
CHAPTER 1

Internal Set Theory

Ordinarily in mathematics, when one introduces a new concept one
defines it. For example, if this were a book on “blobs” I would begin with
a definition of this new predicate: x is a blob in case x is a topological
space such that no uncountable subset is Hausdorff. Then we would be
all set to study blobs. Fortunately, this is not a book about blobs, and
I want to do something different. I want to begin by introducing a new
predicate “standard” to ordinary mathematics without defining it.

The reason for not defining “standard” is that it plays a syntacti-
cal, rather than a semantic, role in the theory. It is similar to the use
of “fixed” in informal mathematical discourse. One does not define this
notion, nor consider the set of all fixed natural numbers. The statement
“there is a natural number bigger than any fixed natural number” does
not appear paradoxical. The predicate “standard” will be used in much
the same way, so that we shall assert “there is a natural number bigger
than any standard natural number.” But the predicate “standard”—
unlike “fixed”—will be part of the formal language of our theory, and
this will allow us to take the further step of saying, “call such a natural
number, one that is bigger than any standard natural number, unlim-
ited.”

We shall introduce axioms for handling this new predicate “stan-
dard” in a consistent way. In doing so, we do not enlarge the world of
mathematical objects in any way, we merely construct a richer language
to discuss the same objects as before. In this way we construct a the-
ory extending ordinary mathematics, called Internal Set Theory1 that
axiomatizes a portion of Abraham Robinson’s nonstandard analysis. In
this construction, nothing in ordinary mathematics is changed.

1It was first presented in [Ne] Edward Nelson, “Internal set theory: A new ap-
proach to nonstandard analysis,” Bulletin American Mathematical Society 83 (1977),
1165–1198. A good introductory account is [Rt] Alain Robert, “Analyse non stan-
dard,” Presses polytechniques romandes, EPFL Centre Midi, CH–1015 Lausanne,
1985; translated by the author as “Nonstandard Analysis,” Wiley, New York, 1988.
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1.1 External concepts

Let us begin by adjoining to ordinary mathematics a new predicate
called standard. Using this new predicate, we can introduce new no-
tions. For example, we can make the following definitions, in which the
variables range over R, the set of all real numbers:

x is infinitesimal in case for all standard ε > 0 we have |x| ≤ ε,
x is limited in case for some standard r we have |x| ≤ r,
x ' y (x is infinitely close to y) in case x− y is infinitesimal,
x � y (x is strongly less than y) in case x < y and x 6' y,
x � y (x is strongly greater than y) in case y � x,
x ' ∞ in case x ≥ 0 and x is unlimited (i.e., not limited),
x ' −∞ in case −x ' ∞,
x �∞ in case x 6' ∞,
x � −∞ in case x 6' −∞,
x <∼ y (x is nearly less than y) in case x ≤ y + α for some
infinitesimal α,
x >∼ y (x is nearly greater than y) in case y <∼ x.

A formula of ordinary mathematics—one that does not involve the new
predicate “standard”, even indirectly—is called internal ; otherwise, a
formula is called external. The eleven definitions given above are all
external formulas.

Notice that the adjectives “internal” and “external” are metamath-
ematical concepts—they are properties of formulas and do not apply to
sets.

One of the basic principles of ordinary mathematics, or internal
mathematics as I shall call it from now on, is the subset axiom. This
asserts that if X is a set then there is a set S, denoted by {x ∈ X : A },
such that for all x we have x ∈ S ↔ x ∈ X & A. Here A is a formula
of internal mathematics. Usually it will have x as a free variable, but it
may have other free variables as well. When we want to emphasize its
dependence on x, we write it as A(x). Nothing in internal mathematics
has been changed by introducing the new predicate, so the subset axiom
continues to hold. But nothing in internal mathematics refers to the new
predicate, so nothing entitles us to apply the subset axiom to external
formulas. For example, we cannot prove that there exists a set I such
that x ∈ I ↔ x ∈ R & x is infinitesimal. The notation {x ∈ R : x ' 0 }
is not allowed; it is an example of illegal set formation. Only internal
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formulas can be used to define subsets. (Nevertheless, in Chapter 4 we
shall find a way to introduce so-called external sets.)

Certain set formations that might at first sight appear to be illegal
are perfectly legitimate. For example, suppose that we have an infinites-
imal x > 0. Then we can form the closed interval [−x, x] consisting of
all y such that −x ≤ y ≤ x. This is simply because we already know
that for any x > 0 we can form the set [−x, x].

Exercises for Section 1.1

1. Let n be a nonstandard natural number. Can one form the set of all
natural numbers k such that k ≤ n? Is this set finite?

2. Can one form the set of all limited real numbers?
3. Can one prove that every standard positive real number is limited?
4. Can one form the set of all standard real numbers x such that x2 ≤ 1?
5. Assume that 1 is standard. Can one form the set of all limited real

numbers x such that x2 ≤ 1?
6. Can one prove that the sum of two infinitesimals is infinitesimal?

1.2 The transfer principle

We cannot yet prove anything of interest involving “standard” be-
cause we have made no assumptions about it. Our first axiom is the
transfer principle (T).

The notation ∀st means “for all standard”, and ∃st means “there
exists a standard”. Let A be an internal formula whose only free variables
are x, t1, . . . , tn. Then the transfer principle is

∀stt1 · · · ∀sttn[∀stxA ↔ ∀xA]. (1.1)

We may think of the t1, . . . , tn as parameters; we are mainly inter-
ested in x. Then the transfer principle asserts that if we have an internal
formula A, and all the parameters have standard values, and if we know
that A holds for all standard x, then it holds for all x. (The converse
direction is trivial, and we could have stated (T) with just → instead
of ↔.)

The intuition behind (T) is that if something is true for a fixed, but
arbitrary, x then it is true for all x.

Notice that two formulas are equivalent if and only if their negations
are. But we have ¬∀x¬A ↔ ∃xA, so if we apply (T) to ¬A we obtain
the dual form of the transfer principle:

∀stt1 · · · ∀sttn[∃stxA ↔ ∃xA]. (1.2)
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Let us write A ≡ B (A is weakly equivalent to B) to mean that
for all standard values of the free variables in the formulas, we have
A ↔ B. Then we can rewrite the two forms of (T) as ∀stxA ≡ ∀xA and
∃stxA ≡ ∃xA whenever A is an internal formula. Applying these rules
repeatedly, we see that any internal formula A is weakly equivalent to
the formula Ast obtained by replacing each ∀ by ∀st and ∃ by ∃st. Then

t1, . . . , tn are standard → Ast,

where t1, . . . , tn are the free variables in A, is called the relativization
of A to the standard sets.

Consider an object, such as the empty set ∅, the natural numbers N,
or the real numbers R, that can be described uniquely within internal
mathematics. That is, suppose that there is an internal formula A(x)
whose only free variable is x such that we can prove existence ∃xA(x)
and uniqueness A(x1) & A(x2) → x1 = x2. By the dual form of transfer,
∃stxA(x); so by uniqueness, the x such that A(x) holds is standard. For
example, let A(x) be ∀y[y /∈ x]. There is a unique set, the empty set ∅,
that satisfies A(x). Therefore ∅ is standard. The formulas describing N
and R are longer, but by the same reasoning, N and R are standard.
Any object that can be uniquely described within internal mathematics
is standard: the real numbers 0, 1, and π, the Hilbert space L2(R, dx)
where dx is Lebesgue measure, the first uncountable ordinal, and the
loop space of the fifteen dimensional sphere are all standard. The real
number 10−100 is standard, so if x is infinitesimal then |x| ≤ 10−100.

The same reasoning applies to internal formulas A(x) containing
parameters—provided the parameters have standard values. For exam-
ple, if t is a standard real number then so is sin t (let A(x, t) be x = sin t)
and if X is a standard Banach space so is its dual.

As an example of transfer, we know that for all real x > 0 there is
a natural number n such that nx ≥ 1; therefore, for all standard x > 0
there is a standard n such that nx ≥ 1. But suppose that x > 0 is
infinitesimal. Do we know that there is a natural number n such that
nx ≥ 1? Of course; we already know this for all x > 0. But if we try
to argue as follows—“there is an n such that nx ≥ 1; therefore, by the
dual form of transfer, there is a standard n such that nx ≥ 1”—then we
have made an error: transfer is only valid for the standard values of the
parameters (in this case x) in the formula. This is an example of illegal
transfer. It is the most common error in learning nonstandard analysis.
Before applying transfer, one must make sure that any parameters in
the formula—even those that may be implicit in the discussion—have
standard values.
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Another form of illegal transfer is the attempt to apply it to an
external formula. For example, consider “for all standard natural num-
bers n, the number n is limited; by transfer, all natural numbers are
limited”. This is incorrect. Before applying transfer, one must check
two things: that the formula is internal and that all parameters in it
have standard values.

Exercises for Section 1.2

1. Can one prove that the sum of two infinitesimals is infinitesimal?
2. If r and s are limited, so are r + s and rs.
3. If x ' 0 and |r| � ∞, then xr ' 0.
4. If x 6= 0, then x is infinitesimal if and only if 1/x is unlimited.
5. Is it true that the infinitesimals are a maximal ideal in the integral

domain of limited real numbers? What does the quotient field look like?
6. Consider the function f : x 7→ x2 on a closed interval. Then f is

bounded, and since it is standard it has a standard bound.—Is this reasoning
correct?

7. Let x and y be standard with x <∼ y. Prove that x ≤ y.

1.3 The idealization principle

So far, we have no way to prove that any nonstandard objects exist.
Our next assumption is the idealization principle (I).

The notation ∀stfin means “for all standard finite sets”, and ∃stfin

means “there exists a standard finite set such that”. Also, ∀x∈X means
“for all x in X”, and ∃x∈X means “there exists x in X such that”. Let A
be an internal formula. Then the idealization principle is

∀stfinx′∃y∀x∈x′A ↔ ∃y∀stxA. (1.3)

There are no particular pitfalls connected with this assumption: we must
just be sure that A is internal. It can contain free variables in addition
to x and y (except for x′).

The intuition behind (I) is that we can only fix a finite number of
objects at a time. To say that there is a y such that for all fixed x we
have A is the same as saying that for any fixed finite set of x’s there is
a y such that A holds for all of them.

As a first application of the idealization principle, let A be the for-
mula y 6= x. Then for every finite set x′, and so in particular for every
standard finite set x′, there is a y such that for all x in x′ we have y 6= x.
Therefore, there exists a nonstandard y. The same argument works when
x and y are restricted to range over any infinite set. In other words, every
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infinite set contains a nonstandard element. In particular, there exists a
nonstandard natural number.

By transfer, we know that 0 is standard, and we know that if n
is standard then so is n + 1. Do we have a contradiction here? Why
can’t we say that by induction, all natural numbers are standard? The
induction theorem says this: if S is a subset of N such that 0 is in S
and such that whenever n is in S then n + 1 is in S, then S = N. So
to apply induction to prove that every natural number is standard, we
would need a set S such that n is in S if and only if n is standard, and
this we don’t have.

As a rough rule of thumb, until one feels at ease with nonstandard
analysis, it is best to apply the familiar rules of internal mathematics
freely to elements, but to be careful when working with sets of elements.
(From a foundational point of view, everything in mathematics is a set.
For example, a real number is an equivalence class of Cauchy sequences
of rational numbers. Even a natural number is a set: the number 0
is the empty set, the number 1 is the set whose only element is 0, the
number 2 is the set whose only elements are 0 and 1, etc. When I
refer to “elements” or “objects” rather than to sets, only a psychological
distinction is intended.)

We can prove that certain subsets of R and N do not exist.

Theorem 1. There does not exist S1, S2, S3, S4, or S5 such that,
for all n in N and x in R, we have n ∈ S1 ↔ n is standard, n ∈ S2 ↔ n
is nonstandard, x ∈ S3 ↔ x is limited, x ∈ S4 ↔ x is unlimited, or
x ∈ S5 ↔ x is infinitesimal.

Proof. As we have seen, the existence of S1 would violate the in-
duction theorem. If S2 existed we could take S1 = N \ S2, if S3 existed
we could take S1 = N∩S3, if S4 existed we could take S3 = R \S4, and
if S5 existed we could take S4 = {x ∈ R : 1/x ∈ S5 }.

This may seem like a negative result, but it is frequently used in
proofs. Suppose that we have shown that a certain internal property
A(x) holds for every infinitesimal x; then we automatically know that
A(x) holds for some non-infinitesimal x, for otherwise we could let S5

be the set {x ∈ R : A(x) }. This is called overspill.
By Theorem 1 there is a non-zero infinitesimal, for otherwise we

could let S5 = {0}. We can also see this directly from (I). We denote by
R+ the set of all strictly positive real numbers. For every finite subset
x′ of R+ there is a y in R+ such that y ≤ x for all x in x′. By (I), there
is a y in R+ such that y ≤ x for all standard x in R+. That is, there
exists an infinitesimal y > 0.
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Notice that in this example, to say that y is smaller than every
element of x′ is the same as saying that y is smaller than the least element
of x′, so the finite set really plays no essential role. This situation occurs
so frequently that it is worth discussing it in a general context in which
the idealization principle takes a simpler form. Recall that a directed set
is a set D together with a transitive binary relation ≺ such that every
pair of elements in D has an upper bound. For example, R+ is a directed
set with respect to ≥. (In this example, the minimum of two elements is
an upper bound for them.) Let A be a formula with the free variable x
restricted to range over the directed set D. We say that A filters in x
(with respect to D and ≺) in case one can show that whenever x ≺ z and
A(z), then A(x). (Here A(z) is the formula obtained by substituting z
for each free occurrence of x in A(x), with the understanding that z is
not a bound variable of A.) Suppose that the internal formula A filters
in x. Then the idealization principle takes the simpler form

∀stx∃yA ↔ ∃y∀stxA. (1.4)

That is, we can simply interchange the two quantifiers.
The idealization principle also has a dual form. If A is internal, then

∃stfinx′∀y∃x∈x′A ↔ ∀y∃stxA. (1.5)

We say that A cofilters in x in case we can show that whenever x ≺ z
and A(x), then A(z). Then (1.5) takes the simpler form:

∃stx∀yA ↔ ∀y∃stxA. (1.6)

In practice, there is no need to make the distinction between filtering
and cofiltering, and I may say “filters” when “cofilters” is correct.

As an example of the dual form, suppose that f :R → R is such that
every value of f is limited. Then f is bounded, and even has a standard
bound. To see this, use (1.6), where the filtering relation is ≤ on the
values of the function. We know that for all y there exists a standard x
such that |f(y)| ≤ x. Hence there is a standard x such that |f(y)| ≤ x
for all y.
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Theorem 2. Let S be a set. Then S is a standard finite set if and
only if every element of S is standard.

Proof. Let S be a standard finite set, and suppose that it contains
a nonstandard y. Then there exists a y in S such that for all standard x
we have y 6= x, so by (I), for all standard finite sets x′, and in particular
for S, there is a y in S such that for all x in S we have y 6= x. This is a
contradiction, so every element of S is standard.

Conversely, suppose that every element of S is standard. We al-
ready know that S must be finite, because every infinite set contains a
nonstandard element. Let x and y range over S and apply the dual form
of idealization to the formula x = y. We know that for all y there is a
standard x with x = y, so there is a standard finite set x′ such that for
all y there is an x in x′ with x = y. Then x′ ⊇ S; that is, S ∈ ℘x′ where
℘ denotes the power set. But x′ is standard, so by (T) ℘x′ is standard.
Also, x′ is finite, so ℘x′ is a standard finite set. By the forward direction
of the theorem established in the preceding paragraph, every element
of ℘x′ is standard, so S is standard.2

This has the following corollary.

Theorem 3. Let n and k be natural numbers, with n standard and
k ≤ n. Then k is standard.

Proof. Let S = { k ∈ N : k ≤ n }. By (T), S is standard. It is
finite, so all of its elements are standard.

Therefore we can picture the natural numbers as lying on a tape,
with the standard numbers to the left and the nonstandard numbers to
the right. The demarcation between the two portions is strange: the left
portion is not a set, and neither is the right. I want to emphasize that
we did not start with the left portion and invent a new right portion to
be tacked on to it—we started with the whole tape, the familiar set N
of all natural numbers, and invented a new way of looking at it.

Theorem 4. There is a finite set that contains every standard ob-
ject.

Proof. This is easy. Just apply (I) to the formula x ∈ y & y is
finite.

If we think of “standard” semantically—with the world of mathe-
matical objects spread out before us, some bearing the label “standard”
and others not—then these results violate our intuition about finite sets.
But recall what it means to say that X is a finite set. This is an internal

2I am grateful to Will Schneeberger for pointing out a gap in my first proof of
this theorem.
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notion, so it means what it has always meant in mathematics. What
has it always meant? There are two equivalent characterizations. For n
in N, we let In = { k ∈ N : k < n }. Then a set X is finite if and only if
there is a bijection of X with In for some n. There is also the Dedekind
characterization: X is finite if and only if there is no bijection of X with
a proper subset of itself. Consider the set In where n is a nonstandard
natural number. This certainly satisfies the first property. Nothing was
said about n being standard; this cannot even be formulated within in-
ternal mathematics. But does it satisfy the Dedekind property? Suppose
that we send each nonstandard element of In to its predecessor and leave
the standard elements alone; isn’t this a bijection of In with In−1? No,
its definition as a function would involve illegal set formation.—Perhaps
it is fair to say that “finite” does not mean what we have always thought
it to mean. What have we always thought it to mean? I used to think
that I knew what I had always thought it to mean, but I no longer think
so. In any case, intuition changes with experience. I find it intuitive to
think that very, very large natural numbers and very, very small strictly
positive real numbers were there all along, and now we have a suitable
language for discussing them.

Exercises for Section 1.3

1. A natural number is standard if and only if it is limited.
2. Does there exist an unlimited prime?
3. What does the decimal expansion of an infinitesimal look like?
4. Let H be a Hilbert space. Does there exist a finite dimensional subspace

containing all of its standard elements? Is it closed?
5. Suppose that the Sn, for n in N, are a sequence of disjoint sets with

union S, and suppose that every element x in S is in Sn for some standard n.
Can one show that all but a finite number of them are empty? Can one show
that all but a standard finite number of them are empty?

6. Prove Robinson’s lemma: Let n 7→ an be a sequence such that an ' 0
for all standard n. Then there is an unlimited N such that an ' 0 for all
n ≤ N .

7. Let n 7→ an be a sequence such that an � ∞ for all standard n. Is
there an unlimited N such that an �∞ for all n ≤ N?

8. We have been saying “let x range over X” to mean that each ∀xA
should be replaced by ∀x[x ∈ X → A] and each ∃xA should be replaced by
∃x[x ∈ X & A]. Let ℘

finX be the set of all non-empty finite subsets of X. Show
that if x ranges over X, then (I) can be written as ∀stx′∃y∀x∈x′A ↔ ∃y∀stxA
where x′ ranges over ℘

finX.
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1.4 The standardization principle

Our final assumption about the new predicate “standard” is the
standardization principle (S). It states that

∀stX∃stY ∀stz[z ∈ Y ↔ z ∈ X & A]. (1.7)

Here A can be any formula (not containing Y ), external or internal. It
may contain parameters (free variables in addition to z and X).

The intuition behind (S) is that if we have a fixed set, then we can
specify a fixed subset of it by giving a criterion for judging whether each
fixed element is a member of it or not.

Two sets are equal if they have the same elements. By (T), two stan-
dard sets are equal if they have the same standard elements. Therefore,
the standard set Y given by (S) is unique. It is denoted by S{ z ∈ X : A },
which may be read as “the standard set whose standard elements are
those standard elements of X such that A holds”. Unfortunately, any
shortening of this cumbersome phrase is apt to be misleading. For stan-
dard elements z, we have a direct criterion for z to be an element of
S{ z ∈ X : A }, namely that A(z) hold. But for nonstandard elements z,
this is not so. It may happen that z is in S{ z ∈ X : A } but A(z) does not
hold, and conversely A(z) may hold without z being in S{ z ∈ X : A }.
For example, let X = S{ z ∈ R : z ' 0 }. Then X = { 0 } since 0 is the
only standard infinitesimal. Thus we can have z ' 0 without z being
in X. Let Y = S{ z ∈ R : |z| � ∞}. Then Y = R since every standard
number is limited. Thus we can have z ∈ Y without z being limited.

The standardization principle is useful in making definitions. Let
x range over the standard set X. When we make a definition of the
form: “for x standard, x is something-or-other in case a certain property
holds”, this is understood to mean the same as “x is something-or-other
in case x ∈ S{x ∈ X : a certain property holds }”. For example, let
f :R → R and let us say that for f standard, f is nice in case every
value of f is limited. Thus f is nice if and only if f ∈ N , where we
let N = S{ f ∈ RR : every value of f is limited }. (The notation XY

signifies the set of all functions from Y to X.) I claim that f is nice if
and only if f is bounded. To prove this, we may, by (T), assume that
f is standard. We already saw, in the previous section, that if every
value of f is limited, then f is bounded. Conversely, let f be bounded.
Then by (T) it has a standard bound, and so is nice. This proves the
claim. But, one might object, the first transfer is illegal because “nice”
was defined externally. The point is this: being nice is the same as being
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in the standard set N , so the transfer is legal. In complete detail, (T)
tells us that for all standard N we have

∀stf [f ∈ N ↔ f is bounded] → ∀f [f ∈ N ↔ f is bounded].

In other words, this kind of definition by means of (S) is a way of defining,
somewhat implicitly, an internal property.

Let x and y range over a set V , let ỹ range over V V , and let A be
internal. Then

∀x∃yA(x, y) ↔ ∃ỹ∀xA
(
x, ỹ(x)

)
.

The forward direction is the axiom of choice, and the backward direction
is trivial. If we apply transfer to this, assuming that V is standard, we
obtain

∀stx∃styA(x, y) ≡ ∃stỹ∀stxA
(
x, ỹ(x)

)
.

But we can do much better than this. Let A be any formula, external
or internal. Then

∀stx∃styA(x, y) ↔ ∃stỹ∀stxA
(
x, ỹ(x)

)
. (1.8)

The backward direction is trivial, so we need only consider the forward
direction. Suppose first that for all standard x there is a unique stan-
dard y such that A(x, y). Then we can let ỹ = S{ 〈x, y〉 : A(x, y) }. In
the general case, let

Ỹ = S{ 〈x, Y 〉 : Y = S{ y : A(x, y) } }.

Then Ỹ is a standard set-valued function whose values are non-empty
sets, so by the axiom of choice relativized to the standard sets, it has a
standard cross-section ỹ of the desired form. We call (1.8) the functional
form of standardization (S̃). It has a dual form:

∃stx∀styA(x, y) ↔ ∀stỹ∃stxA
(
x, ỹ(x)

)
. (1.9)

The requirements in (1.8) and (1.9) are that x and y range over some
standard set V and that ỹ range over V V . This includes the case that
x and y range over different standard sets X and Y , with ỹ ranging
over Y X , because we can always let V = X∪Y and include the conditions
x ∈ X and y ∈ Y in the formula A.

If X is a set, contained in some standard set V , we let

SX = S{x ∈ V : x ∈ X }.
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This clearly does not depend on the choice of V , and in practice the
requirement that X be contained in some standard set is not restrictive.
Then SX is the unique standard set having the same standard elements
as X. It is easy to see that if f is a function then so is Sf .

The theory obtained by adjoining (I), (S), and (T) to internal math-
ematics is Internal Set Theory (IST).

So far, we have not proved any theorems of internal mathematics
by these new methods. Here is a first example of that, a theorem of
de Brujn and Erdős3 on the coloring of infinite graphs.

By a graph I mean a set G together with a subset R of G×G. We
define a k-coloring of G, where k is a natural number, to be a function
g:G → { 1, . . . , k } such that g(x) 6= g(y) whenever 〈x, y〉 ∈ R. An
example is G = R2 and R = { 〈x, y〉 : |x − y| = 1 } where |x − y| is the
Euclidean metric on R2. (This graph is known to have a 7-coloring but
no 3-coloring.) The theorem asserts that if every finite subgraph of G
has a k-coloring, so does G. This is not trivial, because if we color a
finite subgraph, we may be forced to go back and change its coloring
to color a larger finite subgraph containing it. To prove the theorem,
we assume, by (T), that G and k are standard. By (I), there is a finite
subgraph F of G containing all its standard elements, and by hypothesis
F has a k-coloring f . Let g = Sf . Since f takes only standard values,
every standard element of G is in the domain of g. By (T), every element
of G is in the domain of g. To verify that g is a k-coloring, it suffices,
by (T), to examine the standard elements, where it agrees with f . This
concludes the proof.

Exercises for Section 1.4

1. Show that if f is a function, so is Sf . What can one say about its
domain and range?

2. Deduce (S) from (S̃).
3. Define f by f(x) = t/π(t2 + x2) where t > 0 is infinitesimal. What is∫∞

−∞ f(x) dx? What is Sf?

4. Establish external induction: Let A(n) be any formula, external or
internal, containing the free variable n and possibly other parameters. Suppose
that A holds for 0, and that whenever it holds for a standard n it also holds
for n + 1. Then A(n) holds for all standard n.

5. Let the Greek variables range over ordinals. Establish external trans-
finite induction: ∃stαA(α) → ∃stβ[A(β) & ∀stγ[A(γ) → β ≤ γ]].

6. Deduce (I) from the forward direction of (I).

3N. G. de Brujn and P. Erdős, “A colour problem for infinite graphs and a
problem in the theory of relations,” Indagationes Mathematicae 13 (1951), 371–373.
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1.5 Elementary topology

In this section I shall illustrate IST with some familiar material. In
the following definitions by (S), we assume that E ⊆ R, that f :E → R,
and that x, y ∈ E.

For f and x standard, f is continuous at x in case whenever
y ' x we have f(y) ' f(x).
For f and E standard, f is continuous on E in case for all
standard x, whenever y ' x we have f(y) ' f(x).
For f and E standard, f is uniformly continuous on E in case
whenever y ' x we have f(y) ' f(x).
For E standard, E is compact in case for all x in E there is a
standard x0 in E with x ' x0.
For E standard, E is open in case for all standard x0 in E and
all z in R, if z ' x0 then z is in E.
For E standard, E is closed in case for all x in E and standard
x0 in R, if x ' x0 then x0 is in E.
For E standard, E is bounded in case each of its elements is
limited.

It can be shown that these definitions are equivalent to the usual defi-
nitions, but rather than worry about that now, let us develop a direct
intuition for these formulations by examining them in various familiar
situations.

Let us prove that [0, 1] is compact. Notice that it is standard. Let x
be in [0, 1]. Then it can be written as x =

∑∞
n=1 an2−n where each an is

0 or 1, and conversely each number of this form is in [0, 1]. This binary
expansion is determined by a function a:N+ → {0, 1}. Let b = Sa. Then
bn = an for all standard n, so if we let x0 =

∑∞
n=1 bn2−n then x0 is

standard, x0 ' x, and x0 is in [0, 1]. Therefore [0, 1] is compact. This
has the following corollary.

Theorem 5. Each limited real number is infinitely close to a unique
standard real number.

Proof. Let x be limited. Then [x] is a limited, and therefore stan-
dard, integer. Since x − [x] is in the standard compact set [0, 1], there
is a standard y0 infinitely close to it, so if we let x0 = y0 + [x] then x0

is standard and infinitely close to x. The uniqueness is clear, since 0 is
the only standard infinitesimal.
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If x is limited, the standard number that is infinitely close to it is
called the standard part of x, and is denoted by stx.

Now let us prove that a continuous function f on a compact set E
is bounded. By (T), we assume them to be standard. Let K ' ∞, and
let x be in E. It suffices to show that f(x) ≤ K. There is a standard
x0 in E with x ' x0, and since f(x0) is standard we have f(x0) � K.
But by the continuity of the standard function f we have f(x) ' f(x0),
so f(x) ≤ K, which concludes the proof. (It may seem like cheating
to produce an unlimited bound. By (T), if a standard function f is
bounded, then it has a standard bound. But this is a distinction that
can be made only in nonstandard analysis.)

Somewhat more ambitiously, let us show that a continuous func-
tion f on a compact set E achieves its maximum. Again, we assume
them to be standard. By (I), there is a finite subset F of E that con-
tains all the standard points, and the restriction of f to the finite set F
certainly achieves its maximum on F at some point x. By compactness
and continuity, there is a standard x0 in E with x0 ' x and f(x0) ' f(x).
Therefore f(x0) >∼ f(y) for all y in F . Since every standard y is in F , we
have f(x0) >∼ f(y) whenever y is standard, but since both numbers are
standard we must have f(x0) ≥ f(y) whenever y is standard. By (T),
this holds for all y, and the proof is complete.

The same device can be used to prove that if f is continuous on [0, 1]
with f(0) ≤ 0 and f(1) ≥ 0, then f(x) = 0 for some x in [0, 1].

The proof that a continuous function on a compact set is uniformly
continuous requires no thought; it is a simple verification from the def-
initions. It is equally easy to prove that a subset of R is compact if
and only if it is closed and bounded (use Theorem 5 for the backward
direction).

All of this extends to Rn. Notice that Rn is standard if and only if
n is, so in the definitions by (S), include “for n standard”. For a general
metric space 〈X, d〉, where d is the metric, we define x ' y to mean that
d(x, y) is infinitesimal. Much of what was done above extends to metric
spaces. In definitions by (S), include “for X and d standard”. For X
and d standard, a metric space 〈X, d〉 is complete in case for all x, if for
all standard ε > 0 there is a standard y with d(x, y) ≤ ε, then there is a
standard x0 with x ' x0. This is equivalent to the usual definition.

I shall sketch a proof of the Baire category theorem to illustrate an
important point about nonstandard analysis. Let 〈X, d〉 be a complete
non-empty metric space, and let the Un be a sequence of open dense sets
with intersection U . We want to show that U is non-empty. We denote
the ε-neighborhood of x by N(ε, x). There are x1 and 0 < ε1 < 1/2
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such that N(ε1, x1) ⊂ U1. Since U2 is open and dense, there are x2 and
0 < ε2 < 1/22 such that N(ε2, x2) ⊂ U2 ∩N(ε1/2, x1). Continue in this
way by induction, constructing a Cauchy sequence xn that converges to
some point x, since X is complete. This x is in each Un, and so is in U .

This proof is just the usual proof, and that is the important point.
Nonstandard analysis is not an alternative to internal mathematics, it
is an addition. By the nature of this book, almost all of the material
consists of nonstandard analysis, but I emphatically want to avoid giv-
ing the impression that it should somehow be separated from internal
mathematics. Nonstandard analysis supplements, but does not replace,
internal mathematics.

Let X be a standard topological space, and let x be a standard
point in it. Then we define the relation y ' x to mean that y is in every
standard neighborhood of x. The external discussion of continuity and
compactness given above for R extends to this setting.

Let E be a subset of the standard topological space X. Then we
define the shadow of E, denoted by ◦E, as follows:

◦E = S{x ∈ X : y ' x for some y in E }. (1.10)

Theorem 6. Let E be a subset of the standard topological space X.
Then the shadow of E is closed.

Proof. Let z be a standard point of X in the closure of ◦E. Then
every open neighborhood of z contains a point of ◦E, so by (T) every
standard open neighborhood U of z contains a standard point x of ◦E.
But for a standard point x of ◦E, there is a y in E with y ' x, so y is
in U . That is to say, ∀stU∃y[y ∈ E ∩ U ]. The open neighborhoods of
z are a directed set under inclusion and this formula filters in U , so by
the simplified version (1.4) of (I) we have ∃y∀stU [y ∈ E ∩ U ]; that is,
∃y∈E[y ' z]. Thus z is in ◦E. We have shown that every standard point
z in the closure of ◦E is in ◦E, so by (T) every point z in the closure of
◦E is in ◦E. Thus ◦E is closed.

There is a beautiful nonstandard proof of the Tychonov theorem.
Let T be a set, let Xt for each t in T be a compact topological space, and
let Ω be the Cartesian product Ω =

∏
t∈T Xt with the product topology.

We want to show that Ω is compact. By (T), we assume that t 7→ Xt is
standard, so that Ω is also standard. Let ω be in Ω. For all standard t
there is a standard point y in Xt such that y ' ω(t), so by (S̃) there is
a standard η in Ω such that for all standard t we have η(t) ' ω(t). By
the definition of the product topology, η ' ω, so Ω is compact.
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Exercises for Section 1.5

1. Precisely how is (S̃) used in the proof of the Tychonov theorem?
2. Let X be a compact topological space, f a continuous mapping of X

onto Y . Show that Y is compact.
3. Is the shadow of a connected set connected?
4. Let x be in R. What is the shadow of {x}?
5. Let f(x) = t/π(t2 + x2), where t > 0 is infinitesimal. What is the

shadow of the graph of f?
6. Let E be a regular polygon of n sides inscribed in the unit circle. What

is the shadow of E?

1.6 Reduction of external formulas

It turns out that (with a proviso which I shall discuss shortly) every
external formula can be reduced to a weakly equivalent internal formula.
This is accomplished by a kind of formal, almost algebraic, manipulation
of formulas, using (S̃) and (I) to push the external quantifiers ∀st and
∃st to the left of the internal quantifiers ∀ and ∃, and then using (T) to
get rid of them entirely. In this way we can show that the definitions
made using (S) in the previous section are equivalent to the usual ones.
More interestingly, we can reduce the rather weird external theorems
that we have proved to equivalent internal form. The proviso, which has
only nuisance value, is that whenever we use (S̃) to introduce a standard
function ỹ(x), then x and y must be restricted to range over a standard
set, to give the function ỹ a domain. (Actually, it suffices to make this
restriction on x alone.) I will not make this explicit all of the time.

To reduce a formula, first eliminate all external predicates, replacing
them by their definitions until only “standard” is left. Even this should
be eliminated, replacing “x is standard” by ∃sty[y = x].

Second, look for an internal quantifier that has some external quan-
tifiers in its scope. (If this never happens, we are ready to apply (T) to
obtain a weakly equivalent internal formula.) If the internal quantifier
is ∀, use (S̃) to pull the ∀st’s to the left of the ∃st’s (if necessary, thereby
introducing standard functions), where they can then be pulled to the
left of ∀. If the internal quantifier is ∃, proceed by duality.

Third, whenever ∃y∀stxA (or its dual) occurs with A internal, use
(I), taking advantage of its simplification (1.4) whenever A filters in x.

One thing to remember in using this reduction algorithm is that the
implication ∃stxA(x) → B is equivalent to ∀stx[A(x) → B], and dually
∀stxA(x) → B is equivalent to ∃stx[A(x) → B], provided in both cases
that x does not occur free in B. (This has nothing to do with the super-
script “st”; it is a general fact about quantifiers in the hypothesis of an
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implication. For example, let A(s) be “s is an odd perfect number” and
let B be the Riemann hypothesis. Then ∃sA(s) → B and ∀s[A(s) → B]
say the same thing.) If B begins with an external quantifier, it comes out
of the implication unchanged, but we have our choice of which quantifier
to take out first. The idea is to do this in such a way as to introduce as
few functions as possible. If we have an equivalence, we must rewrite it
as the conjunction of two implications and rename the bound variables,
since they come out of the implications in different ways. For example,
the formula ∀stxA(x) ↔ ∀styB(y) is equivalent to

[∀stxA(x) → ∀styB(y)] & [∀stuB(u) → ∀stvA(v)],

which in turn is equivalent to

∃stx∃stu∀sty∀stv
[
[A(x) → B(y)] & [B(u) → A(v))

]
and also to

∀sty∀stv∃stx∃stu
[
[A(x) → B(y)] & [B(u) → A(v))

]
.

If all of this is preceded by ∀t, where t is a free variable in A or B, the
second form is advantageous; if it is preceded by ∃t, one should use the
first form.

Let us illustrate the reduction algorithm with the definitions by (S)
in the previous section of “continuous at x”, “continuous”, and “uni-
formly continuous”. The formulas in question are respectively

∀y
[
y ' x → f(y) ' f(x)

]
,

∀stx∀y
[
y ' x → f(y) ' f(x)

]
,

∀x∀y
[
y ' x → f(y) ' f(x)

]
.

We must eliminate '. With ε and δ ranging over R+, we obtain

∀y
[
∀stδ[|y − x| ≤ δ] → ∀stε[|f(y)− f(x)| ≤ ε]

]
, (1.11)

∀stx∀y
[
∀stδ[|y − x| ≤ δ] → ∀stε[|f(y)− f(x)| ≤ ε]

]
, (1.12)

∀x∀y
[
∀stδ[|y − x| ≤ δ] → ∀stε[|f(y)− f(x)| ≤ ε]

]
. (1.13)

In all of these formulas, f is a standard parameter, and x is a standard
parameter in (1.11). First bring ∀stε out; it goes all the way to the left.
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Then bring ∀stδ out; it changes to ∃stδ, and since the formula filters in δ,
it goes to the left of ∀y, and also of ∀x in (1.13). This yields

∀stε∃stδ∀y
[
|y − x| ≤ δ → |f(y)− f(x)| ≤ ε

]
,

∀stε∀stx∃stδ∀y
[
|y − x| ≤ δ → |f(y)− f(x)| ≤ ε

]
,

∀stε∃stδ∀x∀y
[
|y − x| ≤ δ → |f(y)− f(x)| ≤ ε

]
.

Now apply transfer; this simply removes the superscripts “st” and shows
that our definitions are equivalent to the usual ones.

Now consider ∀x∃stx0[x ' x0]; that is,

∀x∃stx0∀stε
[
|x− x0| ≤ ε

]
. (1.14)

It is understood that x and x0 range over the standard set E; this was
our definition by (S) of E being compact. First we move ∀stε to the
left, by (S̃), introducing the standard function ε̃:E → R+. Thus (1.14)
becomes

∀stε̃∀x∃stx0

[
|x− x0| ≤ ε̃(x0)

]
. (1.15)

Now use (I). There is no filtering in (1.15), so it becomes

∀stε̃∃stfinx′0∀x∃x0∈x
′
0

[
|x− x0| ≤ ε̃(x0)

]
.

Now apply (T). We obtain

∀ε̃∃finx′0∀x∃x0∈x
′
0

[
|x− x0| ≤ ε̃(x0)

]
,

where ∃fin means “there exists a finite set such that” (and similarly ∀fin

means “for all finite sets”). But this is mathematically equivalent to the
usual definition of a set being compact.

Definitions by (S) are an external way of characterizing internal
notions, but they simultaneously suggest new external notions. These
are often indicated by the prefix S-. Thus we say that f is S-continuous
at x in case whenever y ' x we have f(y) ' f(x). If both f and
x are standard, this is the same as saying that f is continuous at x.
But let t > 0 be infinitesimal, and let f(x) = t/π(t2 + x2). Then f is
continuous at 0 (this internal property is true for any t > 0), but it is
not S-continuous at 0. Let g(x) = t for x 6= 0 and g(0) = 0. Then g is
discontinuous at 0 but is S-continuous at 0. Let h(x) = x2. Then h is
continuous at 1/t but is not S-continuous at 1/t. Similarly, we say that f
is S-uniformly continuous in case whenever y ' x we have f(y) ' f(x).
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I am not very fond of the S-notation. It seems to imply that to every
internal notion there is a unique corresponding external S-notion, but
this is not so. There may be distinct external notions that are equivalent
for standard values of the parameters.

Now let us apply the reduction algorithm to some of our external
theorems. Let us split Theorem 2 into three different statements.

(i) If every element of a set is standard, then the set is finite. That
is,

∀S
[
∀y∈S∃stx[y = x] → S is finite

]
,

∀S∃y∈S∀stx
[
y = x → S is finite

]
,

∀stfinx′∀S∃y∈S∀x∈x′
[
y = x → S is finite

]
, (1.16)

∀finx′∀S∃y∈S∀x∈x′
[
y = x → S is finite

]
, (1.17)

∀finx′∀S
[
S ⊆ x′ → S is finite

]
.

In other words, (i) is equivalent to (i′): every subset of a finite set is
finite. We used (I) for (1.16), (T) for (1.17), and then pushed quantifiers
back inside the implication as far as possible to make the result more
readable.

(ii) If every element of a set is standard, then the set is standard.
That is,

∀S
[
∀y∈S∃stx[y = x] → ∃stT [S = T ]

]
. (1.18)

Apply (I) to the hypothesis:

∀S
[
∃stfinx′∀y∈S∃x∈x′[y = x] → ∃stT [S = T ]

]
;

simplify:
∀S

[
∃stfinx′[S ⊆ x′] → ∃stT [S = T ]

]
;

pull out the quantifiers and apply (I):

∀stfinx′∃stfinT ′∀S∃T∈T ′[S ⊆ x′ → S = T ];

simplify and apply (T):

∀finx′∃finT ′∀S[S ⊆ x′ → S ∈ T ′].

This is true for T ′ = ℘x′, where ℘X denotes the power set of X (the set
of all subsets of X). In other words, (ii) is equivalent to (ii′): the power
set of a finite set is finite. When reducing an external formula, it is a
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good idea to attack subformulas first. For example, had we pulled the
quantifiers out of (1.18) directly, we would have obtained

∀S∃stT∃y∈S∀stx[y = x → S = T ],

which after reduction and simplification gives:

∀x̃′∃finT ′∀S
[
S ⊆

⋂
T∈T ′

x̃′(T ) → S ∈ T ′
]
. (1.19)

Every function must have a domain, so the use of (S̃) to produce the
finite-set valued function x̃′ was illegitimate; to be honest, we should
have introduced ∀stV with all of the variables restricted to lie in V ,
so that after transfer the formula begins ∀V with all of the variables
restricted to lie in V . Consider this done. Here is an internal proof of
(1.19). Choose any T0 and let

T ′ = ℘
(
x̃′(T0)

)
∪ {T0 }.

If S ⊆
⋂

T∈T ′ x̃′(T ), then in particular S ⊆ x̃′(T0) and so S ∈ T ′. Thus
(1.19) is an obscure way of saying that the power set of a finite set is
finite.

(iii) Every element of a standard finite set is standard. That is,

∀stS
[
S is finite → ∀y∈S∃stx[y = x]

]
.

This reduces easily to

∀S∃finx′[S is finite → S ⊆ x′].

In other words, (iii) is equivalent to (iii′): every finite set is a subset of
some finite set.

With the variables ranging over N, Theorem 3 is

∀n∀k
[
k ≤ n → ∃stj[j = k]

]
,

which reduces easily to

∀n∃finj′∀k[k ≤ n → k ∈ j′].

Theorem 4, that there is a finite set containing every standard object,
reduces immediately to the following triviality: for all finite sets x′ there
is a finite set F such that every element of x′ is an element of F .
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Theorem 4 is shocking, but the informal statement “there is a finite
set containing any fixed element” appears quite reasonable. Similarly,
with the variables ranging over R+, one is accustomed to saying “there
is an x less than any fixed ε.” Nonstandard analysis takes the further
step of saying “call such an x an infinitesimal.” I want to emphasize
again that the predicate “standard” has no semantic content in IST; it
is a kind of syntactical place-holder signifying that the object in question
is to be held fixed. With many objects in play at once, some depending
on others, the syntax of being held fixed becomes complicated, and the
rules for handling the idea correctly are (I), (S), and (T). What Abraham
Robinson invented is nothing less than a new logic. He was explicit about
this in the last paragraph of his epoch-making book:4

Returning now to the theory of this book, we observe that it is
presented, naturally, within the framework of contemporary Mathe-
matics, and thus appears to affirm the existence of all sorts of infini-
tary entities. However, from a formalist point of view we may look at
our theory syntactically and may consider that what we have done is
to introduce new deductive procedures rather than new mathematical
entities.

One technical point is worth commenting on. It is essential to the success
of the reduction algorithm that the idealization principle hold for internal
formulas with free variables; this feature was not present in Robinson’s
notion of enlargement [Ro, §2.9].

Exercises for Section 1.6

1. Find a function f that is S-uniformly continuous without being uni-
formly continuous, and vice versa.

2. What is the reduction of the formula x ' 0?
3. What is the reduction of Theorem 5?
4. Show that the definitions by (S) of open, closed, and bounded in the

previous section are equivalent to the usual ones.
5. Show that the definition by (S) of a complete metric space in the

previous section is equivalent to the usual one.
6. Say that a sequence a:N → R is S-Cauchy in case for all unlimited n

and m we have an ' am. Show that a standard sequence is S-Cauchy if and
only if it is Cauchy. Say that a is of limited fluctuation in case for all standard
ε > 0 and all k, if n1 < · · · < nk and |an1 − an2 | ≥ ε, . . . , |ank−1 − ank | ≥ ε,
then k is limited. Show that a standard sequence is of limited fluctuation if
and only if it is Cauchy. Can a sequence be S-Cauchy without being of limited
fluctuation, or vice versa?

7. Is the unit ball of Rn, where n is unlimited, compact?

4[Ro] Abraham Robinson, ”Non-Standard Analysis,” Revised Edition, American
Elsevier, New York, 1974.
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8? Can the reduction of Theorem 6 be made intelligible? (The ? means
that I don’t know the answer.)

1.7 Answers to the exercises

Section 1.1

1. Yes and yes; this set can be formed for any natural number, and it is
a finite set.

2. No.
3. Let x be standard and positive. Then x ≤ x, so x is limited.
4. No.
5. At first sight this looks like illegal set formation, but let S be the set

of all real numbers x such that x2 ≤ 1. Assuming that 1 is standard, we see
that every x in S is limited, so S is the set in question.

6. Not yet; so far, nothing guarantees that if ε is standard then so is ε/2.

Section 1.2

1. Yes. Let x and y be infinitesimal and let ε > 0 be standard. By transfer,
ε/2 is standard, so that |x| ≤ ε/2 and |y| ≤ ε/2. Then |x + y| ≤ ε, and since
ε was an arbitrary strictly positive standard number, x + y is infinitesimal.

2. There are standard numbers R and S such that |r| ≤ R and |s| ≤ S.
By (T), R + S and RS are standard.

3. Let ε > 0 be standard. There is a standard R, which we may take to
be non-zero, such that |r| ≤ R. By (T), ε/R is standard, so |x| ≤ ε/R. Hence
|xr| ≤ ε.

4. For ε > 0 and r = 1/ε, ε is standard if and only if r is standard, by
the transfer principle.

5. We cannot speak of “the infinitesimals” as an ideal, or of “the integral
domain of limited real numbers”, without illegal set formation. If we avoid
these illegal set formations, the preceding exercises essentially give an affirma-
tive answer to the first question. But to talk about “the quotient field” we
really need sets. The discussion must be postponed to Chapter 4, where we
shall have external sets at our disposal.

6. No. If the closed interval is [0, b] where b is unlimited, the function has
no standard bound. The transfer was illegal because the closed interval was a
parameter.

7. We have x ≤ y + α where α is infinitesimal and x and y are standard.
Then x ≤ y + ε for all standard ε > 0, so by (T) we have x ≤ y + ε for all
ε > 0. Hence x ≤ y.
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Section 1.3

1. This is just a restatement of Theorem 3.
2. Yes. Euclid showed that for any natural number n there is a prime

greater than n.
3. Let x > 0 be infinitesimal. Then 0 < x < 1, so x is of the form

x =
∑∞

n=1
an10−n where each an is one of 0, . . . , 9. Since 10−n is standard if

n is, by (T), each an with n standard is 0. But x > 0, so not all of its decimal
digits are 0. As we already know, any x > 0 has a first non-zero decimal digit.
What about the number whose decimal digits are 0 for all standard n and 7
for all nonstandard n? The question makes so sense. The decimal digits form
a sequence; a sequence is a set; and I committed illegal set formation in posing
the question.

4. Yes; by (I), there is a finite subset of H containing all of its standard
points, so take its span. (This is by no means unique, and we cannot form
the smallest such space without illegal set formation.) Any finite dimensional
subspace of a Hilbert space is closed.

5. We have ∀x∃stn[x ∈ Sn], where x ranges over S. By (I), we have that
∃stfinn′∀x∃n∈n′[x ∈ Sn], and since the sets are disjoint, all but a standard
finite number of them are empty.

6. The set of all N such that |an| ≤ 1/n for all n ≤ N contains all
standard N , so by overspill it contains some unlimited N .

7. Not necessarily; consider the identity function.
8. We can assume that X is non-empty, since otherwise both sides are

vacuously true. The backward direction holds by (I). In the forward direction,
by (I) we have some finite standard x′ that works, and we can take it to be
non-empty. But by Theorem 2, x′ ∩X is also a standard finite set, and it is
an element of ℘

finX.

Section 1.4

1. Let f : X → Y , and assume that X and Y are contained in some
standard set. Let g = Sf . For all z, if z ∈ g then z ∈ SX × SY ; for all x
in SX and y1 and y2 in SY , if 〈x, y1〉 and 〈x, y2〉 are in g, then y1 = y2. These
statements hold by definition for the standard elements, and since the sets in
question are standard, they hold by (T) for all elements. Thus Sf is a function
from a subset of SX into SY .

2. Replace Y by its characteristic function. Let X be a standard set, let
z range over X, let y range over { 0, 1 }, and let ỹ range over { 0, 1 }X . We

clearly have ∀stz∃sty[y = 1 ↔ A], so by (S̃) we have ∃stỹ∀stz[ỹ(z) = 1 ↔ A].
Then we let Y = { z ∈ X : ỹ(z) = 1 }.

3. By elementary calculus, this integral is equal to 1 for any t > 0. There
are no standard pairs 〈x, f(x)〉, so Sf is the empty set.

4. Let S = S{n ∈ N : A(n) }. Then 0 is in S. By assumption, for all
standard n, if n is in S then n + 1 is in S, so by (T) this is true for all n. By
induction, S = N. In particular, every standard n is in S, so A(n) holds for
every standard n.
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5. Let
S = S{ γ ≤ α : A(γ) }.

Then every standard element of S is an ordinal, so the same is true by (T) for
all elements of S. Since S is non-empty (it contains α), it contains a least β,
which is standard by (T). Then β ≤ α. Consider a standard γ such that A(γ).
If α < γ, then certainly β ≤ γ; if γ ≤ α then γ ∈ S, so again β ≤ γ. This
concludes the proof.

This is often used to prove ∀stαB(α). Argue indirectly. If not, there is a
least standard α such that A(α) where A is ¬B. If we can show that α cannot
be 0, a successor, or a limit ordinal, then the proof will be complete.

6. To establish (I), we need only show (without using the backward di-
rection of the idealization principle) that every element of a standard finite
set x′ is standard. We do this by external induction on the cardinality n of
x′. By transfer, n is standard. The statement is vacuously true for n = 0.
For n > 0, the set x′ contains an element, so by (T) it contains a standard
element. Delete this element; what remains is a set of cardinality n − 1 and
by (T) it is a standard set. By the external induction hypothesis, all of the
remaining elements are also standard.

Section 1.5

1. An element η of Ω is a function from T to
⋃

t∈T
Xt such that η(t) ∈ Xt

for all t in T . So if we know that for all standard t there is a y in Xt with
y ' ω(t), then (S̃) tells us that there is a standard η (a ỹ) in Ω such that
η(t) ' ω(t) for all standard t. By the definition of the product topology and
(T), a standard basic neighborhood of η is given by a standard finite set of ti

in T and a standard finite set of neighborhoods Ui of the η(ti), so η ' ω.
2. By (T), assume that f , X, and Y are standard. Let y be in Y . Then

there is an x in X with f(x) = y and a standard x0 in X with x0 ' x. By
(T), f(x0) is standard, and by continuity, f(x0) ' f(x). Hence Y is compact.

3. Not necessarily. In the plane, consider the x-axis and the parallel line
one unit above it together with the vertical interval of length 1 with x unlimited
joining them.

4. If x is limited, then ◦{x} is {st x}; otherwise it is the empty set.
5. If we graph f , what we see is the union of the x-axis and the positive

half of the y-axis, and this is the shadow of the graph of f . Let x 6= 0 be
standard; then 〈x, f(x)〉 ' 〈x, 0〉. Let y > 0 be standard; then the positive
solution x of f(x) = y is infinitesimal, so 〈x, f(x)〉 ' 〈0, y〉. Theorem 6 tells
us that the origin too must be in the shadow. To see this directly, choose
x = t1/4, for example; then 〈x, f(x)〉 ' 〈0, 0〉.

6. Suppose that n is standard. If one, and hence all, of the vertices is
standard, then E is standard and since it is closed ◦E = E; otherwise ◦E is
obtained by an infinitesimal rotation of E. If n is nonstandard, ◦E is the unit
circle.
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Section 1.6

1. Let t > 0 be infinitesimal, and let f(x) = t/π(t2 + x2). Then f is
uniformly continuous but not S-uniformly continuous. For an example in the
other direction, let g(x) = t for x 6= 0 and g(0) = 0.

2. The formula x ' 0, i.e., ∀stε[|x| ≤ ε] where ε ranges over R+, is weakly
equivalent to the internal formula ∀ε[|x| ≤ ε], which is equivalent to x = 0.
The only standard infinitesimal is 0.

3. We have

∀x[∃str[|x| ≤ r] → ∃stx0∀stε[|x− x0| ≤ ε]],
∀str∀x∃stx0∀stε[|x| ≤ r → |x− x0| ≤ ε],

∀str∀stε̃∃stfinx′0∀x∃x∈x′0[|x| ≤ r → |x− x0| ≤ ε̃(x0)];

then remove the superscripts “st”. This says that every interval [−r, r] is
compact.

4. For “open” we have

∀stx0∈E ∀z∈R[∀stε[|z − x0| ≤ ε] → z ∈ E].

Bring ∀stε out as ∃stε, which filters past ∀z∈R. Then use (T) to obtain

∀x0∃ε∀z∈R[|z − x0| ≤ ε → z ∈ E].

Similarly, the formula for “closed” reduces to

∀x0∈R∃ε∀x∈E[|x− x0| ≤ ε → x0 ∈ E],

which is perhaps more readable if we push ∀x∈E inside the parentheses as
∃x∈E. For “bounded”, use the filtering form of (I) and (T) to obtain the
usual formulation ∃r∀x∈E[|x| ≤ r].

5. Let 〈X, d〉 be a standard metric space. To avoid confusion, let us
temporarily call it nice in case for all x, if for all standard ε > 0 there is a
standard y with d(x, y) ≤ ε, then there is a standard x0 with x ' x0. Suppose
that X is incomplete. By (T), there is a standard Cauchy sequence xn with
no limit. Let ν ' ∞ and let ε > 0 be standard. Consider the set S of all n
such that d(xn, xν) ≤ ε. This set contains all unlimited n, so by overspill it
contains some limited n, for which xn is standard. But there is no standard x0

with xν ' x0, for then it would be the limit of the xn. Thus an incomplete
standard metric space is not nice. Conversely, let X be complete and let x
be a point in X such that for all standard ε > 0 there is a standard y with
d(x, y) ≤ ε. Then for all standard n there is a standard y with d(x, y) ≤ 1/n,

so by (S̃) there is a standard sequence yn such that d(x, yn) ≤ 1/n for all
standard n. By the triangle inequality and (T), yn is a Cauchy sequence and
so has a limit x0, which is standard by (T), and x ' x0. Thus a complete
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standard metric space is nice, and our definition by (S) of a metric space being
complete is equivalent to the usual one.

It is also interesting to approach this problem via the reduction algorithm.
We have

∀x[∀stε∃sty[d(x, y) ≤ ε]→ ∃stx0∀stδ[d(x, x0) ≤ δ]].

Use (S̃) before pulling anything out, to avoid spurious arguments of the func-
tions, and then pull out the resulting functions. We obtain

∀stδ̃∀stỹ∀x∃stx0∃stε[d(x, ỹ(ε)) ≤ ε → d(x, x0) ≤ δ̃(x0)],

which by (I) and (T) is equivalent to

∀δ̃∀ỹ∃finε′∃finx′0∀x∃x0∈x′0[∀ε∈ε′(d(x, ỹ(ε)) ≤ ε) → d(x, x0) ≤ δ̃(x0)],

where ∃ε∈ε′ was pushed back inside the implication. Now we have the internal
problem of seeing that this is equivalent to completeness of the metric space.
Only the Cauchy ỹ are relevant (to obtain a more customary notation, we
could let yn = ỹ(1/n)), for otherwise we can find a two-point set ε′ that
violates the hypothesis of the implication, by the triangle inequality. If the
space X is complete, just let x′0 be the singleton consisting of the limit as
ε → 0 of ỹ(ε). To construct a counterexample when X is not complete, let ỹ
be Cauchy without a limit, and let δ̃(x0) be the distance from x0 to the limit
(in the completion) of ỹ(ε).

6. The S-Cauchy condition is

∀n∀m[∀str[n ≥ r & m ≥ r] → ∀stε[|an − am| ≤ ε]].

The r filters out to give the usual definition of a Cauchy sequence. The limited
fluctuation condition is

∀stε∀k[A(k, ε, a) → ∃str[k ≤ r]],

where A(k, ε, a) is an abbreviation for the assertion that the sequence a con-
tains k ε-fluctuations. Again the r filters out, and a standard sequence is of
limited fluctuation if and only if for all ε > 0 there is a bound r on the number
of ε-fluctuations, which is the same as being Cauchy. Now let a be an S-Cauchy
sequence, not necessarily standard, and let ε > 0 be standard. Consider the
set of all n such that for all m > n we have |an − am| ≤ ε; this set contains
all unlimited n, so by overspill it contains some limited n. Consequently, an
S-Cauchy sequence is of limited fluctuation. But let ν ' ∞ and let an = 0
for n < ν and an = 1 for n ≥ ν. This sequence is of limited fluctuation but
is not S-Cauchy. Thus we have two distinct external concepts that agree on
standard objects.

7. The unit ball of any Euclidean space is compact.


