MATH 204 C03 - DIRECT SUMS AND PROJECTIONS

JON FICKENSCHER

Outline

We have discussed two notions in class that do not appear in the text: projections and direct sums. This is designed as a supplement to the material put on the board with extra examples. These two concepts are connected, and we express this as Propositions 1-3 in the third section. We conclude by tying in our results to the discussion of Proj and Orth as defined in the text.

Terms
Let \mathcal{V} and \mathcal{W} be a vector spaces and $T: \mathcal{V} \rightarrow \mathcal{W}$ a linear transformation. Then
$\operatorname{IM}(T) \quad \leftrightarrow \quad$ Image of T
$\operatorname{KER}(T) \quad \leftrightarrow \quad$ Kernel of T
The span of a collection $S \subset \mathcal{V}$ is $\operatorname{SPAN}(S)$.

[^0]
1. Projections

We always will assume that \mathcal{V} is a vector space.
Definition. A linear map $P: \mathcal{V} \rightarrow \mathcal{V}$ is a projection if

$$
P^{2}=P \circ P=P
$$

or equivalently

$$
P(\mathbf{Y})=\mathbf{Y}, \text { for all } \mathbf{Y} \in \operatorname{IM}(P)
$$

Remark. If P is a projection, then $P^{n}=P \circ \cdots \circ P=P$ for any $n>1$ by induction.

Example. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by the matrix

$$
T(\mathbf{X})=\underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]}_{\mathbf{A}} \mathbf{X}
$$

Is T a projection? Well T^{2} is defined by \mathbf{A}^{2}, and

$$
\begin{aligned}
\mathbf{A A} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
1+0+0 & 0+0+0 & \frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{2}+\frac{1}{4}-\frac{1}{4} & 0+\frac{1}{4}+\frac{1}{4} \\
\frac{1}{2} & 0-\frac{1}{4}-\frac{1}{4} \\
\frac{1}{4}-\frac{1}{4}+ & 0-\frac{1}{4}-\frac{1}{4} \\
1 & 0 \\
\frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{4}+\frac{1}{4}
\end{array}\right] \\
& =\mathbf{A}
\end{aligned}
$$

So T^{2} is defined by \mathbf{A}, which tells us that $T^{2}=T$.
Exercise. What is $\operatorname{IM}(T)$ and $\operatorname{KER}(T)$?
Example. The function $T: \mathcal{C}(\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{R})(\mathcal{C}(\mathbb{R})$ is the set of real valued, continuous functions) defined by

$$
T(f)=\int_{0}^{x} f(t) d t
$$

is not a projection. Sure it is linear, but consider the function $g(x)=x$.

$$
T(g)=\int_{0}^{x} t d t=\frac{x^{2}}{2}
$$

while

$$
T^{2}(g)=T\left(\frac{x^{2}}{2}\right)=\int_{0}^{x} \frac{t^{2}}{2} d t=\frac{x^{3}}{6} \neq T(g)
$$

We conclude that $T \neq T^{2}$ and so T is NOT a projection.
We have discussed a few general points about projections, as follows:
$\mathbf{T} / \mathbf{F}:$ If $P, Q: \mathcal{V} \rightarrow \mathcal{V}$ are projections and $\operatorname{IM}(P)=\operatorname{IM}(Q)$, then $P=Q$.

FALSE: For a simple counterexample, consider the two linear transformations defined by

$$
\mathbf{P}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } \mathbf{Q}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

Each define projections as $\mathbf{P}^{2}=\mathbf{P}$ and $\mathbf{Q}^{2}=\mathbf{Q}$. The image of each is the x-axis in \mathbb{R}^{2}. But they are not the same transformation, as

$$
\mathbf{P}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\mathbf{Q}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$* * * * *$
$\mathbf{T} / \mathbf{F}:$ If $P, Q: \mathcal{V} \rightarrow \mathcal{V}$ are projections such that $\operatorname{IM}(P)=\operatorname{IM}(Q) \operatorname{AND} \operatorname{KER}(P)=$ $\operatorname{KER}(Q)$, then $P=Q$.

TRUE: Call \mathcal{W}_{0} the mutual kernel and \mathcal{W}_{1} the mutual image. Consider any $\mathbf{X} \in \mathcal{V}$ and let

$$
\mathbf{Y}=P(\mathbf{X}) \text { and } \mathbf{Y}^{\prime}=Q(\mathbf{X})
$$

We see that $Q\left(\mathbf{X}-\mathbf{Y}^{\prime}\right)=Q(\mathbf{X})-Q\left(\mathbf{Y}^{\prime}\right)=\mathbf{Y}^{\prime}-\mathbf{Y}^{\prime}=\mathbf{0}$, so

$$
\mathbf{X}=\mathbf{Y}^{\prime}+\mathbf{Z}^{\prime}
$$

where $\mathbf{Y}^{\prime} \in \mathcal{W}_{1}$ and $\mathbf{Z}^{\prime} \in \mathcal{W}_{0}$. So it follows that

$$
\begin{aligned}
\mathbf{Y}=P(\mathbf{X}) & =P\left(\mathbf{Y}^{\prime}+\mathbf{Z}^{\prime}\right)=P\left(\mathbf{Y}^{\prime}\right)+P\left(\mathbf{Z}^{\prime}\right) \\
& =\mathbf{Y}^{\prime}+\mathbf{0}=\mathbf{Y}^{\prime}
\end{aligned}
$$

Therefore, for every $\mathbf{X} \in \mathcal{V}, P(\mathbf{X})=Q(\mathbf{X})$.

$$
* * * * *
$$

$\mathbf{T} / \mathbf{F}:$ Let $P: \mathcal{V} \rightarrow \mathcal{V}$ be a projection. There exists a unique projection $Q: \mathcal{V} \rightarrow \mathcal{V}$ such that

$$
\operatorname{IM}(P)=\operatorname{KER}(Q) \text { and } \operatorname{KER}(P)=\operatorname{IM}(Q)
$$

TRUE: If such a Q exists, it is unique by our previous T/F. So we simply need to find Q. Let

$$
Q=I_{\mathcal{V}}-P
$$

where $I_{\mathcal{V}}$ is the identity function on \mathcal{V}.
Exercise. Finish this argument by showing that:
$-Q \circ Q=Q$ (Q is a projection).
$-\operatorname{KER}(Q)=\operatorname{IM}(P)$.
$-\operatorname{IM}(Q)=\operatorname{KER}(P)$.
(No single argument should have a long proof!).

$\mathbf{T} / \mathbf{F}:$ Let $P, Q: \mathcal{V} \rightarrow \mathcal{V}$ be projections. Then $P+Q: \mathcal{V} \rightarrow \mathcal{V}$ is a projection.

FALSE: We give two counterexamples, the second less trivial than the first. Let

$$
P=Q=I_{\mathcal{V}}
$$

As long as \mathcal{V} doesn't consist of just one element (the zero element), then for any $\mathbf{X} \in \mathcal{V}, \mathbf{X} \neq \mathbf{0}$,

$$
(P+Q)(\mathbf{X})=P(\mathbf{X})+Q(\mathbf{X})=\mathbf{X}+\mathbf{X}=2 \mathbf{X} \neq \mathbf{X}
$$

Because $(P+Q)$ is not the identity on its image, it is not a projection.
For our second counter example, consider $\mathcal{V}=\mathbb{R}^{2}$ and

$$
\mathbf{P}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } \mathbf{Q}=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

These are both projections.
Exercise. Confirm this, and determine their images and kernels.
However,

$$
\mathbf{P}+\mathbf{Q}=\frac{1}{2}\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right] \text { and }(\mathbf{P}+\mathbf{Q})^{2}=\frac{1}{2}\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]
$$

so $\mathbf{P}+\mathbf{Q} \neq(\mathbf{P}+\mathbf{Q})^{2}$.

$\mathbf{T} / \mathbf{F}:$ Let $P, Q: \mathcal{V} \rightarrow \mathcal{V}$ be projections. Then $P+Q: \mathcal{V} \rightarrow \mathcal{V}$ is a projection if and only if

$$
\operatorname{IM}(P) \subset \operatorname{KER}(Q) \text { and } \operatorname{IM}(Q) \subset \operatorname{KER}(P)
$$

(Note that the above conditions imply that $\operatorname{IM}(P) \cap \operatorname{IM}(Q)=\{\mathbf{0}\}$).

TRUE: First assume that

$$
\operatorname{IM}(P) \subset \operatorname{KER}(Q) \text { and } \operatorname{IM}(Q) \subset \operatorname{KER}(P)
$$

holds. Let $\mathbf{Z} \in \operatorname{IM}(P+Q)$, then $\mathbf{Z}=\mathbf{X}+\mathbf{Y}$ for some $\mathbf{X} \in \operatorname{IM}(P)$ and $\mathbf{Y} \in \operatorname{IM}(Q)$. So

$$
\begin{aligned}
(P+Q)(\mathbf{Z}) & =P(\mathbf{Z})+Q(\mathbf{Z}) \\
& =P(\mathbf{X})+P(\mathbf{Y})+Q(\mathbf{X})+Q(\mathbf{Y}) \\
& =\mathbf{X}+\mathbf{0}+\mathbf{0}+\mathbf{Y} \\
& =\mathbf{Z}
\end{aligned}
$$

Because $P+Q$ is a projection on its image, it is a projection.
Now suppose that there exists $\mathbf{X} \in \operatorname{IM}(P)$ that does not belong to $\operatorname{KER}(Q)$ and $P+Q$ is a projection. Let $\mathbf{Y}=Q(\mathbf{X})$, and note that this is non-zero. Then

$$
\begin{aligned}
\mathbf{X}+\mathbf{Y} & =(P+Q)(\mathbf{X}) \\
& =(P+Q)^{2}(\mathbf{X}) \\
& =(P+Q)(\mathbf{X}+\mathbf{Y}) \\
& =P(\mathbf{X})+P(\mathbf{Y})+Q(\mathbf{X})+Q(\mathbf{Y}) \\
& =\mathbf{X}+P(\mathbf{Y})+2 \mathbf{Y} \\
& \text { or } \\
P(\mathbf{Y}) & =-\mathbf{Y} .
\end{aligned}
$$

But because $\mathbf{Y} \neq \mathbf{0}$, we have a vector $\mathbf{Y} \in \operatorname{IM}(P)$ but $P(\mathbf{Y}) \neq \mathbf{Y}$, which contradicts that P is a projection.

We may repeat the same argument by switching the roles of P and Q. We may then conclude that if

$$
\operatorname{IM}(P) \subset \operatorname{KER}(Q) \text { and } \operatorname{IM}(Q) \subset \operatorname{KER}(P)
$$

fails, $P+Q$ can not be a projection.

Remark. Our text refers to a class of transformations as projections. They are technically correct, as all of their maps are projections. However, their maps are orthogonal projections, they are projections P such that $\operatorname{IM}(P) \perp \operatorname{KER}(P)$ which means

$$
\mathbf{X} \cdot \mathbf{Y}=0, \text { for all } \mathbf{X} \in \operatorname{IM}(P) \text { and } \mathbf{Y} \in \operatorname{KER}(P)
$$

In the language of the book, $\operatorname{Proj}_{\mathcal{W}}$ is the unique projection with image \mathcal{W} and kernel \mathcal{W}^{\perp}.

2. Direct Sums

We begin by giving a bsic definition
Definition. Let $\mathcal{W}_{1}, \mathcal{W}_{2} \subset \mathcal{V}$ be subspaces of vector space \mathcal{V}. We say that \mathcal{V} is the direct sum of \mathcal{W}_{1} and \mathcal{W}_{2}, or

$$
\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}
$$

if the following two conditions holds:
(1) $\mathcal{W}_{1}+\mathcal{W}_{2}:=\left\{\mathbf{X}+\mathbf{Y} \mid \mathbf{X} \in \mathcal{W}_{1}, \mathbf{Y} \in \mathcal{W}_{2}\right\}=\mathcal{V}$. "The span of \mathcal{W}_{1} and \mathcal{W}_{2} is all of \mathcal{V}."
(2) $\mathcal{W}_{1} \cap \mathcal{W}_{2}=\{\mathbf{0}\}$.
" \mathcal{W}_{1} and \mathcal{W}_{2} are independent."
Remark. We may state an equivalent definition as follows: $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ if every $\mathbf{X} \in \mathcal{V}$ may be uniquely written as

$$
\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}
$$

where $\mathbf{X}_{i} \in \mathcal{W}_{i}, i \in\{1,2\}$. We leave the proof to the reader, but we note the following:

- Every $\mathbf{X} \in \mathcal{V}$ may be written as $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}$ if and only if $\mathcal{V}=\mathcal{W}_{1}+\mathcal{W}_{2}$. This is the definition of $\mathcal{W}_{1}+\mathcal{W}_{2}$.
- If \mathcal{W}_{1} and \mathcal{W}_{2} are not independent, then how many ways can we express any element in $\mathcal{W}_{1} \cap \mathcal{W}_{2}$?
- If $\mathbf{X}=\mathbf{X}_{1}+\mathbf{X}_{2}=\mathbf{X}_{1}^{\prime}+\mathbf{X}_{2}^{\prime}$ where $\mathbf{X}_{i}^{\prime} \neq \mathbf{X}_{i}$, can we use the fact that both sums equal \mathbf{X} to find a common non-zero element in $\mathcal{W}_{1} \cap \mathcal{W}_{2}$?

Example. $\mathbb{R}^{2}=\mathbb{R}_{1} \oplus R_{2}$, where \mathbb{R}_{1} is the x-axis and \mathbb{R}_{2} is the y-axis. There are many more choices. Any two lines that are not parallel and pass through the origin define two subspaces \mathcal{W}_{1} and \mathcal{W}_{2} such that their span is \mathbb{R}^{2} and, because their intersection is the origin, are independent. So any $\mathbf{X} \in \mathbb{R}^{2}$ may be uniquely expressed as the sum of two points, one on the line \mathcal{W}_{1} and the other on line \mathcal{W}_{2}.

Example. Say \mathcal{V} is a vector space with basis $\mathcal{B}=\left\{\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}\right\}$. Let $\mathcal{W}_{1}=$ $\operatorname{SPAN}\left(\mathbf{B}_{1}, \ldots, \mathbf{B}_{k}\right)$ and $\mathcal{W}_{2}=\operatorname{SPAN}\left(\mathbf{B}_{k+1}, \ldots, \mathbf{B}_{n}\right)$ for some $1 \leq k<n$. Then

$$
\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}
$$

The following properties were addressed in class, for \mathcal{V} a vector space and \mathcal{W}_{i} representing subspaces.:

- If everything is finite dimensional and $\mathcal{V}=\mathcal{W}_{1}+\mathcal{W}_{2}$, then

$$
\operatorname{dim}(\mathcal{V}) \leq \operatorname{dim}\left(\mathcal{W}_{1}\right)+\operatorname{dim}\left(\mathcal{W}_{2}\right)
$$

Let $\mathcal{B}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{m}\right\}$ be bases for \mathcal{W}_{1} and \mathcal{W}_{2} respectively. Then any $\mathcal{X} \in \mathcal{V}$ may be expressed as $\mathbf{Y} \in \mathcal{W}_{1}$ and $\mathbf{Z} \in \mathcal{W}_{2}$. But these are expressed as a linear combination of their basis vectors so

$$
\mathbf{X}=a_{1} \mathbf{Y}_{1}+\ldots a_{n} \mathbf{Y}_{n}+b_{1} \mathbf{Z}_{1}+\cdots+b_{m} \mathbf{Z}_{m}
$$

We conclude that

$$
\mathcal{S}=\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}, \mathbf{Z}_{1}, \ldots, \mathbf{Z}_{m}\right\}
$$

spans \mathcal{V}. A basis for \mathcal{V} can be therefore expressed as a subset of $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of size k, so

$$
\operatorname{dim}(\mathcal{V})=k \leq n+m=\operatorname{dim}\left(\mathcal{W}_{1}\right)+\operatorname{dim}\left(\mathcal{W}_{2}\right)
$$

$$
* * * * *
$$

- If we have finite dimensions and instead $\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}$, then

$$
\operatorname{dim}(\mathcal{V})=\operatorname{dim}\left(\mathcal{W}_{1}\right)+\operatorname{dim}\left(\mathcal{W}_{2}\right)
$$

Exercise. Prove this equality by first noting that $\mathcal{V}=\mathcal{W}_{1}+\mathcal{W}_{2}$, so the above inequality holds. Given that $\mathcal{W}_{1} \cap \mathcal{W}_{2}=\{0\}$, show that \mathcal{S} in the previous proof is a basis for \mathcal{V}.

- $\mathcal{W}_{1} \oplus \mathcal{W}_{2}=\mathcal{W}_{2} \oplus \mathcal{W}_{1}$.
$* * * * *$
This is just definitional given that addition and intersections commute:

$$
\mathcal{W}_{1} \cap \mathcal{W}_{2}=\mathcal{W}_{2} \cap \mathcal{W}_{1}
$$

and

$$
\mathbf{Y}+\mathbf{Z}=\mathbf{Z}+\mathbf{Y}, \text { for all } \mathbf{Y} \in \mathcal{W}_{1}, \mathbf{Z} \in \mathcal{W}_{2}
$$

- $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}=\left(\mathcal{W}_{1} \oplus \mathcal{W}_{2}\right) \oplus \mathcal{W}_{3}$.

All we are saying here is that if $\mathcal{U}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ (any vector in \mathcal{U} may be uniquely expressed as a sum of vectors in \mathcal{W}_{1} and \mathcal{W}_{2}), then

$$
\mathcal{U} \oplus \mathcal{W}_{3}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}
$$

This says that any $\mathbf{X} \in \mathcal{U} \oplus \mathcal{W}_{3}$ may be uniquely written as $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$ for some $\mathbf{Y} \in \mathcal{U}$ and $\mathbf{Z} \in \mathcal{W}_{3}$. Because $\mathbf{Y}=\mathbf{Y}_{1}+\mathbf{Y}_{2}$ for some unique $\mathbf{Y}_{1} \in \mathcal{W}_{1}$ and $\mathbf{Y}_{2} \in \mathcal{W}_{2}$,

$$
\mathbf{X}=\mathbf{Y}_{1}+\mathbf{Y}_{2}+\mathbf{Z}
$$

and these choices are all unique.

3. The Relationship Between the Two

We finish by making some useful remarks about the relationship between direct sums and projections. Namely a direct sum $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ exists if and only if a projection exists with image \mathcal{W}_{1} and kernel \mathcal{W}_{2}. We prove this in the first two propositions below. We conclude with the relationship between projections P, Q and $P+Q$ (if this is indeed a projection!).

Proposition 1. If $P: \mathcal{V} \rightarrow \mathcal{V}$ is a projection, then

$$
\mathcal{V}=\operatorname{IM}(P) \oplus \operatorname{KER}(P)
$$

Proof. We first will show that $\mathcal{V}=\operatorname{IM}(P)+\operatorname{KER}(P)$. The first inclusion, $\operatorname{IM}(P)+$ $\operatorname{KER}(P) \subseteq \mathcal{V}$, is clear as each set on the right is a subspace of \mathcal{V}, so their sum will be a subset as well. We then need to show that $\mathcal{V} \subseteq \operatorname{IM}(P)+\operatorname{KER}(P)$. Let $\mathbf{X} \in \mathcal{V}$. Let $\mathbf{Y}=P(\mathbf{X}) \in \operatorname{IM}(P)$ and $\mathbf{Z}=\mathbf{X}-\mathbf{Y}$. Then $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$ and

$$
P(\mathbf{Z})=P(\mathbf{X}-\mathbf{Y})=P(\mathbf{X})-P(\mathbf{Y})=\mathbf{Y}-\mathbf{Y}=\mathbf{0}
$$

or $\mathbf{Z} \in \operatorname{KER}(P)$. So $\mathbf{X} \in \operatorname{IM}(P)+\operatorname{KER}(P)$. This finishes the proof of equality.
We now show that $\operatorname{IM}(P) \cap \operatorname{KER}(P)=\{\mathbf{0}\} . \mathbf{0}$ is contained in the intersection, so we show that any vector in this set must be $\mathbf{0}$ as well. Let $\mathbf{X} \in \operatorname{IM}(P) \cap \operatorname{KER}(P)$. Then

$$
\mathbf{X}_{\mathbf{X} \in \operatorname{IM}(P)}^{=} P(\mathbf{X}) \underset{\mathbf{x} \in \operatorname{KER}(P)}{=} \mathbf{0}
$$

Proposition 2. If \mathcal{V} is a vector space and $\mathcal{W}_{1}, \mathcal{W}_{2} \subseteq \mathcal{V}$ are subspaces such that

$$
\mathcal{V}=\mathcal{W}_{1} \oplus \mathcal{W}_{2}
$$

then there exists a unique projection $P: \mathcal{V} \rightarrow \mathcal{V}$ such that $\operatorname{IM}(P)=\mathcal{W}_{1}$ and $\operatorname{KER}(P)=\mathcal{W}_{2}$.

Proof. Any $\mathbf{X} \in \mathcal{V}$ has a unique expression $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$, where $\mathbf{Y} \in \mathcal{W}_{1}$ and $\mathbf{Z} \in \mathcal{W}_{2}$. So the transformation $P: \mathcal{V} \rightarrow \mathcal{V}$ defined by

$$
P(\mathbf{X})=\mathbf{Y}
$$

is well defined. We now show that P is linear. The zero element is uniquely expressed as $\mathbf{0}=\mathbf{0}+\mathbf{0}$, so

$$
P(\mathbf{0})=\mathbf{0}
$$

If $\mathbf{X}, \mathbf{X}^{\prime} \in \mathcal{V}$, they have unique expressions

$$
\mathbf{X}=\mathbf{Y}+\mathbf{Z} \text { and } \mathbf{X}^{\prime}=\mathbf{Y}^{\prime}+\mathbf{Z}^{\prime}
$$

where $\mathbf{Y}, \mathbf{Y}^{\prime} \in \mathcal{W}_{1}$ and $\mathbf{Z}, \mathbf{Z}^{\prime} \in \mathcal{W}_{2} . \mathbf{X}+\mathbf{X}^{\prime}$ may be expressed (just by addition) as

$$
\mathbf{X}+\mathbf{X}^{\prime}=\mathbf{Y}+\mathbf{Y}^{\prime}+\mathbf{Z}+\mathbf{Z}^{\prime}
$$

This must be the expression for $\mathbf{X}+\mathbf{X}^{\prime}$ by uniqueness. So

$$
P\left(\mathbf{X}+\mathbf{X}^{\prime}\right)=\mathbf{Y}+\mathbf{Y}^{\prime}=P(\mathbf{X})+P\left(\mathbf{X}^{\prime}\right)
$$

By the same reasoning $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$ implies that $c \mathbf{X}=c \mathbf{Y}+c \mathbf{Z}$ for any scalar c, so

$$
P(c \mathbf{X})=c \mathbf{Y}=c P(\mathbf{X})
$$

Now we need show that

- P is a projection.
- P has image \mathcal{W}_{1} and kernel \mathcal{W}_{2}.

If $P(\mathbf{X})=\mathbf{Y}, \mathbf{Y}$ has the unique sum $\mathbf{Y}=\mathbf{Y}+\mathbf{0}$, so

$$
P^{2}(\mathbf{X})=P(P(\mathbf{X}))=P(\mathbf{Y})=\mathbf{Y}=P(\mathbf{X})
$$

Therefore $P^{2}=P$ so it is a projection.
By our choice of $P, \operatorname{IM}(P) \subseteq \mathcal{W}_{1}$. We now show that $\mathcal{W}_{1} \subseteq \operatorname{IM}(P)$. As before, if $\mathbf{Y} \in \mathcal{W}_{1}$, its unique sum is $\mathbf{Y}=\mathbf{Y}+\mathbf{0}$, so

$$
P(\mathbf{Y})=\mathbf{Y} \in \operatorname{IM}(P)
$$

Exercise. Show that $\operatorname{KER}(P)=\mathcal{W}_{2}$.

- Show that if $\mathbf{Z} \in \mathcal{W}_{2}$, then $P(\mathbf{Z})=\mathbf{0}$.
- If $P(\mathbf{X})=\mathbf{0}$, write the unique sum $\mathbf{X}=\mathbf{Y}+\mathbf{Z}$. What can you say about \mathbf{Y} ? What does this say about \mathbf{X} ?

Our final claim concerns sum of projections.
Proposition 3. Suppose $P, Q: \mathcal{V} \rightarrow \mathcal{V}$ are projections. Assume that $P+Q$ is a projection as well. Then

$$
\operatorname{IM}(P+Q)=\operatorname{IM}(P) \oplus \operatorname{IM}(Q)
$$

and

$$
\operatorname{KER}(P+Q)=\operatorname{KER}(P) \cap \operatorname{KER}(Q)
$$

This implies that

$$
\mathcal{V}=\operatorname{IM}(P) \oplus \operatorname{IM}(Q) \oplus \operatorname{KER}(P) \cap \operatorname{KER}(Q)
$$

as well.
Proof. We assume that P, Q and $P+Q$ are projections. It follows immediately that

$$
\operatorname{IM}(P+Q)=\operatorname{IM}(P)+\operatorname{IM}(Q)
$$

Because $P+Q$ is a projection, we proved at the end of the section on projections that (among other things) $\operatorname{IM}(P) \subseteq \operatorname{KER}(Q)$. We see that

$$
\{0\} \subseteq \operatorname{IM}(P) \cap \operatorname{IM}(Q) \subseteq \operatorname{KER}(Q) \cap \operatorname{IM}(Q)=\{0\}
$$

so $\operatorname{IM}(P+Q)=\operatorname{IM}(P) \oplus \operatorname{IM}(Q)$.

If $\mathbf{Z} \in \operatorname{KER}(P) \cap \operatorname{KER}(Q)$, then

$$
(P+Q)(\mathbf{Z})=P(\mathbf{Z})+Q(\mathbf{Z})=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

So $\operatorname{KER}(P) \cap \operatorname{KER}(Q) \subseteq \operatorname{KER}(P+Q)$

Now assume $\mathbf{Z} \in \operatorname{KER}(P+Q)$. Then

$$
\mathbf{0}=(P+Q)(\mathbf{Z})=P(\mathbf{Z})+Q(\mathbf{Z})
$$

This may happen if and only if

$$
P(\mathbf{Z})=-Q(\mathbf{Z})
$$

This result is an element of $\operatorname{IM}(P)$ by the left hand side and an element of $\operatorname{IM}(Q)$ by the right hand side. Because $\operatorname{IM}(P) \cap \operatorname{IM}(Q)=\{\mathbf{0}\}$, each side must be $\mathbf{0}$, so $\mathbf{Z} \in \operatorname{KER}(P) \cap \operatorname{KER}(Q)$.

4. Orthogonal Projections

We end with a note about $\operatorname{Proj}_{\mathbf{Y}}$ and $\operatorname{Proj}_{\mathcal{W}}$ as listed in the text. Here $\mathcal{V}=\mathbb{R}^{n}$ and we have a notion of orthogonality. If $\mathbf{Y} \neq \mathbf{0}$, then $\operatorname{Proj}_{\mathbf{Y}}$ defined as

$$
\operatorname{Proj}_{\mathbf{Y}}(\mathbf{X})=\frac{\mathbf{X} \cdot \mathbf{Y}}{\mathbf{Y} \cdot \mathbf{Y}} \mathbf{Y}
$$

We discussed in class the following:
Exercise. Show that $\operatorname{Proj}_{\mathbf{Y}}$ is a projection and has image $\operatorname{SPAN}(\mathbf{Y})$ and kernel $\mathbf{Y}^{\perp}=(\operatorname{SPAN}(\mathbf{Y}))^{\perp}$.

What about $\operatorname{Proj}_{\mathcal{W}}$? Well, if $\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{k}\right\}$ is an orthonormal basis for subspace \mathcal{W}, then consider each projection $\operatorname{P}_{\mathbf{Y}_{i}}=\operatorname{Proj}_{\mathbf{Y}_{i}}$.
Exercise. Show that $P_{\mathcal{W}}=P_{\mathbf{Y}_{1}}+\cdots+P_{\mathbf{Y}_{k}}$ is a projection.
(How do the images and kernels of each $P_{\mathbf{Y}_{i}}$ relate to each other?)
We know from Proposition 3 that

$$
\operatorname{IM}\left(P_{\mathcal{W}}\right)=\operatorname{IM}\left(P_{\mathbf{Y}_{1}}\right) \oplus \cdots \oplus \operatorname{IM}\left(P_{\mathbf{Y}_{k}}\right)=\mathcal{W}
$$

Also,

$$
\operatorname{KER}\left(P_{\mathcal{W}}\right)=\operatorname{KER}\left(P_{\mathbf{Y}_{1}}\right) \cap \cdots \cap \operatorname{KER}\left(P_{\mathbf{Y}_{k}}\right) .
$$

Exercise. Show that the right hand side is \mathcal{W}^{\perp}.
So this is indeed the orthogonal projection on \mathcal{W}. What the text calls $\operatorname{Orth}_{\mathcal{W}}$ is the unique projection with image \mathcal{W}^{\perp} and kernel \mathcal{W}. Given our results in Section 1, we may simply point out that $O t h r_{\mathcal{W}}$ can be nothing else than

$$
\text { Orth }_{\mathcal{W}}=I-\operatorname{Proj}_{\mathcal{W}}
$$

where I is the identity function on \mathbb{R}^{n}.

[^0]: Date: March 12, 2012.

