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Abstract

This notes are an introduction to contact homology in its simplest
form: the Chekanov’s (combinatorial) differential graded algebra asso-
ciated to a Legendrian knot in R

3. After a brief introduction to the
basics of contact topology we focus on Legendrian knots in R

3 and
introduce their classical invariants and Chekanov’s dga. Finally we
will compare Chekanov’s combinatorial construction with its geomet-
ric motivation coming from holomorphic curves. There is no claim of
originality on the material covered in these notes: when no reference
is given the only reason is the laziness of the author in tracking back
the original source.

1 Introduction

This manuscript is an expanded version of my lecture notes for the
course on Legendrian knots and Chekanov’s contact homology that I
gave in Paris1 and Meknes2. These notes are heavily based on Etnyre’s
survey on the same subject [6] with some inputs from Geiges’s book
[13], Chekanov’s original paper [2], and Etnyre, Ng and Sabloff’s paper
[10]. I gratefully thank Baptiste Chantraine, Joan Licata and Vera
Vértesi for their help in the preparation of these notes.

1Summer school “Homologies d’entrelacs”, from 29 June to 3 July 2009
2CIMPA school “Low dimensional topology and symplectic geometry”, from 21 May

to 1 June 2012
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2 Classical theory of Legendrian knots

2.1 Basic contact topology

Informally speaking, a contact structure on a (2n + 1)-manifold is a
maximally non-integrable hyperplane distribution. More formally:

Definition 2.1. A 1-form on a (2n + 1)-dimensional manifold M is
called a contact form if α ∧ (dα)n is a volume form on M ; that is

∀p ∈M, αp ∧ (dαp)
n 6= 0. (1)

An equivalent way to express the contact condition (1) is to say
that α is a contact form if

∀p ∈M, (dαp|kerαp
)n 6= 0, (2)

i.e. dα|kerα is a symplectic form on kerα.

Definition 2.2. A hyperplane distribution ξ is a contact structure3 on
M if it is the kernel of a contact form. We say that (M, ξ) is a contact
manifold.

A contact structure can be defined by many contact forms, and any
two of them differ by multiplication by a nowhere vanishing function.
If α′ = fα is another contact form for the same contact structure, then

α′ ∧ dα′ = fn+1(α ∧ dα).

This implies that the contact condition does not depend on the choice
of the contact form. Moreover M must be orientable and ξ determines
a preferred orientation when n is odd.

The contact condition α∧(dα)n 6= 0 is a non-integrability condition:

Lemma 2.3. If N ⊂ M is an m-dimensional submanifold such that
TN ⊂ ξ|N , then m ≤ n.

Proof. If i : N → M is the inclusion, then i∗(dα) = d(i∗α) = 0 so
dα|kerα = 0. Therefore TpN is an isotropic subspace4 of ξp for all
p ∈ N , then the contact condition (2) implies that dimN ≤ 1

2 dim ξ =
n.

Definition 2.4. Let (M, ξ) an (n+ 1)-dimensional contact manifold.
A submanifold N ⊂ M is called Lagrangian if TpN ⊂ ξp for all p ∈ N
and dimN = n.

3Often also called a cooriented contact structure
4An isotropic subspace of a symplectic vecotr space is a subspace that is contained in

its symplectic orthogonal. By simple linear algebra, isotropic subspaces have dimension

at most half of the dimension of the total space.
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If α is a contact form, there is a unique vector field R solving the
system: {

α(R) = 1
ιRdα = 0

(3)

Definition 2.5. The vector field R solving Equation (3) is called the
Reeb vector field of α.

Lemma 2.6. Let ϕt be the flow generated by R. Then ϕ∗
tα = α for

all t ∈ R.

Proof. By Cartan’s formula we have:

d

dt
ϕ∗
tα = ϕ∗

t (LRα) = ϕ∗
t (dιRα+ ιRdα) = 0.

Since ϕ0 is the identity, the lemma follows.

Example 2.7. We take coordinates (x1, . . . , xn, y1, . . . , yn, z) on R
2n+1.

The standard contact structure on R
3 is the contact structure ξst de-

fined by the contact form

αst = dz −
n∑

i=1

yidxi.

Example 2.8. There is another natural contact form α′
st on R

2n+1:

α′
st = dz +

n∑

i+1

xidyi − yidxi.

Exercise 2.9. Let us introduce the notation x = (x1, . . . , xn) and
y = (y1, . . . , yn). Check that the diffeomorphism f : R2n+1 → R

2n+1

f(x,y, z) =

(
x+ y

2
,
y − x

2
, z +

x · y

2

)

satisfies f∗α′
st = αst.

Example 2.10. Regard S2n+1 as the unit sphere in R
2n+2 with coor-

dinates (x1, y1, . . . , xn, yn). The standard contact structure in S2n+1

is the contact structure ξst defined by the restriction to TS2n+1 of the

1-form
n+1∑
i=1

xidyi − yidxi.

Exercise 2.11. Verify that this is a contact form, and that its Reeb
vector field generates an S1 action on S2n−1 whose orbits are the fibres
of the Hopf fibration.
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Figure 1: On the left: the standard contact structure ξst = ker (dz − ydx).
On the right: the isomorphic contact structure ξ′

st
= ker (dz + xdy − ydx).

(Figures by S. Schönenberger)

Proposition 2.12. For any point p ∈ S3 there is a diffeomorphism
φ : S2n−1 \ {p} → R

2n−1 such that dφ(ξst) = ξst.

The proof is an elementary, but very tedious computation, which
can be found in [13].

The importance of the standard contact structure in R
2n+1 relies

on the fact that it is the local model for every contact structure.

Theorem 2.13. (Darboux) Let (M, ξ) be a contact (2n+1)-manifold.
Any point p ∈M has an open neighbourhood U with a diffeomorphism
φ : U → V ⊂ R

2n+1 such that φ(p) = 0 and α = φ∗αst.

We prove the theorem for n = 1. The general case can be treated
with similar ideas, but requires more technical sophistication.

Proof. In the proof we will allow ourselves to shrink open neighbour-
hoods without changing their names.

Fix p ∈M . By the flow-box theorem we can find a neighbourhood
U of p in M and a diffeomorphism φ0 : U → V0 ⊂ R

2n+1 such that
φ0(p) = 0 and dφ0(R) = ∂z. Then α = φ∗0α0, where α0 = dz +
f(x, y)dx+ g(x, y)dy.

Let Y be a z-invariant vector field defined on a neighbourhood of
0 in V0 such that Yp ∈ ker(α0)p for all p ∈ V0. Then we can find a
neighbourhood V1 of 0 ∈ R

2n+1 and a diffeomorphism φ1 : V0 → V1 of
the form φ1(x, y, z) = (ψ1(x, y), ψ2(x, y), z) such that φ1(0) = 0 and
dφ(Y ) = ∂y. Then α0 = φ∗1α1, where

α1 = dz − h(x, y)dx
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for a function h such that h(0, 0, 0) = 0. The contact condition (1)
implies that ∂h

∂y
> 0, so the map φ2 : (x, y, z) → (x, h(x, y), z) is in-

vertible in a neighbourhood of 0, and φ = φ2 ◦ φ1 ◦ φ0 is the required
diffeomorphism.

We discuss three more examples of contact manifolds. The first
one is a quite general construction which relates contact geometry to
symplectic geometry.

Definition 2.14. Let (W,ω) be a symplectic manifold. A Liouville
vector field for (W,ω) is a (possibly locally defined) vector field Y such
that LY ω = ω. A contact type hypersurface V ⊂ M is a hypersurface
which is transverse to a Liouville vector field.

Example 2.15. The 1-form α = (ιY ω)|TV is a contact form on V .

Exercise 2.16. Prove that α is a contact form and that there is an
embedding i : (−ǫ, ǫ) × V → W such that i({0} × V ) = V and i∗ω =
d(esα).

Let N be a smooth manifold, and choose a Riemannian metric g on
N . Then g induces a scalar product g∗ on the fibres of the cotangent
bundle T ∗M . We define the unit cotangent bundle S∗N of N as

S∗N = {(p, l) : p ∈ N, l ∈ T ∗
pM and g∗(l, l) = 1}.

We denote by π : S∗N → N the projection π(p, l) = p.

Example 2.17. The 1-form λ on S∗N defined by

λ(p,l)(v) = l(dπ(v))

for all v ∈ T(p,l)(S
∗N) is a contact form. If ξ = kerλ, then

ξ(p,l) = dπ−1(ker l).

Exercise 2.18. Prove that λ is a contact form by showing that Ex-
ample 2.17 is an instance of Example 2.15.

Exercise 2.19. Show that the Reeb flow of λ on S∗N corresponds to
the geodesic flow of g on the unit tangent bundle SN by the identifi-
cation S∗N ∼= SN induced by g.

Exercise 2.20. Prove that the universal cover of S∗S2 is diffeomorphic
to S3, and that the pull back to S3 of the contact structure on S∗S2

defined in Example 2.17 is the standard contact structure on S3.

The reader be warned: the two previous exercises are difficult.

Example 2.21. If N is a smooth manifold, we define its 1-jet manifold
JN as JN = R × T ∗N . If λN is the Liouville 1-form on T ∗N written
as pdq in local coordinates, then dz − λN is a contact form on JN .
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Note that, if N = R
n, the construction of Example 2.21 yields the

standard contact form on R
2n+1.

Exercise 2.22. Let f : N → R be a smooth function. Prove that
p 7→ (f(p), dpf) parametrises a Legendrian submanifold of JN .

If dimN = n, then JN is a real vector bundle of rank n + 1. We
denote by 0N its zero section. With the help of jet manifolds we can
state a version of Darboux’s theorem for Legendrian submanifolds.

Theorem 2.23. Let (M, ξ) be a contact manifold and N ⊂M a Leg-
endrian submanifold. Then for any contact form α of ξ there is a
neighbourhood U of 0N in JN and an embedding i : U → M such that
i(0n) = N and i∗α = dz − λN .

Exercise 2.24. Try to prove Theorem 2.23 when dimM = 3 by adapt-
ing the proof of Theorem 2.13.

Remark 2.25. Theorem 2.23 together with Exercise 2.22 show that
there are “many” Legendrian submanifolds near a given one. This ob-
servation will allow us to use some genericity arguments when working
with Legendrian submanifolds.

We finish this section by stating two classical theorems in contact
topology. We will make no use of them in the following part of this
manuscript, but they are important to give the reader the flavour of
the subject.

Theorem 2.26. (Lutz–Martinet) Every oriented plane field in any
orientable closed 3-manifold is homotopic to a contact structure.

In higher dimension there is a topological obstruction to the ex-
istence of a contact structure: if a (2n + 1)-dimensional manifold M
admits a contact structure, then its tangent bundle TM admits a re-
duction of its structure group to U(n). Casals, Pancholi and Presas
have recently announced the existence of a contact structure on every
5-manifold admitting such a reduction: see [1]. On the other hand, the
problem of determining what manifolds of dimension at least 7 admit
a contact structure is still open at the time of writing.

Theorem 2.27. (Gray) Let ξt, t ∈ [0, 1] be a smooth family of contact
structure (i. e. defined by a smooth family of contact forms αt) on a
closed manifold M . Then there is a smooth family of diffeomorphisms
φt : M →M such that φ0 = id and dφt(ξ0) = ξt.

Be careful that the statement does not say that α0 = φ∗tαt. This is
usually not true because the dynamic of the Reeb vector field is very
sensitive to the choice of the contact form. Also the theorem is not
true on non-compact manifolds.
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2.2 Legendrian knots

Definition 2.28. Let L0 and L1 be two Legendrian submanifolds in
a contact manifold (M, ξ). We say that they are Legendrian isotopic
if there is a map f : L× [0, 1] →M such that:

1. f |L×{t} is an embedding for all t ∈ [0, 1],

2. f(L× {t}) is Legendrian for all t ∈ [0, 1], and

3. f(L× {t}) = Lt for t ∈ {0, 1}.

This definition is equivalent to the following, apparently stronger,
property.

Lemma 2.29. (See [13, Theorem 2.6.2]). Two Legendrian subman-
ifolds L1 and L2 of a contact manifold (M, ξ) are Legendrian iso-
topic if and only if there exists a smooth family of diffeomorphisms
ϕt : M →M such that:

1. ϕ0 is the identity,

2. ϕ1(L0) = L1, and

3. dϕt(ξ) = ξ.

In the rest of this notes we focus on Legendrian knots in R
3 equipped

with the standard contact structure. The main problem we are going
to address is to find computable invariants of Legendrian knots which
distinguish between non Legendrian isotopic Legenrian knots. The
first obvious invariant is the (topological) knot type: if two Legendrian
knots are Legendrian isotopic, they are a fortiori smoothly isotopic.
Another important problem, which we will not consider in these notes,
is the classification of the Lagrangian isotopy classes of Legendrian
representatives in a given topological knot type.

Knots in R
3 are usually represented by their projection to a plane.

For Legendrian knots in (R3, ξst) there are two geometrically significant
projections:

• the front projection Π: (x, y, z) 7→ (x, z), and

• the Lagrangian projection π : (x, y, z) 7→ (x, y).

The remarkable property of these two projections is that a Legendrian
knot L can be recovered from either Π(L) or π(L) (in the case of the
Lagrangian projection, up to translations in the z-direction).

Let us consider the front projection first. Let t 7→ (x(t), y(t), z(t))
be the parametrisation of a Legendrian arc, then ż(t) − y(t)ẋ(t) = 0,
so we can recover y(t) by

y(t) =
ż(t)

ẋ(t)
, (4)

that is from the slope of the tangent to the front projection.
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Now let us turn to the Lagrangian projection. If t 7→ (x(t), y(t), z(t))
is again the parametrisation of a Legendrian arc, then we can recover
z(t) from the Lagrangian projection (x(t), y(t)) by

z(t) = z(0) +

∫ t

0

y(s)ẋ(s)ds. (5)

Observe that we need to know z(0) in order to be able to recover z(t),
which means that the Lagrangian projection determines the arc up to
translations in the z direction.

In order to make use of the correspondence between Legendrian
knots and their projections, we need to characterise the plane curves
which can arise as front or Lagrangian projection of a Legendrian knot.
We consider the front projection first.

Proposition 2.30. (See for example [13, Lemma 3.2.3] or [6, Section
2.3].) For a generic Legendrian knot L, the front projection Π(L) is
embedded outside a finite number transverse points and cubic cusps,
and its tangent line (which is well defined even at the cusps) is never
vertical.

If we imagine to look at the knot from y = −∞, at every dou-
ble point we will see the strand with negative slope above the strand
with positive slope, therefore a generic front will have the following
singularities:

The relation between Legendrian knots and front projections is an
equivalence in the strongest possible sense:

Proposition 2.31. Every plane curve with isolated cusps and (possi-
bly) transverse double points and with no vertical tangents (including
at cusps), is the front projection of a unique Legendrian knot.

Remark 2.32. Front projections of Legendrian knots are usually drawn
with horizontal cusps. This is however only an aesthetic choice; In fact
cusps with every slope can and do occur “in nature”, with the only
exception of vertical cusps.

The first result we prove about Legendrian knots is the following
approximation theorem.

Theorem 2.33. Every arc in a contact 3-manifold (M, ξ) can be C0

approximated by a Legendrian arc which is smoothly isotopic to the
original one relative to the endpoints.
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Proof. By Darboux’s Theorem it is enough to prove the statement for
arcs in (R3, ξst). Let C be an arc in R

3. It is is possible to draw a
zig-zag in the xz-plane which is C0 close to Π(C), and whose slope
is C0-close to the y-coordinate of C. Then the zig-zag is the front
projection of a Legendrian arc which is C0-close to C.

Example 2.34. (“Real life” example) We can model a car as a small
arrow, whose state is determined by its position in R

2 and by its orien-
tation, so its configuration space is R2×S1. We put coordinates (x, y)
on R

2, and θ on S1. The car is not free to move in any direction: it can
only go straight or turn, but cannot translate laterally. This means that
its allowed velocities belong to the 2-dimensional distribution spanned
by the vector fields cos(θ)∂x + sin(θ)∂y and ∂θ. This distribution is
a contact structure with contact form α = sin(θ)dx − cos(θ)dy, and
the allowed trajectories of the car are Legendrian curves. Then Theo-
rem 2.33 implies that we can park the car, which means that we can
manoeuvre the car in order to make it travel arbitrarily close to a
forbidden trajectory.

Let us consider now the Lagrangian projection. It is immediate
to see that the Lagrangian projection is always an immersion because
∂z never belongs to ξst. Therefore, for a generic Legendrian knot L,
its Lagrangian projection π(L) is an immersed curve with only double
points. Moreover, every immersed curve with double point lifts to an
immersed Legendrian arc which is unique up to translations in the z-
direction. The following lemma is an easy consequence of Equation (5)
and Stokes’s theorem.

Lemma 2.35. An immersed plane curve is the Lagrangian projection
of a Legendrian knot if and only if it encircles a region of signed area
zero, but none of its sub-arcs with both ends on the same double point
encircles a region of signed area zero.

The advantage of the front projection is that the conditions which
characterise fronts are qualitative and therefore can be easily checked
from the diagram. On the other hand, some invariant are more easily
defined starting from a Lagrangian projection. Luckily it is not difficult
to pass from the front projection to the Lagrangian projection.

Proposition 2.36. (See [6, Theorem 4.19].) If L is a Legendrian
knot, we obtain an immersed curve which is isotopic to the Lagrangian
projection of a Legendrian isotopic knot by applying the following local
modification to Π(L):
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Figure 2: Front projections of Legendrian unknots.

Figure 3: Front projections of a Legendrian right-handed trefoil knot (left)
and of a left-handed trefoil knot (right).

Remark 2.37. Before going further in the study of Legendrian knots,
we should make clear a subtlety about the Lagrangian projection. As
we have seen, an immersed curve must satisfy some area constraints
to be the Lagrangian projection of a Legendrian knot. However, the
condition of being isotopic to a Lagrangian projection is a topological
condition. In this course we will define several invariants of Legendrian
knot with the aid of the Legendrian projection, but for all of them, the
computation will depend only on the isotopy class of the projection.
For this reason we will never be careful with the area constraints in
our figures.

2.3 Classical invariants

To Legendrian knots in (R3, ξst) — and, more generally, to null-homologous
Legendrian knots in any contact manifold — we can associate two nu-
merical invariants: the Thurston-Bennequin number and the rotation
number. They are called the classical invariants of a Legendrian knot.

Definition 2.38. The Thurston–Bennequin number tb(L) of a Legen-
drian knot L ⊂ (R3, ξst) is defined as follows. We take a small translate
L′ of L in the direction of a transverse vector field (for example ∂z).
Then we define

tb(L) = lk(L,L′).

The Thurston-Bennequin number measures the difference between
the framing induced by ξ with the framing induced by a Seifert surface.
The latter enter the definition through the linking number, that can be
defined as the algebraic intersection between L′ and a Seifert surface
of L.
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Definition 2.39. The rotation number rot(L) of an oriented Legen-
drian knot L ⊂ (R3, ξst) is defined as follows. Let Σ be a Seifert surface
for L, and let τ : ξ|Σ → C be a trivialisation of ξ|Σ (which always exists
because Σ retracts on a 1-dimensional cell complex). If γ : S1 → L is
an orientation preserving parametrisation of L, the composition τ ◦ γ̇
gives a map τ ◦ γ̇ : S1 → C

∗. We define

rot(L) = deg(τ ◦ γ̇).

Lemma 2.40. The rotation number of L does not depend on the
Seifert surface and the trivialisation chosen, and it changes sign if
we change the orientation of L.

Proof. The proof is left as an exercise for the reader.

The following theorem is a real cornerstone of contact topology in
dimension three, and marked its coming to age as a subfield of topology.

Theorem 2.41. (Bennequin) Let L be a Legendrian knot in (R3, ξst),
and Σ be a Seifert surface of L. Then

tb(L) + |rot(L)| ≤ −χ(Σ). (6)

There are several proofs of the Bennequin inequality. The most no-
table are Bennequin’s original one, which is purely topological, Eliash-
berg’s one, which uses holomorphic curves, and the proof by Lisca and
Matić using Seiberg-Witten theory. Unfortunately we will have no
time to discuss any of them.

The definitions of the Thurston-Bennequin number and of the ro-
tation number make sense without modifications for null-homologous
Legendrian knots in any contact 3-manifold. The only difference is that
the rotation number depends on the Seifert surface used to define it if
the Euler class of ξ is non-trivial. However the Bennequin inequality
(6) is not a general property of contact structures.

Definition 2.42. A contact manifold is called tight if the Thurston-
Bennequin (6) holds for every null-homologous Legendrian knot. Oth-
erwise it is called overtwisted.

Tight contact structures are usually considered the interesting ones,
because they reflect topological properties of the underlying manifold.
The standard contact structure on R

3 is tight by Theorem 2.41.
The reader may have already met a different definition of an over-

twisted contact structure. There are several ones, which are all equiv-
alent. The most common one is that a contact structure is overtwisted
if it admits an overtwisted disc, which is an embedded disc D such
that the contact planes are tangent to D along ∂D. An overtwisted
disc violates Bennequin’s inequality because tb(∂D) = 0, and it is a
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Figure 4: On the left: a positive crossing. On the right: a negative crossing

surprising (but not very hard) fact proved by Eliashberg that the vi-
olation of the Bennequin inequality for any knot implies the existence
of an overtwisted disc.

Example 2.43. Take cylindrical coordinates (r, θ, z) on R
3. The con-

tact structure ξot on R
3 defined by the contact form αot = cos(r)dz +

r sin(r)dθ is overtwisted.

Exercise 2.44. Find the overtwisted disc for (R3, ξot).

The classical invariants for Legendrian knots in (R3, ξst) can be
easily computed from their front and Lagrangian projection. Given an
immersion γ : S1 → R

2 ∼= C, we define the winding number of γ as

wind(γ) = deg(γ̇).

Given a knot diagram π(K), we call the write of π(K) the algebraic
count of its crossings, where the sign is chosen as described in Figure
4.

Proposition 2.45. If L is a Legendrian knot in (R3, ξst), then

tb(L) = writhe(π(L)) and rot(L) = wind(π(L)).

Exercise 2.46. Derive formulas to compute the classical invariants of
a Legendrian knot from its front projection.

Definition 2.47. A smooth knot type is called Legendrian simple if
its Legendrian representatives are classified, up to Legendrian isotopy,
by their Thurston–Bennequin and rotation numbers.

The following knots types are Legendrian simple:

• unknot [5]

• torus knots [8]

• figure-eight [8]

and a few others: [9, 11]. However, not all knot types are Legendrian
simple:
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Figure 5: Chekanov’s examples in front projection. (Figure by Vera Vértesi)

Figure 6: Stabilisations in front projection: an upward zig-zag on the left,
and a downward zig-zag on the right.

Theorem 2.48. (Chekanov, [2]) The mirror of the knot 52 has two
non isotopic Legendrian representatives with the same Thurston–Bennequin
and rotation numbers; see Figure 5.

Note however that the knot type 52 il Legendrian simple [11]. This
shows that contact topology is very sensitive to chirality.

In order to distinguish his examples, Chekanov introduced a new
invariant for Legendrian knots, which is called either Legendrian con-
tact homology or Chekanov’s dga. We will describe this invariant in the
next section, and will develop the theory enough that distinguishing
the two Legendrian knots in Figure 5 will become an exercise.

2.4 Stabilisation

We finish this section by describing an operation called stabilisation
which transforms a Legendrian knot into another Legendrian knot
which is smoothly isotopic and has smaller Thurston–Bennequin num-
ber. For Legendrian knots in (R3, ξst) stabilisation is performed by
adding a zig-zag to their front projection, and its definition can be
extended to Legendrian knots in any contact manifold by performing
it inside a Darboux ball. If the zig-zag is downward we say that the
stabilisation is positive, and if it is upward, we say that the stabilisa-
tion is negative: see Figure 6. We denote the positive stabilisation by
S+ and the negative one by S−. It is possible to check that the result
of a stabilisation does not depend, up to Legendrian isotopy, on where
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the zig-zag is added.
The effect of the S+ and S− on the classical invariants can be easily

computed from the Lagrangian projection:

Lemma 2.49. tb(S±(L)) = tb(L)− 1 and rot(S±(L)) = rot(L)± 1.

Stabilisations add some flexibility to Legendrian knots:

Theorem 2.50. (See [12].) Any two smoothly isotopic Legendrian
knots become Legendrian isotopic after a finite number of stabilisations.

3 Legendrian contact homology

3.1 Differential graded algebras

In this section we introduce differential graded algebras, which are al-
gebraic objects we will use in the study of Legendrian knots. We fix a
commutative ring R, which in the applications will be Z/2Z.

Definition 3.1. An R-algebra A is an R-module5 with a bilinear map
(multiplication)

m : A⊗R A → A

which is associative, i.e m(x ⊗ m(y ⊗ z)) = m(m(x ⊗ y) ⊗ z) for all
x, y, z ∈ A.

In these notes we will not assume that the product is commutative.
For simplicity we will use the notation x · y to denote m(x ⊗ y), and
we will suppress the ring R from the notation when it is clear from the
context.

Definition 3.2. Let G be a cyclic group, and A an R-algebra. We
say that A is G-graded (or, more simply, graded) if A as an R-module
decomposes as a direct sum

A =
⊕

n∈G

An

and, for any x ∈ An and y ∈ Am, we have m(x⊗ y) ∈ An+m.

If x is an omogeneous element of degree n (i.e. x ∈ An) we will
write |x| = n. The definitions one can find in the literature usually
consider only Z-gradings. However in Legendrian contact homology
we will need also G-gradings when G is a finite cyclic group.

Definition 3.3. A differential graded algebra (dga) (A, ∂) is a graded
algebra A with an R-linear map ∂ : A → A (called differential) such
that:

5If you are not familiar with modules over a ring, consider a vector space over a field
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Figure 7: Computing the grading of a double point

1. ∂ ◦ ∂ = 0 (in particular A is a chain complex),

2. ∂(An) ⊂ An−1 (i.e. ∂ has degree −1)6, and

3. the differential satisfies the (graded) Leibnitz rule: if x ∈ An and
y ∈ Am, then ∂(x · y) = (∂x) · y + (−1)nx · (∂y).

3.2 Chekanov’s dga

Given the Lagrangian projection of a Legendrian knot, we are going
to associate a differential graded algebra (dga) to it, whose homol-
ogy will be an invariant of the knot under Legendrian isotopies. The
construction of this algebra is due to Chekanov [2] and is motivated
by the (conjectured) construction of Legendrian contact homology by
Eliashberg, Givental, and Hofer [4].

The algebra. Given a generic Legendrian knot L, we denote by
C the finite set of the double points of its Lagrangian projection π(L).
Let AL be the free non-commutative algebra over Z/2Z generated by
C. The algebra AL is unital, and 1 corresponds to the empty word.

The grading. We define a function C → Z/(2 rot(L)) as follows.
Given a double point a ∈ C, let γ : [0, π] → π(L) be a regular path
from a to itself, starting from the upper strand (the one with bigger
z-coordinate) and arriving to the lower strand (the one with smaller
z-coordinate). Then define Γ: R/2πZ → RP

1 by taking the projection
of γ̇(t) for t ∈ [0, π] and the clockwise rotation from [γ̇(π)] to [γ̇(0)] for
t ∈ [π, 2π]; see Figure 3.2. Then we define

|a| = deg(Γ) (mod 2 rot(L))

and we extend this function to a grading on AL by requiring that
|ab| = |a| · |b|. The function deg(Γ) depends on the choice of the path,
but it is easy to see, from Proposition 2.45, that different choices of
paths give results which differ by a multiple of 2 rot(L). The reason

6Differential graded algebras where the differential has degree +1 are also common.
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Figure 8: On the left: the “up” quadrants. On the right: the “down”
quadrants.

of the factor 2 is that we have projectivised R
2 \ {0} before computing

the degree.
The differential. We define the differential for a single double

point first, and extend it to AL by the Leibniz formula ∂(b1b2) =
(∂b1)b2 + (−1)|b1|b1(∂b2).

7 The two strands of π(L) at a double point
locally divide the plane into four quadrants. Two of them are “up”
quadrants, and the other two are “down” quadrants: see Figure 8. If
we orient the boundary of a quadrant with the orientation induced by
the usual orientation of R2, the quadrant is “up” if the lower strand
comes before the upper strand, and is “down” if the contrary happens.

Given b, a1, . . . , an ∈ C, we define ∆(b; a1, . . . , an) as the set of
immersed polygons in R

2 with edges on π(L), vertices at b, a1, . . . an,
and which cover an “up” quadrant near b and “down” quadrants near
a1, . . . , an. We denote by #∆(b; a1, . . . , an) the number of elements in
∆(b; a1, . . . , an), reduced mod 2. Then we define the differential by:

∂b =
∑

n∈N

∑

(a1,...,an)∈Cn

#∆(b; a1, . . . , an)a1 . . . an.

The differential makes sense because each ∆(b; a1, . . . , an) is a finite
set, and the sum is finite because of the following area considerations.
For every double point c ∈ C, let c+ be its preimage in L with bigger
z-coordinate, and c− be the one with smaller z-coordinate. Denote by
z(c±) the z-coordinate of c±, and define h(c) = z(c+) − z(c−). Then
h(c) > 0 for every double point c ∈ C.

Lemma 3.4. If ∆(b; a1, . . . , an) 6= ∅, then

h(b) >

n∑

i=1

h(ai). (7)

Proof. Let P ∈ ∆(b; a1, . . . , an) be a polygon, and ∂̃P be the lift of ∂P

to a disconnected Legendrian path contained in L such that π(∂̃P ) =

7Of course the sign is superfluous in the theory over Z/2Z discussed here.
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∂P . Then

h(b)−
n∑

i=1

h(ai) +

∫

∂̃P

dz = 0.

From the relation dz = ydx on ∂̃P and Stokes theorem we obtain

h(b)−
n∑

i=1

h(ai) ≥

∫

P

dx ∧ dy > 0.

Given any b ∈ C there is only a finite number of words (a1, . . . , an)
such that the inequality (7) holds, therefore Lemma 3.4 implies that
the sum in the differential is a finite sum.

Theorem 3.5. (Chekanov, [2]) ∂ has degree −1, ∂2 = 0 and the
homology H∗(AL, ∂) is an invariant of L by Legendrian isotopies.

We will not prove Theorem 3.5. ∂ has degree −1 as a consequence
of the definition of the degree in AL and of the well known fact that
the sum of the exterior angles of a polygon is always π. The idea of
the proof that ∂2 = 0 is that ∂2 counts pairs of immersed polygons
with a common vertex, which is “down” for the first disc, and “up”
for the second one. The union of these two polygons is a region with
an obtuse angle which can be decomposed in two different ways, so
the contributions to ∂2 = 0 come in pairs which cancel each other: see
Figure 9.

In order to prove invariance, one should introduce a Legendrian
analogue to the Reidemeister’s moves and keep track of how the com-
plex changes when performing a move.

Exercise 3.6. Prove that ∂ has degree −1.

Definition 3.7. The homology of (AL, ∂) is called Legendrian contact
homology of L and is denoted by CH∗(L).

3.3 Computations and examples

In order to illustrate the definition of the Chekanov’s dga, we compute
it in the simplest non-trivial case.

Example 3.8. Let L be a Legendrian right-handed trefoil knot with
tb(L) = 1 and rot(L) = 0. The algebra AL is generated by five
intersection points a1, a2, b1, b2, b3 of degrees |ai| = 1, |bi| = 0. The
differential is:

• ∂a1 = 1 + b1 + b3 + b3b2b1

• ∂a2 = 1 + b1 + b3 + b1b2b3
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a1

a2

a3

a4

a5

Figure 9: A pair of cancelling contributions to ∂2.

• ∂b1 = ∂b2 = ∂b3 = 0.

The computation of AL is explained in Figure 10, where the shaded
regions represent the discs contributing to the differential of a1.

Legendrian contact homology is a very powerful invariant, but it
has a disappointing weaknesses: it vanishes for a very big class of
Legendrian knots.

Theorem 3.9. (Chekanov [2]) If L is obtained by stabilising some
other Legendrian knot, then CH∗(L) = 0.

Proof. If L is a stabilisation, then up to isotopy π(L) contains a loop
as in Figure 11. Moreover this loop can be made arbitrarily small by
a Legendrian isotopy of L. This is a property of stabilised knots: in
fact every Lagrangian projection contains loops, but in general they
are big.

Let c be the double point associated to the small loop. The shaded
region Figure 11 is a monogone with its up vertex at c. This implies
that ∂c = 1 + . . .. By Stokes theorem h(c) is equal to the area of the
loop, so it can be made as small as we want. If we make it smaller
than h(a) for any other double point a of π(L), then only monogones
can contribute to ∂c by Lemma 3.4. However, if c is the up vertex of a
second monogone, then L is an unstabilised unknot. Therefore, if L is
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a1

a2

b1b2b3

a1

a2

b1b2b3

a1

a2

b1b2b3

a1

a2

b1b2b3

Figure 10: Chekanov’s algebra differential for the trefoil knot

Figure 11: The little loop and its monogone in a stabilised knot.
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a stabilised knot, the monogone in Figure 11 is the only contribution of
to ∂c, so ∂c = 1. This impliesHC∗(L) = 0: in fact, if w ∈ AL is a cycle,
then by the Leibniz formula we have ∂(cw) = (∂c)w− c(∂w) = w.

3.4 Augmentations

Even if Chekanov’s dga is described combinatorially, Legendrian con-
tact homology is very hard to compute because of the non-Abelian
and non-linear nature of the differential. However, in some lucky sit-
uations, we can simplify the complex by an algebraic operation which
we are going to describe. We introduce the word-length filtration on
AL: Let A

n
L ⊂ AL be the subalgebra generated, as a vector space, by

all words in C of length bigger or equal than n. It is easy to see that
every An

L is not only a subalgebra, but also a bilateral ideal. Moreover
they define an infinite descending filtration

AL = A0
L ⊃ A1

L ⊃ . . . ⊃ An
L ⊃ . . .

Unfortunately the differential does not preserve the word length filtra-
tion: it would if and only if ∂c had no constant term for every c ∈ C,
and one can see that this is never the case. However we often can
conjugate the differential by an automorphism of AL in order to kill
the unwanted constant terms.

Definition 3.10. An augmentation of AL is an algebra homomor-
phism

ǫ : AL → Z/2Z

such that:

1. ǫ(1) = 1,

2. ǫ ◦ ∂ = 0,

3. ǫ(a) = 0 if |a| 6= 0.

Not every Legendrian knot admits an augmentation: in fact the
existence of an augmentation implies thatHC∗(L) 6= 0, so in particular
stabilised Legendrian knots admit no augmentation.

Remark 3.11. Augmentations for a given Legendrian knot L can
be determined explicitly: if we denote by C0 the vector space over
Z/2Z generated by the intersection points in C with degree 0, then
the condition ǫ ◦ ∂ = 0 is a polynomial system on the dual space C∗

0 .
The solutions of this system are in one-to-one correspondence with the
augmentations of AL.

Given an augmentation ǫ, we can define an automorphism Φǫ of
AL by

Φǫ(a) = a+ ǫ(a)

20



for all a ∈ C, and we define a new boundary ∂ǫ by

∂ǫ = Φǫ ◦ ∂ ◦ (Φǫ)−1.

Lemma 3.12. If ǫ is an augmentation, then ∂ǫ preserves the word
length filtration.

Proof. For simplicity we consider only A1
L. If ∂b = c0 +

∑
a1 . . . an

with c0 ∈ Z/2Z, then

∂ǫ(b) = Φǫ(∂(b− ǫ(b)) = Φǫ(c0 +
∑

a1 . . . an)

= c0 +
∑

(a1 + ǫ(a1)) . . . (an + ǫ(an))

= c0 +
∑

ǫ(a1) . . . ǫ(an) + terms in A1(L).

However c0 + ǫ(a1) . . . ǫ(an) = ǫ(∂b) = 0, so ∂ǫ(A1
L) ⊂ A1

L.

Definition 3.13. Given an augmentation ǫ, we define the order n
Legendrian contact homology

Lǫ
nCH∗(L) = H∗

(
An

L/A
n+1
L , ∂ǫ

)
.

If n = 1, we call it also linearised Legendrian contact homology, and
write LǫCH∗(L).

Theorem 3.14. (Chekanov [2]) For every n ≥ 1 the set

{Isomorphisms classes of Lǫ
nCH∗(L) : ǫ is an augmentation of AL}

is an invariant of L up to Legendrian isotopies.

Now we describe an equivalent, but more explicit, way to define
linearised Legendrian contact homology.

Definition 3.15. We define a complex

C =
⊕

c∈C

Z/2c

with differential

∂ǫb =
∑

n∈N

∑

(a1,...,an)∈Cn

n∑

i=1

#∆(b; a1, . . . , an)ǫ(a1) . . . ǫ(ai−1)ǫ(ai+1) . . . ǫ(an)ai.

Then LǫHC(L) = H∗(C, ∂
ǫ).

The linearised Legendrian contact homology detects the Thurston-
Bennequin number. In fact:
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Proposition 3.16. For every augmentation ǫ we have

χ(LǫHC∗(L)) = tb(L).

Proof. From the definition of the degree, we can see that, for all
c ∈ C, the sign of c as a crossing of π(L) is equal to (−1)|c|. Then
χ(LǫHC∗(L)) is equal to the writhe of π(L) and Proposition 2.45 im-
plies the equality.

As an example, we compute explicitly the augmentations for the
right-handed trefoil knot.

Example 3.17. Let L be the trefoil knot in Figure 10. The reader
should refer to Example 3.8 for the computation of AL. Suppose ǫ
is and augmentation for L. By degree reasons ǫ(ai) = 0. Moreover
ǫ ◦ ∂ = 0 gives

1 + ǫ(b1) + ǫ(b3) + ǫ(b1)ǫ(b2)ǫ(b3) = 0.

One can easily see that this equation has the following five solutions:

1. ǫ(b1) = 1, ǫ(b2) = 1, ǫ(b3) = 1,

2. ǫ(b1) = 1, ǫ(b2) = 0, ǫ(b3) = 1,

3. ǫ(b1) = 1, ǫ(b2) = 0, ǫ(b3) = 0,

4. ǫ(b1) = 0, ǫ(b2) = 1, ǫ(b3) = 1,

5. ǫ(b1) = 0, ǫ(b2) = 0, ǫ(b3) = 1.

Exercise 3.18. Prove that the two Legendrian knots in Figure 5 are
not Legendrian isotopic.

Hint. Use Proposition 2.36 to produce Lagrangian projections. Then
compute their Chekanov d.g.a.’s. Determine their augmentations and
compute their linearised contact homology for all augmentations. You
will see that the two sets of homologies are different.

3.5 Geometric motivation

In this section we will describe the geometric motivation behind Chekanov’s
combinatorial definition. For more details see [4, 7, 10].

Consider the symplectic manifold (R×R
3, d(esα0)), which is called

the symplectisation of the standard contact structure on R
3. In coor-

dinates (s, x, y, z), where s is the coordinate in the first R factor, the
symplectic form is d(esα0) = es(ds ∧ dz − yds ∧ dx + dx ∧ dy). On
R× R

3 we consider also the following almost complex structure J :

1. J(∂s) = ∂z

2. J(∂z) = −∂s
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3. J(∂x) = ∂y + y∂s

4. J(∂y) = −∂x − y∂z.

The surface L̂ = R×L ⊂ R×R
3 is Lagrangian, i. e. d(esα0)|L̂ = 0. If

c is a double point of π(L), we call c+ and c− the two points in L such
that π(c±) = c so that c+ is the point with the highest z-coordinate of
the two. Let γc be the vertical segment from c− to c+.

Remark 3.19. The segment γc is called a Reeb chord of L, because
∂z is the Reeb vector field of the contact form α0, i. e. the vector field
R characterised by ιRdα0 = 0 and α0(R) = 1.

We will define a new differential ∂J on AL by counting certain J-
holomorphic curves in (R × R

3, J). We start by defining the relevant
moduli spaces. Let D be the closed unit disc and {x1, . . . , xn, y} ⊂ ∂D
cyclicly ordered points which are not fixed. Then let us consider the
set of smooth maps

ũ = (a, u) : D \ {x1, . . . , xn, y} → R× R
3

satisfying:

1. J ◦ dũ = dũ ◦ i,

2. ũ(∂(D \ {x1, . . . , xn, y}) ⊂ L̂,

3. lim
z→y

a(z) = +∞ and lim
z→xi

a(z) = −∞,

4. lim
z→y

u(z) = γb and lim
z→xi

u(z) = γai
(in a suitable sense).

Observe that, if (a, u) is J-holomorphic, then (a + κ, u) is also J-
holomorphic for every constant κ ∈ R. Let M(γb; γa1

, . . . , γan
) be the

moduli space of J-holomorphic maps ũ satisfying the conditions above,
modulo conformal reparametrisations of the disc, and translations of
a by a constant.

One can prove that M(γb; γa1
, . . . , γan

) is a smooth manifold of
dimension

dimM(γb; γa1
, . . . , γan

) = |b| −
n∑

i=1

|ai| − 1

which can be compactified by adding strata corresponding to lower
dimensional moduli spaces. In particular, moduli spaces of negative
dimension are empty, and 0-dimensional moduli spaces are compact.

We define a boundary operator ∂J on AL as follows:

∂b =
∑

a1, . . . , an
|b| − |a1| − . . .− |an| = 1

#M(γb; γa1
, . . . , γan

)a1 . . . an,

and we extend it to AL by linearity and the Leibniz rule.
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Theorem 3.20. (See [7].) ∂2J = 0 and H∗(AL, ∂J ) is an invariant of
L under Legendrian isotopies.

Theorem 3.21. The identity (AL, ∂) → (AL, ∂J ) is a chain map.

Proof. The theorem will follow from the fact that the Lagrangian pro-
jection induces an identification

π∗ : M(γb; γa1
, . . . , γan

) → ∆(b; a1, . . . , an)

defined as π∗(ũ) = π ◦ u when |b| −
n∑
i

|an| = 1.

From the properties of J it follows that the composite map π ◦ u is
holomorphic and, of course, the boundary of D is mapped to π(L). If

|b| −
n∑

i=1

|an| = 1 the winding number of the boundary of the image of

π ◦ u is one, so a count of branching degrees implies that π ◦ u is an
immersion. It is easy to see that π ◦ u covers an “up” quadrant of b in
a neighbourhood of y, and “down” quadrants of ai in a neighbourhood
of xi, and therefore the image of π ◦u is an element of ∆(b; a1, . . . , an).

On the other hand, given an immersed polygon P ∈ ∆(b; a1, . . . , an),
by the Riemann mapping theorem we can find a holomorphic map
v : D → P . We want to lift this map to a J-holomorphic map ũ : D \
{y, x1, . . . , xn} → R × R

3 of the form ũ = (a, v, b), where b will be
the component of ũ in the z-coordinate. In coordinates, the Cauchy–
Riemann equation J ◦ dũ = dũ ◦ i become:

da ◦ i = db+ v2dv1

db ◦ i = da− v2dv2

dv1 ◦ i = −dv2

dv2 ◦ i = dv1

From this it follows that △b = d(db◦i) = 0, so b is harmonic. Moreover
the value of b on ∂D \ {y, x1, . . . , xn} is determined by the fact that
(v, b) maps ∂D \ {y, x1, . . . , xn} on the portion of L which projects on
∂P . We can therefore recover b by solving the Dirichlet problem, and
a by integrating the closed form

da = −db ◦ i− v2dv1 ◦ i = −db ◦ i+ v2dv2.

This completes the identification betweenM(γb; γa1
, . . . , γan

) and ∆(b; a1, . . . , an).

Augmentations have a geometric counterpart too.

Definition 3.22. If L is a Legendrian knot in (R3, ξst), we say that
Λ ∈ R× R

3 is a exact Lagrangian filling of L if
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1. esαst|Λ is an exact 1-form, and

2. Λ ∩ R
+ × R

3 = R
+ × L.

Definition 3.23. We say that a Lagrangian submanifold Λ ⊂ R
4 has

Maslov number zero if every disc u : (D2, ∂D2) → (R4,Λ) has Maslov
index zero8.

Proposition 3.24. An exact Lagrangian filling Λ with Maslov class
zero of a Legendrian knot L induces an augmentation ǫL of the contact
topology algebra AL.

Proof. Let x ∈ ∂D and let γa be a Reeb chord of L. Then we define
M(γa) to be the moduli space of J-holomorphic maps ũ = (a, u) : D \
{x} → R× R

3 such that:

1. ũ(∂D) ⊂ Λ,

2. lim
z→x

a(z) = +∞, and

3. lim
z→x

u(z) = γa (in a suitable sense).

Then M(γa) is a smooth manifold9 of dimension dimM(γa) = |γa|. If
|γa| = 0 we define

ǫΛ(γa) = #M(γa).

There is a somewhat surprising relationship between the linearised
contact homology LǫΛHC(L) and the topology of Λ:

Theorem 3.25. (See [3]) If Λ is an exact Lagrangian filling of L with
Maslov number zero and ǫΛ is the corresponding augmentation, then

LǫΛHC(L) ∼= H∗(L,Z/2)

up to a degree shift.
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