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Heegaard Floer homology

Suppose Y is a closed 3-manifold.

Ozsváth and Szabó construct a finitely generated
F[[U ]]-module

HF−(Y ) = H∗(CF−(Y )).

If K ⊆ S3 is a knot, there is a relative version CFK(K),
which takes the form of a chain complex over F[U ,V ],
defined using a doubly pointed Heegaard diagram.
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Surgery Formulas

(Ozsváth–Szabó)

Suppose K ⊆ Y is null-homologous with integral framing n.

CF−(Yn(K)) ' Cone(ΦK + Φ−K : A→ B).

A, (resp. B) are completions of CFK(K) (resp.
V −1CFK(K).

CFK(K) = CFK(K)⊗ F[[U ,V ]]

We think of U as acting by U V .

ΦK and Φ−K are not F[U ,V ]-equivariant, though they are
F[U ]-equivariant. Homotopy equivalence in mapping cone
formula is of chain complexes over F[[U ]].
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Surgery Formulas

(Manolescu–Ozsváth)

L ⊆ S3.

Chain complex CΛ(L) over F[[U ]].

Filtered by the cube {0, 1}|L|.
Think of cube points as sets of components of L.

CΛ(L) =
⊕
M⊆L

CM .

Differential is encoded by oriented sublinks of L.

D =
∑
~M⊆L

Φ
~M where Φ

~M : CN → CN∪M
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Connected sums and surgery

1 Topology: Let K1,K2 ⊆ S3 be knots with integral framings
λ1, λ2. Then

S3
λ1+λ2(K1#K2) ∼= (S3 \ ν(K1)) ∪φ (S3 \ ν(K2)).

2 φ : µ1 7→ µ2 and λ1 7→ −λ2.

3 To see this, S3 \ ν(K1#K2) is obtained by gluing an
annulus to S3 \ ν(K1) and S3 \ ν(K2), so that µ1 7→ µ2.
S3
λ1+λ2

(K1#K2) obtained by gluing a disk to λ1 ∗ λ2, then
gluing 3-ball.

4 This is the same as gluing complements together along a
1-handle, then gluing 2-handles along µ1 ∗ −µ2 and λ1 ∗ λ2,
and then gluing a 3-handle.
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Philosophy

1 Defining a theory for links which can compute surgeries
and allows tensor products should be the same as a
bordered theory for torus boundary components.

2 (LOT) To a surface F , associate an algebra A(F ). To a
manifold with boundary M , associate A∞-modules
CFA(M)A(F ) and A(−F )CFA(M). If M and N are
manifolds with boundaries F and F ′, and φ : F → F ′ is an
orientation reversing diffeomorphism, there is an
isomorphism

ĈF (M∪φN) ' CFA(M)⊗̃ACFA(N), A = A(F ) = A(−F ′)

3 Goal: Construct a similar theory for CF− using the link
surgery formula.
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ĈF (M∪φN) ' CFA(M)⊗̃ACFA(N), A = A(F ) = A(−F ′)

3 Goal: Construct a similar theory for CF− using the link
surgery formula.



The knot surgery algebra

1 K is an algebra over idempotent ring I = I0 ⊕ I1.

2 I0 · K · I0 = F[U ,V ].

3 I1 · K · I1 = F[U ,V ,V −1].

4 I0 · K · I1 = 0.

5 I1 · K · I0 = F[U ,V ,V −1]⊗ 〈σ, τ〉.
6 σU = U σ σV = V σ τU = V −1τ and τV = U V 2τ.

7 More symmetric description: write I1 · K · I1
∼= F[U, T, T−1]

where U = U V and T = V .
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Surgery complexes as type-D modules

1 If L is an n-component link with framing Λ, the link
surgery formula determines a type-D module

XΛ(L)Ln , Ln := K ⊗F · · · ⊗F K

2 E.g. L = K ⊆ S3 (knot) with framing λ:

3 Xλ(K) · I0
∼= Xλ(K) · I1 are F vector spaces spanned by free

F[U ,V ] basis of CFK(K).

4 Internal differential of CFK(K) contributes terms to δ1

which preserve idempotent.

5 ΦK gives terms weighted by σ. Φ−K gives terms weighted
by τ .
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Surgery complexes as type-A modules

1 Can also view surgery complexes as type-A modules over K
and Ln.

2 E.g. K = U (unknot) we get the type-A module of the
solid torus, which we denote KDλ.

3 I0 · Dλ = F[[U ,V ]] and I1 · Dλ = F[[U ,V ,V −1]].

4 σ acts by the canonical inclusion.

5 τ acts by the algebra morphism U 7→ V −1 and V 7→ U V 2.

6 Can view Dλ as an AA-bimodule

K[Dλ]F[U ],

where U acts by U V . (Type-A modules for other knots
and links are similar).
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Relating type-D to surgery formula

1 Manolescu–Ozsváth surgery formula is recovered as follows:

CΛ(L) ∼= XΛ(L)Ln � (KD0)� · · ·� (KD0).

2 The right hand side has an action of F[U1, . . . , Un] (one Ui
for each D0). This reflects the fact that the
Manolescu-Ozsváth complex is a module over F[U1, . . . , Un].
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Turning type-D outputs to type-A inputs

1 An algebraically define module

K⊗K[Ic]

2 Turns a type-D output of K into a type-A input.

3 Compatible with gluing along torus boundary components.

4 Note Ic is infinite dimensional. Hence our type-A modules
are infinitely generated.
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Changes of parametrization

1 Changing boundary parametrization can be achieved by
gluing in mapping cylinders (i.e. T2 × [0, 1] with different
boundary parametrizations).

2 The Hopf link has complement T2 × [0, 1]. We may view
the Hopf link complement as the mapping cylinder of a
diffeomorphism which sends µ 7→ λ and λ 7→ −µ.

3 The Hopf link gives a DA-bimodule KHK which has the
effect of changing the boundary parametrization.
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Changes of parametrization

1 Algebraically, recovers the “dual knot” formulas of
Eftekhary and Hedden-Levine, which compute
CFK(S3

n(K), µ) in terms of CFK(K), for a knot K ⊆ S3.

(proven using different techniques).
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More diffeomorphisms

1 Recall elliptic involution E : T2 → T2 is gotten by
identifying T2 = R2/Z2.

Then E(z) = −z.
2 Mapping cylinders of identity map id, E : T2 → T2:

0 0

id E

(Remove neighborhoods of arrow labeled components to
get T2 × [0, 1]).
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More diffeomorphisms

1 Induced DA-bimodules by these cylinders are simple to
describe:

2 id induces identity bimodule K[I]K.

3 E induces simple symmetry of the algebra. On I0 · K · I0

and I1 · K · I0:
U ↔ V σ ↔ τ.

On I1 · K · I1:
U ↔ U V ↔ V −1.
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Applications

1 Lattice homology HF is a combinatorial homology theory
for plumbed 3-manifolds.

2 Due to Némethi. Formalizes computation of Ozsváth and
Szabó of HF− of some plumbed 3-manifolds.

3 Main case in literature: boundary of a plumbing of a tree
of disk bundles over 2-spheres.

4 In this case, Y may be described as Dehn surgery on a
connected sum of Hopf links.

5 Known to be isomorphic to Heegaard Floer homology for
many families of plumbed 3-manifolds. (Némethi, Ozsváth,
Stipsicz, Szabó). The isomorphism in general was a
conjecture.
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Final Application (joint w/ M. Borodzik, B. Liu)

Definition

1 A QHS3 is an L-space if

HF−(Y, s) ∼= F[U ]

for each s ∈ Spinc(Y ).

2 L ⊆ S3 is an L-space link if all sufficiently large surgeries
are L-spaces.

3 An algebraic link is the intersection of a the boundary of a
small ball centered at an isolated complex curve singularity
in C2.
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1 Important since these complexes are computable from their
Alexander polynomials.

2 An open question is how to properly generalize this result
to links.
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Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology CFL(L) over

F[U1,V1, . . . ,Un,Vn]

n = |L|.
2 Using the large surgery formula, we see L is an L-space

link if and only if HFL(L) is torsion free as an
F[U ]-module, where U acts by UiVi for some i. (All i have
the same action on homology).

3 For L-space knots, CFK(K) may equivalently be described
as a free-resolution of HFK(K) over F[U ,V ]. Note
HFK(K) may be viewed as a monomial ideal in F[U ,V ].
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Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in
plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If L ⊆ S3 is an algebraic link, then CFL(L) is homotopy
equivalent over F[U1,V1, . . . ,Un,Vn] to a free-resolution of
HFL(L).

1 HFL(L) is computable from the Alexander polynomials of
L and its sublinks due to work of Gorsky and Némethi.

2 In particular, HFL(L) contains all information, and is
usually much smaller.

3 HFL(T (n, n)) has n generators.

4 CFL(T (3, 3)) and CFL(T (4, 4)) have 18 and 68, generators,
resp.
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Thanks for listening!


