Mat104 Fall 2002, Improper Integrals From Old Exams

For the following integrals, state whether they are convergent or divergent, and give your reasons.

< d d > d
(1) /0 ﬁ—j—Z converges. Break it up as /o p _T_ 5 —|—/1 p f_ 5 The first of these is proper
and finite. The second behaves like the integral of 1/2% on [1,00) and thus converges.

1

d

(2) / +x N converges. As x — 0, /= goes to 0 much more slowly than z does. (Think
0 T T

about the graphs.) Therefore when x is very close to 0, the denominator = + /x = /.

So this integral will behave like the integral of 1//x on [0, 1], and this integral converges.

“Vi+zx . . x 1
(3) / S converges. As x goes to oo, the integrand behaves like \/—3_ = =%
1 x x b/

3 +1 3+ 1 3 +1
first integral is proper and finite. The second can be compared to the integral of 1/z on
[1,00) which diverges.

oo x2 1 1’2 o0 1’2
(4) / dz diverges. Break it up into two integrals / dzr + / dzx. The
0 0 1

1
(5) / Inx dz converges to —1. Here we can compute directly since integration by parts tells
0

us that /lnxdx =zlnz — x + C. Evaluating at the x = 1 endpoint gives In1 — 1 = —1.

For the other endpoint we have to take the limit as x goes to 0. For this we need L’Hopital’s

rule. | )
lima:lna::limﬂz im /x = lim —x = 0.
r—0 x—0 1/;1;’ z—0 —1/;1;’2 x—0

So evaluating at the x = 0 endpoint gives 0.

1
d
(6) / ? 1 diverges. The only difficulty is that the denominator is 0 when x = 0. There are
0 eCC I

a couple of approaches we could take. The easiest is to use the Taylor series for e*. Then
we know that e* — 1 = = + higher powers of z and as x goes to zero, the higher powers of
x will vanish much more rapidly. So this function behaves essentially like 1/x when z is

close to 0. Since / dx/x diverges, this integral will also.

Alternatively, we could compute the integral, making the substitution u = e* and then
use partial fractions.

* d
(7) / Tx—ﬂ converges. The only difficulty is that we have an infinite endpoint. The
0 X x

[e.9]

integrand is asymptotic to 1/z% as x goes to infinity. Since dx/2* converges, this

1
integral will as well. (To compare these we should break up the integral. First integrate
from 0 to 1, which gives a finite value. Then integrate further from 1 out to co. This gives
a finite value as well by comparison to 1/z2.)

oo 3
(8) / lxﬁ dx diverges. Again the only problem is that we have an infinite endpoint. As
. Inz+ax

x goes to infinity, 2 grows much faster than Inz. Thus the integrand will be asymptotic
to 23 /x' = 1/ as x goes to infinity.



(9) / 3d—x converges. Break it up into an integral from 0 to 1 plus the integral from 1 to
o THVE

0o. When z is close to 0, the integrand will behave like 1/+/ since 3 goes to 0 much more

rapidly than y/z does. Since the integral of 1/y/z on [0, 1] converges, so will 1/(z* + /).

As x goes to infinity, \/z grows much more slowly than 23, so 1/(z3++/7) ~ 1/2* when

x is very large. Since the integral of 1/x® on [1,00) is converges, so will the integral of

1/(x* + /z) on [1,00).
1
d
(10) / 1—x diverges. Here the easiest method is to use the Taylor series for cosz. It tells
o 1—cosx

us that 1 — cosx = 2%/2 + higher powers of . Since the higher powers of x die out more
rapidly when z is close to 0, 1/(1 — cosz) behaves like 2/x? as = goes to 0. Therefore the
given integral will behave like the integral of 2/2% on [0, 1] and this integral diverges.

(11) e * cosx dx converges. We could use integration by parts twice to compute the integral

0
and then take limits. On the other hand, since e™ dies out more rapidly than any power

of z, we can conclude that e™ < — once x gets big enough, say, when x > 1 (Check it
x
graphically). So
_x CoS T 1
e “cost < 2 o

Since the integral of 1/22 on [1,00) converges, so will the integral of e cosx on [1,00).
Since there is no problem with our function on [0, 1], the given integral converges.

(12) / ¢ 5~ dx diverges. We have to split it up and think about what happens as we approach
0

0 and what happens as we approach infinity separately. To think about what is happening
at the 0 endpoint, we notice that the numerator goes to 1. So e*’“ﬁ/m2 ~ 1/x? as z goes to
zero. Since the integral of 1/22 on [0, 1] diverges, so will the integral of e~ /2. (Remark:
The integral of this function on [1, 00) will converge — again because the exponential dies
out very very rapidly.)

© 22410
13 —d . Th | bl is that h infinit dpoint.
(13) /0 575 T 62 £ 8 Z converges e only problem is that we have an infinite endpoin

SInce the integrand is asymptotic to 1/2® the integral will converge.

* ' +3c 41 . , e :
(14) / ———5 5 5 du diverges. The only problem is that we have an infinite endpoint. The
o T +22%243
integrand is asymptotic to 1/ so the integral diverges.

1
e
(15) / — dx diverges. The only issue is what happens at 0. Since the numerator approaches
0
1 this function will behave like 1/x as x goes to zero.

Lgina

0o VT

sinz ~ x when z is close to zero, we see that the integrand behaves like x/\/x = /.

(16)

dr converges. Again the only issue is what happens as we approach 0. Since

1
d
(17) / Tx\/_ converges. As z goes to zero, /x dominates. (the other term dies out much
0o T x
faster) So this integral behaves like 1/4/x near zero.



1
(18) / (1 — x)~23 dz converges. Compute directly.
0

22 +dx+4

19

(19) /2 (V—1)3 Va3 —1
As x goes to infinity, the highest powers of x will dominate. So the integrand will behave
like 22 /(2%/? - 2%/?) = 2% /2® = 1 /2.

dz diverges. The only issue is that we have an infinite endpoint.

/2
(20) / tan x dx diverges. Compute directly, using the substitution y = cosz.
0

e +1
integrand will behave like e”/e** = 1/e*. Compute directly or use the fact that e* grows
faster than any power of x so 1/e” dies out faster than any power of x.

oo xr 1
(21) / ¢ dx converges. The only issue is the infinite endpoint. When z is large the
0

* sinx
(22) / T 1 dx converges. Compare to 1/z2.
2 X7

(23) / SH:_\/E dz converges. Compare to 1/(x + z*) and then to 1/z*.
L T4z

1 .
(24) / Sli\/f dzx converges. When z is small the numerator will be well-approximated by /x
0 T+

and the denominator will be well-approximated by z. So the integrand behaves like 1/1/z
when x goes to zero.

2

d

(25) / | * 1 diverges. This is the same as integrating 1/(1—x) which behaves like integrating
o |T—

1/x.

[ee]
d
(26) / 0—19'9 diverges. Compute directly or use the p-test.
IR

< d
(27) / ﬁ dx converges. Near 0 the integrand behaves like 1/2%/® which gives a con-
0o T+

vergent integral on [0,1]. When z is large the integrand behaves like 1/2* which gives a
convergent integral on [1, 00).

o0
(28) / 2% ™" dr converges. Compute directly (a pain) or use the fact that the exponential
0

dies out faster than any power of z, say faster than x=°. This allows you to compare the
integral to that of 1/2? which gives convergence.

<1
(29) / 13_1;2 dx converges. Since Inz grows more slowly than any power of x we can say
1 x

that Inz /(1 + 22) < \/2/(1 + 22) when z is large enough. Since v/z/(1 + 2%) ~ 1/2%/2 we
get convergence at the infinite endpoint, the only possible problem.

(30) / % diverges. This integral has problems at both endpoints. This means we have
. x?Inz

to split the integration, say integrating first from 1 to 2 and then integrating again from 2



to oo. To understand what is happening at = 1 we could make the substitution xr = u+1

/2 dz _/2 du
L 22Inz g (u—1)2In(1 4 u)

and then use a known Taylor series to understand this integral. Since In(1 + u) = u —
u?/2 +u3/3 — ... we see that the denominator (1 — 2u + u?)(u — u?/2 +u3/3 — ... ) is of
the form u + higher powers of u. So the integrand behaves like 1/u as u goes to zero, and
therefore this integral (as well as the original integral) diverges.

While we're here let me say that the other integral, as x runs from 2 to oo converges. To

~ d
see this, observe that z2Inz > 2% and thus 1/(2?Inz) < 1/2%. By comparison / 5 Ix
x?lnx
converges. 2
dz . . .
(31) s converges. The only problem is the x = 0 endpoint. When =z is small,
o Vsinzx

sinz /& z, so this integral behaves like that of 1/1/z and converges.

(32) / e”(1+ e ") dx diverges. Multiplying out the integrand we get / e’ dr + e "dx
0 0 0
The second integral here is finite, and the first is infinite since e® goes to infinity as x does.

1
(33) / Vo Inzdr converges. Compute directly using integration by parts and take the limit
0
using L’Hopital’s Rule.

3 _
totic to 1/z% as x goes to infinity.

< dx
(34) / ] converges. The only problem is the infinite endpoint. The integrand is asymp-
2

™21 4 cosx . . . :
(35) ——— duz diverges. The only problem here is that denominator vanishes at x = 0.
0 x

Since the numerator approaches 2 as = goes to 0, the integrand behaves like 2/x when z
goes to 0.

o0 l .
(36) / MQ—jolsx dx converges. Here the only problem is the infinite endpoint.
.

Inx - cosx Inx _ NG 1
2+1 T a2+1 2241 a2

since In z grows more slowly than any power of x.

0 du 1
(37) / converges. When z is close to zero, then y/z dominates. That is ————— ~
o (1+a)V X (1+ :f)\/f

(1+2)yx T

s ¢ — 0. When z is very large, then x1/z = 2%? dominates —

< dr dz 1
(38) converges. ———— ~ — as & — 0.
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d
(39) / \3/_—_7_2 converges. When z is close to 0, /= dominates. When z is very large, z?
0 T+

dominates.



Other problems involving improper integrals

(1) Find the arc length of the curve given by x = e *cost and y = e *sint for 0 < ¢ < oc.

dz . »

— = —e ‘'sint—e ‘cost
dt

d

Y e teost —etsint
dt

dz\? dy 2
— - = ...=92¢ %
() + () = e

So the arc length is given by the improper integral

/OOO V2e tdt = /2.

(2) Find / te” " dt or show that it diverges. Use integration by parts to show that / te tdt =
0

—te ! — et and then / te tdt = 1.
0

Ve in(1
M dx. Make the substitution w = Inz and the integral becomes

(3) Evaluate /

1 €T

VE aresin(l 2
[ g - [ arcsing) du
L 0

T

Using integration by parts with v = arcsinw and dv = dw we find that

/arcsinwdw = warcsinw + vV 1 — w?
V3

and the definite integral works out to be % + - 1.

>~ d
(4) Evaluate /1 p j_ T Here we get lim; ., arctant — arctan 1 = g — % = %



