Bordered perspectives on the link surgery formula

Ian Zemke

September 29, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Heegaard Floer homology

(ロ)、

• Suppose Y is a closed 3-manifold.

- Suppose Y is a closed 3-manifold.
- Ozsváth and Szabó construct a finitely generated $\mathbb{F}[[U]]$ -module

$$HF^{-}(Y) = H_*(CF^{-}(Y)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

- Suppose Y is a closed 3-manifold.
- Ozsváth and Szabó construct a finitely generated $\mathbb{F}[[U]]$ -module

$$HF^{-}(Y) = H_*(CF^{-}(Y)).$$

• If $K \subseteq S^3$ is a knot, there is a relative version $\mathcal{CFK}(K)$, which takes the form of a chain complex over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$, defined using a doubly pointed Heegaard diagram.

(ロ)、

• Suppose $K \subseteq Y$ is null-homologous with integral framing n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Suppose $K \subseteq Y$ is null-homologous with integral framing n.

• $CF^{-}(Y_n(K)) \simeq \operatorname{Cone}(\Phi^K + \Phi^{-K} \colon \mathbb{A} \to \mathbb{B}).$

• Suppose $K \subseteq Y$ is null-homologous with integral framing n.

A D F A 目 F A E F A E F A Q Q

- $CF^{-}(Y_n(K)) \simeq \operatorname{Cone}(\Phi^K + \Phi^{-K} \colon \mathbb{A} \to \mathbb{B}).$
- A, (resp. B) are completions of $\mathcal{CFK}(K)$ (resp. $\mathscr{V}^{-1}\mathcal{CFK}(K)$).

• Suppose $K \subseteq Y$ is null-homologous with integral framing n.

- $CF^{-}(Y_n(K)) \simeq \operatorname{Cone}(\Phi^K + \Phi^{-K} \colon \mathbb{A} \to \mathbb{B}).$
- A, (resp. B) are completions of $\mathcal{CFK}(K)$ (resp. $\mathscr{V}^{-1}\mathcal{CFK}(K)$).
- $\bullet \ \mathcal{CFK}(K) = \mathcal{CFK}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$

• Suppose $K \subseteq Y$ is null-homologous with integral framing n.

- $CF^{-}(Y_n(K)) \simeq \operatorname{Cone}(\Phi^K + \Phi^{-K} \colon \mathbb{A} \to \mathbb{B}).$
- A, (resp. B) are completions of $\mathcal{CFK}(K)$ (resp. $\mathscr{V}^{-1}\mathcal{CFK}(K)$).
- $\bullet \ \mathcal{CFK}(K) = \mathcal{CFK}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$
- We think of U as acting by \mathscr{UV} .

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.
- $CF^{-}(Y_n(K)) \simeq \operatorname{Cone}(\Phi^K + \Phi^{-K} \colon \mathbb{A} \to \mathbb{B}).$
- A, (resp. B) are completions of $\mathcal{CFK}(K)$ (resp. $\mathscr{V}^{-1}\mathcal{CFK}(K)$).
- $\bullet \ \mathcal{CFK}(K) = \mathcal{CFK}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$
- We think of U as acting by \mathscr{UV} .
- Φ^K and Φ^{-K} are not $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ -equivariant, though they are $\mathbb{F}[U]$ -equivariant. Homotopy equivalence in mapping cone formula is of chain complexes over $\mathbb{F}[[U]]$.

(ロ)、

(Manolescu-Ozsváth)

(Manolescu–Ozsváth)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\blacksquare L \subseteq S^3.$$

(Manolescu–Ozsváth)

- $\ \ \, L\subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.

(Manolescu-Ozsváth)

- $\bullet \ L \subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.

A D F A 目 F A E F A E F A Q Q

• Filtered by the cube $\{0,1\}^{|L|}$.

(Manolescu–Ozsváth)

- $\bullet \ L \subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of *L*.

A D F A 目 F A E F A E F A Q Q

(Manolescu–Ozsváth)

- $\bullet \ L \subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of *L*.

$$\mathcal{C}_{\Lambda}(L) = \bigoplus_{M \subseteq L} \mathcal{C}_M.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Manolescu–Ozsváth)

- $\bullet \ L \subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of *L*.

$$\mathcal{C}_{\Lambda}(L) = \bigoplus_{M \subseteq L} \mathcal{C}_M.$$

うして ふゆ く は く は く む く し く

 \blacksquare Differential is encoded by oriented sublinks of L.

$$D = \sum_{\vec{M} \subseteq L} \Phi^{\vec{M}}$$

(Manolescu–Ozsváth)

- $\bullet \ L \subseteq S^3.$
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of *L*.

$$\mathcal{C}_{\Lambda}(L) = \bigoplus_{M \subseteq L} \mathcal{C}_M.$$

 \blacksquare Differential is encoded by oriented sublinks of L.

$$D = \sum_{\vec{M} \subseteq L} \Phi^{\vec{M}} \quad \text{where} \quad \Phi^{\vec{M}} \colon \mathcal{C}_N \to \mathcal{C}_{N \cup M}$$

(ロ)、

1 Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 .

1 Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 . Then

$$S^3_{\lambda_1+\lambda_2}(K_1 \# K_2) \cong (S^3 \setminus \nu(K_1)) \cup_{\phi} (S^3 \setminus \nu(K_2)).$$

1 Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 . Then

$$S^3_{\lambda_1+\lambda_2}(K_1 \# K_2) \cong (S^3 \setminus \nu(K_1)) \cup_{\phi} (S^3 \setminus \nu(K_2)).$$

2
$$\phi: \mu_1 \mapsto \mu_2 \text{ and } \lambda_1 \mapsto -\lambda_2.$$

I Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 . Then

$$S^3_{\lambda_1+\lambda_2}(K_1 \# K_2) \cong (S^3 \setminus \nu(K_1)) \cup_{\phi} (S^3 \setminus \nu(K_2)).$$

うして ふゆ く は く は く む く し く

2
$$\phi: \mu_1 \mapsto \mu_2 \text{ and } \lambda_1 \mapsto -\lambda_2.$$

3 To see this, $S^3 \setminus \nu(K_1 \# K_2)$ is obtained by gluing an annulus to $S^3 \setminus \nu(K_1)$ and $S^3 \setminus \nu(K_2)$, so that $\mu_1 \mapsto \mu_2$.

1 Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 . Then

$$S^3_{\lambda_1+\lambda_2}(K_1 \# K_2) \cong (S^3 \setminus \nu(K_1)) \cup_{\phi} (S^3 \setminus \nu(K_2)).$$

2
$$\phi: \mu_1 \mapsto \mu_2 \text{ and } \lambda_1 \mapsto -\lambda_2.$$

3 To see this, $S^3 \setminus \nu(K_1 \# K_2)$ is obtained by gluing an annulus to $S^3 \setminus \nu(K_1)$ and $S^3 \setminus \nu(K_2)$, so that $\mu_1 \mapsto \mu_2$. $S^3_{\lambda_1 + \lambda_2}(K_1 \# K_2)$ obtained by gluing a disk to $\lambda_1 * \lambda_2$, then gluing 3-ball.

I Topology: Let $K_1, K_2 \subseteq S^3$ be knots with integral framings λ_1, λ_2 . Then

$$S^3_{\lambda_1+\lambda_2}(K_1 \# K_2) \cong (S^3 \setminus \nu(K_1)) \cup_{\phi} (S^3 \setminus \nu(K_2)).$$

2
$$\phi: \mu_1 \mapsto \mu_2 \text{ and } \lambda_1 \mapsto -\lambda_2.$$

- **3** To see this, $S^3 \setminus \nu(K_1 \# K_2)$ is obtained by gluing an annulus to $S^3 \setminus \nu(K_1)$ and $S^3 \setminus \nu(K_2)$, so that $\mu_1 \mapsto \mu_2$. $S^3_{\lambda_1 + \lambda_2}(K_1 \# K_2)$ obtained by gluing a disk to $\lambda_1 * \lambda_2$, then gluing 3-ball.
- I This is the same as gluing complements together along a 1-handle, then gluing 2-handles along $\mu_1 * -\mu_2$ and $\lambda_1 * \lambda_2$, and then gluing a 3-handle.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣�?

Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2 (LOT) To a surface F, associate an algebra A(F).

- Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
- 2 (LOT) To a surface F, associate an algebra A(F). To a manifold with boundary M, associate A_{∞} -modules $CFA(M)_{A(F)}$ and $_{A(-F)}CFA(M)$.

- Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
- 2 (LOT) To a surface F, associate an algebra A(F). To a manifold with boundary M, associate A_{∞} -modules $CFA(M)_{A(F)}$ and $_{A(-F)}CFA(M)$. If M and N are manifolds with boundaries F and F', and $\phi: F \to F'$ is an orientation reversing diffeomorphism, there is an isomorphism

$$\widehat{CF}(M\cup_{\phi}N)\simeq CFA(M)\widetilde{\otimes}_A CFA(N), \quad A=A(F)=A(-F')$$

- Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
- 2 (LOT) To a surface F, associate an algebra A(F). To a manifold with boundary M, associate A_{∞} -modules $CFA(M)_{A(F)}$ and $_{A(-F)}CFA(M)$. If M and N are manifolds with boundaries F and F', and $\phi: F \to F'$ is an orientation reversing diffeomorphism, there is an isomorphism

$$\widehat{CF}(M\cup_{\phi}N)\simeq CFA(M)\widetilde{\otimes}_A CFA(N), \quad A=A(F)=A(-F')$$

3 Goal: Construct a similar theory for CF^- using the link surgery formula.

The knot surgery algebra

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで
1 \mathcal{K} is an algebra over idempotent ring $\mathbf{I} = \mathbf{I}_0 \oplus \mathbf{I}_1$.

K is an algebra over idempotent ring I = I₀ ⊕ I₁.
I₀ · K · I₀ = F[𝔄, 𝒱].

K is an algebra over idempotent ring **I** = **I**₀ ⊕ **I**₁.
I₀ · *K* · **I**₀ = F[𝔄, 𝒱].
I₁ · *K* · **I**₁ = F[𝔄, 𝒱, 𝒱⁻¹].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

K is an algebra over idempotent ring I = I₀ ⊕ I₁.
I₀ · K · I₀ = F[𝔄, 𝒱].
I₁ · K · I₁ = F[𝔄, 𝒱, 𝒱⁻¹].
I₀ · K · I₁ = 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

 \mathcal{K} is an algebra over idempotent ring $\mathbf{I} = \mathbf{I}_0 \oplus \mathbf{I}_1$. $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_0 = \mathbb{F}[\mathscr{U}, \mathscr{V}]$. $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_1 = \mathbb{F}[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}]$. $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_1 = 0$. $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_0 = \mathbb{F}[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}] \otimes \langle \sigma, \tau \rangle$.

うして ふゆ く は く は く む く し く

1 \mathcal{K} is an algebra over idempotent ring $\mathbf{I} = \mathbf{I}_0 \oplus \mathbf{I}_1$. **2** $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_0 = \mathbb{F}[\mathcal{U}, \mathcal{V}]$. **3** $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_1 = \mathbb{F}[\mathcal{U}, \mathcal{V}, \mathcal{V}^{-1}]$. **4** $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_1 = 0$. **5** $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_0 = \mathbb{F}[\mathcal{U}, \mathcal{V}, \mathcal{V}^{-1}] \otimes \langle \sigma, \tau \rangle$. **6** $\sigma \mathcal{U} = \mathcal{U} \sigma \quad \sigma \mathcal{V} = \mathcal{V} \sigma \quad \tau \mathcal{U} = \mathcal{V}^{-1} \tau \text{ and } \tau \mathcal{V} = \mathcal{U} \mathcal{V}^2 \tau$.

A D F A 目 F A E F A E F A Q Q

K is an algebra over idempotent ring I = I₀ ⊕ I₁.
I₀ · K · I₀ = F[𝔄, 𝒱].
I₁ · K · I₁ = F[𝔄, 𝒱, 𝒱⁻¹].
I₀ · K · I₁ = 0.
I₁ · K · I₀ = F[𝔄, 𝒱, 𝒱⁻¹] ⊗ ⟨σ, τ⟩.
σ𝒱 = 𝒱σ σ𝒱 = 𝒱σ τ𝒱 = 𝒱⁻¹τ and τ𝒱 = 𝒱𝒱²τ.
More symmetric description: write I₁ · K · I₁ ≅ F[U, T, T⁻¹] where U = 𝔅𝒱 and T = 𝒱.

If L is an n-component link with framing Λ , the link surgery formula determines a type-D module

$$\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n}, \quad \mathcal{L}_n := \mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If L is an n-component link with framing Λ , the link surgery formula determines a type-D module

$$\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n}, \quad \mathcal{L}_n := \mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

2 E.g. $L = K \subseteq S^3$ (knot) with framing λ :

If L is an n-component link with framing Λ , the link surgery formula determines a type-D module

$$\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n}, \quad \mathcal{L}_n := \mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}$$

2 E.g. $L = K \subseteq S^3$ (knot) with framing λ :

3 $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{CFK}(K)$.

うして ふゆ く は く は く む く し く

If L is an n-component link with framing Λ , the link surgery formula determines a type-D module

$$\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n}, \quad \mathcal{L}_n := \mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}$$

2 E.g. $L = K \subseteq S^3$ (knot) with framing λ :

3 $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{CFK}(K)$.

4 Internal differential of $\mathcal{CFK}(K)$ contributes terms to δ^1 which preserve idempotent.

If L is an n-component link with framing Λ , the link surgery formula determines a type-D module

$$\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n}, \quad \mathcal{L}_n := \mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}$$

2 E.g.
$$L = K \subseteq S^3$$
 (knot) with framing λ :

- **3** $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{CFK}(K)$.
- Internal differential of $\mathcal{CFK}(K)$ contributes terms to δ^1 which preserve idempotent.
- 5 Φ^K gives terms weighted by σ . Φ^{-K} gives terms weighted by τ .

Type-D relations follow from the following facts: $\mathcal{CFK}(K)$ is a chain complex.

Type-D relations follow from the following facts:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- **1** $\mathcal{CFK}(K)$ is a chain complex.
- **2** Φ^K and Φ^{-K} are chain maps.

Type-D relations follow from the following facts:

- **1** $\mathcal{CFK}(K)$ is a chain complex.
- **2** Φ^K and Φ^{-K} are chain maps.
- **3** Φ^K and Φ^{-K} satisfy the relations

$$\begin{split} \Phi^{K} \circ \mathscr{U} &= \mathscr{U} \circ \Phi^{K} \qquad \Phi^{K} \circ \mathscr{V} = \mathscr{V} \circ \Phi^{K} \\ \Phi^{-K} \circ \mathscr{U} &= \mathscr{V}^{-1} \circ \Phi^{-K} \qquad \Phi^{-K} \circ \mathscr{V} = \mathscr{U} \mathscr{V}^{2} \circ \Phi^{-K} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: 0-framed trefoil.

Example: 0-framed trefoil.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

(ロ)、

I Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .

2 E.g. K = U (unknot) we get the type-A module of the solid torus, which we denote ${}_{\mathcal{K}}\mathcal{D}_{\lambda}$.

I Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .

2 E.g. K = U (unknot) we get the type-A module of the solid torus, which we denote ${}_{\mathcal{K}}\mathcal{D}_{\lambda}$.

3
$$\mathbf{I}_0 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}]] \text{ and } \mathbf{I}_1 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}]].$$

I Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .

うして ふゆ く は く は く む く し く

- 2 E.g. K = U (unknot) we get the type-A module of the solid torus, which we denote ${}_{\mathcal{K}}\mathcal{D}_{\lambda}$.
- **3** $\mathbf{I}_0 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}]] \text{ and } \mathbf{I}_1 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}]].$
- 4 σ acts by the canonical inclusion.

- **I** Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .
- 2 E.g. K = U (unknot) we get the type-A module of the solid torus, which we denote ${}_{\mathcal{K}}\mathcal{D}_{\lambda}$.
- **3** $\mathbf{I}_0 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}]] \text{ and } \mathbf{I}_1 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}]].$
- 4 σ acts by the canonical inclusion.
- 5 τ acts by the algebra morphism $\mathscr{U} \mapsto \mathscr{V}^{-1}$ and $\mathscr{V} \mapsto \mathscr{U} \mathscr{V}^2$.

うして ふゆ く は く は く む く し く

- **I** Can also view surgery complexes as type-A modules over \mathcal{K} and \mathcal{L}_n .
- 2 E.g. K = U (unknot) we get the type-A module of the solid torus, which we denote ${}_{\mathcal{K}}\mathcal{D}_{\lambda}$.

3
$$\mathbf{I}_0 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}]] \text{ and } \mathbf{I}_1 \cdot \mathcal{D}_\lambda = \mathbb{F}[[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}]].$$

- **4** σ acts by the canonical inclusion.
- 5 τ acts by the algebra morphism $\mathscr{U} \mapsto \mathscr{V}^{-1}$ and $\mathscr{V} \mapsto \mathscr{U} \mathscr{V}^2$.
- 6 Can view \mathcal{D}_{λ} as an AA-bimodule

$$_{\mathcal{K}}[\mathcal{D}_{\lambda}]_{\mathbb{F}[U]},$$

where U acts by \mathscr{UV} . (Type-A modules for other knots and links are similar).

Relating type-D to surgery formula

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○

 $\textbf{Manolescu-Ozsváth surgery formula is recovered as follows:} \\ \mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n} \boxtimes (_{\mathcal{K}}\mathcal{D}_0) \boxtimes \cdots \boxtimes (_{\mathcal{K}}\mathcal{D}_0).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

- I Manolescu-Ozsváth surgery formula is recovered as follows: $<math display="block"> \mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n} \boxtimes (_{\mathcal{K}} \mathcal{D}_0) \boxtimes \cdots \boxtimes (_{\mathcal{K}} \mathcal{D}_0).$
- 2 The right hand side has an action of $\mathbb{F}[U_1, \ldots, U_n]$ (one U_i for each \mathcal{D}_0).

- Manolescu-Ozsváth surgery formula is recovered as follows: $\mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_n} \boxtimes (_{\mathcal{K}} \mathcal{D}_0) \boxtimes \cdots \boxtimes (_{\mathcal{K}} \mathcal{D}_0).$
- 2 The right hand side has an action of $\mathbb{F}[U_1, \ldots, U_n]$ (one U_i for each \mathcal{D}_0). This reflects the fact that the Manolescu-Ozsváth complex is a module over $\mathbb{F}[U_1, \ldots, U_n]$.

Turning type-D outputs to type-A inputs

・ロト ・四ト ・ヨト ・ヨー ・ つへぐ

Turning type-D outputs to type-A inputs

1 An algebraically define module

 $\mathcal{K} \otimes \mathcal{K}[\mathbb{I}^{\textcircled{D}}]$

Turning type-D outputs to type-A inputs

1 An algebraically define module

$_{\mathcal{K}\otimes\mathcal{K}}[\mathbb{I}^{\mathbb{D}}]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

2 Turns a type-D output of \mathcal{K} into a type-A input.

1 An algebraically define module

$\mathcal{K} \otimes \mathcal{K}[\mathbb{I}^{\textcircled{D}}]$

- **2** Turns a type-D output of \mathcal{K} into a type-A input.
- **3** Compatible with gluing along torus boundary components.

うしゃ ふゆ きょう きょう うくの

1 An algebraically define module

$\mathcal{K} \otimes \mathcal{K}[\mathbb{I}^{\textcircled{D}}]$

- **2** Turns a type-D output of \mathcal{K} into a type-A input.
- **3** Compatible with gluing along torus boundary components.

うして ふゆ く は く は く む く し く

4 Note \mathbb{I}^{\supseteq} is infinite dimensional.
1 An algebraically define module

 $\mathcal{K} \otimes \mathcal{K}[\mathbb{I}^{\textcircled{D}}]$

- **2** Turns a type-D output of \mathcal{K} into a type-A input.
- **3** Compatible with gluing along torus boundary components.
- **4** Note \mathbb{I}^{\supseteq} is infinite dimensional. Hence our type-A modules are infinitely generated.

うして ふゆ く 山 マ ふ し マ うくの

Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^2 \times [0, 1]$ with different boundary parametrizations).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^2 \times [0, 1]$ with different boundary parametrizations).
- **2** The Hopf link has complement $\mathbb{T}^2 \times [0, 1]$. We may view the Hopf link complement as the mapping cylinder of a diffeomorphism which sends $\mu \mapsto \lambda$ and $\lambda \mapsto -\mu$.

- Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^2 \times [0, 1]$ with different boundary parametrizations).
- **2** The Hopf link has complement $\mathbb{T}^2 \times [0, 1]$. We may view the Hopf link complement as the mapping cylinder of a diffeomorphism which sends $\mu \mapsto \lambda$ and $\lambda \mapsto -\mu$.
- **3** The Hopf link gives a DA-bimodule ${}_{\mathcal{K}}\mathcal{H}^{\mathcal{K}}$ which has the effect of changing the boundary parametrization.

1 A schematic of $_{\mathcal{K}}\mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$.

Changes of parametrization

1 A schematic of $_{\mathcal{K}}\mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで

Changes of parametrization

1 A schematic of $_{\mathcal{K}}\mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ のへの

2 Arrow a|b from x to y means $\delta_2^1(a, x)$ has summand y|b.

Changes of parametrization

1 A schematic of $_{\mathcal{K}}\mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$.

2 Arrow a|b from x to y means $\delta_2^1(a, x)$ has summand y|b. 3 Top row $\mathbf{I}_0 \cdot_{\mathcal{K}} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$ and bottom row $\mathbf{I}_1 \cdot_{\mathcal{K}} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_0$. ■ Algebraically, recovers the "dual knot" formulas of Eftekhary and Hedden-Levine, which compute $\mathcal{CFK}(S_n^3(K), \mu)$ in terms of $\mathcal{CFK}(K)$, for a knot $K \subseteq S^3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

■ Algebraically, recovers the "dual knot" formulas of Eftekhary and Hedden-Levine, which compute $\mathcal{CFK}(S_n^3(K), \mu)$ in terms of $\mathcal{CFK}(K)$, for a knot $K \subseteq S^3$. (proven using different techniques).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

1 Recall elliptic involution $\mathcal{E} : \mathbb{T}^2 \to \mathbb{T}^2$ is gotten by identifying $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$.

Recall elliptic involution $\mathcal{E} : \mathbb{T}^2 \to \mathbb{T}^2$ is gotten by identifying $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. Then $\mathcal{E}(z) = -z$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

- Recall elliptic involution $\mathcal{E} : \mathbb{T}^2 \to \mathbb{T}^2$ is gotten by identifying $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. Then $\mathcal{E}(z) = -z$.
- **2** Mapping cylinders of identity map id, $\mathcal{E} : \mathbb{T}^2 \to \mathbb{T}^2$:

うして ふゆ く は く は く む く し く

0

Recall elliptic involution $\mathcal{E} \colon \mathbb{T}^2 \to \mathbb{T}^2$ is gotten by identifying $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. Then $\mathcal{E}(z) = -z$.

2 Mapping cylinders of identity map id, $\mathcal{E} \colon \mathbb{T}^2 \to \mathbb{T}^2$:

id

(Remove neighborhoods of arrow labeled components to get $\mathbb{T}^2 \times [0,1]$).

0

E

A D F A 目 F A E F A E F A Q Q

Induced *DA*-bimodules by these cylinders are simple to describe:

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Induced *DA*-bimodules by these cylinders are simple to describe:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

2 id induces identity bimodule $_{\mathcal{K}}[\mathbb{I}]^{\mathcal{K}}$.

- Induced *DA*-bimodules by these cylinders are simple to describe:
- **2** id induces identity bimodule $_{\mathcal{K}}[\mathbb{I}]^{\mathcal{K}}$.
- **3** \mathcal{E} induces simple symmetry of the algebra. On $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_0$ and $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_0$:

 $\mathscr{U} \leftrightarrow \mathscr{V} \quad \sigma \leftrightarrow \tau.$

- Induced *DA*-bimodules by these cylinders are simple to describe:
- **2** id induces identity bimodule $_{\mathcal{K}}[\mathbb{I}]^{\mathcal{K}}$.
- **3** \mathcal{E} induces simple symmetry of the algebra. On $\mathbf{I}_0 \cdot \mathcal{K} \cdot \mathbf{I}_0$ and $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_0$:

 $\mathscr{U} \leftrightarrow \mathscr{V} \quad \sigma \leftrightarrow \tau.$

On $\mathbf{I}_1 \cdot \mathcal{K} \cdot \mathbf{I}_1$:

 $U \leftrightarrow U \quad \mathscr{V} \leftrightarrow \mathscr{V}^{-1}.$

うしゃ ふゆ きょう きょう うくの

1 Lattice homology HIF is a combinatorial homology theory for plumbed 3-manifolds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Lattice homology HIF is a combinatorial homology theory for plumbed 3-manifolds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2 Due to Némethi.

- **1** Lattice homology HF is a combinatorial homology theory for plumbed 3-manifolds.
- 2 Due to Némethi. Formalizes computation of Ozsváth and Szabó of HF⁻ of some plumbed 3-manifolds.

- **L***attice homology* HF is a combinatorial homology theory for plumbed 3-manifolds.
- **2** Due to Némethi. Formalizes computation of Ozsváth and Szabó of HF^- of some plumbed 3-manifolds.
- 3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2-spheres.

うして ふゆ く は く は く む く し く

- **L***attice homology* **HF** is a combinatorial homology theory for plumbed 3-manifolds.
- **2** Due to Némethi. Formalizes computation of Ozsváth and Szabó of HF^- of some plumbed 3-manifolds.
- 3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2-spheres.

うして ふゆ く は く は く む く し く

In this case, Y may be described as Dehn surgery on a connected sum of Hopf links.

- **L***attice homology* **HF** is a combinatorial homology theory for plumbed 3-manifolds.
- **2** Due to Némethi. Formalizes computation of Ozsváth and Szabó of HF^- of some plumbed 3-manifolds.
- 3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2-spheres.
- In this case, Y may be described as Dehn surgery on a connected sum of Hopf links.
- Known to be isomorphic to Heegaard Floer homology for many families of plumbed 3-manifolds. (Némethi, Ozsváth, Stipsicz, Szabó). The isomorphism in general was a conjecture.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Theorem (Z.)

Lattice homology and Heegaard Floer homology are isomorphic as $\mathbb{F}[[U]]$ -modules.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Theorem (Z.)

Lattice homology and Heegaard Floer homology are isomorphic as $\mathbb{F}[[U]]$ -modules.

Gradings is in progress, but is (slightly technical) bookkeeping.

A D F A 目 F A E F A E F A Q Q

Definition

1
$$A \ \mathbb{Q}HS^3$$
 is an L-space if

 $HF^{-}(Y,\mathfrak{s}) \cong \mathbb{F}[U]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.

Definition

1
$$A \ \mathbb{Q}HS^3$$
 is an L-space if

$$HF^{-}(Y,\mathfrak{s}) \cong \mathbb{F}[U]$$

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.

2 $L \subseteq S^3$ is an L-space link if all sufficiently large surgeries are L-spaces.

Definition

1 $A \ \mathbb{Q}HS^3$ is an L-space if

$$HF^{-}(Y,\mathfrak{s}) \cong \mathbb{F}[U]$$

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.

- **2** $L \subseteq S^3$ is an L-space link if all sufficiently large surgeries are L-spaces.
- An algebraic link is the intersection of a the boundary of a small ball centered at an isolated complex curve singularity in C².

Theorem (Gorsky-Némethi (links), Hedden (knots))

A D F A 目 F A E F A E F A Q Q

Algebraic links are L-space link.

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{CFK}(K)$ is a staircase complex.

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{CFK}(K)$ is a staircase complex.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト
Ozsváth and Szabó showed that if K is an L-space knot, then CFK(K) is a staircase complex.

Important since these complexes are computable from their Alexander polynomials.

Ozsváth and Szabó showed that if K is an L-space knot, then CFK(K) is a staircase complex.

- Important since these complexes are computable from their Alexander polynomials.
- 2 An open question is how to properly generalize this result to links.

うして ふゆ く は く は く む く し く

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

1 We consider the version of link Floer homology $\mathcal{CFL}(L)$ over

 $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \ldots, \mathscr{U}_n, \mathscr{V}_n]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

n = |L|.

$$\mathbb{F}[\mathscr{U}_1,\mathscr{V}_1,\ldots,\mathscr{U}_n,\mathscr{V}_n]$$

うして ふゆ く は く は く む く し く

n = |L|.

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{HFL}(L)$ is torsion free as an $\mathbb{F}[U]$ -module, where U acts by $\mathscr{U}_i \mathscr{V}_i$ for some i.

$$\mathbb{F}[\mathscr{U}_1,\mathscr{V}_1,\ldots,\mathscr{U}_n,\mathscr{V}_n]$$

n = |L|.

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{HFL}(L)$ is torsion free as an $\mathbb{F}[U]$ -module, where U acts by $\mathscr{U}_i \mathscr{V}_i$ for some i. (All i have the same action on homology).

$$\mathbb{F}[\mathscr{U}_1,\mathscr{V}_1,\ldots,\mathscr{U}_n,\mathscr{V}_n]$$

n = |L|.

- 2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{HFL}(L)$ is torsion free as an $\mathbb{F}[U]$ -module, where U acts by $\mathscr{U}_i \mathscr{V}_i$ for some i. (All i have the same action on homology).
- **3** For L-space knots, $\mathcal{CFK}(K)$ may equivalently be described as a free-resolution of $\mathcal{HFK}(K)$ over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$.

$$\mathbb{F}[\mathscr{U}_1,\mathscr{V}_1,\ldots,\mathscr{U}_n,\mathscr{V}_n]$$

n = |L|.

- 2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{HFL}(L)$ is torsion free as an $\mathbb{F}[U]$ -module, where U acts by $\mathscr{U}_i \mathscr{V}_i$ for some i. (All i have the same action on homology).
- **B** For L-space knots, CFK(K) may equivalently be described as a free-resolution of HFK(K) over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$. Note HFK(K) may be viewed as a monomial ideal in $\mathbb{F}[\mathscr{U}, \mathscr{V}]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^3$ is an algebraic link, then CFL(L) is homotopy equivalent over $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \ldots, \mathscr{U}_n, \mathscr{V}_n]$ to a free-resolution of HFL(L).

うして ふゆ く は く は く む く し く

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^3$ is an algebraic link, then CFL(L) is homotopy equivalent over $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \dots, \mathscr{U}_n, \mathscr{V}_n]$ to a free-resolution of HFL(L).

1 $\mathcal{HFL}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.

うして ふゆ く は く は く む く し く

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^3$ is an algebraic link, then CFL(L) is homotopy equivalent over $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \dots, \mathscr{U}_n, \mathscr{V}_n]$ to a free-resolution of HFL(L).

I $\mathcal{HFL}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.

2 In particular, $\mathcal{HFL}(L)$ contains all information, and is usually much smaller.

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^3$ is an algebraic link, then CFL(L) is homotopy equivalent over $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \dots, \mathscr{U}_n, \mathscr{V}_n]$ to a free-resolution of HFL(L).

I $\mathcal{HFL}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.

- **2** In particular, $\mathcal{HFL}(L)$ contains all information, and is usually much smaller.
- **3** $\mathcal{HFL}(T(n,n))$ has n generators.

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^3$ is an algebraic link, then CFL(L) is homotopy equivalent over $\mathbb{F}[\mathscr{U}_1, \mathscr{V}_1, \dots, \mathscr{U}_n, \mathscr{V}_n]$ to a free-resolution of HFL(L).

- I $\mathcal{HFL}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.
- **2** In particular, $\mathcal{HFL}(L)$ contains all information, and is usually much smaller.
- **3** $\mathcal{HFL}(T(n,n))$ has n generators.
- $C \mathcal{FL}(T(3,3)) \text{ and } C \mathcal{FL}(T(4,4)) \text{ have 18 and 68, generators,}$ resp. $100 \text{ C} \mathcal{FL}(T(3,3)) \text{ and } C \mathcal{FL}(T(4,4)) \text{ have 18 and 68, generators,}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Examples:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Examples:

Thanks for listening!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ