
LECTURES ON EXACT TRIANGLES IN HEEGAARD FLOER

THEORY

IAN ZEMKE

Ozsváth and Szabó proved a surgery exact triangle:

· · · → ĤF (Y ) → ĤF (Yλ(K)) → ĤF (Yλ+1(K)) → · · ·
for Heegaard Floer homology. Our goal is to understand its proof and a few applica-
tions. We will also discuss the knot surgery formula, the algebra of L-space knots and
links, and finally discuss briefly Heegaard Floer homology for plumbed 3-manifolds.
Ozsváth and Szabó have written additional introductory surveys, which are also an

excellent resource and overlap with some of the below topics. See
https://web.math.princeton.edu/~petero/

to find these surveys.

1. Lecture 1: Type-D structures and twisted complexes

1.1. Dehn surgery. Dehn surgery is one of the most fundamental operations in 3-
manifold topology. Given a knot K, we remove a regular neighborhood of K, denoted
ν(K) ∼= S1 ×D2, and then reglue it using a diffeomorphism of ∂S1 ×D2 = T2.

Note that gluing S1 ×D2 can be accomplished by gluing in two steps. View S1 as
[0, 1]/(0 ∼ 1). First glue in [0, 1/2]×D2 (a thickened disk). For this, we only need to
know where λ := {0} × D2 is sent, which we can encode as a simple closed curve on
T2 = ∂S3 \ ν(K). We call this a framing of the knot.

Note that after gluing in {0, 1/2} ×D2, we are left with a manifold with boundary
S2. Gluing in {1/2, 1} × D2 ∼ B3 amounts to gluing B3 to the resulting boundary.
Up to homeomoprhism, the gluing map for {1/2, 1} ×D2 (after having already glued
{0, 1/2} ×D2) does not affect the resulting 3-manifold up to homeomorphism by the
Alexander trick (see Exercise 1.1). In particular, the only data needed to determine
the surgery is the longitude.

If λ is a choice of framing, we write Yλ(K) for λ framed surgery.

Exercise 1.1. Prove that any homeomorphism f : S2 → S2 extends to a homeomor-
phism of B3 with itself. (In fact, your argument should in fact show that any self
homeomorphism of Sn extends to a self-homeomorphism of Bn+1). This is typically
called the Alexander trick.

Remark 1.2. The orientation of K does not affect the Dehn surgery Yλ(K).

In these lectures, we focus on the case that λ is a Morse framing (also called a
longitudinal framing), which is when the map

H1(T2) → H1(ν(K))

maps λ to a generator of H1(ν(K)). Typically if K is oriented, we will require the
longitude to map to the corresponding generator of H1(ν(K)).
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Note that given an orientation of K, there is a canonical meridian µ ∈ H1(∂ν(K)),
whose orientation is given by the right hand rule. Hence, given an oriented knot K
with a Morse framing λ (chosen compatibly with the orientation of K), there is another
framing λ+ 1 obtained by adding µ to λ.

Exercise 1.3. Show that although the choice of orientation does affect the meridian of
K, the choice of orientation does not affect the surgery Yλ+1(K).

Remark 1.4. We often say that Y itself is the result of “∞-framed” surgery on K
(cutting out a neighborhood of K and regluing using the identity map). The reason is
because there is a more general operation called rational surgery. Given a knot K in
S3, there is a preferred longitude, called the Seifert longitude, which spans the kernel
of the map H1(∂ν(K)) → H1(S

3 \ ν(K)). Given p and q coprime, we define the p/q
framed surgery as Dehn surgery where the longitude intersects the Seifer longitude p
times and the meridian q times. With this notation, regluing ν(K) using the identity
corresponds to doing 1/0 = ∞ framed surgery.

Dehn surgery is a fundamental operation in 3-manifold theory. The following theorem
tells us why:

Theorem 1.5 (Lickorish-Wallace 60’s). Every closed, oriented 3-manifold can be ob-
tained by Dehn surgery on a link in S3.

1.2. Statement of the exact triangle. In this lecture, we are interested in proving
the surgery exact triangle of Ozsváth and Szabó:

Theorem 1.6. If K is a knot in Y with longitudinal framing λ, then there is an exact
triangle

· · · → ĤF (Y ) → ĤF (Yλ(K)) → ĤF (Yλ+1(K)) → · · · .

The exact triangle also holds for HF− if we complete by tensoring with the power
series ring F[[U ]].

Ozsváth and Szabó prove the exact triangle by exhibiting a homotopy equivalence

ĈF (Y ) ≃ Cone
(
FW : ĈF (Yλ(K)) → ĈF (Yλ+1(K))

)
. (1.1)

(FW denotes the “cobordism map”, which we will discuss later).

Exercise 1.7. Recall that if f : X → Y is a chain map between chain complexes, then
the mapping cone of f , denoted Cone(f), is defined to be the chain complex X ⊕ Y ,
equipped with the differential (

∂X 0
f ∂Y

)
.

Show that this is a differential, and that there is a short exact sequence

0 → Y → Cone(f : X → Y ) → X → 0.

The snake lemma gives a long exact sequence on homology groups. Show that the
connecting homomorphism is H(f), the map on homology induced by f .

We now try to understand the Heegaard diagrams of the manifolds appearing in the
statement about the exact triangles.
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We pick a Heegaard diagram (Σ,α,β∞) for Y . We assume that the Heegaard dia-
gram is chosen so that K may be embedded on Σ, and there is a distinguished curve
β∞ which intersects K in a single point. Note that K may intersect α many times,
and we have no restriction here. The Heegaard surface Σ determines a framing for K,
which we assume coincides with λ. Let βλ be a curve parallel to K, and let βλ+1 be
obtained by twisting along a meridian of K, once (the sign of the twist is important).
See Figure 1.1. We let βλ and βλ+1 be the attaching curves obtained by replacing
β∞ ∈ β∞ with βλ and βλ+1, respectively, but keeping the other curves.

We observe that (Σ,α,βλ) represents Yλ(K) and (Σ,α,βλ+1) represents Yλ+1(K).

β∞

βλ

βλ+1

w

Figure 1.1. The attaching curves β∞, βλ and βλ+1.

Firstly, note that each of ĈF (Σ,β∞,βλ), ĈF (Σ,βλ,βλ+1), ĈF (Σ,βλ+1,β∞) is iso-
morphic to

Λg−1,

as a graded group. (The exterior algebra on g − 1 generators).

Exercise 1.8. Show that the differential vanishes.

In particular, we obtain canonical top degree intersection points Θ∞,λ, Θλ,λ+1 and
Θλ+1,∞.
Using the above cycles, we can define a map

fα,βλ,βλ+1
(−,Θλ,λ+1) : ĈF (α,βλ) → ĈF (α,βλ+1).

Lemma 1.9. The map fα,βλ,βλ+1
(−,Θλ,λ+1) is a chain map.

Proof. This follows from the A∞-relations for holomorphic triangles, which imply

∂fα,βλ,βλ+1
(x, y) + fα,βλ,βλ+1

(∂x, y) + fα,βλ,βλ+1
(x, ∂y) = 0

for any x and y. The main claim now follows from the fact that ∂Θλ,λ+1 = 0. □

Next, we define a map

Φ: ĈF (α,β∞) → Cone(ĈF (α,βλ) → ĈF (α,βλ+1)),
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w

β∞

βλ

βλ+1

w

β∞

βλ

βλ+1

Figure 1.2. The figure (T2, β∞, βλ, βλ+1). Two triangle classes are shown.

via the following diagram:

ĈF (α,β∞)

ĈF (α,βλ) ĈF (α,βλ+1)

fα,β∞,βλ
(−,Θ) fα,β∞,βλ,βλ+1

(−,Θ,Θ)

fα,βλ,βλ+1
(−,Θ)

Lemma 1.10. The map Φ is a chain map.

Proof. Using associativity of holomorphic quadrilaterals, this reduces to the claim that
fβ∞,βλ,βλ+1

(Θ,Θ) = 0. The claim holds for arbitrary genus g(Σ), but we are going to
focus first on the case that g = 1. In this case, there are two triangles which make
canceling contribution. See Figure 1.2.

□

By similar logic, there is a chain map Ψ in the opposite direction. We now consider
the compositions Φ ◦Ψ and Ψ ◦Φ. Since the polygon maps require attaching curves to
be transverse, we write β′

∞, β′
λ and β′

λ+1 for suitable small translates of these curves.

Lemma 1.11. The compositions Φ ◦Ψ and Ψ ◦Φ are chain homotopic to the identity.

Proof. We compute Ψ ◦ Φ first. Associativity shows that the composition of the two
maps is chain homotopic to

fα,β∞,β′
∞(−, fβ∞,βλ,βλ+1,β′

∞(Θ,Θ,Θ)).

We claim that fβ∞,βλ,βλ+1,β′
∞(Θ,Θ,Θ) = Θβ∞,β′

∞ . This quadrilateral count is verified
in Figure 1.3. Together with the subsequent lemma, the proof is complete. □

Lemma 1.12. If (Σ,α,β,β′) is a Heegaard triple where β′ are “small-translates” of
β, then the map

x 7→ fα,β,β′(x,Θβ,β′)
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is a homotopy equivalence.

We will not give the proof, but we will give a moral reason for the proof. This
is because given x ∈ Tα ∩ Tβ, there is a canonical “nearest-point” xnp ∈ Tα ∩ Tβ′ .
Furthermore, there are canonical “small-triangle” classes which clearly have a unique
representative. See Figure 1.3. This argument maps it look like fα,β,β′(x,Θβ,β′) = xnp.
A-priori there could be more triangles (e.g. with larger area on Σ), but it turns out one
can show using Floer theoretic arguments that fα,β,β′(−,Θβ,β′) is chain homotopic to
the “nearest-point map”. Alternatively one can use a filtration argument using areas
of triangles. We will not explore the details here. Compare Remark 2.11, below.
A very similar argument to the above shows that Φ ◦Ψ ≃ id.

Exercise 1.13. Verify that Φ ◦Ψ ≃ id.

After all of this, we are left with the following question:

w

β∞

βλ

βλ+1

β′∞

Figure 1.3. A rectangle on (T2, β∞, βλ, βλ+1, β
′
∞).

Question 1.14. Why does this work? What is the most fundamental statement about
the Lagrangians β∞, βλ and βλ+1 which encodes the mapping cone formula and all of
the model computations?

We will now state the answer, which we will unpack and prove in the next lecture:

Theorem 1.15. There is a homotopy equivalence in the Fukaya category of T2:

β∞ ≃ Cone(θ : βλ → βλ+1).

2. Lecture 2: Twisted complexes and the exact triangle

In this lecture, we are going to try to make sense of the following statement:

Theorem 2.1. There is a homotopy equivalence in the Fukaya category of T2:

β∞ ≃ Cone(θ : βλ → βλ+1).

2.1. Fukaya category. If (W,ω) is a symplectic manifold then there is an A∞-category
Fuk(W ). (Here, we are assuming that suitably topological assumptions are satisfied to
prevent pathological bubbling, but we will not worry about spelling details out here).
We refer the reader to [Aur13] for a better introduction, and to [Sei08] for an excellent
systematic treatment.
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To establish the notation. A Lagrangian L ⊆ W is a half-dimensional submanifold
such that ω|L = 0. If L and L′ are transverse Lagrangians, then

Hom(L,L′) = HomFuk(L,L
′) := CF (L,L′),

which is the vector space (over F = Z/2) generated by intersection points. The spaces
Hom(L,L′) are themselves chain complexes, where the y-component of ∂(x) is equal
to the count of pseudo-holomorphic strips u : D → W such that u(−i) = x, u(i) = y,
and such that

u(S1 ∩ {ℜ(z) > 0}) ⊆ L and u(S1 ∩ {ℜ(z) < 0}) ⊆ L′.

Additionally we only want to count curves u which are part of a 1-dimensional moduli
space. Such moduli spaces have a natural R-action (by translation in the source), which
we quotient by to get a number in Z/2. The expected dimension of the moduli space
is encoded by an algebro-topological quantity called the Maslov index, which we will
not talk about here.

There is a natural “composition” map

µ2 : Hom(L′, L′′)⊗Hom(L,L′) → Hom(L,L′′)

which counts pseudo-holomorphic triangles in 0-dimensional moduli spaces. Here the z
component of µ2(x, y) is the count of triangles of index 0 (i.e. in 0-dimensional moduli
spaces) with x, y and z along the boundary.
We should think of µ2 as being parallel to “composition” in ordinary categories, such

as the category of vector spaces, where we can compose two functions. For morphisms
of vector spaces, we have strict associativity, i.e.

f ◦ (g ◦ h) = (f ◦ g) ◦ h,

however this fails for holomorphic polygons. Instead, we have associativity only up to
chain homotopy. For example, we have

µ2(µ2(x⊗ y)⊗ z) + µ2(x⊗ µ2(y ⊗ z)) + µ3(∂(x⊗ y ⊗ z)) + ∂µ3(x⊗ y ⊗ z) = 0

where

∂(x⊗ y ⊗ z) = ∂(x)⊗ y ⊗ z + x⊗ ∂(y)⊗ z + x⊗ y ⊗ ∂(z).

Typically we write µ1 instead of ∂, for aesthetic reasons.
In general, we have the A∞ relations for any number of inputs, which read∑

1≤i<j≤n+1

µn−j+i(x1, . . . , xi−1, µj−i+1(xi, . . . , xj), xj+1, . . . , xn) = 0.

2.2. Twisted complexes. Our goal is to understand how to do homological algebra
inside of the Fukaya category, i.e. we wish to define a chain complex of Lagrangians.
More generally, if C is a category, we would naturally like to understand the following
question:

Question 2.2. What is a chain complex in the category C?

Remark 2.3. For the purposes of this note, we assume that we work over the field of 2
elements (to simplify signs).
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If C is a category of R-modules for some ring R, we already knot the answer. It
is a collection of spaces Cn and maps ∂n : Cn → Cn−1 such that ∂n−1 ◦ ∂n = 0. By
considering C =

⊕
nCn, we could instead just consider a pair (C, ∂) where ∂ : C → C

is an endormophism such that ∂2 = 0.
Note that many constructions from homological algebra do not require that C ac-

tually be a vector space. An exception is taking homology H∗(C) requires that we
are working with vector spaces, ker / im. Note that “computing” homology could be
rephrased by asking for which groups G is H∗(C) isomorphic to. Equivalently, if we
equip G with vanishing differential, we can rephrase this problem as asking for which
chain complexes (C ′, ∂′) is there an isomorphism H∗(C

′, ∂′) ∼= H∗(C, ∂). This is an
equivalence relation on chain complexes.
Note that there is a stronger equivalence relation between chain complexes called

homotopy equivalence. Here, C ≃ C ′ if we have chain maps f : C → C ′ and g : C → C ′

which are chain maps and f ◦ g = id+∂h + h∂ and g ◦ f = id+∂j + j∂. Note that
C ≃ C ′ implies that H∗(C) ≃ H∗(C

′), so this can be thought of as a better behaved
version of “computing homology”. If we think about this, we observe that the fact that
C and C ′ are themselves groups is not needed for this definition. Rather, the above
statement is merely a consequence of the fact that Hom(C,C ′) (the set of linear maps
from C to C ′) is itself a chain complex.

Exercise 2.4. If C and C ′ are chain complexes, then Hom(C,C ′) is a chain complex
with differential ∂(f) = ∂C′◦f+f ◦∂C . (Note that when working over characteristic not
equal to 2, there is a sign depending on the grading of f). Show that H∗(Hom(C,C ′))
is exactly the set of chain maps, modulo chain homotopy.

If C is a category, then we could define a chain complex in C to be a collection of
objects Cn, together with morphisms ∂n (in the category) such that ∂n−1 ◦ ∂n = 0. It
turns out that this not quite general enough for our purposes. One issue is that in an
A∞-category like the Fukaya category, where we have morphisms, but not a natural
notion of “compositions”. Rather, we have “higher compositions” µj , and all of these
must be taken into account.
Our final notion of a “chain complex in category C” will be called a twisted complex in

C. We now embark on this notion. Suppose C is an A∞-category. For convenience, we
assume the morphism spaces are vector spaces over F = Z/2. The additive enlargement
ΣC is as follows (see [Sei08, Sections 3k,l] for further details). Objects of ΣC consist
of formal, finite collections of objects from C with formal grading shifts, and repeated
elements allowed. More formally, one defines objects of the category to consist of
collections (Xi, Vi)i∈I such that I is a finite index set, each Xi is an object of C and
each Vi is a finite dimensional, graded vector space. If X and Y are objects of ΣC, then
Hom(X,Y ) is defined to be “matrices” of morphisms between the objects and vector
spaces of X and Y . I.e. if X = (Xi, Vi)i∈I and Y = (Yj ,Wj)j∈J are objects of ΣC,
then Hom(X,Y ) is defined to be the direct sum over (i, j) ∈ I × J of Hom(Vi,Wj) ⊗
HomA(Xi, Yj). It is straightforward to verify that ΣC is naturally an A∞-category.

Definition 2.5. A twisted complex in C consists of an object X of ΣC, together with
an endomorphism δX ∈ Hom(X,X) of degree −1, such that∑

n≥1

µΣC
n (δX , . . . , δX) = 0. (2.1)
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Note that some assumption is necessary to ensure that the above sum is finite, and
this is usually in the definition of the category. Different assumptions are useful in
different contexts, so we will not make this formal. Note that if µΣC

n = 0 for sufficiently
large n, then finiteness is achieved.
Twisted complex Tw(C) naturally form an A∞-category. Morphisms are the same

as in ΣC. Given a composable sequence of morphisms

X0 · · · Xn,
f0,1 fn−1,n

one defines

µTw
n (f0,1, . . . , fn−1,n)

=
∑

i0,...,in≥0

µΣC
n+i0+···+in(

i0︷ ︸︸ ︷
δX0 , . . . , δX0 , f0,1,

i1︷ ︸︸ ︷
δX1 , . . . , δX1 , . . . , fn−1,n,

in︷ ︸︸ ︷
δXn , . . . , δXn)

Exercise 2.6. Prove that if X0 and X1 are twisted complexes, then Hom(X0, X1) is a
chain complex. More generally, verify that if C is an A∞ category, then Tw(C) is an
A∞-category. If C is an A∞-category which has µj = 0 for j > 2 (i.e. each Hom(X,Y )
is a chain complex, composition is strictly associative and satisfies the Leibniz rule),
then show that Tw(C) has the same property.

If f : X → Y is a morphism of twisted complexes which satisfies µ1(f) = 0, then we
may naturally construct the mapping cone Cone(f). The underlying space of the cone
is the union of the elements of X, and δX is obtained by the union of δX , δY and f
(each viewed as a set of component maps ranging over the components Xi and Yj of
X and Y ).

Exercise 2.7. Show that if f : X → Y is a map of twisted complexes which satisfies
µ1(f) = 0, then Cone(f) is a twisted complex (in particular, Equation (2.1) is satisfied).

Twisted complexes appear very frequently in homological algebra. Here are a few
important examples:

(1) Chain complexes are twisted complexes of modules.
(2) Twisted complexes over an algebra (see next section), naturally encode projec-

tive dg-modules over that algebra.
(3) Twisted complexes in the Fukaya category are the natural home of our surgery

exact triangles.
(4) Twisted complexes of vector bundles are an important part of K-theory.

2.2.1. Twisted complexes over algebras. We now discuss twisted complexes over alge-
bra. These encode familiar notions from homological algebra, and should be thought
of as “projective chain complexes”.

By an idempotent ring i we mean a finite direct product of the rings F. Suppose that
A is an A∞-algebra over an idempotent ring i, then we may view A as an A∞ category
whose objects are idempotents i ∈ i, and such that Hom(i, j) = i · A · j. The fact that
A is an A∞-algebra is equivalent to the A∞-category relations.

It is helpful to discuss the category of twisted complexes in more detail. These take
the form of a formal collection of idempotents (with grading shifts). Equivalently, we
can think of such a collection as a finitely generated right i-module X. We have a
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collection of morphisms fi,j , ranging over the generators. We can package this as a
map

δ1 : X → A⊗i X.

It is helpful to define a map δn : X → A⊗n ⊗X as the n-fold iterate of δ1. Then the
twisted complex relation is equivalent to∑

n≥1

(µn ⊗ idX) ◦ δn = 0.

Schematically,

∑
n≥1

X

δn

µn

A X

= 0

In all cases, there is a well-defined differential on A⊗i X, given by

∂(a⊗ x) =
∑
n≥0

(µn+1(a,−)⊗ idX)(δ
n(x)),

(where δ0 = id), or schematically

∑
n≥0

A X

δn

µn+1

A X

Since A⊗i X embeds as a direct sum (over i) of copies of A, so we should think of
a type-D structure as a projective A-module.
It is helpful to think about this when A is an algebra, resp. dg-algebra:

(1) If A is an algebra, then the type-D relations are just

(µ2 ⊗ id) ◦ (idA⊗δ1) ◦ δ1 = 0.

(2) If A is a dg-algebra, then

(µ1 ⊗ idX) ◦ δ + (µ2 ⊗ id) ◦ (idA⊗δ1) ◦ δ1 = 0.

Remark 2.8. If A is an ordinary algebra over the idempotent ring F (i.e. one idempo-
tent) then a type-D module over A is the same a free chain complex over A.
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Exercise 2.9. Show that when A is an algebra (resp. dg-algebra) then Y = A ⊗X is
naturally a differential graded module, i.e.

∂(a · y) = ∂(a) · y + a · ∂(y).

If A is an A∞-algebra, verify that A⊗X is naturally a left A∞-module over A.

Remark 2.10. Type-D structures over an algebra are morally the same as projective
modules, and for practical purposes they are interchangeable (e.g. for computing de-
rived functors and tensor products). Note however there are some differences, and
generally type-D structures have some practical advantages. For example, over a poly-
nomial ring, a famous and exceptionally hard theorem of Quillen-Suslin says that all
projective modules over F[X1, . . . , Xn] are free. Type-D structures over F[X1, . . . , Xn]
are trivially free.

2.3. Twisted complexes in the Fukaya category. Next, we investigate twisted
complexes in the Fukaya category. Instead of idempotents, the objects are now La-
grangians L. Note that some requirements are necessary to form twisted complexes,
since CF (L,L′) usually requires some version of admissibility to be defined.
We illustrate some examples and explain a few subtleties:

(1) If L and L′ are Lagrangians, then a diagram

L L′x

is a twisted complex iff x is a cycle.
(2) If L0, L1 and L2 are Lagrangians, then a diagram

L0 L1

L2

x

z y

is a twisted complex iff

µ2(y,x) + µ1(z) = 0.

I.e. the composition µ2(y,x) is a null-homotopic, with z being the null-homotopy.

Remark 2.11. You may observe that the Fukaya category naturally lacks identity ele-
ments in CF (L,L), since we always assume that L and L′ are transverse for CF (L,L′)
to be defined. (And L is never transverse to itself). This turns out to be less of an
issue than it seems. It turns out that the correct perspective is that instead of units
(or “strict units”) there are “homotopy units”. We are mostly interested in the case
that L is a 1-sphere (or torus), in which case we let L′ be a small translation which
intersects L transversely in two points and we let θ1 ∈ CF (L,L′) be the top graded
intersection point. The element θ1 is a homotopy identity, in the sense that µ2(θ1,−)
is always a homotopy equivalence. It turns out that from a categorical perspective,
“homotopy unital” categories can always be deformed to “strictly unital” categories
(see [Sei08, Section 2a] for precise details), and so we are not committing a crime by
just pretending that θ1 is a strict unit.
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2.4. Exercises. In the following, we work over characteristic 2 and ignore grading
shifts.

Exercise 2.12. Given a short exact sequence of chain complexes

0 → A→ B → C → 0,

show that the following maps are quasi-isomorphism:

(1) A→ Cone(B → C).
(2) Cone(A→ B) → C.
(3) If C is a projective R-module (e.g. a vector space over a field), show that all

of the above are homotopy equivalences.
(4) Assuming C is projective, show that there is a chain map f : C → A such that

B ≃ Cone(f : C → A).

2.5. Twisted complexes and the exact triangle. Recall that our goal is to show
that

γ2 ≃ Cone(θ : γ0 → γ1).

For this, we define a morphism

Φ: γ2 → Cone(θ : γ0 → γ1).

This morphism is the unique intersection point (which we denote by ϕ) between γ2 and
γ0, i.e. the following diagram:

γ2

γ0 γ1

ϕ

θ

Lemma 2.13. The map Φ is a cycle (i.e. chain map).

Proof. It suffices to check that

∂(ϕ) = 0 and µ2(ϕ, θ) = 0.

To check that ∂(ϕ) = 0 is easy. There are no disks. The computation that µ2(ϕ, θ) = 0
is more subtle is exactly the computation shown in Figure 1.2. □

Remark 2.14. When working over CF−, the exact triangle only holds with coefficients
in F[[U ]], and not F[U ]. We can see above the importance of working with power series
because we indeed do have infinitely many holomorphic triangles which contribute, and
the sums only converge if we work in the power series ring.

Next, we can define a morphism in Tw(Fuk(T2)) backwards

Ψ: Cone(θ : γ0 → γ1) → γ2.

It is important to actually trasnlate the second copy of γ2 very slightly so we consider
Ψ as a map from Cone(θ : γ0 → γ1) → γ′2, as before. We define ψ to be the unique
intersection point of γ2 and γ′0.
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We now consider the composition Ψ◦Φ := µ2(Ψ,Φ). We claim that this is homotopic
to the morphism θ+.

γ0

γ1 γ2

γ′0

ϕ

θ

ψ

We can compute the composition µ2(Ψ,Φ). By definition, this is µ3(ϕ, θ, ψ). The
model computation from Figure 1.3 now identifies this µ3(ϕ, θ, ψ) = θ+, the top graded
intersection point between γ0 and γ′0.

Next, we consider the composition µ2(Φ,Ψ). In this case, the diagrams are a bit
more complicated

γ1 γ2

γ′0

γ′1 γ′2.

θ

ψ

ϕ

θ

Exercise 2.15. Verify that the composition µ2(Φ,Ψ) is the diagram (viewed as a mor-
phism from the top line to the bottom line)

γ1 γ2

γ′1 γ′2

θ+

θ

θ+

θ

We now consider these claims over CF−, which we recall is a finitely generated free
complex over F[[U ]]. In this version, we allow curves to pass over the basepoint w, and

we have an additional factor of Unw(ϕ). The model computations can still be pursued
in this theory. In this case, there are actually quite a lot more holomorphic curve
classes (in fact infinitely many). We can still count them without too much trouble.
To count them, we note that a holomorphic triangle is a map u : ∆ → T2, so in this
case we can lift triangles to the universal cover ũ : ∆ → R2, which makes things easier
to visualize. Figure 1.2 generalizes, and we see that there are triangles u+s and u−s ,
with s ∈ {0, 1, 2, . . . , }. These triangles have nw(u

+
s ) = nw(u

−
s ) = s(s− 1)/2 and hence

u+s and u−s are both weighted by U s(s−1)/2 and hence cancel modulo 2.
Note that it is clear now why we need the power series ring instead of the polynomial

ring (there are infinitely many curves to count). It is possible (though we will not
investigate it) to show that there are only finitely many curves with a given value of
nw(ϕ), so the maps are still sensible.

Exercise 2.16. Extend all of the model computation in this section for CF−. You
should be able to completely answer things for the T2 portion of the computation.
The full genus g computations require some extra steps, which we will not embark on
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understanding in these notes. The answer that one should arrive at is that µ2(Φ,Ψ)
and µ2(Ψ,Φ) are ∑

s≥0

U s(s−1)/2 · θ+.

Observe that that the coefficient is a unit in F[[U ]].
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3. Lecture 3: L-space knots and links

In this lecture, we consider the question of computing and understanding the knot
Floer complexes for knots in S3. We can view these as complexes CFK(K) which are
free and finitely generated over F[U ,V ].

3.1. Lens spaces. A lens space is one of the simplest 3-manifolds. There are a variety
of ways of defining a lens space, but the simplest is that it is a 3-manifold with a genus
1 Heegaard splitting. (Sometimes S1 × S2 is not counted as a lens space).
Let p and q be coprime. We pick an oriented basis (µ, λ) of T2. Then L(p, q) is the

3-manifold with a Heegaard splitting (T2, α, β) where α = µ and β = pλ + qµ. See
below:

α

β
w

Figure 3.1. A Heegaard diagram for the lens space L(3, 2).

Lemma 3.1. ĤF (L(p, q)) ∼= ⊕pF and HF−(L(p, q)) ∼= ⊕pF[U ].

Proof. The above diagram has p intersection points. The differential vanishes since
there are exist no classes of disks which connect different intersection points (let alone
any holomorphic curves of index 1). □

Remark 3.2. The different intersection points each represent a different Spinc structure;
see the next section.

Exercise 3.3. Show that pq surgery on the torus knot T (p, q) is L(p, q)#L(q, p).

The above exercise is somewhat hard, but more details may be found in the work of
Moser [Mos71, Proposition 4].

3.2. Spinc structures. We will only very briefly discuss Spinc structures. Let Y be a
3-manifold. Then TY , the tangent bundle, determines a homotopy class of maps

Y → BO(3)

where BO(3) is the classifying space of the orthogonal group. (The definition of clas-
sifying spaces is beyond the scope of these notes). An orientation of Y is equivalent to
a choice of lift of the above map

BSO(3)

Y BO(3)

.
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It turns out there is another Lie group which is important for our purposes, called
Spinc(3). (The definition is not particularly important for our notes). The important
thing is that there is a short exact sequence of Lie groups

U(1) → Spinc(3) → SO(3),

which in turn induce maps on classifying spaces. A Spinc-structure on Y is a homotopy
class of lift

B Spinc(3)

Y BSO(3)

The ambiguity of the choice of lift turns out to lie in [Y,BU(1)] = [Y,CP∞] ∼= H2(Y ).
It turns out that Heegaard Floer homology naturally decomposes over Spinc struc-

tures on Y , and we write

ĤF (Y ) ∼=
⊕

s∈Spinc(Y )

ĤF (Y, s).

Remark 3.4. Ozsváth and Szabó prove that if Y is a rational homology 3-sphere, then

ĤF (Y, s) ̸= 0 for all s ∈ Spinc(Y ). Similarly, Ozsváth and Szabó prove that HF−(Y, s)
is always isomorphic to the direct sum of one copy of F[U ] together with some number
of copies of F[U ]/Un, for various n.

3.3. L-spaces and L-space knots. We focus on L-space knots. Recall that a rational

homology 3-sphere Y is an L-space if ĤF (Y ) ∼=
⊕

Spinc(Y ) F. Equivalently,

HF−(Y ) ∼=
⊕

Spinc(Y )

F[U ].

Remark 3.5. In general, if Y is a rational homology 3-sphere, then ĤF (Y ) has rank at
least |Spinc(Y )| = |H1(Y )| (the number of elements in H1(Y )).

Exercise 3.6. Using the structural description in Remark 3.4, prove that the above two
notions of L-space are equivalent by examining the short exact sequence

0 → CF−(Y )
U−→ CF−(Y ) → ĈF (Y ) → 0

and the induced long exact sequence.

Definition 3.7. We say that K ⊆ S3 is an L-space knot if there is an n ∈ N such that
S3
n(K) is an L-space.

Exercise 3.8. Show (using the surgery exact triangle) that if n > 0, then S3
n(K) is an

L-space, then S3
n+1(K) is an L-space. If n < 0, show that if S3

n(K) is an L-space then

S3
n−1(K) is also an L-space.

Remark 3.9. All torus knots Tp,q are L-spaces knots, since pq± 1 surgery on Tp,q gives
L(pq ± 1, q2). Also, pq surgery on T (p, q) is L(p, q)#L(q, p). More generally, Hedden
has shown that all algebraic knots are L-space knots [Hed09].
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We are interested in staircase complexes, which are free complexes over the 2-variable
polynomial ring F[U ,V ] of the following form:

x1 x3 . . . x2n−3 x2n−1

x0 x2 . . . . . . . . . x2n−2 x2n

U a1 V b1 U a3 V b3 U a2n−3 V b2n−3 U a2n−1 V b2n−1

In this lecture, we will prove the following result of Ozsváth and Szabó:

Theorem 3.10 ([OS05]). The knot Floer complex of an L-space knot is a staircase.

Note that for an L-space knot, no two generators lie in the same Alexander and
Maslov gradings, and hence we can easily read off the complex from the Alexander
polynomial.

Remark 3.11. Note that this gives a very strong restriction on which knots have lens
space surgeries. For example it says that if K is a knot with a lens space surgery, then
all coefficients in the Alexander polynomial ∆K(t) are ±1.

Note that the Alexander polynomial of T (p, q) is

∆T (p,q)(t)
.
=

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
.

3.4. More on L-space knots. We now return to study L-space knots. There is an
extra ingredient in Ozsváth and Szabó’s proof, and that’s a large surgery formula. They
prove that CFK(K) naturally computes HF−(S3

N (K)) for N suitably large. To state
their theorem, we need to consider gradings. Knot Floer homology naturally has two
Maslov gradings, grw and grz. Here,

(grw, grz)(U ) = (−2, 0) and (grw, grz)(V ) = (0,−2).

It is natural to consider a third grading (linearly dependent on the above)

A = 1
2(grw− grz).

Inside of CFK(K), we consider the subspace in Alexander grading s ∈ Z, denoted
As(K). Note that As(K) is not preserved by either U or V , since they have non-zero
Alexander grading. However, it is preserved by the product

U = U V .

Note that we can therefore decompose CFK(K) as a direct sum (over F[U ]) of all of
the As(K):

CFK(K) =
⊕
s∈Z

As(K).

Theorem 3.12 (Ozsváth Szabó). If K ⊆ S3 is a knot and N ≫ 0, then

H∗(As(K)) ∼= HF−(S3
N (K), [s])

for all s ∈ [−N/2, N/2].
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See [OS08, Theorem 2.3].
In the above the number s determines a particular Spinc structure [s] on S3

N (K).
Also, if you’ve forgotten, Heegaard Floer decomposes over Spinc structures:

HF−(Y ) ∼=
⊕

s∈Spinc(Y )

HF−(Y, s).

Note also that there are some additional restrictions on the knot Floer homology
groups. There is a map

CFK(K) → CFK(K)/(U − 1) ∼= CF−(S3),

gotten by forgetting the w basepoint. This map is easily seen to send F[U ]-non-torsion
elements to F[U ]-non-torsion elements, and also map the grz-grading with the Maslov
grading on HF−(S3). There is a similar map

CFK(K) → CFK(K)/(V − 1) ∼= CF−(S3).

By considering the two quotient maps, we obtain the following structural result:

Corollary 3.13. If K is an L-space knot, then H(CFK(K)) has homology supported
only in (grw, grz)-bigradings (i, j) where i, j ≤ 0. Furthermore, it has F-rank at most
one in each grading.

Definition 3.14. A monomial ideal I in F[U ,V ] is an ideal spanned by monomials
U iV j ranging over various i, j ≥ 0.

Corollary 3.15. The homology H(CFK(K)) is an monomial ideal in F[U ,V ].

Exercise 3.16. Show that every monomial ideal I ⊆ F[U ,V ] has a free resolution
consisting of two “steps”. I.e. that there are free, finitely generated F[U ,V ]-modules
C1 and C0 and an F[U ,V ]-linear map f : C1 → C0 such that the below sequence is
exact

0 → C1
f−→ C0 → I → 0.

In Figure 3.2, we have an example of both CFK(K) and H∗(CFK(K)).
We now sketch a proof of the fact that L-space knots have knot Floer complexes

which are staircases. Our proof will use the following fact, which we will not prove:

Lemma 3.17. If X and Y are finitely generated, free chain complexes over F[U ,V ]
and there is a quasi-isomorphism f : X → Y , then X and Y are homotopy equivalent.

Remark 3.18. Proofs of results similar to the above can be found in [Wei94, Section
10.4].

Exercise 3.19. Let A = F[X]
Xn

−−→ F[X] (where F is the field of 2-elements). There is a
chain map A → F[X]/Xn which is projection onto the second summand. Verify that
this is a quasi-isomorphism and admits no homotopy inverse. If you are motivated,
describe a homotopy inverse as an A∞-module over the ring F[X].

We now give a useful algebraic lemma:

Lemma 3.20. Let (X, ∂X) be a free chain complex over F[U ,V ] whose homology H(X)
admits a 2-step free resolution. I.e. such that we have an exact sequence

0 → C0
f−→ C1 → H(X) → 0,
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CFK−(T5,6)

V
U 4

V 2

U 3

V 3
U 2

V 4

U

x2

x0

x4

x6
x8

H(CFK−(T5,6))

U

x6

x0

x2

x4

x8

V

Figure 3.2. The complex CFK(T5,6) and its homology H(CFK(T5,6)),
viewed as a subspace of F[U ,V ]. The Alexander polynomial is
∆T5,6(t) = t10 − t9 + t5 − t3 + 1− t−3 + t−5 − t−9 + t−10.

where Ci are free F[U ,V ]-modules (with trivial differential). Then X is quasi-isomorphic
to C := Cone(f : C0 → C1).

Proof. We will define a quasi-isomorphism C → X, as follows. Let B ⊆ Z ⊆ X denote
the image and kernel of ∂X , respectively. We pick an isomoprhism from C0/ im(C1) to
H(X), and consider the diagram below:

0 C1 C0 C0/C1 0

X Z H(X) 0.

f

ϕ1 ϕ0 ϕ

∂X

The rows are exact. Since Z → H(X) is surjective and C0 is free, we can pick a
ϕ0 : C0 → Z making the right square in the diagram commute. Next, we observe that
ϕ0 ◦ f projects trivially into H(X), by commutativity, so we can factor f ◦ ϕ0 into
im ∂X = B. Since ∂X surjects as a map from X to B, and C1 is free, we can pick a ϕ1
making the diagram commute.
We may now define a chain map from C to X, given by (ϕ1, ϕ0). I.e. the map sends

C0 to X via ϕ0, and C1 to X via ϕ1. It is straightforward to see that this map is a chain
map. Furthermore, it induces the map ϕ on homology, so is a quasi-isomorphism. □

3.5. Links. One may also ask about L-space links instead of L-space knots. It turns
out the situation is comparably more complicated. It is not the case if a link L has
a single L-space surgery, then all sufficiently positive or sufficiently negative surgeries
will be L-space links. Instead, the most natural condition is the following:

Definition 3.21. A link L is an L-space link if all sufficiently positive surgeries (i.e.
all components are given sufficiently positive framing) on L are L-spaces.
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Gorsky and Némethi have proven that all algebraic links are L-space links [GN16],
and hence the above family is important.
There is a Heegaard link complex CFL(L), parallel to the knot Floer complexes.

This complex has a Ui and Vi for each link component, and is a finitely generated free
complex over the ring F[U1,V1, . . . ,Un,Vn] where n = |L|.
There is a large surgeries theorem parallel for links as well, and a simple consequence

is the following:

Lemma 3.22. A link L is an L-space link if and only if the homology H(CFL(L)) is a
torsion free F[U ]-module. (Here, U denotes any of UiVi; it turns out UiVi and UjVj
are chain homotopic as endomorphisms so induce the same action on homology).

The algebraic setting is comparably harder, and our previous argument does not work
in this setting. Nonetheless, it can be proven [BLZ22] that the link Floer complexes
CFL(L) of algebraic links are free-resolutions of their homology H(CFL(L)), giving a
parallel result to Ozsváth and Szabó’s result for L-space knots.

3.6. Exercises.

(1) Consider the following two free chain complexes over F[U ,V ]:

X = • ⊕
• •

• •
V

U

V

U

and Y =

•

• •
V

U

Verify that complexes of X and Y have isomorphic homology as modules over
F[U ,V ] (here we are ignoring gradings; but the claim holds for some choice of
relative grading), but that the underlying complexesX and Y are not homotopy
equivalent. If you are ambitious, you can also compute the induced A∞-module
structure on the two homology groups.

(2) Compute the induced A∞-module structure on the homology of X and Y .
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4. Lecture 5: Plumbed 3-manifolds

We investigate the Heegaard Floer homologies of some plumbed 3-manifolds. The
main references of [OS03] [Ném05] [Ném08].

4.1. Plumbed 3-manifold and 4-manifolds. Let G be a tree with integer weights
at the vertices. There is an associated 4-manifold X(G) with boundary Y (G) (a 3-
manifold). We call Y (G) a plumbed 3-manifold. We describe the construction below.
If v is a vertex, we write w(v) for the weight. For each vertex v we take a disk bundle

over S2 with Euler number w(v). (Note that the boundary is a lens space L(±v, 1),
with ± determined by orientation conventions). A disk bundle of Euler number n is a
fiber bundle

D2 →W (n) → S2.

Remark 4.1. The Euler number is the self-intersection number of the 0-section, which
is a copy of S2.

Given a small disk D ⊆ S2, we may trivialize this bundle, and obtain a copy of
D2 ×D2 inside of W (n). The first factor of D2 is the base, and the second copy is the
fiber.
The plumbing construction is to take two disk bundles W (n) and W (m), and trivi-

alize neighborhoods of points p and p′ in the bases. We then quotient W (n) ⊔W (m)
by identifying the two copies of D2 × D2 in a way which switches the base and fiber
directions. See Figure 4.1.

Figure 4.1. Plumbing

Given the tree G, we take the disk bundles and then perform the plumbing construc-
tion for each edge of G. This yields a rather complicated 3 and 4-manifold.

Remark 4.2. There is an alternate description in terms of Dehn surgery. For each
vertex we take an unknot. For each edge of G we add a clasp. Call the link LG. We
give each unlink the framing corresponding to its weight. Then S3(LG) ∼= Y (G).

4.2. Characteristic vectors and intersection forms. A characteristic vector of a
4-manifold W is an element K ∈ H2(W ) such that if s ∈ H2(W ), then

K(s) + s · s ≡ 0 (mod 2).

Example 4.3. If V = (±1), then the characteristic vectors are the odd integers. If V is
a direct sum of copies of (±1), then the characteristic vectors are tuples of odd integers.
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In Heegaard Floer theory, there is an important algebraic topological construction
called a Spinc structure. Given a 3-manifold or 4-manifold X, there is a set Spinc(X).
This set is an affine space over H2(X;Z), and in fact, is non-canonically isomorphic
to H2(X;Z) as an affine space. Note Spinc(X) does not naturally have an additive
structure (i.e. group structure) but rather has an action of H2(X;Z). Additionally,
there is a chern class map

c1 : Spinc(X) → H2(X;Z).
This map is not an isomorphism, but it does respect the affine structure via the equation

c1(s+ h) = c1(s) + 2h. (4.1)

Lemma 4.4. Characteristic vectors of a 4-manifold W and in bijection with Chern
classes of Spinc structures on W .

Exercise 4.5. Prove the above using the fact that c1(s) has mod 2 reduction equal to
w2(TW ) and the fact that every element in H2(W ;Z) can be represented by a smoothly
embedded surface.

Remark 4.6. If G is a plumbing tree, we can form a matrix ΛG = (λv,v′)v,v′∈V (G)

as follows. We set λv,v = w(v), and we set λv,v′ = 1 if v and v′ are connected by
an edge. Set λv,v′ = 0 otherwise. It is straightforward to prove that H1(Y (G)) has
a presentation as Zn/ imΛG. Also, one can show that if ΛG is non-singular, then
|det(ΛG)| is the number of elements in H1(Y (G)). This is the same as the number of
Spinc structures. (If det(ΛG) = 0, then there are infinitely many elements).

Remark 4.7. For a plumbing tree G, we have Spinc(Y (G)) ∼= Char(X(G))/H2(X(G)).

Note that H2(X(G)) ∼= Zn, where n is the number of vertices. By the universal coef-
ficient theorem, we can identify H2(X(G)) ∼= Hom(H2(X(G)),Z) (since H1(X(G)) ∼=
0). Furthermore, there is a natural inclusion H2(X(G)) → Hom(H2(X(G)),Z) =
H2(X(G)).

4.3. Motivation for the lattice complex. Given a plumbed 3-manifoly Y (G), we
have observed that there is a canonical 4-manifold W (G) which bounds Y (G). We
assume that W (G) is negative definite.
We can imagine “probing” HF−(Y (G)) using the cobordism maps for W (G). For

each s ∈ Spinc(W (G)), we get a map

FW,s : HF
−(S3) → HF−(Y (G)).

Since HF−(S3) ∼= F[U ], and FW,s commutes with U , this is the same as an element of
HF−(Y (G)). Since H2(W (G)) is torsion free, the map

c1 : Spinc(W (G)) → Char(W (G))

is a bijection, so we find it cleaner work with characteristic vectors instead of Spinc

structures.
Therefore, we have an element [K] in HF−(Y (G)) for each K ∈ Char(W (G)), which

is the image of 1 under the corresponding cobordism map. There are two questions to
ask:

(1) Do the elements [K] span all of HF−(Y (G))?
(2) What are the relations between [K] and [K ′] for different characteristic vectors?
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We can partially answer the second one, as follows. Note that W (G) has a large
number of embedded spheres contained in it, i.e. one for each vertex of G. The
boundary of a neighborhood of each spheres is a lens space L(w, 1), where w is the
weight of the sphere (Euler number). Recall that L(w, 1) is an L-space, i.e. has
homology ⊕

|w|

F[U ],

where each F[U ] is concentrated in a different Spinc structure.
Let E be one of these spheres, and let N = N(E) be a tubular neighborhood. Note

N is a disk bundle over sphere with Euler number E · E.
Note that we can factor the cobordism map

FW,s = FW\N,s|W\N ◦ FN,s|N .

We consider the effect of changing s to s ± PD [E]. Note that this has the effect of
adding ±2E to K by Equation (4.1).

Note that FW\N,s|W\N is unchaged by adding PD [E] to s. On the other hand FN,s|N
may be chanced, though the restriction of s to ∂N is unchanged. In particular

FN,s
.
= FN,s−PD [E]

where
.
= means equality up to multiplication by some power of U .

Ergo, [K] and [K + 2E] must be equal after multiplying by some large powers of U .
Typically we write just v ∈ H2 instead of Ev, to abbreviate.
Note too that the gradings of the elements [K] and [K ′] are determined by the

formula

gr(K) =
K2 − 3σ(K)− 2χ(K)

4
so the powers of U are determined from homological considerations. Here, we are
implicitly factoring K, which lies in H2(X(G)), into H2(X(G), Y (G)) using the fact
that Y (G) is a QHS3. Then K2 denotes the cup product evaluated on the fundamental
class [X(G), Y (G)].

We can formalize this a bit as follows. If K ∈ Char(W ) and v ∈ V (G), we let

χK(v) =
K(v) + v · v

2
.

Remark 4.8. Note that

χK(v) =
gr(K + 2v)− gr(K)

2
.

If χK(v) ≥ 0, then we have the relation

UχK(v) · [K + 2v] = [K]

and if χK(v) ≤ 0, then we have the relation

[K + 2v] = U−χK(v)[K].

Therefore we may make a guess as to HF−(Y (G)) by encoding just the above gen-
erators and relations. Namely, we define H−(G) to be generated over F[U ] by all K,
subject only to the relations above. I.e.

H−(G) :=

⊕
K∈Char(W ) F[U ]

R
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where R denotes the above relations.

Theorem 4.9 ([OS03] [Ném05]). If G is negative definite and “suitably nice” then
H−(G) ∼= HF−(Y (G)).

The “suitably nice” condition concerns the combinatorics of the graph. The condition
that Ozsváth and Szabó used was the following: we say a vertex v is bad if

m(v) > − val(v).

(Here m is the multiplicity assumed to be negative). They proved the above theorem
when there is at most one bad vertex.
Némethi interpretted (and generalized) this condition, showing that the bad vertex

condition has a natural interpretation in terms of normal surface singularities and
algebraic geometry.
As philosophical motivation, we can view the number of bad vertices as giving a

measure of complexity of the graph. Write G≤n for the set of negative definite trees
with at most n bad vertices. Then we have inclusions

G≤0 ⊆ G≤1 ⊆ G≤2 ⊆ · · · .
Having more bad vertices in fact means that the 3-manifold Y (G) and HF−(Y (G)) get
more complicated.
For example, it turns out that if G ∈ G≤0 then Y (G) is an L-space. If G ∈ G≤1, the

HF−(Y (G), s) is supported in a single mod 2 grading for each s.

Remark 4.10. [Ném17] Némethi proves a modification of the above which is an if and
only if statement. Némethi considers a different condition called rationality, from
algebraic geometry. He shows that if there are no bad vertices, then G is rational.
Furthermore, he shows that G is rational if and only if Y (G) is an L-space.

4.4. Computations. In general, the above theorem reduces the computation ofHF−(Y (G))
to a combinatorial problem, though considerable additional work is needed to produce
an actual computation. See [Ném05] [Ném08] for further computational techniques.
For these rather introductory notes, we will content ourselves with understanding the
case where the plumbing graph has a single vertex v, with weight n < 0.
We have H2(X(G)) = Z and H2(X(G)) = Hom(Z,Z) = Z. If j ∈ Z, write [j] for the

corresponding element in H2(X(G)), normalized so that K[j](v) = j. We have K[j] is
characteristic iff

K[j](v) + v2 ≡ 0, ie j + n ≡ 0 (mod 2).

So K is characteristic iff the corresponding j ∈ Z has the same parity as n.
For the purposes of demonstration, consider the case that n = −2. Then charac-

teristic vectors are identified with even integers j ∈ 2Z. We consider the adjunction
relations. We compute that

χ[j](v) =
j + n

2
.

The characteristic vectors are partitioned into two classes in Char(X(G))/H2(X(G)) ∼=
Spinc(Y (G)), namely the class of [0] and the class of [2].
Note that [j] + 2v = [j − 4].
The first few adjunction relations read

U [−4] = [0] and U3[−8] = [−4].
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Filling in the rest, we get

· · · = UU3[−8] = U [−4] = [0] = U [4] = UU3[8] = UU3U5[12] = · · ·
The other Spinc structure is

· · · = U2U4[−10] = U2[−6] = [−2] = [2] = U2[6] = U2U4[10] = · · ·
In particular, HF− is generated by [0] and [2] and is thus F[U ]⊕ F[U ].
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