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Introduction
Logarithmic concavity is a property of a sequence of
real numbers, occurring throughout algebraic geometry,
convex geometry, and combinatorics. A sequence of
positive numbers 𝑎0,… ,𝑎𝑑 is log-concave if

𝑎2
𝑖 ≥ 𝑎𝑖−1𝑎𝑖+1 for all 𝑖.

This means that the logarithms, log(𝑎𝑖), form a concave
sequence. The condition implies unimodality of the se-
quence (𝑎𝑖), a property easier to visualize: the sequence
is unimodal if there is an index 𝑖 such that

𝑎0 ≤ ⋯ ≤ 𝑎𝑖−1 ≤ 𝑎𝑖 ≥ 𝑎𝑖+1 ≥ ⋯ ≥ 𝑎𝑑.
We will discuss our work on establishing log-concavity

of various combinatorial sequences, such as the coeffi-
cients of the chromatic polynomial of graphs and the
face numbers of matroid complexes. Our method is moti-
vated by complex algebraic geometry, in particular Hodge
theory. From a given combinatorial object 𝑀 (a matroid),
we construct a graded commutative algebra over the real
numbers

𝐴∗(𝑀) =
𝑑

⨁
𝑞=0

𝐴𝑞(𝑀),
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which satisfies analogues of Poincaré duality, the hard Lef-
schetz theorem, and the Hodge-Riemann relations for the
cohomology of smooth projective varieties. Log-concavity
will be deduced from the Hodge-Riemann relations for
𝑀. We believe that behind any log-concave sequence
that appears in nature there is such a “Hodge structure”
responsible for the log-concavity.

Coloring Graphs
Generalizing earlier work of George Birkhoff, in 1932
Hassler Whitney introduced the chromatic polynomial of
a connected graph 𝐺 as the function on ℕ defined by

𝜒𝐺(𝑞) = |{proper colorings of 𝐺 using 𝑞 colors}|.
In other words, 𝜒𝐺(𝑞) is the number of ways to color
the vertices of 𝐺 using 𝑞 colors so that the endpoints of
every edge have different colors. Whitney noticed that the
chromatic polynomial is indeed a polynomial. In fact, we
can write

𝜒𝐺(𝑞)/𝑞 = 𝑎0(𝐺)𝑞𝑑 −𝑎1(𝐺)𝑞𝑑−1 +⋯+ (−1)𝑑𝑎𝑑(𝐺)
for some positive integers 𝑎0(𝐺),… ,𝑎𝑑(𝐺), where 𝑑 is
one less than the number of vertices of 𝐺.

Example 1. The square graph

• •

• •
has the chromatic polynomial 1𝑞4 −4𝑞3 + 6𝑞2 − 3𝑞.

The chromatic polynomial was originally devised as
a tool for attacking the Four Color Problem, but soon
it attracted attention in its own right. Ronald Read
conjectured in 1968 that the coefficients of the chromatic
polynomial form a unimodal sequence for any graph.
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A few years later, Stuart Hoggar conjectured that the
coefficients in fact form a log-concave sequence:

𝑎𝑖(𝐺)2 ≥ 𝑎𝑖−1(𝐺)𝑎𝑖+1(𝐺) for any 𝑖 and 𝐺.
The graph theorist William Tutte quipped, “In compensa-
tion for its failure to settle the FourColourConjecture, [the
chromatic polynomial] offers us the Unimodal Conjecture
for our further bafflement.”

The chromatic polynomial can be computed using the
deletion-contraction relation: if 𝐺\𝑒 is the deletion of an
edge 𝑒 from 𝐺 and 𝐺/𝑒 is the contraction of the same
edge, then

𝜒𝐺(𝑞) = 𝜒𝐺\𝑒(𝑞) − 𝜒𝐺/𝑒(𝑞).
The first term counts the proper colorings of 𝐺, the
second term counts the otherwise-proper colorings of 𝐺
where the endpoints of 𝑒 are permitted to have the same
color, and the third term counts the otherwise-proper
colorings of 𝐺 where the endpoints of 𝑒 are mandated to
have the same color. Note that, in general, the sum of two
log-concave sequences is not a log-concave sequence.

Example 2. To compute the chromatic polynomial of the
square graph above, we write

• •

• •
=

• •

• •
-

•
@@

@

• •
and use

𝜒𝐺\𝑒(𝑞) = 𝑞(𝑞 − 1)3, 𝜒𝐺/𝑒(𝑞) = 𝑞(𝑞 − 1)(𝑞 − 2).
The Hodge-Riemann relations for the algebra 𝐴∗(𝑀),

where 𝑀 is the matroid attached to 𝐺 as in the section
“Matroids” below, imply that the coefficients of the
chromatic polynomial of 𝐺 form a log-concave sequence.
This is in contrast to a result of Alan Sokal that the set of
roots of the chromatic polynomials of all graphs is dense
in the complex plane.

Counting Independent Subsets
Linear independence is a fundamental notion in algebra
and geometry: a collection of vectors is linearly indepen-
dent if no nontrivial linear combination sums to zero.
How many linearly independent collections of 𝑖 vectors
are there in a given configuration of vectors? Write 𝐴 for
a finite subset of a vector space and 𝑓𝑖(𝐴) for the number
of independent subsets of 𝐴 of size 𝑖.
Example 3. If 𝐴 is the set of all nonzero vectors in the
three-dimensional vector space over the field with two
elements, then

𝑓0 = 1, 𝑓1 = 7, 𝑓2 = 21, 𝑓3 = 28.
Examples suggest a pattern leading to a conjecture of

Dominic Welsh:
𝑓𝑖(𝐴)2 ≥ 𝑓𝑖−1(𝐴)𝑓𝑖+1(𝐴) for any 𝑖 and 𝐴.

For any small specific case, the conjecture can be verified
by computing the 𝑓𝑖(𝐴)’s by the deletion-contraction rela-
tion: if 𝐴\𝑣 is the deletion of a nonzero vector 𝑣 from 𝐴
and 𝐴/𝑣 is the projection of 𝐴 in the direction of 𝑣, then

𝑓𝑖(𝐴) = 𝑓𝑖(𝐴\𝑣) + 𝑓𝑖−1(𝐴/𝑣).

The first term counts the number of independent subsets
of size 𝑖, the second term counts the independent subsets
of size 𝑖 not containing 𝑣, and the third term counts
the independent subsets of size 𝑖 containing 𝑣. As in
the case of graphs, we notice the apparent interference
between the log-concavity conjecture and the additive
nature of 𝑓𝑖(𝐴). The sum of two log-concave sequences is,
in general, not log-concave. The conjecture suggests a new
description for the numbers 𝑓𝑖(𝐴) and a corresponding
structure of 𝐴.

Matroids
In the 1930s Hassler Whitney observed that several
notions in graph theory and linear algebra fit together in
a common framework, that of matroids. This observation
started a new subject with applications to a wide range
of topics such as characteristic classes, optimization, and
moduli spaces, to name a few.

Let 𝐸 be a finite set. A matroid 𝑀 on 𝐸 is a collection
of subsets of 𝐸, called flats of 𝑀, satisfying the following
axioms:
(1) If 𝐹1 and 𝐹2 are flats of 𝑀, then their intersection is

a flat of 𝑀.
(2) If 𝐹 is a flat of 𝑀, then any element of 𝐸\𝐹 is

contained in exactly one flat of 𝑀 covering 𝐹.
(3) The ground set 𝐸 is a flat of 𝑀.

Here, a flat of 𝑀 is said to cover 𝐹 if it is minimal among
the flats of 𝑀 properly containing 𝐹. For our purposes,
we may assume that 𝑀 is loopless:

(1) The empty subset of 𝐸 is a flat of 𝑀.
Every maximal chain of flats of 𝑀 has the same length,

Matroids encode
a combinatorial

structure
common to
graphs and

vector
configurations

and this common length
is called the rank of
𝑀. We write 𝑀\𝑒 for
the matroid obtained
by deleting 𝑒 from the
flats of 𝑀 and 𝑀/𝑒 for
the matroid obtained by
deleting 𝑒 from the flats
of 𝑀 containing 𝑒. When
𝑀1 is a matroid on 𝐸1,
𝑀2 is a matroid on 𝐸2,
and 𝐸1 ∩ 𝐸2 is empty,
the direct sum 𝑀1 ⊕ 𝑀2
is defined to be the ma-
troid on 𝐸1 ∪ 𝐸2 whose
flats are all sets of the
form 𝐹1 ∪𝐹2, where 𝐹1 is a flat of 𝑀1 and 𝐹2 is a flat of 𝑀2.

Matroids encode a combinatorial structure common to
graphs and vector configurations. If 𝐸 is the set of edges
of a finite graph 𝐺, call a subset 𝐹 of 𝐸 a flat when there is
no edge in 𝐸\𝐹 whose endpoints are connected by a path
in 𝐹. This defines a graphic matroid on 𝐸. If 𝐸 is a finite
subset of a vector space, call a subset 𝐹 of 𝐸 a flat when
there is no vector in 𝐸\𝐹 that is contained in the linear
span of 𝐹. This defines a linear matroid on 𝐸.
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Example 4. Write 𝐸 = {0, 1, 2, 3} for the set of edges of
the square graph 𝐺 in Example 1. The graphic matroid 𝑀
on 𝐸 attached to 𝐺 has flats

∅,{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3},
{1, 2}, {1, 3}, {2, 3}, {0, 1, 2, 3}.

Example 5. Write 𝐸 = {0, 1, 2, 3, 4, 5, 6} for the configura-
tion of vectors 𝐴 in Example 3. The linear matroid 𝑀 on
𝐸 attached to 𝐴 has flats

∅,{0}, {1}, {2}, {3}, {4}, {5}, {6},
{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {0, 1, 4}, {0, 2, 5}, {0, 3, 6},

{2, 4, 6}, {0, 1, 2, 3, 4, 5, 6}.
A linear matroid that arises from a subset of a vector

space over a field 𝑘 is said to be realizable over 𝑘.
Not surprisingly, this notion is sensitive to the field 𝑘.
A matroid may arise from a vector configuration over
one field, while no such vector configuration exists over
another field. Many matroids are not realizable over any
field.

Among the rank 3 loopless matroids pictured above,
where rank 1 flats are represented by points and rank
2 flats containing more than two points are represented
by lines, the first is realizable over 𝑘 if and only if the
characteristic of 𝑘 is 2, the second is realizable over 𝑘 if
and only if the characteristic of 𝑘 is not 2, and the third
is not realizable over any field.

The characteristic polynomial 𝜒𝑀(𝑞) of a matroid 𝑀 is
a generalization of the chromatic polynomial 𝜒𝐺(𝑞) of a
graph 𝐺. It can be recursively defined using the following
rules:
(1) If 𝑀 is the direct sum 𝑀1 ⊕𝑀2, then

𝜒𝑀(𝑞) = 𝜒𝑀1(𝑞) 𝜒𝑀2(𝑞).
(2) If 𝑀 is not a direct sum, then, for any 𝑒,

𝜒𝑀(𝑞) = 𝜒𝑀\𝑒(𝑞) − 𝜒𝑀/𝑒(𝑞).
(3) If 𝑀 is the rank 1 matroid on {𝑒}, then

𝜒𝑀(𝑞) = 𝑞− 1.
(4) If 𝑀 is the rank 0 matroid on {𝑒}, then

𝜒𝑀(𝑞) = 0.
It is a consequence of the Möbius inversion for partially
ordered sets that the characteristic polynomial of 𝑀 is
well defined.

We may now state our result in [AHK], which confirms
a conjecture of Gian-Carlo Rota and Dominic Welsh.
Theorem 6 ([AHK, Theorem 9.9]). The coefficients of the
characteristic polynomial form a log-concave sequence
for any matroid 𝑀.

This implies the log-concavity of the sequence 𝑎𝑖(𝐺)
[Huh12] and the log-concavity of the sequence 𝑓𝑖(𝐴)
[Len12].

Hodge-Riemann Relations for Matroids
Let 𝑋 be a mathematical object of “dimension” 𝑑. Often it
is possible to construct from 𝑋 in a natural way a graded
vector space over the real numbers

𝐴∗(𝑋) =
𝑑

⨁
𝑞=0

𝐴𝑞(𝑋),

equipped with a graded bilinear pairing

𝑃 ∶ 𝐴∗(𝑋) ×𝐴𝑑−∗(𝑋) ⟶ ℝ,
and a graded linear map

𝐿 ∶ 𝐴∗(𝑋) ⟶ 𝐴∗+1(𝑋), 𝑥 ⟼ L𝑥
(“𝑃” is for Poincaré, and “𝐿” is for Lefschetz). For example,
𝐴∗(𝑋) may be the cohomology of real (𝑝, 𝑝)-forms on a
compact Kähler manifold 𝑋 or the ring of algebraic cycles
modulo homological equivalence on a smooth projective
variety 𝑋 or the combinatorial intersection cohomology
of a convex polytope 𝑋 [Kar04] or the Soergel bimodule
of an element of a Coxeter group 𝑋 [EW14] or the Chow
ring of a matroid 𝑋 defined below. We expect that, for
every nonnegative integer 𝑞≤ 𝑑

2 :
(1) the bilinear pairing

𝑃 ∶ 𝐴𝑞(𝑋) ×𝐴𝑑−𝑞(𝑋) ⟶ ℝ
is nondegenerate (Poincaré duality for 𝑋),

(2) the composition of linear maps

𝐿𝑑−2𝑞 ∶ 𝐴𝑞(𝑋) ⟶ 𝐴𝑑−𝑞(𝑋)
is bijective (the hard Lefschetz theorem for 𝑋), and

(3) the bilinear form on 𝐴𝑞(𝑋) defined by

(𝑥1, 𝑥2) ⟼ (−1)𝑞 𝑃(𝑥1, 𝐿𝑑−2𝑞𝑥2)
is symmetric and is positive definite on the kernel
of

𝐿𝑑−2𝑞+1 ∶ 𝐴𝑞(𝑋) ⟶ 𝐴𝑑−𝑞+1(𝑋)
(the Hodge-Riemann relations for 𝑋).

All threeproperties areknowntohold for theobjects listed
above except one, which is the subject of Grothendieck’s
standard conjectures on algebraic cycles.

For a loopless matroid 𝑀 on 𝐸, the vector space 𝐴∗(𝑀)
has the structure of a graded algebra that can be described
explicitly.

Definition 7. We introduce variables 𝑥𝐹, one for each
nonempty proper flat 𝐹 of 𝑀, and set

𝑆∗(𝑀) = ℝ[𝑥𝐹]𝐹≠∅,𝐹≠𝐸.
The Chow ring 𝐴∗(𝑀) of 𝑀 is the quotient of 𝑆∗(𝑀) by
the ideal generated by the linear forms

∑
𝑖1∈𝐹

𝑥𝐹 − ∑
𝑖2∈𝐹

𝑥𝐹,

one for each pair of distinct elements 𝑖1 and 𝑖2 of 𝐸, and
the quadratic monomials

𝑥𝐹1𝑥𝐹2 ,
one for each pair of incomparable nonempty proper flats
𝐹1 and 𝐹2 of 𝑀.
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The Chow ring of 𝑀 was introduced by Eva Maria
Feichtner and Sergey Yuzvinsky. When 𝑀 is realizable
over a field 𝑘, it is the Chow ring of the “wonderful”
compactification of the complement of a hyperplane
arrangement defined over 𝑘 as described by Corrado de
Concini and Claudio Procesi.

Let 𝑑 be the integer one less than the rank of 𝑀.

Theorem 8 ([AHK, Proposition 5.10]). There is a linear
bijection

deg∶ 𝐴𝑑(𝑀) ⟶ ℝ
uniquely determined by the property that

deg(𝑥𝐹1𝑥𝐹2 ⋯𝑥𝐹𝑑) = 1
for every maximal chain of nonempty proper flats

𝐹1 ⊊ 𝐹2 ⊊ ⋯ ⊊ 𝐹𝑑.
In addition, the bilinear pairing

𝑃 ∶ 𝐴𝑞(𝑀) ×𝐴𝑑−𝑞(𝑀) → ℝ, (𝑥, 𝑦) ↦ deg(𝑥𝑦)
is nondegenerate for every nonnegative 𝑞 ≤ 𝑑.

What should be the linear operator 𝐿 for 𝑀? We collect
all valid choices of 𝐿 in a nonempty open convex cone.
The cone is an analogue of the Kähler cone in complex
geometry.

Definition 9. A real-valued function 𝑐 on 2𝐸 is said to be
strictly submodular if

𝑐∅ = 0, 𝑐𝐸 = 0,
and, for any two incomparable subsets 𝐼1, 𝐼2 ⊆ 𝐸,

𝑐𝐼1 + 𝑐𝐼2 > 𝑐𝐼1∩𝐼2 + 𝑐𝐼1∪𝐼2 .
A strictly submodular function 𝑐 defines an element

𝐿(𝑐) = ∑
𝐹
𝑐𝐹𝑥𝐹 ∈ 𝐴1(𝑀)

that acts as a linear operator by multiplication

𝐴∗(𝑀) ⟶ 𝐴∗+1(𝑀), 𝑥 ⟼ 𝐿(𝑐)𝑥.
The set of all such elements is a convex cone in 𝐴1(𝑀).

The main result of [AHK] states that the triple
(𝐴∗(𝑀),𝑃, 𝐿(𝑐)) satisfies the hard Lefschetz theorem
and the Hodge-Riemann relations for every strictly sub-
modular function 𝑐:

Theorem 10. Let 𝑞 be a nonnegative integer less than 𝑑
2 .

(1) The multiplication by 𝐿(𝑐) defines an isomorphism

𝐴𝑞(𝑀) ⟶ 𝐴𝑑−𝑞(𝑀), 𝑥 ⟼ 𝐿(𝑐)𝑑−2𝑞 𝑥.
(2) The symmetric bilinear form on 𝐴𝑞(𝑀) defined by

(𝑥1, 𝑥2) ⟼ (−1)𝑞 𝑃(𝑥1, 𝐿(𝑐)𝑑−2𝑞𝑥2)
is positive definite on the kernel of 𝐿(𝑐)𝑑−2𝑞+1.

The known proofs of the hard Lefschetz theorem and
the Hodge-Riemann relations for the different types of
objects listed above have certain structural similarities,
but there is no known way of deducing one from the
others.

Sketch of Proof of Log-Concavity
We now explain why the Hodge-Riemann relations for
𝑀 imply log-concavity for 𝜒𝑀(𝑞). The Hodge-Riemann
relations for 𝑀, in fact, imply that the sequence (𝑚𝑖) in
the expression

𝜒𝑀(𝑞)/(𝑞 − 1) = 𝑚0𝑞𝑑 −𝑚1𝑞𝑑−1 +⋯+ (−1)𝑑𝑚𝑑

is log-concave, which is stronger.
We define two elements of 𝐴1(𝑀): for any 𝑗 ∈ 𝐸, set

𝛼𝑀 = ∑
𝑗∈𝐹

𝑥𝐹, 𝛽𝑀 = ∑
𝑗∉𝐹

𝑥𝐹.

The two elements do not depend on the choice of 𝑗, and
they are limits of elements of the form 𝐿(𝑐) for strictly
submodular 𝑐. A short combinatorial argument shows
that 𝑚𝑖 is a mixed degree of 𝛼𝑀 and 𝛽𝑀:

𝑚𝑖 = deg(𝛼𝑖
𝑀 𝛽𝑑−𝑖

𝑀 ).
Thus, it is enough to prove for every 𝑖 that

deg(𝛼𝑑−𝑖+1
𝑀 𝛽𝑖−1

𝑀 )deg(𝛼𝑑−𝑖−1
𝑀 𝛽𝑖+1

𝑀 ) ≤ deg(𝛼𝑑−𝑖
𝑀 𝛽𝑖

𝑀)2.
This is an analogue of the Teisser-Khovanskii inequal-
ity for intersection numbers in algebraic geometry and
the Alexandrov-Fenchel inequality for mixed volumes in
convex geometry. The main case is when 𝑖 = 𝑑− 1.

By a continuity argument, we may replace 𝛽𝑀 by
𝐿 = 𝐿(𝑐) sufficiently close to 𝛽𝑀. The desired inequality
in the main case then becomes

deg(𝛼2
𝑀𝐿𝑑−2)deg(𝐿𝑑) ≤ deg(𝛼𝑀𝐿𝑑−1)2.

This follows from the fact that the signature of the bilinear
form

𝐴1(𝑀) ×𝐴1(𝑀) → ℝ, (𝑥1, 𝑥2) ↦ deg(𝑥1𝐿𝑑−2𝑥2)
restricted to the span of 𝛼𝑀 and 𝐿 is semi-indefinite,
which, in turn, is a consequence of the Hodge-Riemann
relations for 𝑀 in the cases 𝑞 = 0, 1.

This application uses only a small piece of the Hodge-
Riemann relations for 𝑀. The general Hodge-Riemann
relations for 𝑀 may be used to extract other interesting
combinatorial information about 𝑀.
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