Bordered perspectives on the link surgery formula

Ian Zemke

September 29, 2022

Heegaard Floer homology

Heegaard Floer homology

■ Suppose Y is a closed 3-manifold.

Heegaard Floer homology

■ Suppose Y is a closed 3-manifold.

- Ozsváth and Szabó construct a finitely generated $\mathbb{F}[[U]]$-module

$$
\boldsymbol{H F}^{-}(Y)=H_{*}\left(\boldsymbol{C F}^{-}(Y)\right)
$$

Heegaard Floer homology

- Suppose Y is a closed 3-manifold.
- Ozsváth and Szabó construct a finitely generated $\mathbb{F}[[U]]$-module

$$
\boldsymbol{H F}^{-}(Y)=H_{*}\left(\boldsymbol{C F}^{-}(Y)\right) .
$$

- If $K \subseteq S^{3}$ is a knot, there is a relative version $\mathcal{C F} \mathcal{K}(K)$, which takes the form of a chain complex over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$, defined using a doubly pointed Heegaard diagram.

Surgery Formulas

ムロ 4可

Surgery Formulas

(Ozsváth-Szabó)

Surgery Formulas

(Ozsváth-Szabó)

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.

Surgery Formulas

(Ozsváth-Szabó)

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.
- $\boldsymbol{C F}^{-}\left(Y_{n}(K)\right) \simeq \operatorname{Cone}\left(\Phi^{K}+\Phi^{-K}: \mathbb{A} \rightarrow \mathbb{B}\right)$.

Surgery Formulas

(Ozsváth-Szabó)

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.
- $\boldsymbol{C F} \boldsymbol{F}^{-}\left(Y_{n}(K)\right) \simeq \operatorname{Cone}\left(\Phi^{K}+\Phi^{-K}: \mathbb{A} \rightarrow \mathbb{B}\right)$.

■ $\mathbb{A},($ resp. $\mathbb{B})$ are completions of $\mathcal{C F K}(K)$ (resp. $\mathscr{V}^{-1} \mathcal{C F K}(K)$.

Surgery Formulas

(Ozsváth-Szabó)

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.
- $\boldsymbol{C F} \boldsymbol{F}^{-}\left(Y_{n}(K)\right) \simeq \operatorname{Cone}\left(\Phi^{K}+\Phi^{-K}: \mathbb{A} \rightarrow \mathbb{B}\right)$.

■ $\mathbb{A},($ resp. $\mathbb{B})$ are completions of $\mathcal{C F K}(K)$ (resp. $\mathscr{V}^{-1} \mathcal{C F K}(K)$.

- $\mathcal{C F} \mathcal{F}(K)=\mathcal{C F K}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$

Surgery Formulas

(Ozsváth-Szabó)

- Suppose $K \subseteq Y$ is null-homologous with integral framing n.
- $\boldsymbol{C F} \boldsymbol{F}^{-}\left(Y_{n}(K)\right) \simeq \operatorname{Cone}\left(\Phi^{K}+\Phi^{-K}: \mathbb{A} \rightarrow \mathbb{B}\right)$.

■ $\mathbb{A},($ resp. $\mathbb{B})$ are completions of $\mathcal{C F K}(K)$ (resp. $\mathscr{V}^{-1} \mathcal{C F K}(K)$.

- $\mathcal{C F} \mathcal{F}(K)=\mathcal{C F K}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$
- We think of U as acting by $\mathscr{U} \mathscr{V}$.

Surgery Formulas

(Ozsváth-Szabó)
■ Suppose $K \subseteq Y$ is null-homologous with integral framing n.

- $\boldsymbol{C F} \boldsymbol{F}^{-}\left(Y_{n}(K)\right) \simeq \operatorname{Cone}\left(\Phi^{K}+\Phi^{-K}: \mathbb{A} \rightarrow \mathbb{B}\right)$.

■ $\mathbb{A},($ resp. $\mathbb{B})$ are completions of $\mathcal{C F K}(K)$ (resp. $\mathscr{V}^{-1} \mathcal{C F K}(K)$.

- $\mathcal{C F} \mathcal{F}(K)=\mathcal{C F K}(K) \otimes \mathbb{F}[[\mathscr{U}, \mathscr{V}]]$
- We think of U as acting by $\mathscr{U} \mathscr{V}$.
- Φ^{K} and Φ^{-K} are not $\mathbb{F}[\mathscr{U}, \mathscr{V}]$-equivariant, though they are $\mathbb{F}[U]$-equivariant. Homotopy equivalence in mapping cone formula is of chain complexes over $\mathbb{F}[[U]]$.

Surgery Formulas

ムロ 4可

Surgery Formulas

(Manolescu-Ozsváth)

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of L.

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of L.

$$
\mathcal{C}_{\Lambda}(L)=\bigoplus_{M \subseteq L} \mathcal{C}_{M}
$$

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of L.

$$
\mathcal{C}_{\Lambda}(L)=\bigoplus_{M \subseteq L} \mathcal{C}_{M}
$$

■ Differential is encoded by oriented sublinks of L.

$$
D=\sum_{\vec{M} \subseteq L} \Phi^{\vec{M}}
$$

Surgery Formulas

(Manolescu-Ozsváth)

- $L \subseteq S^{3}$.
- Chain complex $\mathcal{C}_{\Lambda}(L)$ over $\mathbb{F}[[U]]$.
- Filtered by the cube $\{0,1\}^{|L|}$.
- Think of cube points as sets of components of L.

$$
\mathcal{C}_{\Lambda}(L)=\bigoplus_{M \subseteq L} \mathcal{C}_{M}
$$

■ Differential is encoded by oriented sublinks of L.

$$
D=\sum_{\vec{M} \subseteq L} \Phi^{\vec{M}} \quad \text { where } \quad \Phi^{\vec{M}}: \mathcal{C}_{N} \rightarrow \mathcal{C}_{N \cup M}
$$

Connected sums and surgery

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}.

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}. Then

$$
S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right) \cong\left(S^{3} \backslash \nu\left(K_{1}\right)\right) \cup_{\phi}\left(S^{3} \backslash \nu\left(K_{2}\right)\right)
$$

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}. Then

$$
S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right) \cong\left(S^{3} \backslash \nu\left(K_{1}\right)\right) \cup_{\phi}\left(S^{3} \backslash \nu\left(K_{2}\right)\right)
$$

2 $\phi: \mu_{1} \mapsto \mu_{2}$ and $\lambda_{1} \mapsto-\lambda_{2}$.

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}. Then

$$
S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right) \cong\left(S^{3} \backslash \nu\left(K_{1}\right)\right) \cup_{\phi}\left(S^{3} \backslash \nu\left(K_{2}\right)\right)
$$

$2 \phi: \mu_{1} \mapsto \mu_{2}$ and $\lambda_{1} \mapsto-\lambda_{2}$.
3 To see this, $S^{3} \backslash \nu\left(K_{1} \# K_{2}\right)$ is obtained by gluing an annulus to $S^{3} \backslash \nu\left(K_{1}\right)$ and $S^{3} \backslash \nu\left(K_{2}\right)$, so that $\mu_{1} \mapsto \mu_{2}$.

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}. Then

$$
S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right) \cong\left(S^{3} \backslash \nu\left(K_{1}\right)\right) \cup_{\phi}\left(S^{3} \backslash \nu\left(K_{2}\right)\right)
$$

$2 \phi: \mu_{1} \mapsto \mu_{2}$ and $\lambda_{1} \mapsto-\lambda_{2}$.
3 To see this, $S^{3} \backslash \nu\left(K_{1} \# K_{2}\right)$ is obtained by gluing an annulus to $S^{3} \backslash \nu\left(K_{1}\right)$ and $S^{3} \backslash \nu\left(K_{2}\right)$, so that $\mu_{1} \mapsto \mu_{2}$. $S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right)$ obtained by gluing a disk to $\lambda_{1} * \lambda_{2}$, then gluing 3 -ball.

Connected sums and surgery

1 Topology: Let $K_{1}, K_{2} \subseteq S^{3}$ be knots with integral framings λ_{1}, λ_{2}. Then

$$
S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right) \cong\left(S^{3} \backslash \nu\left(K_{1}\right)\right) \cup_{\phi}\left(S^{3} \backslash \nu\left(K_{2}\right)\right)
$$

$2 \phi: \mu_{1} \mapsto \mu_{2}$ and $\lambda_{1} \mapsto-\lambda_{2}$.
3 To see this, $S^{3} \backslash \nu\left(K_{1} \# K_{2}\right)$ is obtained by gluing an annulus to $S^{3} \backslash \nu\left(K_{1}\right)$ and $S^{3} \backslash \nu\left(K_{2}\right)$, so that $\mu_{1} \mapsto \mu_{2}$. $S_{\lambda_{1}+\lambda_{2}}^{3}\left(K_{1} \# K_{2}\right)$ obtained by gluing a disk to $\lambda_{1} * \lambda_{2}$, then gluing 3 -ball.
4 This is the same as gluing complements together along a 1 -handle, then gluing 2-handles along $\mu_{1} *-\mu_{2}$ and $\lambda_{1} * \lambda_{2}$, and then gluing a 3 -handle.

Philosophy

Philosophy

1 Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.

Philosophy

1 Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
2 (LOT) To a surface F, associate an algebra $A(F)$.

Philosophy

1 Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
2 (LOT) To a surface F, associate an algebra $A(F)$. To a manifold with boundary M, associate A_{∞}-modules $C F A(M)_{A(F)}$ and ${ }_{A(-F)} C F A(M)$.

Philosophy

1 Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
2 (LOT) To a surface F, associate an algebra $A(F)$. To a manifold with boundary M, associate A_{∞}-modules $C F A(M)_{A(F)}$ and ${ }_{A(-F)} C F A(M)$. If M and N are manifolds with boundaries F and F^{\prime}, and $\phi: F \rightarrow F^{\prime}$ is an orientation reversing diffeomorphism, there is an isomorphism
$\widehat{C F}\left(M \cup_{\phi} N\right) \simeq C F A(M) \widetilde{\otimes}_{A} C F A(N), \quad A=A(F)=A\left(-F^{\prime}\right)$

Philosophy

1 Defining a theory for links which can compute surgeries and allows tensor products should be the same as a bordered theory for torus boundary components.
2 (LOT) To a surface F, associate an algebra $A(F)$. To a manifold with boundary M, associate A_{∞}-modules $C F A(M)_{A(F)}$ and ${ }_{A(-F)} C F A(M)$. If M and N are manifolds with boundaries F and F^{\prime}, and $\phi: F \rightarrow F^{\prime}$ is an orientation reversing diffeomorphism, there is an isomorphism
$\widehat{C F}\left(M \cup_{\phi} N\right) \simeq C F A(M) \widetilde{\otimes}_{A} C F A(N), \quad A=A(F)=A\left(-F^{\prime}\right)$

3 Goal: Construct a similar theory for $\boldsymbol{C F}^{-}$using the link surgery formula.

The knot surgery algebra

The knot surgery algebra

\mathbb{K} is an algebra over idempotent ring $\mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.

The knot surgery algebra

$\boldsymbol{1} \mathcal{K}$ is an algebra over idempotent ring $\mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
2 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.

The knot surgery algebra

$1 \mathcal{K}$ is an algebra over idempotent $\operatorname{ring} \mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
${ }_{2} \mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.
3 $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]$.

The knot surgery algebra

$1 \mathcal{K}$ is an algebra over idempotent ring $\mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
2 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.
3 $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]$.
4 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=0$.

The knot surgery algebra

$1 \mathcal{K}$ is an algebra over idempotent $\operatorname{ring} \mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
$2 \mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.
3 $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]$.
$4 \mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=0$.
$5 \mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right] \otimes\langle\sigma, \tau\rangle$.

The knot surgery algebra

$1 \mathcal{K}$ is an algebra over idempotent $\operatorname{ring} \mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
2 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.
3 $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]$.
4 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=0$.
$5 \mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right] \otimes\langle\sigma, \tau\rangle$.
б $\sigma \mathscr{U}=\mathscr{U} \sigma \quad \sigma \mathscr{V}=\mathscr{V} \sigma \quad \tau \mathscr{U}=\mathscr{V}^{-1} \tau \quad$ and $\quad \tau \mathscr{V}=\mathscr{U} \mathscr{V}^{2} \tau$.

The knot surgery algebra

$1 \mathcal{K}$ is an algebra over idempotent $\operatorname{ring} \mathbf{I}=\mathbf{I}_{0} \oplus \mathbf{I}_{1}$.
2 $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}[\mathscr{U}, \mathscr{V}]$.
$3 \mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]$.
$4 \mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{1}=0$.
$5 \mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{0}=\mathbb{F}\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right] \otimes\langle\sigma, \tau\rangle$.
6 $\sigma \mathscr{U}=\mathscr{U} \sigma \quad \sigma \mathscr{V}=\mathscr{V} \sigma \quad \tau \mathscr{U}=\mathscr{V}^{-1} \tau \quad$ and $\quad \tau \mathscr{V}=\mathscr{U} \mathscr{V}^{2} \tau$.
7 More symmetric description: write $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1} \cong \mathbb{F}\left[U, T, T^{-1}\right]$ where $U=\mathscr{U} \mathscr{V}$ and $T=\mathscr{V}$.

Surgery complexes as type- D modules

Surgery complexes as type- D modules

1 If L is an n-component link with framing Λ, the link surgery formula determines a type- D module

$$
\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}}, \quad \mathcal{L}_{n}:=\mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}
$$

Surgery complexes as type- D modules

1 If L is an n-component link with framing Λ, the link surgery formula determines a type- D module

$$
\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}}, \quad \mathcal{L}_{n}:=\mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}
$$

2 E.g. $L=K \subseteq S^{3}$ (knot) with framing λ :

Surgery complexes as type- D modules

1 If L is an n-component link with framing Λ, the link surgery formula determines a type- D module

$$
\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}}, \quad \mathcal{L}_{n}:=\mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}
$$

2 E.g. $L=K \subseteq S^{3}$ (knot) with framing λ :
3 $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{C F K}(K)$.

Surgery complexes as type- D modules

1 If L is an n-component link with framing Λ, the link surgery formula determines a type- D module

$$
\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}}, \quad \mathcal{L}_{n}:=\mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}
$$

2 E.g. $L=K \subseteq S^{3}$ (knot) with framing λ :
3 $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{C F K}(K)$.
4 Internal differential of $\mathcal{C F K}(K)$ contributes terms to δ^{1} which preserve idempotent.

Surgery complexes as type- D modules

1 If L is an n-component link with framing Λ, the link surgery formula determines a type- D module

$$
\mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}}, \quad \mathcal{L}_{n}:=\mathcal{K} \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} \mathcal{K}
$$

2 E.g. $L=K \subseteq S^{3}$ (knot) with framing λ :
3 $\mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{0} \cong \mathcal{X}_{\lambda}(K) \cdot \mathbf{I}_{1}$ are \mathbb{F} vector spaces spanned by free $\mathbb{F}[\mathscr{U}, \mathscr{V}]$ basis of $\mathcal{C F K}(K)$.
4 Internal differential of $\mathcal{C F} \mathcal{K}(K)$ contributes terms to δ^{1} which preserve idempotent.
5 Φ^{K} gives terms weighted by $\sigma . \Phi^{-K}$ gives terms weighted by τ.

Surgery complexes as type- D modules

Surgery complexes as type- D modules

Type- D relations follow from the following facts:
$1 \mathcal{C F} \mathcal{K}(K)$ is a chain complex.

Surgery complexes as type- D modules

Type- D relations follow from the following facts:
$1 \mathcal{C F K}(K)$ is a chain complex.
$2 \Phi^{K}$ and Φ^{-K} are chain maps.

Surgery complexes as type- D modules

Type- D relations follow from the following facts:
$1 \mathcal{C F K}(K)$ is a chain complex.
$2 \Phi^{K}$ and Φ^{-K} are chain maps.
$3 \Phi^{K}$ and Φ^{-K} satisfy the relations

$$
\begin{array}{cc}
\Phi^{K} \circ \mathscr{U}=\mathscr{U} \circ \Phi^{K} & \Phi^{K} \circ \mathscr{V}=\mathscr{V} \circ \Phi^{K} \\
\Phi^{-K} \circ \mathscr{U}=\mathscr{V}^{-1} \circ \Phi^{-K} & \Phi^{-K} \circ \mathscr{V}=\mathscr{U} \mathscr{V}^{2} \circ \Phi^{-K} .
\end{array}
$$

Surgery complexes as type- D modules

Surgery complexes as type- D modules

Example: 0-framed trefoil.

Surgery complexes as type- D modules

Example: 0-framed trefoil.

Surgery complexes as type- A modules

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.
2 E.g. $K=U$ (unknot) we get the type- A module of the solid torus, which we denote $\mathcal{K} \mathcal{D}_{\lambda}$.

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.
2 E.g. $K=U$ (unknot) we get the type- A module of the solid torus, which we denote $\mathcal{K}^{\mathcal{D}} \boldsymbol{D}_{\lambda}$.
$3 \mathbf{I}_{0} \cdot \mathcal{D}_{\lambda}=\mathbb{F}[[\mathscr{U}, \mathscr{V}]]$ and $\mathbf{I}_{1} \cdot \mathcal{D}_{\lambda}=\mathbb{F}\left[\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]\right]$.

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.
2 E.g. $K=U$ (unknot) we get the type- A module of the solid torus, which we denote $\mathcal{K}^{\mathcal{D}} \boldsymbol{D}_{\lambda}$.
$3 \mathbf{I}_{0} \cdot \mathcal{D}_{\lambda}=\mathbb{F}[[\mathscr{U}, \mathscr{V}]]$ and $\mathbf{I}_{1} \cdot \mathcal{D}_{\lambda}=\mathbb{F}\left[\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]\right]$.
4σ acts by the canonical inclusion.

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.
2 E.g. $K=U$ (unknot) we get the type- A module of the solid torus, which we denote $\mathcal{K} \mathcal{D}_{\lambda}$.
$3 \mathbf{I}_{0} \cdot \mathcal{D}_{\lambda}=\mathbb{F}[[\mathscr{U}, \mathscr{V}]]$ and $\mathbf{I}_{1} \cdot \mathcal{D}_{\lambda}=\mathbb{F}\left[\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]\right]$.
4σ acts by the canonical inclusion.
5τ acts by the algebra morphism $\mathscr{U} \mapsto \mathscr{V}^{-1}$ and $\mathscr{V} \mapsto \mathscr{U}^{2}$.

Surgery complexes as type- A modules

1 Can also view surgery complexes as type- A modules over \mathcal{K} and \mathcal{L}_{n}.
2 E.g. $K=U$ (unknot) we get the type- A module of the solid torus, which we denote $\mathcal{K}^{\mathcal{D}}{ }_{\lambda}$.
$3 \mathbf{I}_{0} \cdot \mathcal{D}_{\lambda}=\mathbb{F}[[\mathscr{U}, \mathscr{V}]]$ and $\mathbf{I}_{1} \cdot \mathcal{D}_{\lambda}=\mathbb{F}\left[\left[\mathscr{U}, \mathscr{V}, \mathscr{V}^{-1}\right]\right]$.
4σ acts by the canonical inclusion.
5τ acts by the algebra morphism $\mathscr{U} \mapsto \mathscr{V}^{-1}$ and $\mathscr{V} \mapsto \mathscr{U}^{V^{2}}$.
6 Can view \mathcal{D}_{λ} as an $A A$-bimodule

$$
\mathcal{K}\left[\mathcal{D}_{\lambda}\right]_{\mathbb{F}[U]},
$$

where U acts by $\mathscr{U} \mathscr{V}$. (Type- A modules for other knots and links are similar).

Relating type- D to surgery formula

Relating type- D to surgery formula

1 Manolescu-Ozsváth surgery formula is recovered as follows:

$$
\mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}} \boxtimes\left(\mathcal{K}^{\mathcal{D}_{0}}\right) \boxtimes \cdots \boxtimes\left(\mathcal{K}^{\mathcal{D}} \mathcal{D}_{0}\right) .
$$

Relating type- D to surgery formula

1 Manolescu-Ozsváth surgery formula is recovered as follows:

$$
\mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}} \boxtimes\left(\mathcal{K}^{\mathcal{D}_{0}}\right) \boxtimes \cdots \boxtimes\left(\mathcal{K}^{\mathcal{D}} \mathcal{D}_{0}\right) .
$$

2 The right hand side has an action of $\mathbb{F}\left[U_{1}, \ldots, U_{n}\right]$ (one U_{i} for each \mathcal{D}_{0}).

Relating type- D to surgery formula

1 Manolescu-Ozsváth surgery formula is recovered as follows:

$$
\mathcal{C}_{\Lambda}(L) \cong \mathcal{X}_{\Lambda}(L)^{\mathcal{L}_{n}} \boxtimes\left({ }_{\mathcal{K}} \mathcal{D}_{0}\right) \boxtimes \cdots \boxtimes\left(\mathcal{K}^{\mathcal{D}}{ }_{0}\right) .
$$

2 The right hand side has an action of $\mathbb{F}\left[U_{1}, \ldots, U_{n}\right]$ (one U_{i} for each \mathcal{D}_{0}). This reflects the fact that the Manolescu-Ozsváth complex is a module over $\mathbb{F}\left[U_{1}, \ldots, U_{n}\right]$.

Turning type- D outputs to type- A inputs

Turning type- D outputs to type- A inputs

1 An algebraically define module

$$
\mathcal{K} \otimes \mathcal{K}\left[\mathbb{I}^{\ni}\right]
$$

Turning type- D outputs to type- A inputs

1 An algebraically define module

$$
\mathcal{K} \otimes \mathcal{K}\left[\mathbb{I}^{\ni}\right]
$$

2 Turns a type- D output of \mathcal{K} into a type- A input.

Turning type- D outputs to type- A inputs

1 An algebraically define module

$$
\mathcal{K} \otimes \mathcal{K}\left[\mathbb{I}^{\ni}\right]
$$

2 Turns a type- D output of \mathcal{K} into a type- A input.
3 Compatible with gluing along torus boundary components.

Turning type- D outputs to type- A inputs

1 An algebraically define module

$$
\mathcal{K} \otimes \mathcal{K}\left[\mathbb{I}^{\ni}\right]
$$

2 Turns a type- D output of \mathcal{K} into a type- A input.
3 Compatible with gluing along torus boundary components.
4 Note \mathbb{I}^{\ni} is infinite dimensional.

Turning type- D outputs to type- A inputs

1 An algebraically define module

$$
\mathcal{K} \otimes \mathcal{K}\left[\mathbb{I}^{\ni}\right]
$$

2 Turns a type- D output of \mathcal{K} into a type- A input.
3 Compatible with gluing along torus boundary components.
4 Note \mathbb{I}^{\ni} is infinite dimensional. Hence our type- A modules are infinitely generated.

Changes of parametrization

1 Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^{2} \times[0,1]$ with different boundary parametrizations).

Changes of parametrization

1 Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^{2} \times[0,1]$ with different boundary parametrizations).
2 The Hopf link has complement $\mathbb{T}^{2} \times[0,1]$. We may view the Hopf link complement as the mapping cylinder of a diffeomorphism which sends $\mu \mapsto \lambda$ and $\lambda \mapsto-\mu$.

Changes of parametrization

1 Changing boundary parametrization can be achieved by gluing in mapping cylinders (i.e. $\mathbb{T}^{2} \times[0,1]$ with different boundary parametrizations).
2 The Hopf link has complement $\mathbb{T}^{2} \times[0,1]$. We may view the Hopf link complement as the mapping cylinder of a diffeomorphism which sends $\mu \mapsto \lambda$ and $\lambda \mapsto-\mu$.
3 The Hopf link gives a $D A$-bimodule $\mathcal{K} \mathcal{H}^{\mathcal{K}}$ which has the effect of changing the boundary parametrization.

Changes of parametrization

1 A schematic of $\mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$.

Changes of parametrization

1 A schematic of $\mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$.

Changes of parametrization

1 A schematic of $\mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$.

2 Arrow $a \mid b$ from x to y means $\delta_{2}^{1}(a, x)$ has summand $y \mid b$.

Changes of parametrization

1 A schematic of $\mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$.

2 Arrow $a \mid b$ from x to y means $\delta_{2}^{1}(a, x)$ has summand $y \mid b$.
3 Top row $\mathbf{I}_{0} \cdot \mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$ and bottom row $\mathbf{I}_{1} \cdot \mathcal{K} \mathcal{H}^{\mathcal{K}} \cdot \mathbf{I}_{0}$.

Changes of parametrization

1 Algebraically, recovers the "dual knot" formulas of Eftekhary and Hedden-Levine, which compute $\mathcal{C F K}\left(S_{n}^{3}(K), \mu\right)$ in terms of $\mathcal{C F K}(K)$, for a knot $K \subseteq S^{3}$.

Changes of parametrization

1 Algebraically, recovers the "dual knot" formulas of Eftekhary and Hedden-Levine, which compute $\mathcal{C F K}\left(S_{n}^{3}(K), \mu\right)$ in terms of $\mathcal{C F} \mathcal{K}(K)$, for a knot $K \subseteq S^{3}$. (proven using different techniques).

More diffeomorphisms

1 Recall elliptic involution $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is gotten by identifying $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$.

More diffeomorphisms

1 Recall elliptic involution $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is gotten by identifying $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Then $\mathcal{E}(z)=-z$.

More diffeomorphisms

1 Recall elliptic involution $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is gotten by identifying $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Then $\mathcal{E}(z)=-z$.
2 Mapping cylinders of identity map id, $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$:

More diffeomorphisms

1 Recall elliptic involution $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is gotten by identifying $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Then $\mathcal{E}(z)=-z$.
2 Mapping cylinders of identity map id, $\mathcal{E}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$:

(Remove neighborhoods of arrow labeled components to get $\mathbb{T}^{2} \times[0,1]$).

More diffeomorphisms

1 Induced $D A$-bimodules by these cylinders are simple to describe:

More diffeomorphisms

1 Induced $D A$-bimodules by these cylinders are simple to describe:
$\boldsymbol{2}$ id induces identity bimodule $\mathcal{K}[\mathbb{I}]^{\mathcal{K}}$.

More diffeomorphisms

1 Induced $D A$-bimodules by these cylinders are simple to describe:
2 id induces identity bimodule $\mathcal{K}[\mathbb{I}]^{\mathcal{K}}$.
$3 \mathcal{E}$ induces simple symmetry of the algebra. On $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}$ and $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{0}$:

$$
\mathscr{U} \leftrightarrow \mathscr{V} \quad \sigma \leftrightarrow \tau .
$$

More diffeomorphisms

1 Induced $D A$-bimodules by these cylinders are simple to describe:
2 id induces identity bimodule $\mathcal{K}[\mathbb{I}]^{\mathcal{K}}$.
$3 \mathcal{E}$ induces simple symmetry of the algebra. On $\mathbf{I}_{0} \cdot \mathcal{K} \cdot \mathbf{I}_{0}$ and $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{0}$:

$$
\mathscr{U} \leftrightarrow \mathscr{V} \quad \sigma \leftrightarrow \tau .
$$

On $\mathbf{I}_{1} \cdot \mathcal{K} \cdot \mathbf{I}_{1}$:

$$
U \leftrightarrow U \quad \mathscr{V} \leftrightarrow \mathscr{V}^{-1}
$$

Applications

1 Lattice homology $\mathbb{H} \mathbb{F}$ is a combinatorial homology theory for plumbed 3-manifolds.

Applications

1 Lattice homology $\mathbb{H} \mathbb{F}$ is a combinatorial homology theory for plumbed 3-manifolds.
2 Due to Némethi.

Applications

1 Lattice homology $\mathbb{H} \mathbb{F}$ is a combinatorial homology theory for plumbed 3-manifolds.
2 Due to Némethi. Formalizes computation of Ozsváth and Szabó of $H F^{-}$of some plumbed 3-manifolds.

Applications

1 Lattice homology $\mathbb{H} \mathbb{F}$ is a combinatorial homology theory for plumbed 3-manifolds.

2 Due to Némethi. Formalizes computation of Ozsváth and Szabó of $H F^{-}$of some plumbed 3-manifolds.
3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2 -spheres.

Applications

1 Lattice homology $\mathbb{H} \mathbb{F}$ is a combinatorial homology theory for plumbed 3-manifolds.
2 Due to Némethi. Formalizes computation of Ozsváth and Szabó of $H F^{-}$of some plumbed 3-manifolds.
3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2-spheres.
4 In this case, Y may be described as Dehn surgery on a connected sum of Hopf links.

Applications

1 Lattice homology $\mathbb{H I F}$ is a combinatorial homology theory for plumbed 3-manifolds.
2 Due to Némethi. Formalizes computation of Ozsváth and Szabó of $H F^{-}$of some plumbed 3-manifolds.
3 Main case in literature: boundary of a plumbing of a tree of disk bundles over 2-spheres.
4 In this case, Y may be described as Dehn surgery on a connected sum of Hopf links.
5 Known to be isomorphic to Heegaard Floer homology for many families of plumbed 3-manifolds. (Némethi, Ozsváth, Stipsicz, Szabó). The isomorphism in general was a conjecture.

Applications

Theorem (Z.)

Lattice homology and Heegaard Floer homology are isomorphic as $\mathbb{F}[[U]]$-modules.

Applications

Theorem (Z.)

Lattice homology and Heegaard Floer homology are isomorphic as $\mathbb{F}[[U]]$-modules.

Gradings is in progress, but is (slightly technical) bookkeeping.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

Definition

$1 A \mathbb{Q} H S^{3}$ is an L-space if

$$
H F^{-}(Y, \mathfrak{s}) \cong \mathbb{F}[U]
$$

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.

Final Application (joint w/ M. Borodzik, B. Liu)

Definition

$1 A \mathbb{Q} H S^{3}$ is an L-space if

$$
H F^{-}(Y, \mathfrak{s}) \cong \mathbb{F}[U]
$$

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.
2 $L \subseteq S^{3}$ is an L-space link if all sufficiently large surgeries are L-spaces.

Final Application (joint w/ M. Borodzik, B. Liu)

Definition

$1 A \mathbb{Q} H S^{3}$ is an L-space if

$$
H F^{-}(Y, \mathfrak{s}) \cong \mathbb{F}[U]
$$

for each $\mathfrak{s} \in \operatorname{Spin}^{c}(Y)$.
2 $L \subseteq S^{3}$ is an L-space link if all sufficiently large surgeries are L-spaces.
3 An algebraic link is the intersection of a the boundary of a small ball centered at an isolated complex curve singularity in \mathbb{C}^{2}.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

Theorem (Gorsky-Némethi (links), Hedden (knots))
Algebraic links are L-space link.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{C F K}(K)$ is a staircase complex.

Final Application (joint w/ M. Borodzik, B. Liu)

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{C F K}(K)$ is a staircase complex.

Final Application (joint w/ M. Borodzik, B. Liu)

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{C F K}(K)$ is a staircase complex.

1 Important since these complexes are computable from their Alexander polynomials.

Final Application (joint w/ M. Borodzik, B. Liu)

Ozsváth and Szabó showed that if K is an L-space knot, then $\mathcal{C F} \mathcal{K}(K)$ is a staircase complex.

1 Important since these complexes are computable from their Alexander polynomials.
2 An open question is how to properly generalize this result to links.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology $\mathcal{C F} \mathcal{L}(L)$ over

$$
\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]
$$

$$
n=|L| .
$$

Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology $\mathcal{C F} \mathcal{L}(L)$ over

$$
\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]
$$

$$
n=|L|
$$

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{H F L}(L)$ is torsion free as an $\mathbb{F}[U]$-module, where U acts by $\mathscr{U}_{i} \mathscr{V}_{i}$ for some i.

Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology $\mathcal{C F} \mathcal{L}(L)$ over

$$
\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]
$$

$$
n=|L|
$$

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{H F L}(L)$ is torsion free as an $\mathbb{F}[U]$-module, where U acts by $\mathscr{U}_{i} \mathscr{V}_{i}$ for some i. (All i have the same action on homology).

Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology $\mathcal{C F} \mathcal{L}(L)$ over

$$
\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]
$$

$$
n=|L|
$$

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{H F L}(L)$ is torsion free as an $\mathbb{F}[U]$-module, where U acts by $\mathscr{U}_{i} \mathscr{V}_{i}$ for some i. (All i have the same action on homology).
3 For L-space knots, $\mathcal{C F} \mathcal{K}(K)$ may equivalently be described as a free-resolution of $\mathcal{H} \mathcal{F K}(K)$ over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$.

Final Application (joint w/ M. Borodzik, B. Liu)

1 We consider the version of link Floer homology $\mathcal{C F} \mathcal{L}(L)$ over

$$
\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]
$$

$$
n=|L| .
$$

2 Using the large surgery formula, we see L is an L-space link if and only if $\mathcal{H F L}(L)$ is torsion free as an $\mathbb{F}[U]$-module, where U acts by $\mathscr{U}_{i} \mathscr{V}_{i}$ for some i. (All i have the same action on homology).
3 For L-space knots, $\mathcal{C F} \mathcal{K}(K)$ may equivalently be described as a free-resolution of $\mathcal{H} \mathcal{F K}(K)$ over $\mathbb{F}[\mathscr{U}, \mathscr{V}]$. Note $\mathcal{H} \mathcal{F K}(K)$ may be viewed as a monomial ideal in $\mathbb{F}[\mathscr{U}, \mathscr{V}]$.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^{3}$ is an algebraic link, then $\mathcal{C F L}(L)$ is homotopy equivalent over $\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]$ to a free-resolution of $\mathcal{H} \mathcal{F}(L)$.

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^{3}$ is an algebraic link, then $\mathcal{C F L}(L)$ is homotopy equivalent over $\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]$ to a free-resolution of $\mathcal{H} \mathcal{F}(L)$.
$1 \mathcal{H} \mathcal{F L}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^{3}$ is an algebraic link, then $\mathcal{C F L}(L)$ is homotopy equivalent over $\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]$ to a free-resolution of $\mathcal{H} \mathcal{F} \mathcal{L}(L)$.
$1 \mathcal{H} \mathcal{F L}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.
2 In particular, $\mathcal{H F L}(L)$ contains all information, and is usually much smaller.

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^{3}$ is an algebraic link, then $\mathcal{C F L}(L)$ is homotopy equivalent over $\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]$ to a free-resolution of $\mathcal{H} \mathcal{F} \mathcal{L}(L)$.
$1 \mathcal{H} \mathcal{F L}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.
2 In particular, $\mathcal{H F L}(L)$ contains all information, and is usually much smaller.
$3 \mathcal{H F L}(T(n, n))$ has n generators.

Final Application (joint w/ M. Borodzik, B. Liu)

By developing a version of lattice homology for links in plumbed 3-manifolds, we are able to prove the following:

Theorem (Borodzik, Liu, Z.)

If $L \subseteq S^{3}$ is an algebraic link, then $\mathcal{C F L}(L)$ is homotopy equivalent over $\mathbb{F}\left[\mathscr{U}_{1}, \mathscr{V}_{1}, \ldots, \mathscr{U}_{n}, \mathscr{V}_{n}\right]$ to a free-resolution of $\mathcal{H} \mathcal{F} \mathcal{L}(L)$.
$1 \mathcal{H} \mathcal{F}(L)$ is computable from the Alexander polynomials of L and its sublinks due to work of Gorsky and Némethi.
2 In particular, $\mathcal{H F L}(L)$ contains all information, and is usually much smaller.
$3 \mathcal{H F L}(T(n, n))$ has n generators.
$4 \mathcal{C F L}(T(3,3))$ and $\mathcal{C F L}(T(4,4))$ have 18 and 68 , generators, resp.

Final Application (joint w/ M. Borodzik, B. Liu)

Final Application (joint w/ M. Borodzik, B. Liu)

Examples:

Final Application (joint w/ M. Borodzik, B. Liu)

Examples:

Thanks for listening!

