MATH 204 C03 - DIRECT SUMS AND PROJECTIONS

JON FICKENSCHER

OUTLINE

We have discussed two notions in class that do not appear in the text: projections and direct sums. This is designed as a supplement to the material put on the board with extra examples. These two concepts are connected, and we express this as Propositions 1-3 in the third section. We conclude by tying in our results to the discussion of Proj and Orth as defined in the text.

TERMS

Let \mathcal{V} and \mathcal{W} be a vector spaces and $T: \mathcal{V} \to \mathcal{W}$ a linear transformation. Then

 $\begin{array}{rcl} \mathrm{IM}(T) & \leftrightarrow & \mathrm{Image \ of} \ T \\ \mathrm{KER}(T) & \leftrightarrow & \mathrm{Kernel \ of} \ T \end{array}$

The span of a collection $S \subset \mathcal{V}$ is SPAN(S).

Date: March 12, 2012.

1. Projections

We always will assume that \mathcal{V} is a vector space.

Definition. A linear map $P : \mathcal{V} \to \mathcal{V}$ is a **projection** if

$$P^2 = P \circ P = P$$

or equivalently

$$P(\mathbf{Y}) = \mathbf{Y}$$
, for all $\mathbf{Y} \in \mathrm{IM}(P)$

Remark. If P is a projection, then $P^n = P \circ \cdots \circ P = P$ for any n > 1 by induction.

Example. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by the matrix

$$T(\mathbf{X}) = \underbrace{\begin{bmatrix} 1 & 0 & 0\\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{\mathbf{A}} \mathbf{X}.$$

Is T a projection? Well T^2 is defined by \mathbf{A}^2 , and

$$\begin{split} \mathbf{AA} &= \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ &= \begin{bmatrix} 1 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ \frac{1}{2} + \frac{1}{4} - \frac{1}{4} & 0 + \frac{1}{4} + \frac{1}{4} & 0 - \frac{1}{4} - \frac{1}{4} \\ \frac{1}{2} - \frac{1}{4} + \frac{1}{4} & 0 - \frac{1}{4} - \frac{1}{4} & 0 + \frac{1}{4} + \frac{1}{4} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ &= \mathbf{A} \end{split}$$

So T^2 is defined by **A**, which tells us that $T^2 = T$.

Exercise. What is IM(T) and KER(T)?

Example. The function $T : \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ ($\mathcal{C}(\mathbb{R})$ is the set of real valued, continuous functions) defined by

$$T(f) = \int_0^x f(t)dt$$

is not a projection. Sure it is linear, but consider the function g(x) = x.

$$T(g) = \int_0^x t dt = \frac{x^2}{2}$$

while

$$T^{2}(g) = T(\frac{x^{2}}{2}) = \int_{0}^{x} \frac{t^{2}}{2} dt = \frac{x^{3}}{6} \neq T(g).$$

We conclude that $T \neq T^2$ and so T is NOT a projection.

We have discussed a few general points about projections, as follows: \mathbf{T}/\mathbf{F} : If $P, Q : \mathcal{V} \to \mathcal{V}$ are projections and $\mathrm{IM}(P) = \mathrm{IM}(Q)$, then P = Q. FALSE: For a simple counterexample, consider the two linear transformations defined by

$$\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } \mathbf{Q} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Each define projections as $\mathbf{P}^2 = \mathbf{P}$ and $\mathbf{Q}^2 = \mathbf{Q}$. The image of each is the x-axis in \mathbb{R}^2 . But they are not the same transformation, as

$$\mathbf{P}\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \neq \begin{bmatrix}1\\0\end{bmatrix} = \mathbf{Q}\begin{bmatrix}0\\1\end{bmatrix}.$$

 \mathbf{T}/\mathbf{F} : If $P, Q: \mathcal{V} \to \mathcal{V}$ are projections such that $\mathrm{IM}(P) = \mathrm{IM}(Q)$ AND KER(P) = $\operatorname{KER}(Q)$, then P = Q.

TRUE: Call \mathcal{W}_0 the mutual kernel and \mathcal{W}_1 the mutual image. Consider any $\mathbf{X} \in \mathcal{V}$ and let

$$\mathbf{Y} = P(\mathbf{X})$$
 and $\mathbf{Y}' = Q(\mathbf{X})$.

We see that $Q(\mathbf{X} - \mathbf{Y}') = Q(\mathbf{X}) - Q(\mathbf{Y}') = \mathbf{Y}' - \mathbf{Y}' = \mathbf{0}$, so $\mathbf{X} = \mathbf{Y}' + \mathbf{Z}'$

where $\mathbf{Y}' \in \mathcal{W}_1$ and $\mathbf{Z}' \in \mathcal{W}_0$. So it follows that

$$\begin{aligned} \mathbf{Y} &= P(\mathbf{X}) &= P(\mathbf{Y}' + \mathbf{Z}') = P(\mathbf{Y}') + P(\mathbf{Z}') \\ &= \mathbf{Y}' + \mathbf{0} = \mathbf{Y}'. \end{aligned}$$

Therefore, for every $\mathbf{X} \in \mathcal{V}$, $P(\mathbf{X}) = Q(\mathbf{X})$.

 \mathbf{T}/\mathbf{F} : Let $P: \mathcal{V} \to \mathcal{V}$ be a projection. There exists a unique projection $Q: \mathcal{V} \to \mathcal{V}$ such that

$$\operatorname{IM}(P) = \operatorname{KER}(Q) \text{ and } \operatorname{KER}(P) = \operatorname{IM}(Q).$$

TRUE: If such a Q exists, it is unique by our previous T/F. So we simply need to find Q. Let

$$Q = I_{\mathcal{V}} - P$$

where $I_{\mathcal{V}}$ is the identity function on \mathcal{V} .

Exercise. Finish this argument by showing that:

 $-Q \circ Q = Q$ (Q is a projection).

- $\operatorname{KER}(Q) = \operatorname{IM}(P).$
- $\operatorname{IM}(Q) = \operatorname{KER}(P).$

(No single argument should have a long proof!).

 \mathbf{T}/\mathbf{F} : Let $P, Q: \mathcal{V} \to \mathcal{V}$ be projections. Then $P + Q: \mathcal{V} \to \mathcal{V}$ is a projection. ****

FALSE: We give two counterexamples, the second less trivial than the first. Let

$$P = Q = I_{\mathcal{V}}$$

As long as \mathcal{V} doesn't consist of just one element (the zero element), then for any $\mathbf{X} \in \mathcal{V}, \mathbf{X} \neq \mathbf{0}$,

$$(P+Q)(\mathbf{X}) = P(\mathbf{X}) + Q(\mathbf{X}) = \mathbf{X} + \mathbf{X} = 2\mathbf{X} \neq \mathbf{X}.$$

Because (P+Q) is not the identity on its image, it is not a projection. For our second counter example, consider $\mathcal{V} = \mathbb{R}^2$ and

$$\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } \mathbf{Q} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

These are both projections.

Exercise. Confirm this, and determine their images and kernels.

However,

 \mathbf{SO}

$$\mathbf{P} + \mathbf{Q} = \frac{1}{2} \begin{bmatrix} 3 & 1\\ 1 & 1 \end{bmatrix} \text{ and } (\mathbf{P} + \mathbf{Q})^2 = \frac{1}{2} \begin{bmatrix} 5 & 2\\ 2 & 1 \end{bmatrix}$$
$$\mathbf{P} + \mathbf{Q} \neq (\mathbf{P} + \mathbf{Q})^2.$$

T/F: Let $P, Q : \mathcal{V} \to \mathcal{V}$ be projections. Then $P + Q : \mathcal{V} \to \mathcal{V}$ is a projection if and only if

$$\operatorname{IM}(P) \subset \operatorname{KER}(Q)$$
 and $\operatorname{IM}(Q) \subset \operatorname{KER}(P)$.

(Note that the above conditions imply that $IM(P) \cap IM(Q) = \{0\}$). *****

TRUE: First assume that

$$\operatorname{IM}(P) \subset \operatorname{KER}(Q)$$
 and $\operatorname{IM}(Q) \subset \operatorname{KER}(P)$

holds. Let $\mathbf{Z} \in IM(P + Q)$, then $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$ for some $\mathbf{X} \in IM(P)$ and $\mathbf{Y} \in IM(Q)$. So

$$(P+Q)(\mathbf{Z}) = P(\mathbf{Z}) + Q(\mathbf{Z})$$

= $P(\mathbf{X}) + P(\mathbf{Y}) + Q(\mathbf{X}) + Q(\mathbf{Y})$
= $\mathbf{X} + \mathbf{0} + \mathbf{0} + \mathbf{Y}$
= \mathbf{Z} .

Because P + Q is a projection on its image, it is a projection.

Now suppose that there exists $\mathbf{X} \in \text{IM}(P)$ that does not belong to KER(Q) and P + Q is a projection. Let $\mathbf{Y} = Q(\mathbf{X})$, and note that this is non-zero. Then

$$\begin{aligned} \mathbf{X} + \mathbf{Y} &= (P+Q)(\mathbf{X}) \\ &= (P+Q)^2(\mathbf{X}) \\ &= (P+Q)(\mathbf{X}+\mathbf{Y}) \\ &= P(\mathbf{X}) + P(\mathbf{Y}) + Q(\mathbf{X}) + Q(\mathbf{Y}) \\ &= \mathbf{X} + P(\mathbf{Y}) + 2\mathbf{Y} \end{aligned}$$
 or
$$\begin{aligned} P(\mathbf{Y}) &= -\mathbf{Y}. \end{aligned}$$

But because $\mathbf{Y} \neq \mathbf{0}$, we have a vector $\mathbf{Y} \in \text{IM}(P)$ but $P(\mathbf{Y}) \neq \mathbf{Y}$, which contradicts that P is a projection.

We may repeat the same argument by switching the roles of P and Q. We may then conclude that if

 $\operatorname{IM}(P) \subset \operatorname{KER}(Q)$ and $\operatorname{IM}(Q) \subset \operatorname{KER}(P)$

fails, P + Q can not be a projection.

Remark. Our text refers to a class of transformations as projections. They are technically correct, as all of their maps are projections. However, their maps are **orthogonal projections**, they are projections P such that $IM(P) \perp KER(P)$ which means

$$\mathbf{X} \cdot \mathbf{Y} = 0$$
, for all $\mathbf{X} \in \text{IM}(P)$ and $\mathbf{Y} \in \text{KER}(P)$.

In the language of the book, $Proj_{\mathcal{W}}$ is the unique projection with image \mathcal{W} and kernel \mathcal{W}^{\perp} .

JON FICKENSCHER

2. Direct Sums

We begin by giving a bsic definition

Definition. Let $\mathcal{W}_1, \mathcal{W}_2 \subset \mathcal{V}$ be subspaces of vector space \mathcal{V} . We say that \mathcal{V} is the **direct sum** of \mathcal{W}_1 and \mathcal{W}_2 , or

$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

if the following two conditions holds:

- (1) $\mathcal{W}_1 + \mathcal{W}_2 := \{ \mathbf{X} + \mathbf{Y} | \mathbf{X} \in \mathcal{W}_1, \mathbf{Y} \in \mathcal{W}_2 \} = \mathcal{V}.$ "The span of \mathcal{W}_1 and \mathcal{W}_2 is all of \mathcal{V} ."
- (2) $\mathcal{W}_1 \cap \mathcal{W}_2 = \{\mathbf{0}\}.$ " \mathcal{W}_1 and \mathcal{W}_2 are independent."

Remark. We may state an equivalent definition as follows: $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$ if every $\mathbf{X} \in \mathcal{V}$ may be uniquely written as

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2$$

where $\mathbf{X}_i \in \mathcal{W}_i$, $i \in \{1, 2\}$. We leave the proof to the reader, but we note the following:

- Every $\mathbf{X} \in \mathcal{V}$ may be written as $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2$ if and only if $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$. This is the definition of $\mathcal{W}_1 + \mathcal{W}_2$.
- If \mathcal{W}_1 and \mathcal{W}_2 are not independent, then how many ways can we express any element in $\mathcal{W}_1 \cap \mathcal{W}_2$?
- If $\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 = \mathbf{X}'_1 + \mathbf{X}'_2$ where $\mathbf{X}'_i \neq \mathbf{X}_i$, can we use the fact that both sums equal \mathbf{X} to find a common non-zero element in $\mathcal{W}_1 \cap \mathcal{W}_2$?

Example. $\mathbb{R}^2 = \mathbb{R}_1 \oplus \mathbb{R}_2$, where \mathbb{R}_1 is the *x*-axis and \mathbb{R}_2 is the *y*-axis. There are many more choices. Any two lines that are not parallel and pass through the origin define two subspaces \mathcal{W}_1 and \mathcal{W}_2 such that their span is \mathbb{R}^2 and, because their intersection is the origin, are independent. So any $\mathbf{X} \in \mathbb{R}^2$ may be uniquely expressed as the sum of two points, one on the line \mathcal{W}_1 and the other on line \mathcal{W}_2 .

Example. Say \mathcal{V} is a vector space with basis $\mathcal{B} = {\mathbf{B}_1, \ldots, \mathbf{B}_n}$. Let $\mathcal{W}_1 =$ SPAN $(\mathbf{B}_1, \ldots, \mathbf{B}_k)$ and $\mathcal{W}_2 =$ SPAN $(\mathbf{B}_{k+1}, \ldots, \mathbf{B}_n)$ for some $1 \le k < n$. Then

$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2.$$

The following properties were addressed in class, for \mathcal{V} a vector space and \mathcal{W}_i representing subspaces.:

• If everything is finite dimensional and $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$, then

$$\dim(\mathcal{V}) \leq \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2).$$

Let $\mathcal{B} = \{\mathbf{Y}_1, \dots, \mathbf{Y}_n\}$ and $\mathcal{B}' = \{\mathbf{Z}_1, \dots, \mathbf{Z}_m\}$ be bases for \mathcal{W}_1 and \mathcal{W}_2 respectively. Then any $\mathcal{X} \in \mathcal{V}$ may be expressed as $\mathbf{Y} \in \mathcal{W}_1$ and $\mathbf{Z} \in \mathcal{W}_2$. But these are expressed as a linear combination of their basis vectors so

$$\mathbf{X} = a_1 \mathbf{Y}_1 + \dots a_n \mathbf{Y}_n + b_1 \mathbf{Z}_1 + \dots + b_m \mathbf{Z}_m.$$

We conclude that

$$\mathcal{S} = \{\mathbf{Y}_1, \dots, \mathbf{Y}_n, \mathbf{Z}_1, \dots, \mathbf{Z}_m\}$$

spans \mathcal{V} . A basis for \mathcal{V} can be therefore expressed as a subset of $\mathcal{S}' \subseteq \mathcal{S}$ of size k, so

$$\dim(\mathcal{V}) = k \le n + m = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2).$$

• If we have finite dimensions and instead $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$, then

$$\dim(\mathcal{V}) = \dim(\mathcal{W}_1) + \dim(\mathcal{W}_2).$$

Exercise. Prove this equality by first noting that $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$, so the above inequality holds. Given that $\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$, show that \mathcal{S} in the previous proof is a basis for \mathcal{V} .

• $\mathcal{W}_1 \oplus \mathcal{W}_2 = \mathcal{W}_2 \oplus \mathcal{W}_1.$

This is just definitional given that addition and intersections commute:

$$\mathcal{W}_1\cap\mathcal{W}_2=\mathcal{W}_2\cap\mathcal{W}_1$$

and

$$\mathbf{Y} + \mathbf{Z} = \mathbf{Z} + \mathbf{Y}, \text{ for all } \mathbf{Y} \in \mathcal{W}_1, \mathbf{Z} \in \mathcal{W}_2.$$

• $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 = (\mathcal{W}_1 \oplus \mathcal{W}_2) \oplus \mathcal{W}_3$. All we are saying here is that if $\mathcal{U} = \mathcal{W}_1 \oplus \mathcal{W}_2$ (any vector in \mathcal{U} may be uniquely expressed as a sum of vectors in \mathcal{W}_1 and \mathcal{W}_2), then

$$\mathcal{U} \oplus \mathcal{W}_3 = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$$

This says that any $\mathbf{X} \in \mathcal{U} \oplus \mathcal{W}_3$ may be uniquely written as $\mathbf{X} = \mathbf{Y} + \mathbf{Z}$ for some $\mathbf{Y} \in \mathcal{U}$ and $\mathbf{Z} \in \mathcal{W}_3$. Because $\mathbf{Y} = \mathbf{Y}_1 + \mathbf{Y}_2$ for some unique $\mathbf{Y}_1 \in \mathcal{W}_1$ and $\mathbf{Y}_2 \in \mathcal{W}_2$,

$$\mathbf{X} = \mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Z}$$

and these choices are all unique.

JON FICKENSCHER

3. The Relationship Between the Two

We finish by making some useful remarks about the relationship between direct sums and projections. Namely a direct sum $W_1 \oplus W_2$ exists if and only if a projection exists with image W_1 and kernel W_2 . We prove this in the first two propositions below. We conclude with the relationship between projections P, Q and P + Q (if this is indeed a projection!).

Proposition 1. If $P : \mathcal{V} \to \mathcal{V}$ is a projection, then

 $\mathcal{V} = \mathrm{IM}(P) \oplus \mathrm{KER}(P).$

Proof. We first will show that $\mathcal{V} = \mathrm{IM}(P) + \mathrm{KER}(P)$. The first inclusion, $\mathrm{IM}(P) + \mathrm{KER}(P) \subseteq \mathcal{V}$, is clear as each set on the right is a subspace of \mathcal{V} , so their sum will be a subset as well. We then need to show that $\mathcal{V} \subseteq \mathrm{IM}(P) + \mathrm{KER}(P)$. Let $\mathbf{X} \in \mathcal{V}$. Let $\mathbf{Y} = P(\mathbf{X}) \in \mathrm{IM}(P)$ and $\mathbf{Z} = \mathbf{X} - \mathbf{Y}$. Then $\mathbf{X} = \mathbf{Y} + \mathbf{Z}$ and

$$P(\mathbf{Z}) = P(\mathbf{X} - \mathbf{Y}) = P(\mathbf{X}) - P(\mathbf{Y}) = \mathbf{Y} - \mathbf{Y} = \mathbf{0}$$

or $\mathbf{Z} \in \text{KER}(P)$. So $\mathbf{X} \in \text{IM}(P) + \text{KER}(P)$. This finishes the proof of equality.

We now show that $IM(P) \cap KER(P) = \{0\}$. **0** is contained in the intersection, so we show that any vector in this set must be **0** as well. Let $\mathbf{X} \in IM(P) \cap KER(P)$. Then

$$\mathbf{X} \underset{\mathbf{X}\in \mathrm{IM}(P)}{=} P(\mathbf{X}) \underset{\mathbf{X}\in \mathrm{KER}(P)}{=} \mathbf{0}.$$

Proposition 2. If \mathcal{V} is a vector space and $\mathcal{W}_1, \mathcal{W}_2 \subseteq \mathcal{V}$ are subspaces such that

$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2,$$

then there exists a unique projection $P : \mathcal{V} \to \mathcal{V}$ such that $\mathrm{IM}(P) = \mathcal{W}_1$ and $\mathrm{KER}(P) = \mathcal{W}_2$.

Proof. Any $\mathbf{X} \in \mathcal{V}$ has a unique expression $\mathbf{X} = \mathbf{Y} + \mathbf{Z}$, where $\mathbf{Y} \in \mathcal{W}_1$ and $\mathbf{Z} \in \mathcal{W}_2$. So the transformation $P : \mathcal{V} \to \mathcal{V}$ defined by

$$P(\mathbf{X}) = \mathbf{Y}$$

is well defined. We now show that P is linear. The zero element is uniquely expressed as $\mathbf{0} = \mathbf{0} + \mathbf{0}$, so

$$P(\mathbf{0}) = \mathbf{0}$$

If $\mathbf{X}, \mathbf{X}' \in \mathcal{V}$, they have unique expressions

$$\mathbf{X} = \mathbf{Y} + \mathbf{Z}$$
 and $\mathbf{X}' = \mathbf{Y}' + \mathbf{Z}'$

where $\mathbf{Y}, \mathbf{Y}' \in \mathcal{W}_1$ and $\mathbf{Z}, \mathbf{Z}' \in \mathcal{W}_2$. $\mathbf{X} + \mathbf{X}'$ may be expressed (just by addition) as

$$\mathbf{X} + \mathbf{X}' = \mathbf{Y} + \mathbf{Y}' + \mathbf{Z} + \mathbf{Z}'$$

This must be the expression for $\mathbf{X} + \mathbf{X}'$ by uniqueness. So

X

$$P(\mathbf{X} + \mathbf{X}') = \mathbf{Y} + \mathbf{Y}' = P(\mathbf{X}) + P(\mathbf{X}').$$

By the same reasoning $\mathbf{X} = \mathbf{Y} + \mathbf{Z}$ implies that $c\mathbf{X} = c\mathbf{Y} + c\mathbf{Z}$ for any scalar c, so

$$P(c\mathbf{X}) = c\mathbf{Y} = cP(\mathbf{X})$$

Now we need show that

- P is a projection.
- P has image \mathcal{W}_1 and kernel \mathcal{W}_2 .

If $P(\mathbf{X}) = \mathbf{Y}$, \mathbf{Y} has the unique sum $\mathbf{Y} = \mathbf{Y} + \mathbf{0}$, so

$$P^{2}(\mathbf{X}) = P(P(\mathbf{X})) = P(\mathbf{Y}) = \mathbf{Y} = P(\mathbf{X}).$$

Therefore $P^2 = P$ so it is a projection.

By our choice of P, $IM(P) \subseteq W_1$. We now show that $W_1 \subseteq IM(P)$. As before, if $\mathbf{Y} \in W_1$, its unique sum is $\mathbf{Y} = \mathbf{Y} + \mathbf{0}$, so

$$P(\mathbf{Y}) = \mathbf{Y} \in \mathrm{IM}(P).$$

Exercise. Show that $\text{KER}(P) = \mathcal{W}_2$.

- Show that if $\mathbf{Z} \in \mathcal{W}_2$, then $P(\mathbf{Z}) = \mathbf{0}$.
- If P(X) = 0, write the unique sum X = Y + Z. What can you say about Y? What does this say about X?

Our final claim concerns sum of projections.

Proposition 3. Suppose $P, Q : V \to V$ are projections. Assume that P + Q is a projection as well. Then

$$\operatorname{IM}(P+Q) = \operatorname{IM}(P) \oplus \operatorname{IM}(Q)$$

and

$$\operatorname{KER}(P+Q) = \operatorname{KER}(P) \cap \operatorname{KER}(Q).$$

This implies that

$$\mathcal{V} = \mathrm{IM}(P) \oplus \mathrm{IM}(Q) \oplus \mathrm{KER}(P) \cap \mathrm{KER}(Q)$$

as well.

Proof. We assume that P, Q and P + Q are projections. It follows immediately that

$$IM(P+Q) = IM(P) + IM(Q).$$

Because P + Q is a projection, we proved at the end of the section on projections that (among other things) $IM(P) \subseteq KER(Q)$. We see that

$$\{0\} \subseteq \mathrm{IM}(P) \cap \mathrm{IM}(Q) \subseteq \mathrm{KER}(Q) \cap \mathrm{IM}(Q) = \{0\},\$$

so $IM(P+Q) = IM(P) \oplus IM(Q)$.

If $\mathbf{Z} \in \text{KER}(P) \cap \text{KER}(Q)$, then

$$(P+Q)(\mathbf{Z}) = P(\mathbf{Z}) + Q(\mathbf{Z}) = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$
So KER(P) \cap KER(Q) \subseteq KER(P + Q)

Now assume $\mathbf{Z} \in \text{KER}(P+Q)$. Then

$$\mathbf{0} = (P+Q)(\mathbf{Z}) = P(\mathbf{Z}) + Q(\mathbf{Z}).$$

This may happen if and only if

$$P(\mathbf{Z}) = -Q(\mathbf{Z}).$$

This result is an element of IM(P) by the left hand side and an element of IM(Q) by the right hand side. Because $IM(P) \cap IM(Q) = \{\mathbf{0}\}$, each side must be $\mathbf{0}$, so $\mathbf{Z} \in KER(P) \cap KER(Q)$.

4. Orthogonal Projections

We end with a note about $Proj_{\mathbf{Y}}$ and $Proj_{\mathcal{W}}$ as listed in the text. Here $\mathcal{V} = \mathbb{R}^n$ and we have a notion of orthogonality. If $\mathbf{Y} \neq \mathbf{0}$, then $Proj_{\mathbf{Y}}$ defined as

$$Proj_{\mathbf{Y}}(\mathbf{X}) = \frac{\mathbf{X} \cdot \mathbf{Y}}{\mathbf{Y} \cdot \mathbf{Y}} \mathbf{Y}.$$

We discussed in class the following:

Exercise. Show that $Proj_{\mathbf{Y}}$ is a projection and has image $SPAN(\mathbf{Y})$ and kernel $\mathbf{Y}^{\perp} = (SPAN(\mathbf{Y}))^{\perp}$.

What about $Proj_{\mathcal{W}}$? Well, if $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_k\}$ is an orthonormal basis for subspace \mathcal{W} , then consider each projection $P_{\mathbf{Y}_i} = Proj_{\mathbf{Y}_i}$.

Exercise. Show that $P_{\mathcal{W}} = P_{\mathbf{Y}_1} + \cdots + P_{\mathbf{Y}_k}$ is a projection. (*How do the images and kernels of each* $P_{\mathbf{Y}_i}$ *relate to each other?*)

We know from Proposition 3 that

$$\operatorname{IM}(P_{\mathcal{W}}) = \operatorname{IM}(P_{\mathbf{Y}_1}) \oplus \cdots \oplus \operatorname{IM}(P_{\mathbf{Y}_k}) = \mathcal{W}.$$

Also,

$$\operatorname{KER}(P_{\mathcal{W}}) = \operatorname{KER}(P_{\mathbf{Y}_1}) \cap \cdots \cap \operatorname{KER}(P_{\mathbf{Y}_k}).$$

Exercise. Show that the right hand side is \mathcal{W}^{\perp} .

So this is indeed the orthogonal projection on \mathcal{W} . What the text calls $Orth_{\mathcal{W}}$ is the unique projection with image \mathcal{W}^{\perp} and kernel \mathcal{W} . Given our results in Section 1, we may simply point out that $Othr_{\mathcal{W}}$ can be nothing else than

$$Orth_{\mathcal{W}} = I - Proj_{\mathcal{W}}$$

where I is the identity function on \mathbb{R}^n .