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Abstract

We prove a 1985 conjecture of Gyárfás that for all k, ℓ, every graph with sufficiently large chromatic
number contains either a clique of cardinality more than k or an induced cycle of length more than ℓ.



1 Introduction

All graphs in this paper are finite, and without loops or parallel edges. A hole in a graph G is an
induced subgraph which is a cycle of length at least four, and an odd hole means a hole of odd length.
(The length of a path or cycle is the number of edges in it, and we sometimes call a hole of length ℓ
an ℓ-hole.) In 1985, A. Gyárfás [2] made three famous conjectures:

1.1 Conjecture: For every integer k > 0 there exists n(k) such that every graph G with no clique

of cardinality more than k and no odd hole has chromatic number at most n(k).

1.2 Conjecture: For all integers k, ℓ > 0 there exists n(k, ℓ) such that every graph G with no

clique of cardinality more than k and no hole of length more than ℓ has chromatic number at most

n(k, ℓ).

1.3 Conjecture: For all integers k, ℓ > 0 there exists n(k, ℓ) such that every graph G with no

clique of cardinality more than k and no odd hole of length more than ℓ has chromatic number at

most n(k, ℓ).

Two of us recently proved the first conjecture in [3]. The third implies the other two, and remains
open, although two of us proved the third when k = 2 [4]. (In fact we proved much more, when
k = 2; that for all ℓ ≥ 0, in every graph with large enough chromatic number and no triangle, there
is a sequence of holes of ℓ consecutive lengths). In this paper we prove the second; thus, our main
result is:

1.4 For all integers k, ℓ > 0 there exists n(k, ℓ) such that every graph G with no clique of cardinality

more than k and no hole of length more than ℓ has chromatic number at most n(k, ℓ).

Our proof is an extension of the method of [4]. We denote the chromatic number of a graph G
by χ(G). If X ⊆ V (G), the subgraph of G induced on X is denoted by G[X], and we often write
χ(X) for χ(G[X]).

2 Multicovers

If X,Y are disjoint subsets of the vertex set of a graph G, we say

• X is complete to Y if every vertex in X is adjacent to every vertex in Y ;

• X is anticomplete to Y if every vertex in X nonadjacent to every vertex in Y ; and

• X covers Y if every vertex in Y has a neighbour in X.

(If X = {v} we say v is complete to Y instead of {v}, and so on.) Let x ∈ V (G), let N be some set
of neighbours of x, and let C ⊆ V (G) be disjoint from N ∪ {x}, such that x is anticomplete to C
and N covers C. In this situation we call (x,N) a cover of C in G. For C,X ⊆ V (G), a multicover

of C in G is a family (Nx : x ∈ X) such that

• X is stable;
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• for each x ∈ X, (x,Nx) is a cover of C;

• for all distinct x, x′ ∈ X, x′ is anticomplete to Nx (and in particular all the sets {x} ∪ Nx are
pairwise disjoint).

The multicover (Nx : x ∈ X) is stable if each of the sets Nx (x ∈ X) is stable. Let (Nx : x ∈ X)
be a multicover of C in G. If X ′ ⊆ X, and N ′

x ⊆ Nx for each x ∈ X ′, we say that (N ′
x : x ∈ X ′) is

contained in (Nx : x ∈ X).
If (Nx : x ∈ X) is a multicover of C, and F is a subgraph of G with X ⊆ V (F ) such that no

vertex in C ∪
⋃

x∈X Nx belongs to or has a neighbour in V (F ) \ X, we say that F is tangent to the
multicover. We need to prove that if we are given a multicover (Nx : x ∈ X) with |X| large, of
some set C with χ(C) large, then there a multicover (N ′

x : x ∈ X ′) of some C ′ ⊆ C, contained in
(Nx : x ∈ X), with |X ′| and χ(C ′) still large (but much smaller than before), and with a certain
desirable subgraph tangent, a “tick”.

Let X ⊆ V (G) be stable. Let a and ax (x ∈ X) be distinct members of V (G) \ X, such that

• a is anticomplete to X;

• ax is adjacent to a, x and is anticomplete to X \ {x}, for each x ∈ X;

We call the subgraph of G with vertex set X ∪ {a} ∪ {ax : x ∈ X} and edges x-ax, a-ax for each
x ∈ X a tick on X in G. This may not be an induced subgraph of G because the vertices ax (x ∈ X)
may be adjacent to one another in G.

For a graph G, we denote by ω(G) the cardinality of the largest clique of G, and if X ⊆ V (G)
we sometimes write ω(X) for ω(G[X]). We need:

2.1 For all j, k,m, c, κ ≥ 0 there exist mj, cj ≥ 0 with the following property. Let G be a graph

with ω(G) ≤ k, such that χ(H) ≤ κ for every induced subgraph H of G with ω(H) < k. Let

(Nx : x ∈ X) be a stable multicover in G of some set C, such that |X| ≥ mj, χ(C) ≥ cj , and

ω(
⋃

x∈X Nx) ≤ j. Then there exist X ′ ⊆ X with |X ′| ≥ m and C ′ ⊆ C with χ(C ′) ≥ c and a stable

multicover (N ′
x : x ∈ X ′) of C ′ contained in (Nx : x ∈ X), such that there is a tick in G tangent to

(N ′
x : x ∈ X ′).

Proof. We may assume that k ≥ 2, for otherwise the result is vacuous. We proceed by induction on
j, keeping k,m, c, κ fixed. If j = 0 then we may take m0 = c0 = 1 and the theorem holds vacuously;
so we assume that j > 0 and the result holds for j − 1. Thus mj−1, cj−1 exist. Let

mj = 2kmmj−1

d2 = mj2
mjcj−1 + 2mjc

d1 = d2 + mjκ

d0 = k2mjd1

cj = d0 + kκ.

We claim that mj, cj satisfy the theorem. Let G, (Nx : x ∈ X), and C be as in the theorem, with
|X| ≥ mj and χ(C) ≥ cj , such that ω(

⋃
x∈X Nx) ≤ j. We may assume that |X| = mj. Since cj > κ,

there is a clique A ⊆ C with |A| = k. Let C0 be the set of vertices in C \A with no neighbour in A;
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then since every vertex in C \C0 has a neighbour in A, and for each a ∈ A its set of neighbours has
chromatic number at most κ (because it includes no k-clique), it follows that χ(C \ C0) ≤ kκ, and
so χ(C0) ≥ cj − kκ = d0.

(1) There exist a ∈ A, and X1 ⊆ X with |X1| ≥ mj/k, and C1 ⊆ C0 with χ(C1) ≥ d1, such

that for each v ∈ C1 and each x ∈ X1, there is a vertex in Nx adjacent to v and nonadjacent to a.

For each v ∈ C0 and each x ∈ X, v has a neighbour in Nx; and this neighbour is nonadjacent
to some vertex in A, since |A| = k = ω(G). Thus there exists av,x ∈ A such that some vertex in Nx is
adjacent to v and nonadjacent to av,x. There are only k possible values for av,x as x ranges over X,
and so there exist av ∈ A and Xv ⊆ X with |Xv| ≥ |X|/k, such that av,x = av for all x ∈ Xv. There
are only k possible values for av; so there exist a ∈ A and C ′ ⊆ C0 with χ(C ′) ≥ χ(C0)/k ≥ 2mj d1,
such that av = a for all v ∈ C ′. Thus for each v ∈ C ′ there exists Xv ⊆ X with |Xv| ≥ |X|/k, such
that av,x = a for all x ∈ Xv. There are at most 2mj possibilities for Xv; so there exists C1 ⊆ C ′ with
χ(C1) ≥ d1, and X1 ⊆ X with |X1| ≥ mj/k, such that Xv = X1 for all v ∈ C1. This proves (1).

Let a,X1, C1 be as in (1). For each v ∈ C1 and each x ∈ X1, let nx,v ∈ Nx be adjacent to v and
nonadjacent to a. For each x ∈ X1 choose ax ∈ Nx adjacent to a. Let C2 be the set of all vertices
in C1 nonadjacent to each ax(x ∈ X); then χ(C2) ≥ χ(C1) − mjκ ≥ d2. For each y ∈ X1, let Cy be
the set of all v ∈ C2 such that nx,v is adjacent to ay, for at least mj−1 values of x ∈ X1 \ {y}. Next,
we show that we may assume that:

(2) χ(Cy) ≤ cj−12
mj , for each y ∈ X1.

We will show that if (2) is false, then there is a multicover (N ′
x : x ∈ X ′) contained in (Nx : x ∈ X)

with ω(
⋃

x∈X′ N ′
x) ≤ j − 1, to which we can apply the the inductive hypothesis on j. Suppose then

that χ(Cy) > cj−12
mj for some y ∈ X1. For each v ∈ Cy, let Xv ⊆ X1 \ {y} with |Xv| = mj−1, such

that nx,v is adjacent to ay for each x ∈ Xv. There are at most 2mj choices of Xv, and so there exist
C ′ ⊆ Cy and X ′ ⊆ X1 \ {y} with χ(C ′) ≥ χ(Cy)2

−mj ≥ cj−1 and |X ′| = mj−1, such that Xv = X ′

for all v ∈ C ′. Let N ′
x be the set of neighbours of ay in Nx, for each x ∈ X ′; then (N ′

x : x ∈ X ′)
is a multicover of C ′. Moreover, since every vertex in

⋃
x∈X′ N ′

x is adjacent to ay, it follows that
ω(

⋃
x∈X′ N ′

x) < j. But then the result follows from the definition of mj−1, cj−1. This proves (2).

(3) There exist C3 ⊆ C2 with χ(C3) ≥ c and X3 ⊆ X1 with |X3| ≥ m, such that nx,v is nonad-

jacent to ay for all v ∈ C3 and all distinct x, y ∈ X3.

Let C ′ be the set of all v ∈ C2 that are not in any of the sets Cy (y ∈ X1), that is, such that
for each y ∈ X1, there are fewer than mj−1 values of x ∈ X1 \ {y} such that nx,v is adjacent to ay.
From (2), it follows that

χ(C ′) ≥ χ(C2) − mj2
mj cj−1 ≥ d2 − mj2

mj cj−1 = 2mjc.

Let v ∈ C ′; and let Gv be the digraph with vertex set X1 in which for distinct x, y ∈ X1, y is adjacent
from x in Gv if nx,v is adjacent to ay. It follows from the definition of C2 that every vertex of Gv has
indegree at most mj−1−1. Consequently the undirected graph underlying Gv has degeneracy at most
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2mj−1 − 2, and therefore is 2mj−1-colourable. Thus there exists Xv ⊆ X1 with |Xv| ≥ |X1|/(2mj−1)
such that no two members of Xv are adjacent in Gv . There are at most 2mj choices of Xv, and so
there exists C3 ⊆ C ′ with χ(C3) ≥ χ(C ′)2−mj ≥ c and X3 ⊆ X1 with

|X3| ≥ |X1|/(2mj−1) ≥ mj/(2kmj−1) = m,

such that Xv = X3 for all v ∈ C3. This proves (3).

For each x ∈ X3, let N ′
x be the set of vertices in Nx nonadjacent to each ay (y ∈ X3). Thus

nx,v ∈ N ′
x for each x ∈ X3 and v ∈ C3. Hence (N ′

x : x ∈ X3) is a multicover of C3 contained in
(Nx : x ∈ X). Moreover, the subgraph consisting of a, the vertices ax (x ∈ X3) and X, together
with the edges a-ax and ax-x for each x ∈ X3, form a tick which is tangent to this multicover. This
proves 2.1.

By repeated application of 2.1 with j = k, we can obtain many ticks on the same subset X ′ of X,
disjoint except for X ′ and with no edges joining them disjoint from X ′. (Note that vertices in the
same tick with degree two in that tick may be adjacent in G, but otherwise the subgraph formed by
the union of the ticks is induced.) But such a “tick cluster” has a hole of length at least ℓ, if there
are at least ℓ/3 ticks and the set X has cardinality at least ℓ/3. We deduce that:

2.2 Let k, κ, ℓ ≥ 0 be integers. Then there exists m, c with the following property. Let G be a graph

with no hole of length at least ℓ, with ω(G) ≤ k, such that χ(H) ≤ κ for every induced subgraph H
of G with ω(H) < k. Then there is no stable multicover (Nx : x ∈ X) in G of a set C, such that

|X| ≥ m and χ(C) ≥ c.

We remark that with a little more work, we can prove a version of 2.1, and of 2.3 below, which
just assumes there is no odd hole of length at least ℓ, instead of assuming there is no hole of length
at least ℓ. The proof is, roughly: use the argument above to get a large tick cluster, all tangent
to a multicover (Nx : x ∈ X) of some set C, with |X| and χ(C) large. Use Ramsey’s theorem
repeatedly, to arrange that for each tick, its “knees” are stable (shrinking X to some smaller set);
and then choose an odd path between two vertices x, x′ ∈ X via a vertex in Nx, a vertex in N ′

x, and
an ω(G)-clique in C. We omit the details.

Let us eliminate the “stable” hypothesis.

2.3 Let k, κ, ℓ ≥ 0 be integers. Then there exists m, c with the following property. Let G be a graph

with no hole of length at least ℓ, with ω(G) ≤ k, such that χ(H) ≤ κ for every induced subgraph H
of G with ω(H) < k. Then there is no multicover (Nx : x ∈ X) in G of a set C, such that |X| ≥ m
and χ(C) ≥ c.

Proof. Let m, c′ satisfy 2.2 (with c replaced by c′). Let c = c′κm. We claim that m, c satisfy the
theorem. Let G be a graph with no hole of length at least ℓ, with ω(G) ≤ k, such that χ(H) ≤ κ
for every induced subgraph H of G with ω(H) < k. Suppose that (Nx : x ∈ X) is a multicover in G
of a set C, such that |X| ≥ m and χ(C) ≥ c. We may assume that |X| = m. For each x ∈ X, the
subgraph induced on Nx is κ-colourable; choose some such colouring, with colours 1, . . . , κ, for each
x. For each v ∈ C, let fv : X → {1, . . . , κ} such that for each x ∈ X, some neighbour of v in Nx has
colour fv(x). There are only κ|X| possibilities for fv, so there is a function f : X → {1, . . . , κ} and
a subset C ′ ⊆ C with χ(C ′) ≥ χ(C)κ−|X| ≥ c′, such that fv = f for all v ∈ C ′. For each x ∈ X, let
N ′

x be the set of vertices in Nx with colour f(x); then (N ′
x : x ∈ X) is a stable multicover of C ′, and

the result follows from the choice of m, c′. This proves 2.3.
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3 Clique control

Let X ⊆ V (G) be a clique. If |X| = k we call X a k-clique. We denote by N1
G(X) the set of all

vertices in V (G) \ X that are complete to X; and by N2
G(X) the set of all vertices in V (G) \ X

with a neighbour in N1(X) and with no neighbour in X. When X = {v} we write N i
G(v) for

N i
G(X) (i = 1, 2). Let N denote the set of nonnegative integers, let φ : N → N be a nondecreasing

function, and let k ≥ 1 be an integer. We say a graph G is (h, φ)-clique-controlled if for every induced
subgraph H of G and every integer n ≥ 0, if χ(H) > φ(n) then there is an h-clique X of H such
that χ(N2(X)) > n. Intuitively, this means that in every induced subgraph H of large chromatic
number, there is an h-clique X with N2

H(X) of large chromatic number; the function φ is just a way
of making “large” precise. (This is different from what was called being “(ρ, φ)-controlled” in [4].
There, ρ was a distance, and here, h is a clique cardinality.)

We need the following. A somewhat stronger version was proved in [1], but we give a proof here
to make the paper self-contained.

3.1 Let ℓ ≥ 4, κ ≥ 0 and τ ≥ 0 be integers, and let G be a graph with no hole of length at least ℓ,
such that χ(N1(v)) ≤ κ and χ(N2(v)) ≤ τ for every vertex v. Then χ(G) ≤ 2(ℓ − 3)(κ + τ) + 1.

Proof. Let G1 be a component of G with χ(G1) = χ(G), let z0 ∈ V (G1), and for i ≥ 0 let Li be
the set of vertices of G1 with distance i from z0. Choose k such that χ(Lk) ≥ χ(G1)/2. If k = 0
then the theorem holds, so we may assume that k ≥ 1. Let C0 be the vertex set of a component of
G[Lk] with maximum chromatic number. Choose v0 ∈ Lk−1 with a neighbour in C0. Let t = ℓ − 3,
and suppose that χ(C0) > tκ + tτ . We claim that :

(1) For all i with 0 ≤ i < t, there is an induced path v0-v1- · · · -vi where v1, . . . , vi ∈ C, and a

subset Ci of C such that G[Ci] is connected, χ(Ci) > (t − i)κ + tτ , vi has a neighbour in Ci, and

v0, . . . , vi−1 have no neighbours in Ci.

For this is true when i = 0; suppose it is true for some value of i < t, and we prove it is also
true for i + 1. Let N be the set of neighbours of vi in Ci. Thus

χ(Ci \ N) ≥ χ(Ci) − κ > (t − i − 1)κ + tτ ≥ 0,

and so Ci \N 6= ∅; let Ci+1 be the vertex set of a component of G[Ci \N ] with maximum chromatic
number. Thus χ(Ci+1) > (t − i − 1)κ − (i + 1)κ. Choose vi+1 ∈ N with a neighbour in Ci+1. This
completes the inductive definition of v1, . . . , vi and Ci, and so proves (1).

In particular, such a path v0- · · · -vt and subset Ct exist. Since χ(Ct) > tτ , there is a vertex
v ∈ Ct in none of the sets N2

G(vi) (0 ≤ i ≤ t − 1), and therefore with distance at least three from all
of v0, . . . , vt−1, since t ≥ 1. Choose u ∈ Lk−1 adjacent to v; then u has distance at least two from all
of v0, . . . , vt−1. Let P be an induced path of G[Ct ∪ {u, vt}] between u, vt; thus P has length at least
one. Let Q be an induced path of G between u, v0 with all internal vertices in L0 ∪ · · · ∪ Lk−2; then
Q has length at least two. The union of P,Q and v0-v1- · · · -vt is a hole of length at least t + 3 = ℓ,
which is impossible.

This proves that χ(C0) ≤ tκ+ tτ . Consequently χ(Lk) ≤ t(κ+ τ), and so χ(G) ≤ 2t(κ+ τ). This
proves 3.1.
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From 3.1 we deduce:

3.2 Let ℓ ≥ 4, and let k ≥ 1 and κ ≥ 0 be such that χ(H) ≤ κ for every graph H with no hole of

length at least ℓ and ω(H) < k. For x ≥ 0 let φ1(x) = 2(ℓ− 3)(κ + x) + 1. Then every graph G with

no hole of length at least ℓ and with ω(G) ≤ k is (1, φ1)-clique-controlled.

Proof. Let G be a graph with no hole of length at least ℓ and with ω(G) ≤ k. Let n ≥ 0, and let
H be an induced subgraph of G with χ(H) > φ(n). Consequently V (H) 6= ∅; choose v ∈ V (H) with
χ(N2

H(v)) maximum, χ(N2
H(v)) = τ say. Since H has no hole of length at least ℓ, and χ(NH(u)) ≤ κ

and χ(N2
H(u)) ≤ τ for every vertex u of H, 3.1 implies that χ(H) ≤ 2(ℓ − 3)(κ + τ) + 1, and so

φ1(n) < χ(H) ≤ φ1(χ(N2
H(v))). Consequently χ(N2

H(v)) > n. This proves 3.2.

We are going to prove, by induction on h, that:

3.3 Let ℓ ≥ 4, and let k ≥ 1 and κ ≥ 0 be such that χ(H) ≤ κ for every graph H with no hole of

length at least ℓ and ω(H) < k. For all h ≥ 1 there is a nondecreasing function φh : N → N such

that every graph G with no hole of length at least ℓ and with ω(G) ≤ k is (h, φh)-clique-controlled.

Suppose 3.3 is true. Let G be a graph with no hole of length at least ℓ and with ω(G) ≤ k; then
G is (k+1, φk+1)-clique-controlled, by 3.3 with h = k+1, and since G has no (k+1)-clique, it follows
that χ(G) ≤ φk+1(0); and this proves 1.4.

Thus it suffices to prove 3.3. In order to do so, in view of 3.2, it suffices to prove that if φh exists
for a given value of h ≥ 1, then φh+1 also exists. To prove the latter, we need to prove that for every
integer τ ≥ 0, there exists c(τ) such that if G has no hole of length at least ℓ and ω(G) ≤ k, and
χ(N2

G(X)) ≤ τ for every (h + 1)-clique X in G, then χ(G) ≤ c(τ). (If we can prove this, we define
φh+1(n) = max0≤τ≤n c(τ) for every n ≥ 0, and then φh+1 satisfies 3.3 as required.)

Consequently, it remains to prove the following:

3.4 Let ℓ, k, κ, τ ≥ 0, let h ≥ 1, and let φ : N → N be nondecreasing. Then there exists c ≥ 0 with

the following property. Let G be a graph such that

• G has no hole of length at least ℓ;

• ω(G) ≤ k;

• χ(H) ≤ κ for every induced subgraph H of G with ω(H) < k;

• G is (h, φ)-clique-controlled; and

• χ(N2
G(X)) ≤ τ for every clique X in G with |X| = h + 1.

Then χ(G) ≤ c.

This is the goal of the remainder of the paper.

6



4 Cables

Let G be a graph and let t ≥ 0 and h ≥ 1 be integers. A t-cable of order h in G consists of:

• t h-cliques X1, . . . ,Xt, pairwise disjoint and anticomplete;

• for 1 ≤ i ≤ t, a subset Ni of N1(Xi), such that the sets N1, . . . , Nt are pairwise disjoint;

• for 1 ≤ i ≤ t, disjoint subsets Zi,i+1, . . . , Zi,t, Yi,t of Ni; and

• a subset C ⊆ V (G) disjoint from X1 ∪ · · · ∪ Xt ∪ N1 ∪ · · · ∪ Nt

satisfying the following conditions:

• for 1 ≤ i ≤ t, Yi,t covers C, and C is anticomplete to Zi,j for i+1 ≤ j ≤ t, and C is anticomplete
to Xi;

• for i < j ≤ t, Xi is anticomplete to Nj ;

• for all i < j ≤ t, every vertex in Zi,j has a non-neighbour in Xj ;

• for i < j < k ≤ t, Zi,j is anticomplete to Xk ∪ Nk;

• for all i < j ≤ t, either

– some vertex in Xj has no neighbours in Yi,t, and Zi,j = ∅, or

– Xj is complete to Yi,t, and Zi,j covers Nj.

We call C the base of the t-cable, and say χ(C) is the chromatic number of the t-cable. Given a
t-cable in this notation, let I ⊆ {1, . . . , t}; then the cliques Xi (i ∈ I), the sets Ni (i ∈ I), the sets
Zi,j (i, j ∈ I), the sets Yi (i ∈ I) and C (after appropriate renumbering) define an |I|-cable. We call
this a subcable.

Thus there are two types of pair (i, j) with i < j ≤ t, and later we will apply Ramsey’s theorem
on these pairs to get a large subcable where all the pairs have the same type. Consequently, two
special kinds of t-cables are of interest:

• t-cables of type 1, where for all i < j ≤ t, some vertex in Xj has no neighbours in Yi,t, and
Zi,j = ∅; and

• t-cables of type 2, where for all i < j ≤ t, Xj is complete to Yi,t, and Zi,j covers Nj .

From 2.3 we deduce:

4.1 For all k, κ, ℓ ≥ 0 and h ≥ 1, there exist t, c ≥ 0 with the following property. Let G be a graph

with no hole of length at least ℓ, with ω(G) ≤ k, such that χ(H) ≤ κ for every induced subgraph H
of G with ω(H) < k. Then G admits no t-cable of type 1 and order h with chromatic number more

than c.
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Proof. Choose m, c to satisfy 2.3. By Ramsey’s theorem there exists t such that for every partition
of the edges of Kt into h sets, there is an m-clique of Kt for which all edges joining its vertices are
in the same set. We claim that t, c satisfy the theorem.

For let G be as in the theorem, and suppose that G admits a t-cable of type 1 and order h with
chromatic number more than c. In the usual notation for t-cables, fix an ordering of the members of
Xi for each i; thus we may speak of the rth member of Xi for 1 ≤ r ≤ h. For each pair (i, j) with
i < j ≤ t, let f(i, j) = r where the rth member of Xj has no neighbours in Yi,t. From the choice
of t, there exist I ⊆ {1, . . . , t} with |I| = m and r ∈ {1, . . . , h} such that f(i, j) = r for all i, j ∈ I
with i < j. For each j ∈ I, let xj be the rth member of Xj. Then the sets (xj , Nj) (j ∈ I) form a
multicover of C, which is impossible by 2.3. This proves 4.1.

We need an analogue for cables of type 2, but it needs an extra hypothesis. On the other hand,
we only need to assume that there is no hole of length exactly ℓ.

4.2 Let τ ≥ 0, ℓ ≥ 5 and h ≥ 1, and let G be a graph with no ℓ-hole, such that χ(N2(X)) ≤ τ for

every (h + 1)-clique X of G. Then G admits no (ℓ − 3)-cable of type 2 and order h with chromatic

number more than (ℓ − 3)τ .

Proof. Let t = ℓ− 3, let G be as in the theorem, and suppose that G admits a t-cable of type 2 and
order h with chromatic number more than tτ . In the usual notation, choose zt ∈ Yt,t, and choose
zt−1 ∈ Zt−1,t adjacent to zt. Since zt−1 ∈ Zt−1,t, it has a non-neighbour xt ∈ Xt. Neither of xt, zt

has a neighbour in Zi,i+1 for 1 ≤ i ≤ t − 2. Now zt−1 has a neighbour zt−2 ∈ Zt−2,t−1; and similarly
for i = t − 3, . . . , 1 let zi ∈ Zi,i+1 be a neighbour of zi+1. It follows that

z1-z2- · · · -zt−1-zt-xt

is an induced path.
For 1 ≤ i ≤ t, let Ci be the set of vertices v ∈ C such that some vertex in Y1,t is adjacent to

both v, zi. Since Xi is complete to Y1,t, it follows that Ci ⊆ N2
G(Xi ∪ {zi}); and since Xi ∪ {zi}

is an (h + 1)-clique, it follows from the hypothesis that χ(Ci) ≤ τ . Thus the union C1 ∪ · · · ∪ Ct

has chromatic number at most tτ ; and since χ(C) > tτ , there exists u ∈ C not in any of the sets
Ci (1 ≤ i ≤ t). Choose v ∈ Y1,t adjacent to u; then v is not adjacent to any of z1, . . . , zt, by definition
of C1, . . . , Ct. Choose x1 ∈ X1; then

v-x1-z1-z2- · · · -zt−1-zt-xt-v

is a hole of length t + 3 = ℓ, a contradiction. This proves 4.2.

From 4.1, 4.2 and Ramsey’s theorem, we deduce that:

4.3 For all k, κ, τ, ℓ ≥ 0 and h ≥ 1, there exist t, c ≥ 0 with the following property. Let G be a graph

such that:

• G has no hole of length at least ℓ;

• ω(G) ≤ k;
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• χ(H) ≤ κ for every induced subgraph H of G with ω(H) < k; and

• χ(N2(X)) ≤ τ for every (h + 1)-clique X of G.

Then G admits no t-cable of order h with chromatic number more than c.

On the other hand, we have the following:

4.4 Let t, c, τ, κ ≥ 0 and h > 0, and let φ : N → N be nondecreasing. Then there exists c′ with the

following property. Let G be a graph such that

• χ(N1(v)) ≤ κ for every v ∈ V (G);

• G is (h, φ)-clique-controlled; and

• χ(N2(X)) ≤ τ for every (h + 1)-clique X of G.

If G admits no t-cable of order h with chromatic number more than c, then χ(G) ≤ c′.

Proof. Let σt = c, and for s = t − 1, . . . , 0 let

σs = max(2sφ((h + 1)sσs+1), τ + hκ).

Let c′ = σ0. We claim that c′ satisfies the theorem.
For let G be a graph satisfying the hypotheses of the theorem, and suppose that χ(G) > c′.

Consequently G admits a 0-cable with chromatic number more than σ0. We claim that for s =
1, . . . , t, G admits an s-cable of order h with chromatic number more than σs. For suppose the result
holds for some s < t; we prove it also holds for s + 1.

In the usual notation, let C be the base of the s-cable. For each v ∈ C and 1 ≤ i ≤ s, let Ci,v

be the set of vertices u ∈ C \ {v} nonadjacent to v, such that some vertex in Yi,s is adjacent to both
u, v. Let fi,v = 1 if χ(Ci,v) > τ + hκ, and fi,v = 0 otherwise. There are only 2s possibilities for the
sequence f1,v, . . . , ft,v, so there is a subset C1 ⊆ C with χ(C1) ≥ 2−sχ(C) > 2−sσs and a 0, 1-sequence
f1, . . . , fs such that fi,v = fi for 1 ≤ i ≤ t and all v ∈ C1. For 0 ≤ i ≤ s let di = (h + 1)s−iσs+1. Let
H = G[C1]; then since 2−sσs = φ(d0), there is an h-clique Xs+1 of H such that χ(D0) > d0, where
D0 = N2

H(Xs+1). Let Ns+1 = Ys+1,s+1 = N1
H(Xs+1).

For 1 ≤ i ≤ s, we define Yi,s+1, Zi,s+1 ⊆ Yi,s and Di ⊆ Di−1 as follows. Assume that we have
defined Di−1, and χ(Di−1) > di−1. Let W be the set of vertices in Yi,s that are complete to Xs+1, and
for each x ∈ Xs+1, let Ux be the set of vertices in Di−1 with a neighbour in Yi,s that is nonadjacent
to x. If χ(Ux) > di for some x ∈ Xh+1, let Di = Ux, let Yi,s+1 be the set of all vertices in Yi,s that
are nonadjacent to x, and let Zi,s+1 = ∅.

Thus we assume that χ(Ux) ≤ di for each x ∈ Xh+1; and so
⋃

x∈Xs+1
Ux has chromatic number

at most hdi. Let Di = Di−1 \
⋃

x∈Xs+1
Ux; then χ(Di) > di−1 − hdi = di. For each vertex in Di,

all its neighbours in Yi,s belong to W . In particular, let x ∈ Xs+1; then Ci,x (defined earlier) has
chromatic number more than

di−1 − hdi = di ≥ σs+1 ≥ τ + hκ,

and so fi,x = 1. Since x ∈ C1, it follows that fi = 1, and so χ(Ci,v) > τ + hκ for each v ∈ C1.
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Now let v ∈ Ns+1. If u ∈ C, and u has no neighbour in Xs+1 ∪ {v}, and some vertex in W is
adjacent to both u, v, then u ∈ N2

G(Xs+1 ∪ {v}; and so the set of all such u has chromatic number
at most κ. On the other hand, the set of u ∈ C with a neighbour in Xs+1 and are nonadjacent to
v has chromatic number at most hκ, since for each x ∈ Xs+1 its set of neighbours has chromatic
number at most κ. Consequently the set of vertices in C that are nonadjacent to v and adjacent to
a neighbour of v in W has chromatic number at most τ + hκ. Since χ(Ci,v) > τ + hκ, it follows that
there exists u ∈ Ci,v such that no neighbour of v in W is adjacent to u. From the definition of Ci,v,
it follows that v has a neighbour in Yi,s \ W .

Since this is true for every vertex v ∈ Ns+1, we may define Yi,s+1 = W and Zi,s+1 = Yi,s \ W .
This completes the definition of Yi,s+1, Zi,s+1 and Di.

Thus χ(Ds) > ds, and so X1, . . . ,Xs+1, the sets N1, . . . , Ns+1, the sets Zi,j for 1 ≤ i < j ≤ s + 1,
the sets Yi,s+1 for 1 ≤ i ≤ s + 1, and Ds, define an (s + 1)-cable of order h with chromatic number
more than ds.

This proves that G admits a t-cable of order h with chromatic number more than σt = c, a
contradiction, and so proves 4.4.

3.4 follows immediately from 4.3 and 4.4. This proves 3.4, and hence completes the proof of 1.4.
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