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Heegaard Floer homology

m Suppose Y is a closed 3-manifold.

m Ozsvath and Szabd construct a finitely generated
F[[U]]-module

HF~(Y) = H,(CF~(Y)).

m If K C S3 is a knot, there is a relative version CF(K),
which takes the form of a chain complex over F[%, ¥,
defined using a doubly pointed Heegaard diagram.
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Surgery Formulas

(Ozsvath—Szabd)
m Suppose K C Y is null-homologous with integral framing n.
CF~ (Y, (K)) ~ Cone(®X + &= K: A - B).
A, (resp. B) are completions of CFIC(K) (resp.
¥ ~ICFK(K).
CFK(K)=CFK(K)®F[[%, V]
We think of U as acting by Z 7.

m &% and @K are not F[%, #]-equivariant, though they are
F[U]-equivariant. Homotopy equivalence in mapping cone
formula is of chain complexes over F[[U]].
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Surgery Formulas

(Manolescu-Ozsvath)
m L C S5,
m Chain complex C (L) over F[[U]].
m Filtered by the cube {0, 1},

m Think of cube points as sets of components of L.

Ca(L) = €P Cu.

MCL

Differential is encoded by oriented sublinks of L.

D= Z CIJM where @M: Cn — CNnum
MCL
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Connected sums and surgery

Topology: Let K1, Ky C S® be knots with integral framings
A1, A2. Then

S3 e (K1#K2) 2 (S°\ v(K1)) Uy (S \ v(K2)).

¢ py — p2 and A\p — —Aa.

To see this, S3\ v(K1#K3) is obtained by gluing an
annulus to S\ v(K7) and S\ v(K3), so that 1 — po.
S§1+/\2(K1#K2) obtained by gluing a disk to A1 x A9, then
gluing 3-ball.

This is the same as gluing complements together along a
1-handle, then gluing 2-handles along 1 * —pe and Ap * Ag,
and then gluing a 3-handle.
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Philosophy

Defining a theory for links which can compute surgeries
and allows tensor products should be the same as a
bordered theory for torus boundary components.

(LOT) To a surface F, associate an algebra A(F'). To a
manifold with boundary M, associate A..-modules
CFA(M)A(F) and A(=F) CFA(M) If M and N are
manifolds with boundaries ' and F’, and ¢: F — F’ is an
orientation reversing diffeomorphism, there is an
isomorphism

CF(MUgN) ~ CFA(M)®4CFA(N), A= A(F)= A(—F")

Goal: Construct a similar theory for CF~ using the link
surgery formula.
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The knot surgery algebra

K is an algebra over idempotent ring I = Iy & 1.

Ip- K-y =F[Z,7V].

I -K-L, =F%,7, 7.

Ip-K-I; =0.

L - K-Ig=F%,7,7 & (o,1).

oU =Uo oV =Vo TU=V"'r and TV =UV?T.

More symmetric description: write Iy - K - I; 2 F[U, T, T~
where U =%V and T = 7.
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Surgery complexes as type-D modules

If L is an n-component link with framing A, the link
surgery formula determines a type-D module

XA(L)L", Ly =K®f - QK

E.g. L = K C 53 (knot) with framing \:

X0(K) - Ip = X\(K) - I are F vector spaces spanned by free
F|% , V] basis of CFK(K).

Internal differential of CFK(K) contributes terms to &1
which preserve idempotent.

PK gives terms weighted by 0. @~ gives terms weighted
by 7.
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Surgery complexes as type-D modules

Type-D relations follow from the following facts:
CFK(K) is a chain complex.
®X and &K are chain maps.
®X and &K satisfy the relations

K oy =Y o K Koy =¥ o dK

d Koy =y1lop K S Koy =py20d K,
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Surgery complexes as type-D modules

Example: 0-framed trefoil.

0

X
1// \%
0o & T~ 9
y Z
YUYV Lotv 21 o+ UV T

N7

zl
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Surgery complexes as type-A modules

Can also view surgery complexes as type-A modules over
and L.

E.g. K =U (unknot) we get the type-A module of the
solid torus, which we denote xD,.

Io-Dy=F[[%,?]]and I, - Dy =F[[%,V, 7]

o acts by the canonical inclusion.

T acts by the algebra morphism % — ¥~ and ¥ +— % V.
Can view D, as an AA-bimodule

NGE

where U acts by Z 7. (Type-A modules for other knots
and links are similar).
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Relating type-D to surgery formula

Manolescu—Ozsvath surgery formula is recovered as follows:

Ca(L) = X\ (L)*" K (xDy) K - - - K (xDy).

The right hand side has an action of F[Uy, ..., U,] (one U;
for each Dy). This reflects the fact that the
Manolescu-Ozsvath complex is a module over F[Uy, ..., Uy].
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Turning type-D outputs to type-A inputs

An algebraically define module

kak|I?]

Turns a type-D output of K into a type-A input.
Compatible with gluing along torus boundary components.

Note I is infinite dimensional. Hence our type-A modules
are infinitely generated.
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Changes of parametrization

Changing boundary parametrization can be achieved by
gluing in mapping cylinders (i.e. T2 x [0, 1] with different
boundary parametrizations).

The Hopf link has complement T? x [0, 1]. We may view
the Hopf link complement as the mapping cylinder of a
diffeomorphism which sends p — A and A — —pu.

The Hopf link gives a DA-bimodule xH* which has the
effect of changing the boundary parametrization.
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Changes of parametrization

A schematic of cHX - I,.

..'.,7/1|U2$.,7/1‘U2§ /7/1|7/2,\./1/1‘1$ /’VI|1$
$02/1‘1// $7/1|1// f%ﬂ@/z’/ de/1|U2’/ \f%ﬂUQ’/ \
711 711 7)1 71| \ T1|?/2U2\ T1|%2U22\
O'l‘UQz’VQ o1|Ua7s 01|72 o1l o1l o1l

\Z/"f/ﬂlw\ \Z/%|1$ \Z/df/ﬂls\ \Z/"f/l\lwx ‘Z/V/ﬂl\; \Z
®fumvam ® s mus - C S mva- ® fwmUus - ® fmue - ®

Arrow alb from z to y means 63 (a,z) has summand y|b.

Top row I - «HE - Iy and bottom row I; - xHX - 1.
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Changes of parametrization

Algebraically, recovers the “dual knot” formulas of
Eftekhary and Hedden-Levine, which compute
CFK(S2(K), i) in terms of CFK(K), for a knot K C S3.
(proven using different techniques).
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More diffeomorphisms

Recall elliptic involution £: T? — T2 is gotten by
identifying T? = R?/Z2. Then £(2) = —=z.
51 Mapping cylinders of identity map id, £: T? — T2:

(% ) (9

(Remove neighborhoods of arrow labeled components to
get T2 x [0, 1]).
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More diffeomorphisms

Induced D A-bimodules by these cylinders are simple to
describe:
id induces identity bimodule x[I]*.
& induces simple symmetry of the algebra. On Iy - K - Iy
and Il K- Iol
U~V oeT
On Il K- Ili
UcU Vvl
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Applications

Lattice homology HF is a combinatorial homology theory
for plumbed 3-manifolds.

Due to Némethi. Formalizes computation of Ozsvath and
Szab6 of HF™ of some plumbed 3-manifolds.

Main case in literature: boundary of a plumbing of a tree
of disk bundles over 2-spheres.

In this case, Y may be described as Dehn surgery on a
connected sum of Hopf links.

Known to be isomorphic to Heegaard Floer homology for
many families of plumbed 3-manifolds. (Némethi, Ozsvéth,
Stipsicz, Szabd). The isomorphism in general was a
conjecture.
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Applications

Theorem (Z.)

Lattice homology and Heegaard Floer homology are isomorphic
as F[[U]]-modules.

Gradings is in progress, but is (slightly technical) bookkeeping.
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Final Application (joint w/ M. Borodzik, B. Liu)

A QHS? is an L-space if
HF~(Y,s) = F[U]

for each s € Spin“(Y).
L C 83 is an L-space link if all sufficiently large surgeries
are L-spaces.

An algebraic link is the intersection of a the boundary of a

small ball centered at an isolated complex curve singularity
in C2.
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Final Application (joint w/ M. Borodzik, B. Liu)

Theorem (Gorsky-Némethi (links), Hedden (knots))

Algebraic links are L-space link.
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Final Application (joint w/ M. Borodzik, B. Liu)

Ozsvath and Szab6 showed that if K is an L-space knot, then
CFK(K) is a staircase complex.

7//.
0/
7(3,4) Tt
2/\7
0/1/
T~
v

Important since these complexes are computable from their
Alexander polynomials.

An open question is how to properly generalize this result
to links.
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Final Application (joint w/ M. Borodzik, B. Liu)

We consider the version of link Floer homology CFL(L) over
F[%la 7/17 e a%nv 7/71]

n=|L|.

Using the large surgery formula, we see L is an L-space
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Using the large surgery formula, we see L is an L-space
link if and only if HFL(L) is torsion free as an
F[U]-module, where U acts by %;¥; for some i. (All i have
the same action on homology).

For L-space knots, CFIC(K) may equivalently be described

as a free-resolution of HFIC(K) over F[%,V]. Note
HFIC(K) may be viewed as a monomial ideal in F[%, 7.
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By developing a version of lattice homology for links in
plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If L C S® is an algebraic link, then CFL(L) is homotopy
equivalent over F[20, 1, ..., %, V) to a free-resolution of
HFL(L).

HFL(L) is computable from the Alexander polynomials of
L and its sublinks due to work of Gorsky and Némethi.

In particular, HFL(L) contains all information, and is
usually much smaller.

HFL(T (n,n)) has n generators.

CFL(T(3,3)) and CFL(T'(4,4)) have 18 and 68, generators,
resp.
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Thanks for listening!



