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Outline

In section 5.1 of our text, we are given (without proof) the following theorem (it
is Theorem 2):

Theorem. Let p(λ) be the characteristic polynomial for an n×n matrix A and let
λ1, λ2, . . . , λk be the roots of p(λ). Then the dimension di of the λi-eigenspace of
A is at most the multiplicity mi of λi as a root of p(λ).

The book will address this theorem in Chapter 7. However, we aim to prove
this comment given our information in Chapter 5. Portions of this proof also may
serve as a way to understand the concepts in Chapter 7 as well. Even though this
theorem was given early in the chapter, we will prove it in as general a context as
possible. This means that we will allow A and the λi’s to be complex. We will
prove this by reducing to two lemmas. We will discuss the idea behind each lemma
before each proof.

Terms

We use the following conventions (which may differ slightly from the book):

• MC(m,n) is the complex vector space of m × n matrices with complex
coefficients. M(m,n) is the subset of matrices with real coefficients. In
any context I is the identity matrix with the size omitted.
• For A ∈MC(n, n),

– det(A) is the determinant of A (this may be a complex number).
– pA(λ) = det(A− λI) is the characteristic polynomial of A.
– COL(A) is the columnspace of A.
– NULL(A) is the nullspace of A.

Definition. Given a polynomial p(x) with complex coefficients, we say that a
complex value x0 is a root of multiplicity m > 0 of p if p(x0) = p′(x0) = · · · =
p(m−1)(x0) = 0 and p(m)(x0) 6= 0, where p(k) is the kth derivative of p. This is
equivalent to the statement p(x) = (x− x0)mq(x) for some polynomial q(x) where
q(x0) 6= 0. We can also say that x0 is a root of multiplicity 0 if it is not a root.

Example. p(x) = x3−2x2 +x is a polynomial of degree 3 that may be factored as
p(x) = x(x− 1)2. So 0 is a root of multiplicity 1, and 1 is a root of multiplicity 2.
We may check our equivalent definition by noting that p(0) = 0 while p′(0) = 1 6= 0
and p(1) = p′(1) = 0 while p′′(1) = 2 6= 0.
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Results from class

We discussed the following results in class (and some results were related to home-
work problems). The reader is encouraged to prove these statements.

Exercise. If A,B ∈ MC(n, n) are similar, meaning there exists an invertible
S ∈MC(n, n) such that A = SBS−1, then pA = pB.

Exercise. Let A ∈ MC(n, n), B ∈ MC(n,m), C ∈ MC(m,n) and finally D ∈

MC(m,m). If X =

[
A B
0 D

]
and Y =

[
A 0
C D

]
, then det(X) = det(Y) =

det(A)det(D).

Exercise. Let A,B,C,D,X,Y be as in the previous exercise. Then

pX(λ) = pY(λ) = pA(λ)pD(λ).

Exercise. Let A ∈MC(n, n). The matrix A is invertible if and only if det(A) 6= 0.

The Proof

First Lemma.

Lemma 1. Let A ∈MC(n, n). If 0 is a root of pA(λ) of multiplicity m, then

dim(NULL(A)) ≤ m.

Remark. This lemma is saying that we may look only at the 0-eigenspace (the
nullspace) and the multiplicity of 0 as a root for a given matrix. To make the same
claim for any other eigenvalue, we just shift our matrix by I times that eigenvalue.

Proof that Lemma 1 proves the Theorem. Let A ∈MC(n, n) and µ be a root of pA
of multiplicity m. We define

B = A− µI.

By direct calculation,

pB(λ) = det(B− λI)
= det((A− µI)− λI)
= det(A− (µ+ λ)I)
= pA(λ+ µ),

or equivalently, pB(λ− µ) = pA(λ). Either way, for every k ≥ 0, the kth derivative
of pA evaluated at µ and the kth derivative of pB evaulated at 0 are equal, or

∀k ≥ 0, p
(k)
A (µ) = p

(k)
B (0),

by the chain rule of derivatives and induction. So we see that µ is a root of
multiplicity m of pA if and only if 0 is a root of pB of multiplicity m.

Exercise. Show that the nullspace of B is equal to the µ-eigenspace of A.

Lemma 1 states that the nullity of B is less than or equal to m, which implies
that the µ-eigenspace of A has dimension less than or equal to m. This is the
conclusion needed for the Theorem. �
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Second Lemma.

Lemma 2. Let A ∈MC(n, n). Then the following are equivalent:

(1) Ak = 0 for some k > 0.
(2) Ak = 0 for some 1 ≤ k ≤ n.
(3) An = 0.
(4) pA has 0 as a root of multiplicity n. In other words, pA(λ) = (−1)nλn.

Remark. In the proof that follows, we remind ourselves of some properties of
columnspaces and nullspaces of the powers of a square matrix A. We then find
a way to divide our space Cn into two independent subspaces, one on which A is
invertible and the other on which multiplying by A repeatedly results in {0}. We
then use Lemma 2 to see that the multiplicity of 0 as a root of pA is equal to the
dimension of the second space we find. This second space contains the nullspace of
A, implying Lemma 1.

Proof that Lemma 2 proves Lemma 1. Let A ∈ MC(n, n). We have the following
relationships:

COL(I = A0) ⊇ COL(A) ⊇ COL(A2) ⊇ COL(A3) ⊇ . . .
NULL(I = A0) ⊆ NULL(A) ⊆ NULL(A2) ⊆ NULL(A3) ⊆ . . .

We have discussed a number of concepts that lead us to the conclusion:

Exercise. There exists a unique minimum j ≥ 0 such that for all k > j,

COL(Aj) = COL(Ak) and NULL(Aj) = NULL(Ak).

Let j be this unique value. If j = 0, then A is invertible, does not have 0 as an
eigenvalue and satisifes Lemma 1 trivially. So we may assume that j > 0. Because
COL(Aj+1) = COL(Aj), A is invertible. We mean that for every X in COL(Aj),
there exists a unique Y in COL(Aj) such that AX = Y. Likewise, if X belongs to
NULL(Aj), then AX ∈ NULL(Aj−1) ( NULL(Aj). Let M be the dimension of
NULL(Aj) and N be the dimension of COL(Aj). We may therefore choose bases
{X1, . . . ,XN} of COL(Aj) and {Y1, . . . ,YM} of NULL(Aj) in Cn.

Exercise. Explain why M +N = n, and show that {X1, . . . ,XN ,Y1, . . . ,YM} is
a basis for Cn.

If we define S = [X1, . . . ,XN ,Y1, . . . ,YM ] then

A = S

[
B 0
0 C

]
S−1

where B ∈MC(N,N) is invertible and C ∈MC(M,M).

Exercise. Cj = 0.

So we conclude that pA = pBpC where pB is degree N that doesn’t have 0 as
a root, and pC is an M degree polynomial with 0 as a root of multiplicity M (by
Lemma 2). We see that by our assumptions on A, M must be m. Also because

NULL(A) ⊆ NULL(Aj),

we conclude that null(A) ≤ null(Aj) = m. �



4 MATH 204-C03

Proof of Second Lemma.

Remark. A matrix that satisfies one of the first three condition is called nilpotent.
This lemma proves that any matrix has zero as its only eigenvalue if and only if
it is nilpotent. We begin the proof by showing the equivalence of the first three
statements. All we show is that a matrix must become zero by the time we take it
to the nth power or it is not nilpotent. We reserve the right to one more remark to
follow the proof.

Proof of Lemma 2. We will first show that the first three statements are equivalent
with relative ease (and brevity). We note that (3) implies (2) directly. If we assume
(2), then Ak = 0 for some 1 ≤ k ≤ n. We see then that

An = An−kAk = An−k0 = 0,

so (3) holds. So (2) and (3) are equivalent. We also see that k and n from statements
(2) and (3) are both greater than 0, so either one implies (1). We will prove (1)
implies (3) by the contrapositive, namely: if (3) fails then (1) fails. Suppose An 6= 0.
Then in the sequence of n+ 1 non-increasing values:

0 = null(A0 = I) ≤ null(A) ≤ null(A2) ≤ · · · ≤ null(An) < n

there must be a value i < n such that null(Ai) = null(Ai+1).

Exercise. For all j > i, null(Aj) = null(Ai) < n.

This implies that no power of A may be 0, as Aj for any j > i does not have
full nullity. So (1) fails if (3) fails. We have conluded out proof of (1), (2) and (3).

We will show that (4) implies (3) by contrapositive. We therefore assume that
An 6= 0. From our previous paragraph and our previous proof, there is a unique
minimum j ≥ 0 such that A is invertible on COL(Aj), and we call r > 0 the
dimension of COL(Aj). As before, we may find a basis such that, if S is the change
of basis matrix,

A = S

[
B 0
0 C

]
S−1

where B ∈ MC(r, r) is invertible. We conclude that pA = pBpC may only have
zero as a root of multiplicity at most n − r < n (zero is not a root of pB). So (4)
fails if (3) fails.

Now we will show that (2) implies (4). Let k ≤ n be the minimum integer such
that Ak = 0 and define ni = null(Ai) for 1 ≤ i ≤ k. We must have that

0 < n1 < n2 < n3 < · · · < nk = n.

We are then able to choose a basis of Cn,

{Y1, . . . ,Yn}

such that for each i, {Y1, . . . ,Yni
} is a basis for NULL(Ai).

Exercise. Show that if i satisfies 1 ≤ i ≤ n1, then AY1 = 0. If i instead satisfies
nj−1 < i ≤ nj for some j ≤ k, then

Yi ∈ NULL(Aj) \NULL(Aj−1), and AYi ∈ NULL(Aj−1),

or in words, Yi belongs to NULL(Aj) but not NULL(Aj−1) and AYi belongs to
NULL(Aj−1).
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So we see that for each i, AYi is either 0 or a linear combination of Yj ’s for j’s
strictly less than i. If we let S =

[
Y1, . . . ,Yn

]
, then A = SBS−1 where B is upper

triangular. Moreover the diagonal entries of B must be zero.

Exercise. Show that pB(λ) = (−1)nλn if B ∈ MC(n, n) is upper (or lower)
triangular with zeros along the diagonal.

Because pA = pB, we have finished showing that (4) follows from (2).
�

Remark. The basis {Y1, . . . ,Yn} may be chosen in a particular fashion (we
leave the details as an exercise for the reader) to resemble the results in Chap-
ter 7. Consider Yn ∈ NULL(Aj) \ NULL(Aj−1). Then AiYn ∈ NULL(Aj−i) \
NULL(Aj−i−1) for each 1 ≤ i ≤ j − 1 and AjYn = 0. So Yn,AYn, . . . ,A

j−1Yn

is an independent set, which is called B. If we may perform this same process on
each Yi for all i > nj−1 and add them to our set B. This set will remain inde-
pendent. We continue in this fashion by finding the largest index i such that Yi is
independent of B and add all powers of A times Yi that are non-zero. When we
finish, we may reorder our set B as {Y′1, . . . ,Y′n} such that for each i, AY′i = Y′i−1
or AY′i = 0.

Example. Let

A =


2 0 0 −2
2 0 0 −2
0 2 −2 0
0 2 −2 0

 .
We may verify the following:

• pA(λ) = λ4.
• null(A) = 2.
• null(A2) = 3.
• null(A3) = 4 or equivalently, A3 = 0.

So from our terminology in the proof, n1 = 2, n2 = 3 and n3 = 4. The vector
Y′3 = [1, 0, 0, 0]t is not in NULL(A2). Let Y′2 = AY′3 = [2, 2, 0, 0]t and Y′1 =
AY′2 = [4, 4, 4, 4]t. The set {Y′1.Y′2,Y′3} is independent. Because null(A) = 2,
we must find another vector in NULL(A) that is independent of our three vectors.
However, we note that we only need to find an element that is independent of Y′1
(it will automatically be independent of Y′2 and Y′3). The vector Y′4 = [1, 0, 0, 1]t

satisfies our conditions. If we let S = [Y′1,Y
′
2,Y

′
3,Y

′
4], then A = SBS−1 where

B =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
Example. If A is from the previous example, let A′ = A + µI. Then we see that
(to reconcile with Lemma 1),

• pA′(λ) = (λ− µ)4.
• null(A′ − µI) = 2.
• null[(A′ − µI)2] = 3.
• null[(A′ − µI)3] = 4.
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By choosing the same vectors and S from the previous example, then A′ = SB′S−1

where

B′ =


µ 1 0 0
0 µ 1 0
0 0 µ 0
0 0 0 µ

 .
We will discuss this form of matrix in Chapter 7.
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