £E(F,) = trace of Frobeniuson EQF, .
The Dirichlet series

9'5'3 L(E/Q’ 3) = Hl unram. in K L d_i_n Ea'(yb)yb_—s

E good red. at | Pl(l—a)
is called the L-series of E/Q. It is defined for any curve over Q. Because
we are in the situation of complex multiplication, the L-series L(E/Q, s) can

be rewritten as an “L-series with grossencharacter” of the field K, as
follows.

9.5.4. For each prime ideal q of O, which lies over some prime ! of
the above type, we can define a canonical generator x(q) € O, by the follow-
ing device:

9.5.5. If ¢ = (l) is a rational prime which stays prime in K,, then its
residue field is F;z, and the Frobenius endomorphism of E & F;: is the scalar
—1 (i.e., a(l) = 0 if I stays prime in K,). We take x(q) = —1 if ¢ = (0).

9.5.6. If ¢ has residue field F,, then the polynomial X* — a()X + !
factors in Ok, and exactly one of its roots generates ¢; the other root
generates . We define X(¢) € O, to be that zero of X* — a(l)X + ! which
generates ¢. Thus %(7) = x(¢), and X* — a()X + I = (X — 2(@))(X — 2(@))-



560 NICHOLAS M. KATZ

(Thus x(p) = A in the notation of 8.8.)
Thus in either case we have

9.5.7 P = I1,,(1 — 19N@)™) .
so that we can rewrite
95.8 L#9, 9) = I, (=) -

It is a fundamental theorem of Deuring that the assignment
9.5.9 s (()
is a K,-valued grossencharacter of K,. Concretely, this means that there
exists an integer N, divisible precisely by those primes which either ramify
in K, or at which E has bad reduction, such that when we extend y by
multiplicativity to all fractional ideals of K, prime to N, then
9.5.10 wWe@))=a ifacK,anda=1mod N.

Equivalently, this means that there is a K,-valued Dirichlet character
of Ok, mod N,

9.5.11 V¥t (Ox)/NOg ) — (Og) ,
such that
9.5.12 X(B)) = Byu(B) if B €Ok, is prime to N .

Caution. This N is not the N figuring in I'(N), but it has the same
prime factors. According to [33], if we denote by 2 the ideal of O, which
is the exact conductor of ¥, and by —D the discriminant of K,, then our
curve is uniformized by Iy DN()).

Thus we can rewrite the L-series L(E/Q, s) in the form

9.5.13 L(E/Q, 3) mzme@ho ’m,m,b‘l(m)N(m)" = Ea(’n)’n":

m prime to N

(replacing m by m, and using (M) = 4, (m))
Dimeog, MIFAm)N(m)™ .

m prime to N

% umts in Ok,

Now let p:(Z/fZ)*— C* be an ordinary Dirichlet character, of exact
conductor f prime to N. Then one defines the p-twist of L(E/Q, s), noted
L(E/Q, o, s), to be the Dirichlet series

9.5.14 L(E/Q, o, s) din S o(n)a(n)n
Domee,  Mdm)p(Nm)Nm~*

m prime to N

% umts in Ok,

=1L (= x(q);(quqﬂ> '
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Let us denote by @ a chosen Neron differential on E/Q (unique up to
+1), and by Qe C the constant (unique up to a unit of Oy,) such that Q0
is the period lattice of (E, w).. By Damerell’s theorem, the ratio

9.5.15 L(E/Q,Qp, 8)ls=1

is algebraic.

In terms of this, we can describe the Mazur-Swinnerton-Dyer and
Manin measure MMSW as follows. Fix an integer f, prime to Np, and let
00: (Z/ fZ)* —W* be a character of exact conductor f,. Let ¢:Z; —W* be a
character of finite order, of exact conductor p°. Then the measure MMSW
on Z; x (Z/f,Z)" satisfies (cf. [23] and [25])

9.5.16 &(x)0/(w)dMMS W,

Sz;x(zuozw

(s moa supe (500" ®)E7"70) L(E[Q, €0 8)ism |
A Q

If we write out the series for L(E/Q, €po,, s), but sum over m, we get

9.5.17 L(E[Q, €0y, 8) = X0 n 0y, MAH(m)e(m)e(m) o N(m))N(m)*

m prime to Np

whence

9.5.18 L(E/Q, €00, 8)iszo = (Eme% e(m)%(m)po(N(m))>

m prime to Np 8_1(m)mN(m)8

|s=0

Comparing this with 9.4.9, we see that the above value is one of our
L-values, withk =1 =0, and ¢, = ¢, ¢, = . Explicitly we have

9.5.19 L e ) Fa(m)o Nm))n(1)

MRZ

_ 09, (=1
= W ( ) L(E/Q, €p,, 3))

(In transcribing 9.4.9, the apparent denominator is
A0 NO)) (Ve (N )eo (V)

But ¢, = &7, so the ¢’s go out, and ¥»(\) = x(p)/» = 1, so the ¥, goes out.)
We can transform the Gauss sum occurring in 9.5.16 by writing
b= —fb, — p°b,. The result is easily seen to be

9.5.20 >, .0a - (épo)—i(b)ezm/fozm _

ls=1

1 — _
mo pae ! b1 [ 2miby/p®
S Fap— ) B menr BT
% (Ebz mod £, p{l(bz)e-“ibz/m) .
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To compare the first factor in this decomposition to p°g({,, €7*), we introduce
the p-adic unit AeZ} which relates the two bases (---, ¢*/*° ...) and
(e+-, &, +++) to T(G,) (cf. 8.7.2), i.e.,

9.5.21 ‘ {, = gritamodptypt fora=12, .--,
An easy computation gives
9.5.22 Y s mon pa€ (D)7 = e A)p°g(C,, €7Y) .
Putting it all together, we find
9.5.23 (—;:12,, ot 1 po(b)ewb/fo)s - Af@P(—wAMMSW,
sx @it

= LS &7 (m)e(m) ¥ (m)oy(N(m))du(M) .

C Jugi
9.5.24. Let us denote by m — 7m/m the continuous mapping (M & Z,)* —
Zx ~ M) which sendsm € M tom/m. Interms of the isomorphism (MQZ,)* =
My x My =1Z; x Zj, it is (x, y) — y/x.

COMPARISON THEOREM 9.5.25. Let f be a continuous W-valued function
on Z3, and let p,: (Z/f, L) —W* be a primitive character modulo f,, with
fo prime to pN. Then we have the integration formula

9526 (T2 0,000 F(—Af @)of ~w)d MMSW ,

z;x(Z/f0z>><

%g F (i m)Fom)o(N(m))dv(M) .

MQZ
Proof. For f = ¢ a character of finite order, this is just 9.5.23. Any
locally constant W-valued function in Z? is a W ) Q,-linear combination of
¢’s of finite order, so the theorem holds for f locally constant, and locally
constant functions are uniformly dense in Contin(Z;, W). Q.E.D.

9.5.27. Remark. The p-adic unit A €Z; is given explicitly in terms of
the unit root {(\) and the area a(Ox,) by the formula {(A)*A = Im (\*)/a(Ok,),
as follows immediately from computing e,»(A\/p", \/p"™) using 2.0.2.

Chapter X. The p-adic analogue of Kronecker’s
second limit formula

10.0. The Siegel functions H;,, and H; as “true” modular functions.
Fix an integer N = 2. Given a ring B, an N* root of unity { € uN(B), and
an integer s = 0, we form the infinite product

dfn

10.0.1  He,(q) = gV v+ (1 — ¢*O)IL,., (1 — ¢ 0L — g™ CH]*~ .
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This product depends only on s modulo N. For s = 0 and { = 1, the product
is zero. In terms of these products, we define

10.0.2 Hy(q) = TI.., He. (@) 5
an easy calculation then gives the formula
10.0.3 Hi(g) = ¢"[1 — OIL...( — ¢ — ¢"CH]* .

LeMMA 10.0.4. The products H, (q) ('resp. Hc(q)) are the q-expansions
of elements of RYB, T(N)='®) (resp. Ty o(N)**). If s+ 0mod N, then H,
is @ unit in R(B, T(N)*™*). If 1 — { is a unit in B, then H,, (resp. H) is
a unit in RY(B, T(N)**) (resp. Too(N)™"2).

Proof. This is proved when B = C in Lang ([18], p. 262). It follows
over any sub-ring of C by the g-expansion principle, then over any B by
“reduction to the universal case.”

COROLLARY 10.0.5. If B is an integral domain, and ¢, ' € py(B) are
both # 1, and if 1 — /1 — (' lies in B and is a unit in B, then H, /H,
(resp. H/H,) is a unit in RY(B, T(N)*=) (resp. Too(N)™™).

Proof. This follows from 10.0.4 and the g¢-expansion principle 2.2.8,
applied to B B[1/(1 — &)].

LEMMA 10.0.6 (Transformation). Under the action (5.4.8) of the group
(Z/NZ)* on RYB, T(N)*"*) and on R(B, Ly(N)*="™"), the elements H.,, H,
transform by
[b]Hc,c = ch,s/b
[b]JH, = Hp .

Proof. If we use 10.0.2, the second formula is a consequence of the first.
By the standard reductions, it suffices to prove the first over C. But given
a [(N)*'*"-curve (E, B) over C, the transcendental description of H ,(E, 8)
shows that it depends only on the division point B({, s). This makes the
assertion obvious from the definition of [b]. Q.E.D.

10.0.7

10.1. Logarithms of ratios of Stegel functions as p-adic modular
functions. Fix a complete p-adic mixed characteristic valuation ring W as
in 7.1, and denote by p its maximal ideal. For any W-flat p-adic W-algebra
B, the logarithm

10.1.1 log(l + z) = z;(;l_)nji

defines a group homomorphism from the multiplicative group 1 + pB to the
additive group B® Q. It extends uniquely to the multiplicative group
{p e B]an = 1 with p* €1 4 pB}, by defining
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10.1.2 log () = —:L-log (" eB®Q if p"cl + pB.

Given any homomorphism ¢: B— B’ of such rings, we have
10.1.3 log (o(p)) = a(log @) for any @ as in 10.1.2.

Now we will consider R(W, I'(N)*'®) as a subring of GV(W, ['(N)*"**)
(cf. 5.9, 5.10) and similarly for their I',(N)*'*® analogues. Recall that by
the g-expansion principle (5.2.1), any element of GV(W, I'(N)*"**) whose
g-expansion lies in 1 + pW((q)) itself lies in 1+ pGV°(W, I'(N)*'**), and
similarly for T'(N)***. Looking at ¢-expansions, we get the next lemma.

LEMMA 10.14. If {,{'ep(W), {=C"modp and s = 0mod N, then
H.,/H.,lies in 1 + p GV(W, T(N)*==),

10.1.5. If¢, Cepy(W), C+#1, {'+#1, { = modp, and if (1 —L)/1—L")
lies in W*, then a power of H.,/H.. , lies in 1 + p GV(W, T(N)****), and a
power of H/H; lies in 1 + p GV (W, T, (N)*'2).

10.1.6. If s 0mod N, then for any { € p (W), (H,)"/Frob(H,) lies
in 1+ pGVAW, T(N)=®).

10.1.7. If Lepy(W), (»+1, then (H.,)"/Frob(H?,) lies wn 1+
PGVA(W, T(N)=®), and (H)*/Frob(Hy) lies in 1+ pGV(W, Ty o(N)*™™).

The power is needed in 10.1.5 when { and {’ are non-trivial p-power roots
of unity of exactly the same order. Then (1 — {)/(1 — (') is a unit in W, but
modulo pW it may be any element of F,. So in fact the p — 1% power will do.

10.2. Application to the “one-variable” L-function L (cf. 7.2), and
Leopoldt’s formula (cf. [12]). Let o:(Z/NZ)* —W™* be a character of exact
conductor N. Then L(p) lies in GV (W, T',(N)*"*)&® Q, and it has nebentypus
o (5.3.4). If p is an odd character (o(—x) = —p()), then L(0) = 0, simply
because (—1, —1) € G(N) acts trivially on GV°. We henceforth assume that
0 is even. By 7.2.3, the g-expansion of L(p) is given in terms of an auxiliary
element (a, b) € G(N) by the formula

_ 1 _1_ (a,b) n BL(-Z—)—
1021 L) = (=L p(b))gzzxm —pudngt + 28, B, CF

Recall that for k = 0, we have the formula (6.2.8)
10.2.2 — ‘ @y =(1— YL(—k,
<1 — ak+1p(b))s Z,xZINZ v p(u)d#K . ( .0(10)10 ) ( 10)

where L(—Fk, p) is the value at —k of the classical Dirichlet L-function.
We will give a “modular” formula for L(p) in terms of logarithms of
ratios of Siegel functions. Comparing constant terms in the g-expansions
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will give Leopoldt’s formula for “p-adic L (1, p).”
Recall that for a function f on Z/NZ, its Fourier transform 7 is the
function on g, defined by

10.2.3 7o = ﬁzwmf(a)?“ :
The original f may be recovered from f by the formula
10.2.4 ) =X... FOC.

When f is a character p:(Z/NZ)*—W of exact conductor N, then 0 is
supported in uy, the set of primitive Nth roots of unity. If we choose a
primitive { = {,, then
p™(a)o(€)  for ae(Z/NZ)*

0 if (@, N)>1.

THEOREM 10.2.6. Suppose that N =2 is prime to p, and 0: (Z/NZ)* - W
18 an even character of exact conductor N. Suppose that W contains the
Nth roots of unity. Then L(p) 18 given by the formula

Lo Q) log ((Ho)[Frob (Hy»)) -

10.2.5 (L) =

10.2.7 Lo = 557

If we choose a primaitive Nth root of unity €, we can rewrite this

( 12 N Ea mod N p(a)c-“>
X Eu mod N lo 1(a') lOg ((HC“)p/FrOb (HC‘”’))

(a,N)=1

10.2.8 L(p) =

Proof. The two assertions are obviously equivalent, in view of 10.2.5.
Notice that both sides of the asserted equality are of weight zero and neben-
typus o, thanks to 10.0.7. Since a non-zero constant cannot be of nebentypus
0, (o being non-trivial), it suffices to show that the difference of their
g-expansions is a constant. This results immediately from the explicit
formulas 10.2.1 (for L(p)), 10.0.3 (for H;) and 5.5.7 (for Frob). The actual
calculation is left to the reader. Q.E.D.

Comparing constant terms gives Leopoldt’s formula (cf. [12]):

COROLLARY 10.2.9 (Leopoldt). With hypotheses as in 10.2.6, we have
the formula

10.2.10

1 o a-=29r
1 dper = 1
1 — po(b) Sz"xzuvz X P(’U/) Hx: Egep:fvm(i’zi)vep(o og( 1—Z° >

= _(1 - B%)ECS"N(W) P log (1 - 0).

{ primitive
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(To get the second expression, notice that for (€ py(W) not of p-power
order,1 — { liesin W* and a power of it lies in 1 + pW. Thus log (1 — )
ts defined, and log ((1 — £)*/1 — ¢?) = plog (1 — {) — log (1 — £?).)

10.2.11. Wenow turn to the case where p divides N. We write N = N,p",
and we choose a primitive p"th root of unity {,. For each primitive Nth
root of unity {, we denote by {’ the primitive Nth root of unity which
satisfies ({')*" = ¢, (') = ({)". Then 1 — (/1 — ' is a unit in W, and
¢ ={"mod p.

THEOREM 10.2.12. Suppose that p divides N, and that p: (Z/NZ)* —W
18 an even character of exact conductor N. When W contains the Nth
roots of unity, L(0) ts given by the formula

10.2.13 L(p) = —< T opyon, P(C)log (H/H,) .
12N ¢ primitive

If we choose a primitive Nth root of unity {Yo=_{{°, then we can rewrite
this as

10214 L(0) = —o(E noan X0 ™) Eecarrn 07(0) 108 (Heol Hee') ,
where a' = amod N,, a' = 1 mod p".

Proof. The proof is identical to that of 10.2.6: the hypothesis that o
has exact conductor N assures that for each fixed o’ € (Z/NZ)*, o' =1 (p"),
the sum Y, 07'(a) (extended to all a € (Z/NZ)* with a = ¢’ mod N,) vanishes,
so that the right-hand side is independent of the initial choice of £, used to
define { — ¢’. This means that formally (but in no other sense), we have

10.2.15 (formal) L(0) = —= Y cenpim PO)log He . Q.E.D.
12N { primitive

10.2.16. To exploit the above formal formula, we resort to Iwasawa’s
“log,” artifice. Given a complete valued overfield K of Q, with value group
contained in Q and residue field algebraic over F,, there is a unique group
homomorphism
10.2.17 log,: KX— K™*
satisfying ‘

log, (p) =0
{logp(l +2x)=1log(l +2) iford(x)>0.
With this function, we can nicely write the constant terms.

COROLLARY 10.2.18 (Leopoldt). With hypotheses as in 10.2.12, we have
the formula
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10.2.19 -—1——5 Lowdpst. = — Ceenyom OO log, (1 —0) .

1 — p(b) zixzivz ¢ primitive

Notice that this formula is formally identical to 10.2.10, because by
convention o(p) = 0 when p divides N.

10.3. Applications to the two variable L-functions £ and £,. Fix an
integer N = 2. In view of the explicit formulas of Chapters 8 and 9 in the
complex multiplication case, the p-adic analogue of an abelian L-series of a
quadratic imaginary field at s = 1 is an integral

10.3.1 £(i, f) = S—l-f(u, v)dty
Y )

while the analogue of “s = 0” is an integral

10.3.2 &(_1., f> - Sif(u, 0)dfty -
x x

In the p-adic setting these integrals are related by the functional equation
(7.3.2):

10.3.3 S%f(u, v)dpy = S%ft(“’ v)dpy: fi(w, v) = f(v, w),

which should be interpreted as the p-adic analogue of the classical s—1 — s
functional equation.

In the following, we will consider only the second integral

10.3.4 s(_alc., f) - S L f(u, v)dpty .

X

Its g-expansion is given explicitly by (cf. 7.3.5)

10.3.5 g(%, f>E(pm)=lann=dd/ f@, d) + g(—d, —d)

so we will henceforth suppose f even. To further simplify, we will suppose
that

p|N
f(ou, v) = f(u, pv) =0 for all u,veZ/NZ.
We write N = N,p” with (p, N;) = 1.

The inverse partial Fourier transform P~'f on g, X Z/NZ will then
satisfy

10.3.6 {

Pfi 0 =0 because f(n, 0) = 0 for all »

10.3.7
{Eceﬂprp_lf(CCOy 8) = 0 because f(p", s) =0.
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10.3.8. Let W be a complete mixed characteristic p-adic valuation ring
containing the N roots of unity. For any { € u, (W), let Teich ({) € py(W)
be the unique root of unity of order prime to p with £ = Teich ({) mod p (so
¢ = &,-Teich (), for some p-power root of unity ,).

THEOREM 10.3.8. With hypotheses as above (10.3.6), we have an identity
in GV(W, T(N)**) ® Q:

1 1
10'3'9 £<TU-’ f) lzNz(c c)e#N(W)xZINz(P f)(Cy 8) lOg (HC a/HTelch(C) c)

Proof. Both sides have the same g-expansion! Q.E.D.
In view of 10.8.7, we can formally rewrite this as

1 p-t
10.3.10 (formal) g(;,f) LS ey PG 8) log (HL)

Suppose now that we have N = N,p", and are given
{e: Z; X Ly — W*, a character mod p”
fo(Z/N,Z))— W  an arbitrary function .

Then we can look at the integral

10.3.11 Sﬂéﬂ Fo, v)dtey, -

10.3.10

We know that if we are given a trivialized T'(N,)****"-curve (E, @, 8), then
by “dividing r times by the canonical subgroup” we get a trivialized
T(N)=*-curve (E™, o, 8™), and (cf. 8.5.3, 8.6.1)

10.3.12 Siwxl) Folw, v)dpey (B, @, B) = S_;_(e(u, o) ity ))dpts(B?, 97, B7).

The right-hand integral may then be “evaluated” by 10.3.9.

Finally, when we are given an integer N, prime to p, a W-valued
function g on (Z/N,Z)}, and a possibly trivial character e(x, ¥) = &,(x)e,(y) of
(Z/p"ZL)* x (Z/p"Z)*, for some r = 1, we can form

10.3.13 sy(e_l‘iz, g)= 8@ oy, v)dy,
x x
whose value on a trivialized T'(N,)*'*-curve (E, @, ) is given by (9.1.4)

10.3.14 SE(_”“);_(!Q o(u, v)dvy(E, p, @)

1 (a@)e(y)
- e1(1\]0)S X (Pag)(u’ v)d#No(E’ P, 1801)

&)g—el(u)sz(vxpam(u, )y (E7, 97, 8)  (by 10.3.12)

We can evaluate this last integral using 10.3.9.
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10.4. Special values in the case of complex multiplication. We have
already noted that for fixed N the value H, ,(F, B) depends only on the
division point P = B({, s), so we write it
10.4.1 H*¥(P. E) = H,, (E,B) if B(,s) = Pe K.

The formal exponent 12N serves to remind us that if N = N,N,, and if P
has order N,, then

10.4.2 (H="(P, E))": = H*(P, E)

(a property which follows from the transcendental definition of H.,, and
which could have been stated in 10.0). Thus given an elliptic curve E over
a reasonable p-adic field K as in (10.2.16), and a point P e E(K) of finite
order N, P +#0, the value H®*¥(P; E) lies in K*, and the quantity

10.4.3 L log,(H™(P, E
12Nogp( (P, E))eK

is independent of the auxiliary choice of N. Thus we may define

10.4.4 log, H(P, E) = —ﬁlog,, (H®*(P, E))eK.

We will also make use of the following compatibility with isogeny (easily
checked transcendentally using the product formula 10.0.1).

Let G C E(K) be a finite subgroup, and let P € E(K) be a point of finite
order not lying in G. Let 7: E— E/G denote the projection. Then
10.4.5 > ,.clog, H(P + g, E) = log, H((P), E/G) .

We now apply this in the complex multiplication case. For simplicity,
we adopt the notations and hypotheses of 9.4.5. If P is a point of finite order
N on the curve E, = C/M corresponding to m/N, we write log, H(m/N, M)
instead of log, H(P, E,).

Let N, be a prime-to-p not necessarily exact conductor for the function
g. As already noted above (10.3.14), we have

1046 222, 9 )0 = A |- e @) P, Dt B, V5, V)

Using 10.3.9, together with 8.8.11, we find that this is equal to

10.4.7 _ i} e,(m)e,(m)g(m) 1 H .M
E:ié‘“’ Tl e (O )e( V)N o8 ( ‘N, >

Substituting the value of e¢,(m) given by 8.8.9-10, and using (10.4.5), we
obtain explicit formulas. The actual computation is left to the reader.

Formulas 10.4.8. With hypotheses as in 9.4.5, let N, be a prime-to-p
conductor for g. Then we have the following formulas for
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(22, 9)an).

10.4.9. Case I. ¢, non-trivial, exact conductor p, &, non-trivial of exact
conductor p:

—9(C, &) e(m)g(m) | b
R e (e R R e (

melM

m
_m_ M) .
AN N,
10.4.10. Case II. ¢, non-trivial, exact conductor p?, €, trivial:

=9, &) ( (7\‘)>EmeMllaNoM (m) ng()\,“N M>

(e (M) & (N et V" e (m)
10.4.11. Case II1. ¢, trivial, &, non-trivial, exact conductor p*:
—(1-—2L . 1
( pp(x)ez(<x>)>z’“”“"”°” matm), log H( °N,’ M>
10.4.12. Case IV. ¢, ¢, both trivial:
(1 — (¥ m
(1 p()\'))<1 (N)> EmeM/NOM g(m) IOgP < No ’ M)
0 [ log, H(™, M
+9(0) PIES Ranirktds <p )
_ ) m o) ] m ]
B s D 108 H(™, M) L. musilo8; H(Z, u)).
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