
MATH 204 C03 – DIRECT SUMS AND PROJECTIONS

JON FICKENSCHER

Outline

We have discussed two notions in class that do not appear in the text: projections
and direct sums. This is designed as a supplement to the material put on the board
with extra examples. These two concepts are connected, and we express this as
Propositions 1-3 in the third section. We conclude by tying in our results to the
discussion of Proj and Orth as defined in the text.

Terms

Let V and W be a vector spaces and T : V → W a linear transformation. Then

IM(T ) ↔ Image of T
KER(T ) ↔ Kernel of T

The span of a collection S ⊂ V is SPAN(S).
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1. Projections

We always will assume that V is a vector space.

Definition. A linear map P : V → V is a projection if

P 2 = P ◦ P = P

or equivalently
P (Y) = Y, for all Y ∈ IM(P )

Remark. If P is a projection, then Pn = P ◦ · · · ◦ P = P for any n > 1 by
induction.

Example. Let T : R3 → R3 be defined by the matrix

T (X) =

1 0 0
1
2

1
2 − 1

2
1
2 − 1

2
1
2


︸ ︷︷ ︸

A

X.

Is T a projection? Well T 2 is defined by A2, and

AA =

1 0 0
1
2

1
2 − 1

2
1
2 − 1

2
1
2

1 0 0
1
2

1
2 − 1

2
1
2 − 1

2
1
2


=

 1 + 0 + 0 0 + 0 + 0 0 + 0 + 0
1
2 + 1

4 −
1
4 0 + 1

4 + 1
4 0− 1

4 −
1
4

1
2 −

1
4 + 1

4 0− 1
4 −

1
4 0 + 1

4 + 1
4


=

1 0 0
1
2

1
2 − 1

2
1
2 − 1

2
1
2


= A

So T 2 is defined by A, which tells us that T 2 = T .

Exercise. What is IM(T ) and KER(T )?

Example. The function T : C(R)→ C(R) (C(R) is the set of real valued, continuous
functions) defined by

T (f) =
∫ x

0

f(t)dt

is not a projection. Sure it is linear, but consider the function g(x) = x.

T (g) =
∫ x

0

tdt =
x2

2

while

T 2(g) = T (
x2

2
) =

∫ x

0

t2

2
dt =

x3

6
6= T (g).

We conclude that T 6= T 2 and so T is NOT a projection.

We have discussed a few general points about projections, as follows:
T/F: If P,Q : V → V are projections and IM(P ) = IM(Q), then P = Q.

*****
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FALSE: For a simple counterexample, consider the two linear transforma-
tions defined by

P =
[
1 0
0 0

]
and Q =

[
1 1
0 0

]
.

Each define projections as P2 = P and Q2 = Q. The image of each is the
x-axis in R2. But they are not the same transformation, as

P
[
0
1

]
=
[
0
0

]
6=
[
1
0

]
= Q

[
0
1

]
.

*****

T/F: If P,Q : V → V are projections such that IM(P ) = IM(Q) AND KER(P ) =
KER(Q), then P = Q.

*****

TRUE: Call W0 the mutual kernel and W1 the mutual image. Consider
any X ∈ V and let

Y = P (X) and Y′ = Q(X).

We see that Q(X−Y′) = Q(X)−Q(Y′) = Y′ −Y′ = 0, so

X = Y′ + Z′

where Y′ ∈ W1 and Z′ ∈ W0. So it follows that

Y = P (X) = P (Y′ + Z′) = P (Y′) + P (Z′)
= Y′ + 0 = Y′.

Therefore, for every X ∈ V, P (X) = Q(X).

*****

T/F: Let P : V → V be a projection. There exists a unique projection Q : V → V
such that

IM(P ) = KER(Q) and KER(P ) = IM(Q).

*****

TRUE: If such a Q exists, it is unique by our previous T/F. So we simply
need to find Q. Let

Q = IV − P

where IV is the identity function on V.

Exercise. Finish this argument by showing that:
– Q ◦Q = Q (Q is a projection).
– KER(Q) = IM(P ).
– IM(Q) = KER(P ).

(No single argument should have a long proof! ).

*****

T/F: Let P,Q : V → V be projections. Then P + Q : V → V is a projection.

*****
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FALSE: We give two counterexamples, the second less trivial than the
first. Let

P = Q = IV

As long as V doesn’t consist of just one element (the zero element), then
for any X ∈ V, X 6= 0,

(P + Q)(X) = P (X) + Q(X) = X + X = 2X 6= X.

Because (P + Q) is not the identity on its image, it is not a projection.
For our second counter example, consider V = R2 and

P =
[
1 0
0 0

]
and Q =

1
2

[
1 1
1 1

]
.

These are both projections.

Exercise. Confirm this, and determine their images and kernels.

However,

P + Q =
1
2

[
3 1
1 1

]
and (P + Q)2 =

1
2

[
5 2
2 1

]
so P + Q 6= (P + Q)2.

*****
T/F: Let P,Q : V → V be projections. Then P + Q : V → V is a projection if

and only if

IM(P ) ⊂ KER(Q) and IM(Q) ⊂ KER(P ).

(Note that the above conditions imply that IM(P ) ∩ IM(Q) = {0}).
*****

TRUE: First assume that

IM(P ) ⊂ KER(Q) and IM(Q) ⊂ KER(P )

holds. Let Z ∈ IM(P + Q), then Z = X + Y for some X ∈ IM(P ) and
Y ∈ IM(Q). So

(P + Q)(Z) = P (Z) + Q(Z)
= P (X) + P (Y) + Q(X) + Q(Y)
= X + 0 + 0 + Y
= Z.

Because P + Q is a projection on its image, it is a projection.
Now suppose that there exists X ∈ IM(P ) that does not belong to

KER(Q) and P + Q is a projection. Let Y = Q(X), and note that this is
non-zero. Then

X + Y = (P + Q)(X)
= (P + Q)2(X)
= (P + Q)(X + Y)
= P (X) + P (Y) + Q(X) + Q(Y)
= X + P (Y) + 2Y
or

P (Y) = −Y.
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But because Y 6= 0, we have a vector Y ∈ IM(P ) but P (Y) 6= Y, which
contradicts that P is a projection.

We may repeat the same argument by switching the roles of P and Q.
We may then conclude that if

IM(P ) ⊂ KER(Q) and IM(Q) ⊂ KER(P )

fails, P + Q can not be a projection.
*****

Remark. Our text refers to a class of transformations as projections. They are
technically correct, as all of their maps are projections. However, their maps are
orthogonal projections, they are projections P such that IM(P ) ⊥ KER(P )
which means

X ·Y = 0, for all X ∈ IM(P ) and Y ∈ KER(P ).

In the language of the book, ProjW is the unique projection with image W and
kernel W⊥.
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2. Direct Sums

We begin by giving a bsic definition

Definition. Let W1,W2 ⊂ V be subspaces of vector space V. We say that V is the
direct sum of W1 and W2, or

V =W1 ⊕W2

if the following two conditions holds:
(1) W1 +W2 := {X + Y|X ∈ W1, Y ∈ W2} = V.

“The span of W1 and W2 is all of V.”
(2) W1 ∩W2 = {0}.

“W1 and W2 are independent.”

Remark. We may state an equivalent definition as follows:
V =W1 ⊕W2 if every X ∈ V may be uniquely written as

X = X1 + X2

where Xi ∈ Wi, i ∈ {1, 2}. We leave the proof to the reader, but we note the
following:

• Every X ∈ V may be written as X = X1 + X2 if and only if V =W1 +W2.
This is the definition of W1 +W2.
• If W1 and W2 are not independent, then how many ways can we express

any element in W1 ∩W2?
• If X = X1 + X2 = X′

1 + X′
2 where X′

i 6= Xi, can we use the fact that both
sums equal X to find a common non-zero element in W1 ∩W2?

Example. R2 = R1 ⊕ R2, where R1 is the x-axis and R2 is the y-axis. There
are many more choices. Any two lines that are not parallel and pass through the
origin define two subspaces W1 and W2 such that their span is R2 and, because
their intersection is the origin, are independent. So any X ∈ R2 may be uniquely
expressed as the sum of two points, one on the line W1 and the other on line W2.

Example. Say V is a vector space with basis B = {B1, . . . , Bn}. Let W1 =
SPAN(B1, . . . , Bk) and W2 = SPAN(Bk+1, . . . , Bn) for some 1 ≤ k < n. Then

V =W1 ⊕W2.

The following properties were addressed in class, for V a vector space and Wi

representing subspaces.:
• If everything is finite dimensional and V =W1 +W2, then

dim(V) ≤ dim(W1) + dim(W2).

*****
Let B = {Y1, . . . , Yn} and B′ = {Z1, . . . , Zm} be bases for W1 and W2

respectively. Then any X ∈ V may be expressed as Y ∈ W1 and Z ∈ W2.
But these are expressed as a linear combination of their basis vectors so

X = a1Y1 + . . . anYn + b1Z1 + · · ·+ bmZm.

We conclude that

S = {Y1, . . . , Yn, Z1, . . . , Zm}
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spans V. A basis for V can be therefore expressed as a subset of S ′ ⊆ S of
size k, so

dim(V) = k ≤ n + m = dim(W1) + dim(W2).

*****
• If we have finite dimensions and instead V =W1 ⊕W2, then

dim(V) = dim(W1) + dim(W2).

*****

Exercise. Prove this equality by first noting that V = W1 +W2, so the
above inequality holds. Given that W1 ∩ W2 = {0}, show that S in the
previous proof is a basis for V.

*****
• W1 ⊕W2 =W2 ⊕W1.

*****
This is just definitional given that addition and intersections commute:

W1 ∩W2 =W2 ∩W1

and
Y + Z = Z + Y, for all Y ∈ W1, Z ∈ W2.

*****
• W1 ⊕W2 ⊕W3 = (W1 ⊕W2)⊕W3.

All we are saying here is that if U = W1 ⊕ W2 (any vector in U may be
uniquely expressed as a sum of vectors in W1 and W2), then

U ⊕W3 =W1 ⊕W2 ⊕W3.

This says that any X ∈ U ⊕W3 may be uniquely written as X = Y + Z for
some Y ∈ U and Z ∈ W3. Because Y = Y1 +Y2 for some unique Y1 ∈ W1

and Y2 ∈ W2,
X = Y1 + Y2 + Z

and these choices are all unique.
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3. The Relationship Between the Two

We finish by making some useful remarks about the relationship between direct
sums and projections. Namely a direct sumW1⊕W2 exists if and only if a projection
exists with image W1 and kernel W2. We prove this in the first two propositions
below. We conclude with the relationship between projections P , Q and P + Q (if
this is indeed a projection!).

Proposition 1. If P : V → V is a projection, then

V = IM(P )⊕KER(P ).

Proof. We first will show that V = IM(P ) + KER(P ). The first inclusion, IM(P ) +
KER(P ) ⊆ V, is clear as each set on the right is a subspace of V, so their sum will
be a subset as well. We then need to show that V ⊆ IM(P ) + KER(P ). Let X ∈ V.
Let Y = P (X) ∈ IM(P ) and Z = X−Y. Then X = Y + Z and

P (Z) = P (X−Y) = P (X)− P (Y) = Y −Y = 0

or Z ∈ KER(P ). So X ∈ IM(P ) + KER(P ). This finishes the proof of equality.
We now show that IM(P )∩KER(P ) = {0}. 0 is contained in the intersection, so

we show that any vector in this set must be 0 as well. Let X ∈ IM(P ) ∩KER(P ).
Then

X =
X∈IM(P )

P (X) =
X∈KER(P )

0.

�

Proposition 2. If V is a vector space and W1,W2 ⊆ V are subspaces such that

V =W1 ⊕W2,

then there exists a unique projection P : V → V such that IM(P ) = W1 and
KER(P ) =W2.

Proof. Any X ∈ V has a unique expression X = Y+Z, where Y ∈ W1 and Z ∈ W2.
So the transformation P : V → V defined by

P (X) = Y

is well defined. We now show that P is linear. The zero element is uniquely
expressed as 0 = 0 + 0, so

P (0) = 0.

If X, X′ ∈ V, they have unique expressions

X = Y + Z and X′ = Y′ + Z′

where Y, Y′ ∈ W1 and Z, Z′ ∈ W2. X + X′ may be expressed (just by addition) as

X + X′ = Y + Y′ + Z + Z′.

This must be the expression for X + X′ by uniqueness. So

P (X + X′) = Y + Y′ = P (X) + P (X′).

By the same reasoning X = Y + Z implies that cX = cY + cZ for any scalar c, so

P (cX) = cY = cP (X).

Now we need show that
• P is a projection.
• P has image W1 and kernel W2.
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If P (X) = Y, Y has the unique sum Y = Y + 0, so

P 2(X) = P (P (X)) = P (Y) = Y = P (X).

Therefore P 2 = P so it is a projection.
By our choice of P , IM(P ) ⊆ W1. We now show that W1 ⊆ IM(P ). As before,

if Y ∈ W1, its unique sum is Y = Y + 0, so

P (Y) = Y ∈ IM(P ).

Exercise. Show that KER(P ) =W2.
• Show that if Z ∈ W2, then P (Z) = 0.
• If P (X) = 0, write the unique sum X = Y + Z. What can you say about

Y? What does this say about X?

�

Our final claim concerns sum of projections.

Proposition 3. Suppose P,Q : V → V are projections. Assume that P + Q is a
projection as well. Then

IM(P + Q) = IM(P )⊕ IM(Q)

and
KER(P + Q) = KER(P ) ∩KER(Q).

This implies that

V = IM(P )⊕ IM(Q)⊕KER(P ) ∩KER(Q)

as well.

Proof. We assume that P , Q and P + Q are projections. It follows immediately
that

IM(P + Q) = IM(P ) + IM(Q).
Because P + Q is a projection, we proved at the end of the section on projections
that (among other things) IM(P ) ⊆ KER(Q). We see that

{0} ⊆ IM(P ) ∩ IM(Q) ⊆ KER(Q) ∩ IM(Q) = {0},
so IM(P + Q) = IM(P )⊕ IM(Q).

*****

If Z ∈ KER(P ) ∩KER(Q), then

(P + Q)(Z) = P (Z) + Q(Z) = 0 + 0 = 0.

So KER(P ) ∩KER(Q) ⊆ KER(P + Q)

*****

Now assume Z ∈ KER(P + Q). Then

0 = (P + Q)(Z) = P (Z) + Q(Z).

This may happen if and only if

P (Z) = −Q(Z).

This result is an element of IM(P ) by the left hand side and an element of IM(Q)
by the right hand side. Because IM(P ) ∩ IM(Q) = {0}, each side must be 0, so
Z ∈ KER(P ) ∩KER(Q). �
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4. Orthogonal Projections

We end with a note about ProjY and ProjW as listed in the text. Here V = Rn

and we have a notion of orthogonality. If Y 6= 0, then ProjY defined as

ProjY(X) =
X ·Y
Y ·Y

Y.

We discussed in class the following:

Exercise. Show that ProjY is a projection and has image SPAN(Y) and kernel
Y⊥ = (SPAN(Y))⊥.

What about ProjW? Well, if {Y1, . . . , Yk} is an orthonormal basis for subspace
W, then consider each projection PYi

= ProjYi
.

Exercise. Show that PW = PY1 + · · ·+ PYk
is a projection.

(How do the images and kernels of each PYi
relate to each other?)

We know from Proposition 3 that

IM(PW) = IM(PY1)⊕ · · · ⊕ IM(PYk
) =W.

Also,
KER(PW) = KER(PY1) ∩ · · · ∩KER(PYk

).

Exercise. Show that the right hand side is W⊥.

So this is indeed the orthogonal projection on W. What the text calls OrthW is
the unique projection with image W⊥ and kernel W. Given our results in Section
1, we may simply point out that OthrW can be nothing else than

OrthW = I − ProjW

where I is the identity function on Rn.
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