Convex Reflexive Lattice Polygons and the Number 12

Jennifer Li

Department of Mathematics University of Massachusetts Amherst, MA

Combinatorics

Combinatorics

polytope

Combinatorics

```
polytope
|
polygon (dim. 2)
```

Combinatorics

polytope
|
polygon (dim. 2)

Algebraic Geometry

Combinatorics

polytope | polygon (dim. 2)

Algebraic Geometry

 $\begin{array}{c|c} \text{toric varieties} \\ | \\ \text{toric surface (dim. 2)} \end{array}$

Introduction

Introduction

First, an overview of our adventure...

Convex Polygons

Convex Polygons

Examples.

Convex Polygons

Examples.

Nonexample.

A lattice polygon is a polygon in \mathbb{R}^2 which has vertices in \mathbb{Z}^2 .

A lattice polygon is a polygon in \mathbb{R}^2 which has vertices in \mathbb{Z}^2 .

Example.

Nonexample.

A polygon P is reflexive

A polygon P is reflexive \Rightarrow the only interior lattice point of P is (0,0).

A polygon P is reflexive \Rightarrow the only interior lattice point of P is (0,0).

Example.

A polygon P is reflexive \Rightarrow the only interior lattice point of P is (0,0).

Example.

Nonexample.

Convex Reflexive Lattice Polygons

So far we have:

Convex Reflexive Lattice Polygons

So far we have:

Good News!

Good News!

There are exactly 16 equivalence classes of convex reflexive lattice polygons in \mathbb{R}^2 :

Good News!

There are exactly 16 equivalence classes of convex reflexive lattice polygons in \mathbb{R}^2 :

Dual of a Polygon

Given a convex reflexive lattice polygon P with vertices p_1, p_2, \ldots, p_n , we define the dual of P to be the polygon with vertices q_i where

$$q_i = p_{i+1} - p_i$$

Dual of a Polygon

Given a convex reflexive lattice polygon P with vertices p_1, p_2, \ldots, p_n , we define the dual of P to be the polygon with vertices q_i where

$$q_i = p_{i+1} - p_i$$

Note: Let $p_{n+1} = p_1$

$$q_i = p_{i+1} - p_i$$
 for $i = 1, ..., n$, and $p_{n+1} = p_1$.

$$q_i = p_{i+1} - p_i$$
 for $i = 1, ..., n$, and $p_{n+1} = p_1$.

$$q_i = p_{i+1} - p_i$$
 for $i = 1, ..., n$, and $p_{n+1} = p_1$.

$$q_1 = p_2 - p_1 = (0,1) - (1,-1) = (-1,2)$$

 $q_2 = p_3 - p_2 = (-1,0) - (0,1) = (-1,-1)$
 $q_2 = p_4 - p_3 = (1,-1) - (-1,0) = (2,-1)$

$$q_1 = (-1, 2)$$

 $q_2 = (-1, -1)$
 $q_3 = (2, -1)$

$$q_1 = (-1, 2)$$

 $q_2 = (-1, -1)$
 $q_3 = (2, -1)$

So we have found that the following polygons are dual:

So we have found that the following polygons are dual:

$$q_1 = p_2 - p_1 = (0,1) - (1,0) = (-1,1)$$

$$q_2 = p_3 - p_2 = (-1,-1) - (0,1) = (-1,-2)$$

$$q_3 = p_4 - p_3 = (0,-1) - (-1,-1) = (1,0)$$

$$q_4 = p_5 - p_4 = (1,-1) - (0,-1) = (1,0)$$

$$q_5 = p_6 - p_5 = (2,-1) - (1,-1) = (1,0)$$

$$q_6 = p_7 - p_6 = (1,0) - (2,-1) = (-1,1)$$

$q_1 = (-1, 1)$	$q_4 = (1,0)$
$q_2 = (-1, -2)$	$q_5 = (1,0)$
$q_3 = (1,0)$	$q_6 = (-1, 1)$

$$q_1 = (-1, 1)$$
 $q_4 = (1, 0)$
 $q_2 = (-1, -2)$ $q_5 = (1, 0)$
 $q_3 = (1, 0)$ $q_6 = (-1, 1)$

So we have found that this polygon is self-dual:

So we have found that this polygon is self-dual:

So we have found that this polygon is self-dual:

Fact: The dual of a convex reflexive lattice polygon is also a convex reflexive lattice polygon!

So we have found that this polygon is self-dual:

Fact: The dual of a convex reflexive lattice polygon is also a convex reflexive lattice polygon!

Exercise: Try all of them!

Let ∂P denote the number of boundary lattice points of polygon P. Examples.

Let ∂P denote the number of boundary lattice points of polygon P. Examples.

Let ∂P denote the number of boundary lattice points of polygon P. Examples.

Main Theorem. Let P be a convex reflexive lattice polygon and let P° be its dual. Then

$$\partial P + \partial P^{\circ} = 12$$

Example.

Exercise: Verify the formula holds for all 16 polygons!

Why?

Why?

Let's turn to algebraic geometry!

Why?

Let's turn to algebraic geometry!

convex reflexive lattice polygon $P \iff$ toric surface X

Convex Reflexive Lattice Polygon to Toric Surface

General idea:

Convex Reflexive Lattice Polygon to Toric Surface

General idea:

polygon P

Convex Reflexive Lattice Polygon to Toric Surface

General idea:

polygon
$$P \longrightarrow \text{fan } \Sigma$$

Convex Reflexive Lattice Polygon to Toric Surface

General idea:

 $\operatorname{polygon} P \longrightarrow \operatorname{fan} \Sigma \longrightarrow \operatorname{Toric} \operatorname{Surface} X$

The regions σ_1, σ_2 , and σ_3 are two-dimensional cones.

The regions σ_1, σ_2 , and σ_3 are two-dimensional cones. A fan Σ is a union of cones.

Exercise: Find the associated fan for all 16 polygons!

From these fans, we can read what the topological properties of the corresponding toric surface are.

convex reflexive lattice polygon $P \iff$ toric surface X

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive $\Longrightarrow 0$ is the only integral lattice point of P

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive $\Longrightarrow 0$ is the only integral lattice point of P $\Longrightarrow X$ is a smooth toric surface

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive $\Longrightarrow 0$ is the only integral lattice point of P $\Longrightarrow X$ is a smooth toric surface

smooth:

Algebraic Geometry

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive $\Longrightarrow 0$ is the only integral lattice point of P $\Longrightarrow X$ is a smooth toric surface

smooth: it's a nice property ©

Algebraic Geometry

convex reflexive lattice polygon $P \iff$ toric surface X

P is reflexive $\Longrightarrow 0$ is the only integral lattice point of P $\Longrightarrow X$ is a smooth toric surface

smooth: it's a nice property ©

It lets us use Noether's Formula!

Noether's Formula. For a smooth projective surface X, we have the following:

Noether's Formula. For a smooth projective surface X, we have the following:

$$\chi(\mathcal{O}_X) = \frac{K_X \cdot K_X + e(X)}{12}$$

Noether's Formula. For a smooth projective surface X, we have the following:

$$\chi(\mathcal{O}_X) = \frac{K_X \cdot K_X + e(X)}{12}$$

 K_X = canonical divisor of Xe(X) = topological Euler Characteristic of X

Noether's Formula. For a smooth projective surface X, we have the following:

$$\chi(\mathcal{O}_X) = \frac{K_X \cdot K_X + e(X)}{12}$$

 K_X = canonical divisor of Xe(X) = topological Euler Characteristic of X

In our case (smooth toric surface): $\chi(\mathcal{O}_X) = 1$

Noether's Formula. For a smooth projective surface X, we have the following:

$$\chi(\mathcal{O}_X) = \frac{K_X \cdot K_X + e(X)}{12}$$

 $K_X =$ canonical divisor of Xe(X) = topological Euler Characteristic of X

In our case (smooth toric surface): $\chi(\mathcal{O}_X) = 1$ Noether's Formula.

Noether's Formula. For a smooth projective surface X, we have the following:

$$\chi(\mathcal{O}_X) = \frac{K_X \cdot K_X + e(X)}{12}$$

 K_X = canonical divisor of Xe(X) = topological Euler Characteristic of X

In our case (smooth toric surface): $\chi(\mathcal{O}_X) = 1$ Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

$$K_X \cdot K_X = \partial P$$

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

$$K_X \cdot K_X = \partial P$$
$$e(X) = \partial P^{\circ}$$

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

$$K_X \cdot K_X = \partial P$$
$$e(X) = \partial P^{\circ}$$

Noether's Formula.

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

$$K_X \cdot K_X = \partial P$$
$$e(X) = \partial P^{\circ}$$

Noether's Formula.

$$\partial P + \partial P^{\circ} = 12$$

Noether's Formula.

$$K_X \cdot K_X + e(X) = 12$$

2 Fun Facts:

$$K_X \cdot K_X = \partial P$$
$$e(X) = \partial P^{\circ}$$

Noether's Formula.

$$\partial P + \partial P^{\circ} = 12$$

The Main Theorem!

The Big Result

The Main Theorem is another way of stating Noether's Formula for 2-dimensional smooth toric varieties!

References

- 1) Cox, D., Little, J., Schenck, H., *Toric Varieties*, American Mathematical Society, 2011.
- 2) Poonen, B., Rodriguez-Villegas, F., *Lattice Polytopes and the Number 12*, The American Mathematical Monthly, Vol. 107, No. 3 (Mar., 2000), pp. 238-250.