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First, an overview of our adventure...
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There are exactly 16 equivalence classes of convex reflexive lattice
polygons in R?:
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Given a convex reflexive lattice polygon P with vertices p1,p2,-- ., Pn,
we define the dual of P to be the polygon with vertices ¢; where
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So we have found that the following polygons are dual:
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Fact: The dual of a convex reflexive lattice polygon is also a convex
reflexive lattice polygon!
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Fact: The dual of a convex reflexive lattice polygon is also a convex
reflexive lattice polygon!

Exercise: Try all of them!







Let OP denote the number of boundary lattice points of polygon P.
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Main Theorem. Let P be a convex reflexive lattice polygon and let P°
be its dual. Then

OP + 0P° =12
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Exercise: Verify the formula holds for all 16 polygons!
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The regions o1, 09, and o3 are two-dimensional cones.




The regions o1, 09, and o3 are two-dimensional cones.

A fan ¥ is a union of cones.




Exercise: Find the associated fan for all 16 polygons!
























From these fans, we can read what the topological properties of the
corresponding toric surface are.
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smooth: it’s a nice property ®

It lets us use Noether’s Formula!
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2 Fun Facts:
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The Main Theorem!



The Main Theorem is another way of stating Noether’s Formula for
2-dimensional smooth toric varieties!
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