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Decomposition theorem
Kähler package

1. Introduction

A matroid M on a finite set E is a nonempty collection of subsets of E, called flats of 
M, that satisfies the following properties:

(1) The intersection of any two flats is a flat.
(2) For any flat F , any element in E \F is contained in exactly one flat that is minimal 

among the flats strictly containing F .

Throughout, we suppose in addition that M is a loopless matroid:

(3) The empty subset of E is a flat.

We write L(M) for the lattice of all flats of M. Every maximal flag of proper flats of M
has the same cardinality d, called the rank of M. A matroid can be equivalently defined 
in terms of its independent sets or the rank function. For background in matroid theory, 
we refer to [25] and [28].

The first aim of the present paper is to decompose the Chow ring of M as a module 
over the Chow ring of the deletion M \i (Theorem 1.2). The decomposition resembles the 
decomposition of the cohomology ring of a projective variety induced by a semi-small 
map. In Section 4, we use the decomposition to give a simple proof of the Kähler package 
for the Chow ring: Poincaré duality, the hard Lefschetz theorem, and the Hodge–Riemann 
relations. This recovers the main result of [1].

The second aim of the present paper is to introduce the augmented Chow ring of M, 
which contains the graded Möbius algebra of M as a subalgebra. We give an analogous 
semi-small decomposition of the augmented Chow ring of M as a module over the aug-
mented Chow ring of the deletion M \ i (Theorem 1.5), and use this to prove the Kähler 
package for the augmented Chow ring. These results play a major role in the follow-up 
paper [4], where we prove the Top-Heavy conjecture along with the nonnegativity of the 
coefficients of the Kazhdan–Lusztig polynomial of a matroid.

Remark 1.1. The main objects of study in [4] are combinatorial abstractions of intersec-
tion cohomology groups of singular algebraic varieties. In contrast, the objects of study 
in this paper are combinatorial abstractions of cohomology groups (or Chow rings) of 
smooth projective varieties.

1.1. Let SM be the ring of polynomials with variables labeled by the nonempty 
proper flats of M:

SM := Q[xF |F is a nonempty proper flat of M].
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The Chow ring of M, introduced by Feichtner and Yuzvinsky in [17], is the quotient 
algebra1

CH(M) := SM/(IM + JM),

where IM is the ideal generated by the linear forms
∑
i1∈F

xF −
∑
i2∈F

xF , for every pair of distinct elements i1 and i2 of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable nonempty proper flats F1 and F2 of M.

When E is nonempty, the Chow ring of M admits a degree map

degM : CHd−1(M) −→ Q, xF :=
∏
F∈F

xF �−→ 1,

where F is any complete flag of nonempty proper flats of M (Definition 2.15). For any 
integer k, the degree map defines the Poincaré pairing

CHk(M) × CHd−k−1(M) −→ Q, (η1, η2) �−→ degM(η1η2).

If M is realizable over a field,2 then the Chow ring of M is isomorphic to the Chow ring 
of a smooth projective variety over the field (Remark 2.16).

Let i be an element of E, and let M \ i be the deletion of i from M. By definition, 
M \ i is the matroid on E \ i whose flats are the sets of the form F \ i for a flat F of M. 
The Chow rings of M and M \ i are related by the graded algebra homomorphism

θi = θM
i : CH(M \ i) −→ CH(M), xF �−→ xF + xF∪i,

where a variable in the target is set to zero if its label is not a flat of M. As we will see 
in Section 3, this homomorphism is induced by a projection from the Bergman fan of M
to the Bergman fan of M \ i. Let CH(i) be the image of the homomorphism θi, and let 
Si be the collection

Si = Si(M)

=
{
F |F is a nonempty proper subset of E\i such that F ∈L(M) and F ∪ i ∈ L(M)

}
.

1 A slightly different presentation for the Chow ring of M was used in [17] in a more general context. The 
present description was used in [1], where the Chow ring of M was denoted A(M). For a comparison of the 
two presentations, see [3].
2 We say that M is realizable over a field F if there exists a linear subspace V ⊆ FE such that S ⊆ E is 

independent if and only if the projection from V to FS is surjective. Almost all matroids are not realizable 
over any field [24].
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The element i is said to be a coloop of M if the ranks of M and M \ i are not equal. Thus, 
Si is the collection of all nonempty proper subsets F of E \ i such that F ∪ i is a flat of 
M and i is a coloop in MF∪i.

Theorem 1.2. If i is not a coloop of M, there is a direct sum decomposition of CH(M)
into indecomposable graded CH(M \ i)-modules

CH(M) = CH(i) ⊕
⊕
F∈Si

xF∪iCH(i). (D1)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M). If i is 
a coloop of M, there is a direct sum decomposition of CH(M) into indecomposable graded 
CH(M \ i)-modules3

CH(M) = CH(i) ⊕ xE\iCH(i) ⊕
⊕
F∈Si

xF∪iCH(i). (D2)

All pairs of distinct summands except for the first two are orthogonal for the Poincaré 
pairing of CH(M).

We write rkM : 2E → N for the rank function of M. For any proper flat F of M, we 
set4

MF := the localization of M at F , a loopless matroid on F of rank equal to rkM(F ),

MF := the contraction of M by F , a loopless matroid on E \ F of rank equal to d− rkM(F ).

The lattice of flats of MF can be identified with the lattice of flats of M that are contained 
in F , and the lattice of flats of MF can be identified with the lattice of flats of M that 
contain F . The CH(M \i)-module summands in the decompositions (D1) and (D2) admit 
isomorphisms5

CH(i)
∼= CH(M \ i) and xF∪iCH(i)

∼= CH(MF∪i) ⊗ CH(MF )[−1],

(Propositions 3.4 and 3.5). In addition, if i is a coloop of M, then

xE\iCH(i)
∼= CH(M \ i)[−1].

3 When E = {i}, we treat the symbol x∅ as zero in the right-hand side of (D2).
4 The symbols MF and MF appear inconsistently in the literature, sometimes this way and sometimes 

interchanged. The localization is frequently called the restriction. On the other hand, the contraction is 
also sometimes called the restriction, especially in the context of hyperplane arrangements, so we avoid the 
word restriction to minimize ambiguity.
5 For a graded vector space V , we write V [m] for the graded vector space whose degree k piece is equal 

to V k+m.
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Remark 1.3. When M is the Boolean matroid on E, the graded dimension of CH(M) is 
given by the Eulerian numbers 

〈
d
k

〉
, and the decomposition (D2) specializes to the known 

quadratic recurrence relation

sd(t) = sd−1(t) + t

d−2∑
k=0

(
d− 1
k

)
sk(t)sd−k−1(t), s0(t) = 1,

where sk(t) is the k-th Eulerian polynomial [26, Theorem 1.5].

1.2. We also give similar decompositions for the augmented Chow ring of M, which 
we now introduce. Let SM be the ring of polynomials in two sets of variables

SM := Q[yi |i is an element of E] ⊗ Q[xF |F is a proper flat of M].

The augmented Chow ring of M is the quotient algebra

CH(M) := SM/(IM + JM),

where IM is the ideal generated by the linear forms

yi −
∑
i/∈F

xF , for every element i of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable proper flats F1 and F2 of M, and

yi xF , for every element i of E and every proper flat F of M not containing i.

The augmented Chow ring of M admits a degree map

degM : CHd(M) −→ Q, xF :=
∏
F∈F

xF �−→ 1,

where F is any complete flag of proper flats of M (Definition 2.15). For any integer k, 
the degree map defines the Poincaré pairing

CHk(M) × CHd−k(M) −→ Q, (η1, η2) �−→ degM(η1η2).

If M is realizable over a field, then the augmented Chow ring of M is isomorphic to the 
Chow ring of a smooth projective variety over the field (Remark 2.16).

Remark 1.4. The subring of the augmented Chow ring generated by the elements yi is 
isomorphic to the graded Möbius algebra H(M) (Proposition 2.18), and we have isomor-
phisms
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CH(M) ∼= CH(M)/ideal(yi)i∈E
∼= CH(M) ⊗H(M) Q.

The H(M)-module structure of CH(M) will be studied in detail in the forthcoming paper 
[4]. In this paper, the graded Möbius algebra will not appear outside of Proposition 2.18.

As before, we write M \ i for the matroid obtained from M by deleting the element i. 
The augmented Chow rings of M and M \ i are related by the graded algebra homomor-
phism

θi = θM
i : CH(M \ i) −→ CH(M), xF �−→ xF + xF∪i,

where a variable in the target is set to zero if its label is not a flat of M. As we will 
see in Section 3, this homomorphism is induced by a projection from the augmented 
Bergman fan of M to the augmented Bergman fan of M \ i. Let CH(i) be the image of 
the homomorphism θi, and let Si be the collection

Si = Si(M) :=
{
F |F is a proper subset of E \ i such that F ∈ L(M) and F ∪ i ∈ L(M)

}
.

Equivalently, Si can be defined as the collection of all proper subsets F of E \ i such that 
F ∪ i is a flat of M and i is a coloop in MF∪i.

Theorem 1.5. If i is not a coloop of M, there is a direct sum decomposition of CH(M)
into indecomposable graded CH(M \ i)-modules

CH(M) = CH(i) ⊕
⊕
F∈Si

xF∪iCH(i). (D1)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M). If i is 
a coloop of M, there is a direct sum decomposition of CH(M) into indecomposable graded 
CH(M \ i)-modules

CH(M) = CH(i) ⊕ xE\iCH(i) ⊕
⊕
F∈Si

xF∪iCH(i). (D2)

All pairs of distinct summands except for the first two are orthogonal for the Poincaré 
pairing of CH(M).

The CH(M \ i)-module summands in the decompositions (D1) and (D2) admit iso-
morphisms

CH(i) ∼= CH(M \ i) and xF∪iCH(i) ∼= CH(MF∪i) ⊗ CH(MF )[−1],

(Propositions 3.4 and 3.5). In addition, if i is a coloop of M,

xE\iCH(i) ∼= CH(M \ i)[−1].
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1.3. Let B be the Boolean matroid on E. By definition, every subset of E is a 
flat of B. The Chow rings of B and M are related by the surjective graded algebra 
homomorphism

CH(B) −→ CH(M), xS �−→ xS ,

where a variable in the target is set to zero if its label is not a flat of M. Similarly, we 
have a surjective graded algebra homomorphism

CH(B) −→ CH(M), xS �−→ xS ,

where a variable in the target is set to zero if its label is not a flat of M. As in [1, Section 
4], we may identify the Chow ring CH(B) with the ring of piecewise polynomial functions 
modulo linear functions on the normal fan ΠB of the standard permutohedron in RE. 
Similarly, the augmented Chow ring CH(B) can be identified with the ring of piecewise 
polynomial functions modulo linear functions of the normal fan ΠB of the stellahedron 
in RE (Definition 2.4). A convex piecewise linear function on a complete fan is said to 
be strictly convex if there is a bijection between the cones in the fan and the faces of the 
graph of the function.

In Section 4, we use Theorems 1.2 and 1.5 to give simple proofs of Poincaré duality, 
the hard Lefschetz theorem, and the Hodge–Riemann relations for CH(M) and CH(M).

Theorem 1.6. Let � be a strictly convex piecewise linear function on ΠB, viewed as an 
element of CH1(M).

(1) (Poincaré duality theorem) For every nonnegative integer k < d
2 , the bilinear pairing

CHk(M) × CHd−k−1(M) −→ Q, (η1, η2) �−→ degM(η1η2)

is nondegenerate.
(2) (Hard Lefschetz theorem) For every nonnegative integer k < d

2 , the multiplication 
map

CHk(M) −→ CHd−k−1(M), η �−→ �d−2k−1η

is an isomorphism.
(3) (Hodge–Riemann relations) For every nonnegative integer k < d

2 , the bilinear form

CHk(M) × CHk(M) −→ Q, (η1, η2) �−→ (−1)kdegM(�d−2k−1η1η2)

is positive definite on the kernel of multiplication by �d−2k.

Let � be a strictly convex piecewise linear function on ΠB, viewed as an element of 
CH1(M).
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(4) (Poincaré duality theorem) For every nonnegative integer k � d
2 , the bilinear pairing

CHk(M) × CHd−k(M) −→ Q, (η1, η2) �−→ degM(η1η2)

is nondegenerate.
(5) (Hard Lefschetz theorem) For every nonnegative integer k � d

2 , the multiplication 
map

CHk(M) −→ CHd−k(M), η �−→ �d−2kη

is an isomorphism.
(6) (Hodge–Riemann relations) For every nonnegative integer k � d

2 , the bilinear form

CHk(M) × CHk(M) −→ Q, (η1, η2) �−→ (−1)k degM(�d−2kη1η2)

is positive definite on the kernel of multiplication by �d−2k+1.

Theorem 1.6 holds non-vacuously, as there are strictly convex piecewise linear func-
tions on ΠB and ΠB (Proposition 2.6). The first part of Theorem 1.6 on CH(M) recovers 
the main result of [1].6 The second part of Theorem 1.6 on CH(M) is new.

Remark 1.7. By Remark 2.10 and Proposition 2.12, we can reformulate Theorem 1.6 as 
follows: Both the Bergman fan and the augmented Bergman fan satisfy Poincaré duality, 
and they satisfy the hard Lefschetz theorem and the Hodge–Riemann relations with 
respect to any strictly convex piecewise linear function.

1.4. In Section 5, we use Theorems 1.2 and 1.5 to obtain decompositions of CH(M)
and CH(M) related to those appearing in [1, Theorem 6.18]. Let Hα(M) be the subalgebra 
of CH(M) generated by the element

αM :=
∑
i∈G

xG ∈ CH1(M),

where the sum is over all nonempty proper flats G of M containing a given element i in 
E, and let Hα(M) be the subalgebra of CH(M) generated by the element

αM :=
∑
G

xG ∈ CH1(M),

where the sum is over all proper flats G of M. We define graded subspaces Jα(M) and 
Jα(M) by

6 Independent proofs of Poincaré duality for CH(M) were given in [3] and [2]. The authors of [3] also prove 
the degree 1 Hodge–Riemann relations for CH(M).
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Jkα(M) :=
{

Hk
α(M) if k 	= d− 1,
0 if k = d− 1,

Jkα(M) :=
{

Hk
α(M) if k 	= d,
0 if k = d.

A degree computation shows that the elements αd−1
M and αd

M are nonzero (Propo-
sition 2.32). We will construct an injective CH(M)-module homomorphism (Proposi-
tions 2.25 and 2.27)

ψF

M : CH(MF ) ⊗ CH(MF ) −→ CH(M),
∏
F ′

xF ′\F ⊗
∏
F ′′

xF ′′ �−→ xF

∏
F ′

xF ′
∏
F ′′

xF ′′ ,

and an injective CH(M)-module homomorphism (Propositions 2.21 and 2.23)

ψF
M : CH(MF ) ⊗ CH(MF ) −→ CH(M),

∏
F ′

xF ′\F ⊗
∏
F ′′

xF ′′ �−→ xF

∏
F ′

xF ′
∏
F ′′

xF ′′ .

Theorem 1.8. Let Q = Q(M) be the set of all nonempty proper flats of M, and let Q =
Q(M) be the set of all proper flats of M with rank at least two.

(1) We have a decomposition of Hα(M)-modules

CH(M) = Hα(M) ⊕
⊕
F∈Q

ψF

M CH(MF ) ⊗ Jα(MF ). (D3)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M).
(2) We have a decomposition of Hα(M)-modules

CH(M) = Hα(M) ⊕
⊕
F∈Q

ψF
M CH(MF ) ⊗ Jα(MF ). (D3)

All pairs of distinct summands are orthogonal for the Poincaré pairing of CH(M).

Remark 1.9. The decomposition (D3) and the decomposition induced by [1, Theorem 
6.18] are isomorphic as decompositions of graded vector spaces, but the latter one is not 
an orthogonal decomposition. In each case, applying the decomposition to MF for all 
F , we get a basis of CH(M) that is permuted by any automorphism of M. For example, 
when M is a matroid of rank 5, the decomposition (D3) in degree 3 gives

CH3(M) = Qα3
M ⊕

( ⊕
rkF=2

Q ψF

M(α2
MF

⊗ 1)
)
⊕
( ⊕

rkF=3
Q ψF

M(αMF
⊗ αMF )

)

⊕
( ⊕

rkF=4
Q ψF

M(1 ⊗ α2
MF )

)
,

while the decomposition [1, Theorem 6.18] reads
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CH3(M) = Qα3
M ⊕

( ⊕
rkF=2

Q ψF

M(α2
MF

⊗ 1)
)
⊕
( ⊕

rkF=3
Q xF ψF

M(1 ⊗ αMF )
)

⊕
( ⊕

rkF=4
Q x2

F ψF

M(1 ⊗ 1)
)
.

Only the former is orthogonal to the common decomposition in the complimentary degree

CH1(M) = QαM ⊕
( ⊕

rkF=2
QxF

)
⊕
( ⊕

rkF=3
QxF

)
⊕
( ⊕

rkF=4
QxF

)
.

In general, the basis of CH(M) given by the decomposition (D3) is different from the 
ones in [17, Corollary 1] and [3, Corollary 3.3.3].

Remark 1.10. When M is the Boolean matroid on E, the decomposition (D3) specializes 
to a linear recurrence relation for the Eulerian polynomials

0 = 1 +
d∑

k=0

(
d

k

)
t− td−k

1 − t
sk(t), s0(t) = 1.

1.5. For realizable matroids, the Chow ring, the augmented Chow ring, and the 
Möbius algebra are indeed Chow rings (or cohomology rings when realized over C) of 
certain algebraic varieties. We explain the geometric motivations of the paper in the 
remaining part of the introduction.

First, we recall the definition and some relevant properties of semi-small maps. Let 
f : X → Y be a map between smooth complex projective varieties. For every integer 
k, we say that the map f is semi-small if there is no irreducible subvariety T ⊆ X

such that 2 dimT − dim f(T ) > dimX. For example, if f is the blowup along a smooth 
center Z, then f is semi-small if and only if Z ⊆ Y is of codimension at most two. 
Semi-small maps play an essential role in the proof of the decomposition theorem by 
de Cataldo and Migliorini [10,11]. Using the language of the decomposition theorem, a 
map f : X → Y of smooth projective varieties is semi-small if and only if the derived 
pushforward Rf∗(QX [dimX]) is a perverse sheaf on Y . If f is semi-small, then for any 
ample class A in H2(Y ; Q), its pullback f∗(A) behaves like an ample class on X [10, 
Propositions 2.2.7 and 2.3.1]. More precisely, the cohomology ring H•(X; Q) satisfies the 
hard Lefschetz theorem and the Hodge–Riemann relations with respect to f∗(A).

When M is realized by a hyperplane arrangement A = {Hi}i∈E in the projectivization 
of a d-dimensional vector space V over a field F , there are smooth projective varieties 
XA and XA over F whose Chow rings are isomorphic to CH(M) and CH(M) respectively, 
and we call them the wonderful model and the augmented wonderful model of A. The 
wonderful model XA was used in [19] to prove the log-concavity of the coefficients of the 
characteristic polynomial of realizable matroids.



T. Braden et al. / Advances in Mathematics 409 (2022) 108646 11
Let us recall the construction of XA. For any nonempty proper subset S ⊆ E, we set

HS =
⋂
i∈S

Hi and H◦
S = HS \

⋃
S�T

HT .

Then H◦
S is nonempty if and only if S is a nonempty proper flat of M, and in this case, 

the dimension of H◦
S is equal to crk(S) − 1. The divisor 

⋃
i∈E Hi admits a stratification ⋃

i∈E Hi = �F H◦
F , where the disjoint union is over all nonempty proper flats F of M. 

To construct the wonderful model XA, we first blow up the points HF in P (V ) for all 
corank one flats F , then we blow up the strict transforms of HF for corank two flats 
F , and so on. The resulting smooth projective variety is XA. See Remark 2.16 for an 
alternative description of the wonderful model.

Denote by A \ i the hyperplane arrangement obtained from A by deleting the hyper-
plane Hi. Then there is regular map XA → XA\i, which models the decompositions (D1)
and (D2). When i is not a coloop of M, the map is semi-small because it can be written 
as a sequence of blowups of smooth subvarieties of codimension two parametrized by Si. 
In fact, for any F in Si, when the strict transform of HF is blown up in the construction 
of XA\i, the preimage of H◦

F∪i is of codimension two. The wonderful model XA can be 
obtained from XA\i by blowing up the closure of the preimage of H◦

F∪i for all F in Si. 
When i is a coloop, the map XA → XA\i is generically a P 1 bundle, which corresponds 
to the first two summands CH(i) and xE\iCH(i) in the decomposition (D2).

The decomposition (D3) is modeled by the composition of all the blowup maps XA →
P (V ) in the construction of XA. Moreover, the class α in CH1(MA) is equal to the 
pullback of the hyperplane class of P (V ), via the identification of CH(MA) and the 
Chow ring of XA. For each i in E, choose a linear form fi that defines the hyperplane 
Hi. Then the rational map

[ 1
fi

]
i∈E

: P (V ) ��� P (FE)

extends to a regular map XA → P (FE). The pullback of the hyperplane class of P (FE)
is equal to the class β, which will be defined in Section 2.6. The image of XA in P (FE)
is the projective reciprocal plane, which is singular in general, and its intersection coho-
mology groups are closely related to the Kazhdan–Lusztig polynomial of M (see [14]). 
The decomposition of CH(M) as a module over the subalgebra Q[β] involves intersection 
cohomology groups of singular projective varieties and will be studied in [4].

To construct the augmented wonderful model XA, we start with the projective space

P (V ⊕ F) = V ∪ P (V ).

For any nonempty proper flat F , we consider the previously defined HF as a linear 
subspace of P (V ). Similar to the construction of XA, we first blow up all HF in P (V )
for all corank one flats F , then we blow up the strict transforms of HF for all corank 
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two flats F . We continue this process until we blow up HF for all rank one flats F . Since 
all the blowup centers are in the hyperplane at infinity, the affine space V remains an 
open subset of XA. Moreover, the strict transform of the hyperplane at infinity is exactly 
isomorphic to XA, which explains the pullback map ϕ∅

M : CH(M) → CH(M) and the 
pushforward map ψ∅

M : CH(M) → CH(M).
For any i in E, there is a regular map XA → XA\i which models the decompositions 

(D1) and (D2). Moreover, when i is not a coloop, the map XA → XA\i is semi-small. The 
decomposition (D3) is modeled by the composition of all blowup maps XA → P (V ⊕F), 
and the class α is equal to the pullback of the hyperplane class, via identifying CH(M)
with the Chow ring of XA.7 There is a natural map XA → (P 1)E , which induces the 
classes yi for i in E. In fact, the linear map

(fi)i∈E : V → FE

extends to a regular map XA → (P 1)E . The image of the map XA → (P 1)E is the 
variety YA in [20], now called the Schubert variety of A. The operational Chow ring of 
YA is isomorphic to H(M). The decomposition of CH(M) as an H(M)-module involves 
the intersection cohomology groups of singular varieties, and will be studied in [4].

The decomposition theorem for proper toric maps was studied in [12], and the com-
binatorial generalization to fans was studied in [21]. Since the Bergman fan and the 
augmented Bergman fan are not complete, our results are of a different nature.

Acknowledgments. We thank Christopher Eur and Matthew Stevens for useful discus-
sions. We also thank the referees for carefully reading the paper and making many helpful 
suggestions.

2. The Chow ring and the augmented Chow ring of a matroid

In this section, we collect the various properties of the algebras CH(M) and CH(M)
that we will need in order to prove Theorems 1.2–1.8. In Section 2.1, we review the 
definition and basic properties of the Bergman fan and introduce the closely related 
augmented Bergman fan of a matroid. Section 2.2 is devoted to understanding the stars 
of the various rays in these two fans, while Section 2.3 is where we compute the space 
of balanced top-dimensional weights on each fan. Feichtner and Yuzvinsky showed that 
the Chow ring of a matroid coincides with the Chow ring of the toric variety associated 
with its Bergman fan [17, Theorem 3], and we establish the analogous result for the 
augmented Chow ring in Section 2.4. Section 2.5 is where we show that the augmented 
Chow ring contains the graded Möbius algebra. In Section 2.6, we use the results of 
Section 2.2 to construct various homomorphisms that relate the Chow and augmented 
Chow rings of different matroids.

7 There is no natural map from XA to P(FE) or to P(FE ⊕ F), and hence the symbol βM will not be 
defined.
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Remark 2.1. It is worth noting why we need to interpret CH(M) and CH(M) as Chow 
rings of toric varieties. First, the study of balanced weights on the Bergman fan and 
augmented Bergman fan allow us to show that CHd−1(M) and CHd(M) are nonzero, 
which is not easy to prove directly from the definitions. The definition of the pullback 
and pushforward maps in Section 2.6 is made cleaner by thinking about fans, though it 
would also be possible to define these maps by taking Propositions 2.20, 2.21, 2.24, 2.25, 
2.28, and 2.29 as definitions. Finally, and most importantly, the fan perspective will be 
essential for understanding the ample classes that appear in Theorem 1.6.

2.1. Fans

Let E be a finite set, and let M be a loopless matroid of rank d on the ground set E. 
We write rkM for the rank function of M, and write clM for the closure operator of M, 
which for a set S returns the smallest flat containing S. The independence complex IM
of M is the simplicial complex of independent sets of M. A set I ⊆ E is independent if 
and only if the rank of clM(I) is |I|. The vertices of IM are the elements of the ground 
set E, and a collection of vertices is a face of IM when the corresponding set of elements 
is an independent set of M. The Bergman complex ΔM of M is the order complex of the 
poset of nonempty proper flats of M. The vertices of ΔM are the nonempty proper flats 
of M, and a collection of vertices is a face of ΔM when the corresponding set of flats is 
a flag. The independence complex of M is pure of dimension d − 1, and the Bergman 
complex of M is pure of dimension d −2. For a detailed study of the simplicial complexes 
IM and ΔM, we refer to [5]. We introduce the augmented Bergman complex ΔM of M
as a simplicial complex that interpolates between the independence complex and the 
Bergman complex of M.

Definition 2.2. Let I be an independent set of M, and let F be a flag of proper flats 
of M. When I is contained in every flat in F, we say that I is compatible with F and 
write I � F. The augmented Bergman complex ΔM of M is the simplicial complex of all 
compatible pairs I � F, where I is an independent set of M and F is a flag of proper 
flats of M.

A vertex of the augmented Bergman complex ΔM is either a singleton subset of E or 
a proper flat of M. More precisely, the vertices of ΔM are the compatible pairs either of 
the form {i} � ∅ or of the form ∅ � {F}, where i is an element of E and F is a proper 
flat of M. The augmented Bergman complex contains both the independence complex IM
and the Bergman complex ΔM as subcomplexes. In fact, ΔM contains the order complex 
of the poset of proper flats of M, which is the cone over the Bergman complex with the 
cone point corresponding to the empty flat. It is straightforward to check that ΔM is 
pure of dimension d − 1.
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Proposition 2.3. The Bergman complex and the augmented Bergman complex of M are 
both connected in codimension 1.

Proof. The statement about the Bergman complex is a direct consequence of its shella-
bility [5]. We prove the statement about the augmented Bergman complex using the 
statement about the Bergman complex.

The claim is that, given any two facets of ΔM, one may travel from one facet to the 
other by passing through faces of codimension at most 1. Since the Bergman complex of 
M is connected in codimension 1, the subcomplex of ΔM consisting of faces of the form 
∅ � F is connected in codimension 1. Thus it suffices to show that any facet of ΔM can 
be connected to a facet of the form ∅ � F through codimension 1 faces.

Let I � F be a facet of ΔM. If I is nonempty, choose any element i of I, and consider 
the flag of flats G obtained by adjoining the closure of I \ i to F. The independent set 
I \ i is compatible with the flag G, and the facet I � F is adjacent to the facet I \ i � G. 
Repeating the procedure, we can connect the given facet to a facet of the desired form 
through codimension 1 faces. �

Let RE be the vector space spanned by the standard basis vectors ei corresponding 
to the elements i ∈ E. For an arbitrary subset S ⊆ E, we set

eS :=
∑
i∈S

ei.

For an element i ∈ E, we write ρi for the ray generated by the vector ei in RE . For 
a subset S ⊆ E, we write ρS for the ray generated by the vector −eE\S in RE , and 
write ρ

S
for the image of this ray in RE/〈eE〉, which is generated by the image of eS .8

Using these rays, we construct fan models of the Bergman complex and the augmented 
Bergman complex as follows.

Definition 2.4. The Bergman fan ΠM of M is a simplicial fan in the quotient space 
RE/〈eE〉 with rays ρ

F
for nonempty proper flats F of M. The cones of ΠM are of the 

form

σF := cone{eF }F∈F = cone{−eE\F }F∈F,

where F is a flag of nonempty proper flats of M.
The augmented Bergman fan ΠM of M is a simplicial fan in RE with rays ρi for 

elements i in E and ρF for proper flats F of M. The cones of the augmented Bergman 
fan are of the form

σI�F := cone{ei}i∈I + cone{−eE\F }F∈F,

8 The reason why ρS is the correct lift of ρ for our purposes will become clear in Section 2.2.

S



T. Braden et al. / Advances in Mathematics 409 (2022) 108646 15
∅ � ∅ {1} � ∅∅ � {{2}}

{2} � ∅

∅ � {{1}}∅ � {∅}

{1, 2} � ∅{2} � {{2}}

∅ � {∅, {2}}

∅ � {∅, {1}}

{1} � {{1}}

Fig. 1. The augmented Bergman fan of the rank 2 Boolean matroid on {1, 2}.

where F is a flag of proper flats of M and I is an independent set of M compatible with 
F. We write σI for the cone σI�F when F is the empty flag of flats of M (see Fig. 1).

Remark 2.5. If E is nonempty, then the Bergman fan ΠM is the star of the ray ρ∅ in the 
augmented Bergman fan ΠM. If E is empty, then ΠM and ΠM both consist of a single 
0-dimensional cone.

Let N be another loopless matroid on E. The matroid M is said to be a quotient of 
N if every flat of M is a flat of N. The condition implies that every independent set of 
M is an independent set of N [22, Proposition 8.1.6]. Therefore, when M is a quotient of 
N, the augmented Bergman fan of M is a subfan of the augmented Bergman fan of N, 
and the Bergman fan of M is a subfan of the Bergman fan of N. In particular, we have 
inclusions of fans ΠM ⊆ ΠB and ΠM ⊆ ΠB, where B is the Boolean matroid on E defined 
by the condition that E is an independent set of B.

Proposition 2.6. The Bergman fan and the augmented Bergman fan of B are each normal 
fans of convex polytopes. In particular, there are strictly convex piecewise linear functions 
on ΠB and ΠB.

The above proposition can be used to show that the augmented Bergman fan and the 
Bergman fan of M are, in fact, fans.

Proof. The statement for the Bergman fan is well-known: The Bergman fan of B is the 
normal fan of the standard permutohedron in e⊥E ⊆ RE . See, for example, [1, Section 2]. 
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The statement for the augmented Bergman fan ΠB follows from the fact that it is an 
iterated stellar subdivision of the normal fan of the simplex

conv{ei, eE}i∈E ⊆ RE .

More precisely, ΠB is isomorphic to the fan ΣP in [1, Definition 2.3], where P is the order 
filter of all subsets of E ∪ 0 containing the new element 0, via the linear isomorphism

RE −→ RE∪0/〈eE + e0〉, ej �−→ ej .

It is shown in [1, Proposition 2.4] that ΣP is an iterated stellar subdivision of the normal 
fan of the simplex.9 �

A direct inspection shows that ΠM is a unimodular fan; that is, the set of primitive 
ray generators in any cone in ΠM is a subset of a basis of the free abelian group ZE. It 
follows that ΠM is also a unimodular fan; that is, the set of primitive ray generators in 
any cone in ΠM is a subset of a basis of the free abelian group ZE/〈eE〉.

2.2. Stars

For any element i of E, we write cl(i) for the closure of i in M, and write ιi for the 
injective linear map

ιi : RE\cl(i) −→ RE/〈ei〉, ej �−→ ej .

For any proper flat F of M, we write ιF for the linear isomorphism

ιF : RE\F /〈eE\F 〉 ⊕ RF −→ RE/〈eE\F 〉, ej �−→ ej .

For any nonempty proper flat F of M, we write ιF for the linear isomorphism

ιF : RE\F /〈eE\F 〉 ⊕ RF /〈eF 〉 −→ RE/〈eE , eE\F 〉, ej �−→ ej .

Let MF be the localization of M at F , and let MF be the contraction of M by F .

Proposition 2.7. The following are descriptions of the stars of the rays in ΠM and ΠM
using the three linear maps above.

9 In fact, the augmented Bergman fan ΠB is the normal fan of the stellahedron in RE , the graph asso-
ciahedron of the star graph with |E| endpoints. We refer to [7] and [13] for detailed discussions of graph 
associahedra and their realizations. An explicit description of their normal fans that motivated Definition 2.4
can be found in [15, Theorem 3.14] and [27, Theorem 7.4].
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(1) For any element i ∈ E, the linear map ιi identifies the augmented Bergman fan of 
Mcl(i) with the star of the ray ρi in the augmented Bergman fan of M:

ΠMcl(i)
∼= starρi

ΠM.

(2) For any proper flat F of M, the linear map ιF identifies the product of the Bergman 
fan of MF and the augmented Bergman fan of MF with the star of the ray ρF in the 
augmented Bergman fan of M:

ΠMF
× ΠMF

∼= starρF
ΠM.

(3) For any nonempty proper flat F of M, the linear map ιF identifies the product of 
the Bergman fan of MF and the Bergman fan of MF with the star of the ray ρ

F
in 

the Bergman fan of M:

ΠMF
× ΠMF

∼= starρ
F
ΠM.

Repeated applications of the first statement show that, for any independent set I of 
M, the star of the cone σI in ΠM can be identified with the augmented Bergman fan of 
Mcl(I), where cl(I) is the closure of I in M.

Proof. The first statement follows from the following facts: A flat of M contains i if 
and only if it contains cl(i), and an independent set of M containing i does not contain 
any other element in cl(i). The second and third statements follow directly from the 
definitions. �
2.3. Weights

For any simplicial fan Σ, we write Σk for the set of k-dimensional cones in Σ. If τ is 
a codimension 1 face of a cone σ, we write

eσ/τ := the primitive generator of the unique ray in σ that is not in τ .

A k-dimensional balanced weight on Σ is a Q-valued function ω on Σk that satisfies the 
balancing condition: For every (k − 1)-dimensional cone τ in Σ,

∑
τ⊂σ

ω(σ)eσ/τ is contained in the subspace spanned by τ ,

where the sum is over all k-dimensional cones σ containing τ . We write MWk(Σ) for the 
group of k-dimensional balanced weights on Σ.

Proposition 2.8. The Bergman fan and the augmented Bergman fan of M have the fol-
lowing unique balancing property.
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(1) A (d − 1)-dimensional weight on ΠM is balanced if and only if it is constant.
(2) A d-dimensional weight on ΠM is balanced if and only if it is constant.

Proof. The first statement is [1, Proposition 5.2]. We prove the second statement.
Let σI�F be a codimension 1 cone of ΠM, and let F be the smallest flat in F ∪ {E}. 

We analyze the primitive generators of the rays in the star of the cone σI�F in ΠM. Let 
cl(I) be the closure of I in M. There are two cases.

When the closure of I is not F , the primitive ray generators in question are −eE\cl(I)
and ei, for elements i in F not in the closure of I. The primitive ray generators satisfy 
the relation

−eE\cl(I) +
∑

i∈F\cl(I)
ei = −eE\F ,

which is zero modulo the span of σI�F. As the ei’s are independent modulo the span of 
σI�F, any relation between the primitive generators must be a multiple of the displayed 
one.

When the closure of I is F , the fact that σI�F has codimension 1 implies that there 
is a unique integer k with rkF < k < rk M such that F does not include a flat of rank 
k. Let F◦ be the unique flat in F of rank k− 1, and let F ◦ be the unique flat in F ∪ {E}
of rank k + 1. The primitive ray generators in question are −eE\G for the flats G in G, 
where G is the set of flats of M covering F◦ and covered by F ◦. By the flat partition 
property of matroids [25, Section 1.4], the primitive ray generators satisfy the relation

∑
G∈G

−eE\G = −(|G| − 1)eE\F◦ − eE\F◦ ,

which is zero modulo the span of σI�F. Since any proper subset of the primitive gener-
ators −eE\G for G in G is independent modulo the span of σI�F, any relation between 
the primitive generators must be a multiple of the displayed one.

The local analysis above shows that any constant d-dimensional weight on ΠM is 
balanced. Since ΠM is connected in codimension 1 by Proposition 2.3, it also shows that 
any d-dimensional balanced weight on ΠM must be constant. �
Remark 2.9. The definition of Bergman fan and augmented Bergman fan generalizes 
to any atomic lattice. The above balancing condition is equivalent to the flat partition 
property: For any flat F , any element in E \ F is contained in exactly one flat that is 
minimal among the flats strictly containing F .

2.4. Chow rings

Any unimodular fan Σ in RE defines a graded commutative algebra CH(Σ), which is 
the Chow ring of the associated smooth toric variety XΣ over C with rational coefficients. 
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Equivalently, CH(Σ) is the ring of continuous piecewise polynomial functions on Σ with 
rational coefficients modulo the ideal generated by globally linear functions [6, Section 
3.1]. We write CHk(Σ) for the Chow group of codimension k cycles in XΣ, so that

CH(Σ) =
⊕
k

CHk(Σ).

The group of k-dimensional balanced weights on Σ is related to CHk(Σ) by the isomor-
phism

MWk(Σ) −→ HomQ(CHk(Σ),Q), ω �−→ (xσ �−→ ω(σ)),

where xσ is the class of the torus orbit closure in XΣ corresponding to a k-dimensional 
cone σ in Σ. See [1, Section 5] for a detailed discussion. For general facts on toric varieties 
and Chow rings, and for any undefined terms, we refer to [9] and [16].

Remark 2.10. For any simplicial fan Σ, we will say that Σ satisfies the hard Lefschetz 
theorem or the Hodge–Riemann relations with respect to some piecewise linear function 
on Σ if the ring CH(Σ) satisfies the hard Lefschetz theorem or the Hodge–Riemann 
relations with respect to the corresponding element of CH1(Σ).

In Proposition 2.12 below, we show that the Chow ring of M coincides with CH(ΠM)
and that the augmented Chow ring of M coincides with CH(ΠM).

Lemma 2.11. The following identities hold in the augmented Chow ring CH(M).

(1) For any element i of E, we have y2
i = 0.

(2) For any two bases I1 and I2 of a flat F of M, we have 
∏

i∈I1
yi =

∏
i∈I2

yi.
(3) For any dependent set J of M, we have 

∏
j∈J yj = 0.

Proof. The first identity is a straightforward consequence of the relations in IM and JM:

y2
i = yi

(∑
i/∈F

xF

)
= 0.

For the second identity, we may assume that I1 \ I2 = {i1} and I2 \ I1 = {i2}, by 
the basis exchange property of matroids and an induction on the size of the symmetric 
difference between I1 and I2. Since a flat of M contains I1 if and only if it contains I2, 
we have ( ∑

i1∈G

xG

) ∏
i∈I1∩I2

yi =
( ∑

I1⊆G

xG

) ∏
i∈I1∩I2

yi =
( ∑

I2⊆G

xG

) ∏
i∈I1∩I2

yi

=
( ∑

i2∈G

xG

) ∏
i∈I1∩I2

yi.
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This immediately implies that we also have( ∑
i1 /∈G

xG

) ∏
i∈I1∩I2

yi =
( ∑

i2 /∈G

xG

) ∏
i∈I1∩I2

yi,

which tells us that
∏
i∈I1

yi = yi1
∏

i∈I1∩I2

yi =
( ∑

i1 /∈G

xG

) ∏
i∈I1∩I2

yi =
( ∑

i2 /∈G

xG

) ∏
i∈I1∩I2

yi

= yi2
∏

i∈I1∩I2

yi =
∏
i∈I2

yi.

For the third identity, we may suppose that J is a circuit, that is, a minimal dependent 
set. Since M is a loopless matroid, we may choose distinct elements j1 and j2 from J . 
Note that the independent sets J \ j1 and J \ j2 have the same closure because J is a 
circuit. Therefore, by the second identity, we have

∏
j∈J\j1

yj =
∏

j∈J\j2

yj .

Combining the above with the first identity, we get
∏
j∈J

yj = yj1
∏

j∈J\j1

yj = yj1
∏

j∈J\j2

yj = y2
j1

∏
j∈J\{j1,j2}

yj = 0. �

By the second identity in Lemma 2.11, we may define

yF :=
∏
i∈I

yi in CH(M)

for any flat F of M and any basis I of F . The element yE will play the role of the 
fundamental class for the augmented Chow ring of M.

Proposition 2.12. We have isomorphisms

CH(M) ∼= CH(ΠM) and CH(M) ∼= CH(ΠM).

Proof. The first isomorphism is proved in [17, Theorem 3]; see also [1, Section 5.3].
Let KM be the ideal of SM generated by the monomials 

∏
j∈J yj for every dependent 

set J of M. The ring of continuous piecewise polynomial functions on ΠM is isomorphic 
to the Stanley–Reisner ring of ΔM, which is equal to

SM/(JM + KM).

The ring CH(ΠM) is obtained from this ring by killing the linear forms that generate the 
ideal IM. In other words, we have a surjective homomorphism
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CH(M) := SM/(IM + JM) −→ SM/(IM + JM + KM) ∼= CH(ΠM).

The fact that this is an isomorphism follows from the third part of Lemma 2.11. �
Remark 2.13. By Proposition 2.12, the graded dimension of the Chow ring of the rank d
Boolean matroid CH(B) is given by the h-vector of the permutohedron in RE. In other 
words, we have

dim CHk(B) = the Eulerian number
〈
d

k

〉
.

See [26, Section 9.1] for more on permutohedra and Eulerian numbers.

Remark 2.14. If E is nonempty, we have the balanced weight

1 ∈ MWd−1(ΠM) ∼= HomQ(CHd−1(M),Q),

which can be used to define a degree map on the Chow ring of M. Similarly, for any E,

1 ∈ MWd(ΠM) ∼= HomQ(CHd(M),Q)

can be used to define a degree map on the augmented Chow ring of M.

Definition 2.15. Consider the following degree maps for the Chow ring and the augmented 
Chow ring of M.

(1) If E is nonempty, the degree map for CH(M) is the linear map

degM : CHd−1(M) −→ Q, xF �−→ 1,

where xF is any monomial corresponding to a maximal cone σF of ΠM.
(2) For any E, the degree map for CH(M) is the linear map

degM : CHd(M) −→ Q, xI�F �−→ 1,

where xI�F is any monomial corresponding to a maximal cone σI�F of ΠM.

By Proposition 2.8, the degree maps are well-defined and are isomorphisms. It follows 
that, for any two maximal cones σF1

and σF2
of the Bergman fan of M,

xF1 = xF2 in CHd−1(M).

Similarly, for any two maximal cones σI1�F1 and σI2�F2 of the augmented Bergman fan 
of M,
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yF1xF1 = yF2xF2 in CHd(M),

where F1 is the closure of I1 in M and F2 is the closure of I2 in M. Proposition 2.12
shows that

CHk(M) = 0 for k � d and CHk(M) = 0 for k > d.

Remark 2.16. Let F be a field, and let V be a d-dimensional linear subspace of FE. We 
suppose that the subspace V is not contained in FS ⊆ FE for any proper subset S of E. 
Let B be the Boolean matroid on E, and let M be the loopless matroid on E defined by

S is an independent set of M ⇐⇒ the restriction to V of the projection FE → FS is surjective.

Let P (FE) be the projective space of lines in FE, and let TE be its open torus. For any 
proper flat F of M, we write HF for the projective subspace

HF :=
{
p ∈ P (V ) |pi = 0 for all i ∈ F

}
.

The wonderful variety XV is obtained from P (V ) by first blowing up HF for every corank 
1 flat F , then blowing up the strict transforms of HF for every corank 2 flat F , and so 
on. Equivalently,

XV = the closure of P (V ) ∩ TE in the toric variety XM defined by ΠM

= the closure of P (V ) ∩ TE in the toric variety XB defined by ΠB.

When E is nonempty, the inclusion XV ⊆ XM induces an isomorphism between their 
Chow rings,10 and hence the Chow ring of XV is isomorphic to CH(M) [17, Corollary 2].

Let P (FE ⊕F) be the projective completion of FE, and let TE be its open torus. The 
projective completion P (V ⊕ F) contains a copy of P (V ) as the hyperplane at infinity, 
and it therefore contains a copy of HF for every nonempty proper flat F . The augmented 
wonderful variety XV is obtained from P (V ⊕ F1) by first blowing up HF for every 
corank 1 flat F , then blowing up the strict transforms of HF for every corank 2 flat F , 
and so on. Equivalently,

XV = the closure of P (V ⊕ F) ∩ TE in the toric variety XM defined by ΠM

= the closure of P (V ⊕ F) ∩ TE in the toric variety XB defined by ΠB.

The inclusion XV ⊆ XM induces an isomorphism between their Chow rings, and hence 
the Chow ring of XV is isomorphic to CH(M).11

10 In general, the inclusion XV ⊆ XM does not induce an isomorphism between their singular cohomology 
rings.
11 This can be proved using the interpretation of CH(M) in the last sentence of Remark 4.1.
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2.5. The graded Möbius algebra

For any nonnegative integer k, we define a vector space

Hk(M) :=
⊕

F∈Lk(M)

QyF ,

where the direct sum is over the set Lk(M) of rank k flats of M.

Definition 2.17. The graded Möbius algebra of M is the graded vector space

H(M) :=
⊕
k�0

Hk(M).

The multiplication in H(M) is defined by the rule

yF1yF2 =
{
yF1∨F2 if rkM(F1) + rkM(F2) = rkM(F1 ∨ F2),

0 if rkM(F1) + rkM(F2) > rkM(F1 ∨ F2),

where ∨ stands for the join operation in the lattice of flats L(M) of M.

Our double use of the symbol yF is justified by the following proposition, whose proof 
is essentially identical to that of [20, Proposition 9].

Proposition 2.18. The graded linear map

H(M) −→ CH(M), yF �−→ yF

is an injective homomorphism of graded algebras.

Proof. We first show that the linear map is injective. It is enough to check that the 
subset

{yF }F∈Lk(M) ⊆ CHk(M)

is linearly independent for every nonnegative integer k < d. Suppose that

∑
F∈Lk(M)

cF yF = 0 for some cF ∈ Q.

For any given rank k flat G, we choose a saturated flag of proper flats G whose smallest 
member is G. By the defining relations of CH(M), we have yFxG = 0 for any rank k flat 
F other than G, therefore
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cGyGxG =
( ∑

F∈Lk(M)

cF yF

)
xG = 0.

Since the degree of yGxG is 1, this implies that cG must be zero.
We next check that the linear map is an algebra homomorphism using Lemma 2.11. 

Let I1 be a basis of a flat F1, and let I2 be a basis of a flat F2. If the rank of F1 ∨ F2 is 
the sum of the ranks of F1 and F2, then I1 and I2 are disjoint and their union is a basis 
of F1 ∨ F2. Therefore, in the augmented Chow ring of M,

yF1yF2 =
∏
i∈I1

yi
∏
i∈I2

yi =
∏

i∈I1∪I2

yi = yF1∨F2 .

If the rank of F1 ∨ F2 is less than the sum of the ranks of F1 and F2, then either I1 and 
I2 intersect or the union of I1 and I2 is dependent in M. Therefore, in the augmented 
Chow ring of M,

yF1yF2 =
∏
i∈I1

yi
∏
i∈I2

yi = 0. �

Remark 2.19. Consider the torus TE, the toric variety XB, and the augmented wonderful 
variety XV in Remark 2.16. The identity of TE uniquely extends to a toric map

pB : XB −→ (P 1)E .

Let pV be the restriction of pB to the augmented wonderful variety XV . If we identify 
the Chow ring of XV with CH(M) as in Remark 2.16, the image of the pullback p∗

V is 
the graded Möbius algebra H(M) ⊆ CH(M).

2.6. Pullback and pushforward maps

Let Σ be a unimodular fan, and let σ be a k-dimensional cone in Σ. The torus orbit 
closure in the smooth toric variety XΣ corresponding to σ can be identified with the toric 
variety of the fan starσΣ. Its class in the Chow ring of XΣ is the monomial xσ, which 
is the product of the divisor classes xρ corresponding to the rays ρ in σ. The inclusion ι
of the torus orbit closure in XΣ defines the pullback ι∗ and the pushforward ι∗ between 
the Chow rings, whose composition is multiplication by the monomial xσ:

CH(Σ)
xσ

ι∗

CH(Σ)

CH(starσΣ)
ι∗

The pullback ι∗ is a surjective graded algebra homomorphism, while the pushforward ι∗
is a degree k homomorphism of CH(Σ)-modules.
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We give an explicit description of the pullback ι∗ and the pushforward ι∗ when Σ is 
the augmented Bergman fan ΠM and σ is the ray ρF of a proper flat F of M. Recall 
from Proposition 2.7 that the star of ρF admits the decomposition

starρF
ΠM ∼= ΠMF

× ΠMF .

Thus we may identify the Chow ring of the star of ρF with CH(MF ) ⊗ CH(MF ). We 
denote the pullback to the tensor product by ϕF

M and the pushforward from the tensor 
product by ψF

M:

CH(M)
xF

ϕF
M

CH(M)

CH(MF ) ⊗ CH(MF )
ψF

M

To describe the pullback and the pushforward, we introduce Chow classes αM, αM, and 
βM. They are defined as the sums

αM :=
∑
G

xG ∈ CH1(M),

where the sum is over all proper flats G of M;

αM :=
∑
i∈G

xG ∈ CH1(M),

where the sum is over all nonempty proper flats G of M containing a given element i in 
E; and

βM :=
∑
i/∈G

xG ∈ CH1(M),

where the sum is over all nonempty proper flats G of M not containing a given element 
i in E. The linear relations defining CH(M) show that αM and βM do not depend on the 
choice of i.

Proposition 2.20. The pullback ϕF
M is the unique graded algebra homomorphism

CH(M) −→ CH(MF ) ⊗ CH(MF )

that satisfies the following properties:

• If G is a proper flat of M incomparable to F , then ϕF
M(xG) = 0.

• If G is a proper flat of M properly contained in F , then ϕF
M(xG) = 1 ⊗ xG.
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• If G is a proper flat of M properly containing F , then ϕF
M(xG) = xG\F ⊗ 1.

• If i is an element of F , then ϕF
M(yi) = 1 ⊗ yi.

• If i is an element of E \ F , then ϕF
M(yi) = 0.

Moreover, the above five properties imply the following additional properties of ϕF
M:

• The equality ϕF
M(xF ) = −1 ⊗ αMF − βMF

⊗ 1 holds.
• The equality ϕF

M(αM) = αMF
⊗ 1 holds.

Proof. The first five properties follow immediately from the pullback formula for toric 
varieties. To show the last two properties, we fix an element i ∈ E \ F . Recall that 
yi =

∑
i/∈G xG. Thus, by the first three and the fifth properties, we have

ϕF
M(xF ) = ϕF

M

(
xF + yi −

∑
i/∈G

xG

)
= ϕF

M

⎛
⎝−

∑
G�F

xG −
∑

i/∈G,F�G

xG

⎞
⎠

= −
∑
G�F

1 ⊗ xG −
∑

i/∈G,F�G

xG\F ⊗ 1 = −1 ⊗ αMF − βMF
⊗ 1,

which gives the second to last property. By the first and third properties, we have

ϕF
M(αM) = ϕF

M

(∑
i∈G

xG

)
= ϕF

M

⎛
⎝ ∑

i∈G,F�G

xG

⎞
⎠ =

∑
i∈G,F�G

xG\F ⊗ 1 = αMF
⊗ 1,

which gives the last property. �
The next proposition follows immediately from the pushforward formula for toric 

varieties. The projection formula shows that the pushforward ψF
M is a CH(M)-module 

homomorphism.

Proposition 2.21. The pushforward ψF
M is the unique CH(M)-module homomorphism12

ψF
M : CH(MF ) ⊗ CH(MF ) −→ CH(M)

that satisfies, for any collection S′ of proper flats of M strictly containing F and any 
collection S′′ of proper flats of M strictly contained in F ,

ψF
M

( ∏
F ′∈S′

xF ′\F ⊗
∏

F ′′∈S′′

xF ′′

)
= xF

∏
F ′∈S′

xF ′
∏

F ′′∈S′′

xF ′′ .

12 We make ψF
M into a CH(M)-module homomorphism via the pullback ϕF

M.
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The composition ψF
M ◦ ϕF

M is multiplication by the element xF , and the composition 
ϕF

M ◦ ψF
M is multiplication by the element ϕF

M(xF ).

Remark 2.22. Proposition 2.21 shows that the pushforward ψF
M commutes with the degree 

maps:

degMF
⊗ degMF = degM ◦ ψF

M.

Proposition 2.23. If CH(MF ) and CH(MF ) satisfy the Poincaré duality part of Theo-
rem 1.6, then ψF

M is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-
module CH(MF ) ⊗CH(MF )[−1] is isomorphic to the principal ideal of xF in CH(M). In 
particular,

CH(M)[−1] ∼= ideal(x∅) ⊆ CH(M).

Proof. We will use the symbol degF to denote the degree function degMF
⊗ degMF . For 

contradiction, suppose that ψF
M(η) = 0 for η 	= 0. By the two Poincaré duality statements 

in Theorem 1.6, there is an element ν such that degF (νη) = 1. By surjectivity of the 
pullback ϕF

M, there is an element μ such that ν = ϕF
M(μ). Since ψF

M is a CH(M)-module 
homomorphism that commutes with the degree maps, we have

1 = degF (νη) = degM(ψF
M(νη)) = degM(ψF

M(ϕF
M(μ)η)) = degM(μψF

M(η)) = degM(0) = 0,

which is a contradiction. �
We next give an explicit description of the pullback ι∗ and the pushforward ι∗ when 

Σ is the Bergman fan ΠM and σ is the ray ρ
F

of a nonempty proper flat F of M. Recall 
from Proposition 2.7 that the star of ρ

F
admits the decomposition

starρ
F
ΠM

∼= ΠMF
× ΠMF .

Thus we may identify the Chow ring of the star of ρ
F

with CH(MF ) ⊗ CH(MF ). We 
denote the pullback to the tensor product by ϕF

M and the pushforward from the tensor 
product by ψF

M:

CH(M)
xF

ϕF

M

CH(M)

CH(MF ) ⊗ CH(MF )
ψF

M
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The following analogues of Propositions 2.20 and 2.21 can be proved by similar 
straightforward computations.

Proposition 2.24. The pullback ϕF
M is the unique graded algebra homomorphism

CH(M) −→ CH(MF ) ⊗ CH(MF )

that satisfies the following properties:

• If G is a nonempty proper flat of M incomparable to F , then ϕF
M(xG) = 0.

• If G is a nonempty proper flat of M properly contained in F , then ϕF
M(xG) = 1 ⊗ xG.

• If G is a nonempty proper flat of M properly containing F , then ϕF
M(xG) = xG\F ⊗ 1.

The above three properties imply the following additional properties of ϕF
M:

• The equality ϕF
M(xF ) = −1 ⊗ αMF − βMF

⊗ 1 holds.
• The equality ϕF

M(αM) = αMF
⊗ 1 holds.

• The equality ϕF
M(βM) = 1 ⊗ βMF holds.

Proposition 2.25. The pushforward ψF

M is the unique CH(M)-module homomorphism

CH(MF ) ⊗ CH(MF ) −→ CH(M)

that satisfies, for any collection S′ of proper flats of M strictly containing F and any 
collection S′′ of nonempty proper flats of M strictly contained in F ,

ψF

M

( ∏
F ′∈S′

xF ′\F ⊗
∏

F ′′∈S′′

xF ′′

)
= xF

∏
F ′∈S′

xF ′
∏

F ′′∈S′′

xF ′′ .

The composition ψF

M ◦ ϕF
M is multiplication by the element xF , and the composition 

ϕF
M ◦ ψF

M is multiplication by the element ϕF
M(xF ).

Remark 2.26. Proposition 2.25 shows that the pushforward ψF

M commutes with the de-
gree maps:

degMF
⊗ degMF = degM ◦ ψF

M.

Proposition 2.27. If CH(MF ) and CH(MF ) satisfy the Poincaré duality part of Theo-
rem 1.6, then ψF

M is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-
module CH(MF ) ⊗ CH(MF )[−1] is isomorphic to the principal ideal of xF in CH(M).
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Proof. The proof is essentially identical to that of Proposition 2.23. �
Last, we give an explicit description of the pullback ι∗ and the pushforward ι∗ when 

Σ is the augmented Bergman fan ΠM and σ is the cone σI of an independent set I of M. 
By Proposition 2.7, we have

starσI
ΠM ∼= ΠMF

,

where F is the closure of I in M. Thus we may identify the Chow ring of the star of σI

with CH(MF ). We denote the corresponding pullback by ϕM
F and the pushforward by 

ψM
F :

CH(M)
yF

ϕM
F

CH(M)

CH(MF )
ψM

F

Note that the pullback and the pushforward only depend on F and not on I.
The following analogues of Propositions 2.20 and 2.21 are straightforward.

Proposition 2.28. The pullback ϕM
F is the unique graded algebra homomorphism

CH(M) −→ CH(MF )

that satisfies the following properties:

• If G is a proper flat of M that contains F , then ϕM
F (xG) = xG\F .

• If G is a proper flat of M that does not contain F , then ϕM
F (xG) = 0.

The above two properties imply the following additional properties of ϕM
F :

• If i is an element of F , then ϕM
F (yi) = 0.

• If i is an element of E \ F , then ϕM
F (yi) = yi.

• The equality ϕM
F (αM) = αMF

holds.

Proposition 2.29. The pushforward ψM
F is the unique CH(M)-module homomorphism

CH(MF ) −→ CH(M)

that satisfies, for any collection S′ of proper flats of M containing F ,

ψM
F

( ∏
xF ′\F

)
= yF

∏
xF ′ .
F ′∈S′ F ′∈S′
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The composition ψM
F ◦ϕM

F is multiplication by the element yF , and the composition ϕM
F ◦

ψM
F is zero.

Remark 2.30. Proposition 2.29 shows that the pushforward ψM
F commutes with the de-

gree maps:

degMF
= degM ◦ ψM

F .

Proposition 2.31. If CH(MF ) satisfies the Poincaré duality part of Theorem 1.6, then 
ψM
F is injective.

In other words, assuming Poincaré duality for the Chow rings, the graded CH(M)-
module CH(MF )[− rkM(F )] is isomorphic to the principal ideal of yF in CH(M).

Proof. The proof is essentially identical to that of Proposition 2.23. �
The basic properties of the pullback and the pushforward maps can be used to describe 

the fundamental classes of CH(M) and CH(M) in terms of αM and αM.

Proposition 2.32. The degree of αd−1
M is 1, and the degree of αd

M is 1.

Proof. We prove the first statement by induction on d � 1. Note that, for any nonempty 
proper flat F of rank k, we have

xF αd−k
M = ψF

M

(
ϕF

M(αd−k
M )

)
= ψF

M

(
αd−k

MF
⊗ 1

)
= 0,

since CHd−k(MF ) = 0. Therefore, for any proper flat a of rank 1 and any element i in 
a, we have

αd−1
M =

(∑
i∈F

xF

)
αd−2

M = xaα
d−2
M .

By the induction hypothesis applied to the matroid Ma of rank d − 1, we have 
degMa

(αd−2
Ma

) = 1, or equivalently, αd−2
Ma

= xF for any maximal flag F of nonempty 
proper flats of Ma. Thus, we have

αd−1
M = xaα

d−2
M = ψa

M

(
ϕa

M(αd−2
M )

)
= ψa

M

(
αd−2

Ma
⊗ 1

)
= xF′ ,

where F′ is any maximal flag of nonempty proper flats of M that starts from a.
For the second statement, note that, for any proper flat F of rank k,

xF αd−k
M = ψF

M
(
ϕF

M(αd−k
M )

)
= ψF

M
(
αd−k

MF
⊗ 1

)
= 0.

Using the first statement, we get the conclusion from the identity
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αd
M =

(∑
F

xF

)
αd−1

M = x∅αd−1
M = ψ∅

M
(
ϕ∅

M(αd−1
M )

)
= ψ∅

M
(
αd−1

M
)
. �

More generally, the degree of αd−k
M βk

M is the k-th coefficient of the reduced character-
istic polynomial of M [1, Proposition 9.5].

3. Proofs of the semi-small decompositions and the Poincaré duality theorems

In this section, we prove Theorems 1.2 and 1.5 together with the two Poincaré duality 
statements in Theorem 1.6. For an element i of E, we write πi and πi for the coordinate 
projections

πi : RE −→ RE\i and πi : RE/〈eE〉 −→ RE\i/〈eE\i〉.

Note that πi(ρi) = 0 and πi(ρ{i}) = 0. In addition, πi(ρS) = ρS\i and πi(ρS) = ρ
S\i

for S ⊆ E. Here we recall from Definition 2.4 that ρi and ρS denote the rays generated 
by the vectors ei and −eE\S in RE , respectively, and ρ

S
denotes the image of ρS in 

RE/〈eE〉.

Proposition 3.1. Let M be a loopless matroid on E, and let i be an element of E.

(1) The projection πi maps any cone of ΠM onto a cone of ΠM\i.
(2) The projection πi maps any cone of ΠM onto a cone of ΠM\i.

Recall that a linear map defines a morphism of fans Σ1 → Σ2 if it maps any cone 
of Σ1 into a cone of Σ2 [9, Chapter 3]. Thus the above proposition is stronger than the 
statement that πi and πi induce morphisms of fans.

Proof of Proposition 3.1. The projection πi maps σI�F onto σI\i�F\i, where F \ i is the 
flag of flats of M \ i obtained by removing i from the members of F. Similarly, πi maps 
σF onto σF\i. �

By Proposition 3.1, the projection πi defines a map from the toric variety XM of ΠM
to the toric variety XM\i of ΠM\i, and hence the pullback homomorphism CH(M \ i) →
CH(M). Explicitly, the pullback is the graded algebra homomorphism

θi = θM
i : CH(M \ i) −→ CH(M), xF �−→ xF + xF∪i,

where a variable in the target is replaced with zero if its label is not a flat of M. Similarly, 
πi defines a map from the toric variety XM of ΠM to the toric variety XM\i of ΠM\i, 
and hence an algebra homomorphism

θi = θM
i : CH(M \ i) −→ CH(M), xF �−→ xF + xF∪i,
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where a variable in the target is set to zero if its label is not a flat of M.

Remark 3.2. We use the notations introduced in Remark 2.16. Let V \i be the image of V
under the i-th projection FE → FE\i. We have the commutative diagrams of wonderful 
varieties and their Chow rings

XB XV

XB\i XV \i,

pB
i

pV

i

CH(B) CH(M)

CH(B \ i) CH(M \ i).

The map pV
i

is birational if and only if i is not a coloop of M. By Proposition 3.1, the 
fibers of pB

i
are at most one-dimensional, and hence the fibers of pV

i
are at most one-

dimensional. It follows that pV
i

is semi-small in the sense of Goresky–MacPherson when 
i is not a coloop of M.

Similarly, we have the diagrams of augmented wonderful varieties and their Chow 
rings

XB XV

XB\i XV \i,

pB
i pV

i

CH(B) CH(M)

CH(B \ i) CH(M \ i).

The map pVi is birational if and only if i is not a coloop of M. By Proposition 3.1, the 
fibers of pB

i are at most one-dimensional, and hence pVi is semi-small when i is not a 
coloop of M.

Numerically, the semi-smallness of pV
i

is reflected in the identity

dim xF∪iCHk−1
(i) = dim xF∪iCHd−k−2

(i) .

Similarly, the semi-smallness of pVi is reflected in the identity13

dim xF∪iCHk−1
(i) = dim xF∪iCHd−k−1

(i) .

For a detailed discussion of semi-small maps in the context of Hodge theory and the 
decomposition theorem, see [10] and [11].

We show that the pullbacks θi and θi are compatible with the degree maps of M and 
M \ i.

13 The displayed identities follow from Proposition 3.5 and the Poincaré duality parts of Theorem 1.6.
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Lemma 3.3. Suppose that E \ i is nonempty.

(1) If i is not a coloop of M, then θi commutes with the degree maps:

degM\i = degM ◦ θi.

(2) If i is not a coloop of M, then θi commutes with the degree maps:

degM\i = degM ◦ θi.

(3) If i is a coloop of M, we have

degM\i = degM ◦ xE\i ◦ θi = degM ◦ αM ◦ θi,

where the middle maps are multiplications by the elements xE\i and αM.
(4) If i is a coloop of M, we have

degM\i = degM ◦ xE\i ◦ θi = degM ◦ αM ◦ θi,

where the middle maps are multiplications by the elements xE\i and αM.

Proof. If i is not a coloop of M, we may choose a basis B of M \ i that is also a basis 
of M. By Proposition 2.8 and Remark 2.14, the top degree components CHd(M \ i) and 
CHd(M) are both one-dimensional, so we have

CHd(M \ i) = span(yB) and CHd(M) = span(yB).

Since θi(yj) = yj for all j, the first identity follows. Similarly, by Proposition 2.32,

CHd−1(M \ i) = span(αd−1
M\i) and CHd−1(M) = span(αd−1

M ).

Since θi(αM\i) = αM when i is not a coloop, the second identity follows.
Suppose now that i is a coloop of M. In this case, E \ i is a flat and M \ i = ME\i. 

Hence

ϕ
E\i
M ◦ θi = identity of CH(M \ i) and ϕE\i

M ◦ θi = identity of CH(M \ i).

Using the compatibility of the pushforward ψE\i
M with the degree maps, we have

degM\i = degM ◦ ψ
E\i
M = degM ◦ ψ

E\i
M ◦ ϕ

E\i
M ◦ θi = degM ◦ xE\i ◦ θi.

Since θi(αM\i) = αM − xE\i, when i is a coloop of M, the above implies

degM\i = degM ◦ xE\i ◦ θi = degM ◦
(
αM − θi(αM\i)

)
◦ θi = degM ◦ αM ◦ θi,
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where the last equality follows from the fact that the images of θi have degree at most 
d − 1. The identities for degM\i can be obtained in a similar way. �
Proposition 3.4. If CH(M \ i) satisfies the Poincaré duality part of Theorem 1.6, then θi
is injective. Also, if CH(M \ i) satisfies the Poincaré duality part of Theorem 1.6, then 
θi is injective.

Proof. The proof is essentially identical to that of Proposition 2.23. �
For a flat F in Si, we write θF∪i

i for the pullback map between the augmented Chow 
rings obtained from the deletion of i from the localization MF∪i:

θF∪i
i : CH(MF ) → CH(MF∪i).

Similarly, for a flat F in Si, we write θF∪i
i for the pullback map between the Chow rings 

obtained from the deletion of i from the localization MF∪i:

θF∪i
i : CH(MF ) → CH(MF∪i).

Note that i is a coloop of MF∪i in these cases.

Proposition 3.5. The summands appearing in Theorems 1.2 and 1.5 can be described as 
follows.

(1) If F ∈ Si, then xF∪iCH(i) = ψF∪i
M

(
CH(MF∪i) ⊗ θF∪i

i CH(MF )
)
.

(2) If F ∈ Si, then xF∪iCH(i) = ψF∪i

M

(
CH(MF∪i) ⊗ θF∪i

i CH(MF )
)
.

(3) If i is a coloop of M, then xE\i CH(i) = ψ
E\i
M CH(M \i) and xE\iCH(i) = ψE\i

M CH(M \
i).

Remark 3.6. Assuming Poincaré duality for all of our Chow rings, Propositions 2.23, 
2.27, and 3.4 imply that

xF∪iCH(i) ∼= CH(MF∪i) ⊗ CH(MF )[−1] and xF∪iCH(i)
∼= CH(MF∪i) ⊗ CH(MF )[−1],

and therefore

dim xF∪iCHk−1
(i) = dim xF∪iCHd−k−2

(i) and dim xF∪iCHk−1
(i) = dim xF∪iCHd−k−1

(i) .

Proof of Proposition 3.5. We prove the first statement. The proof of the second state-
ment is essentially identical. The third statement is a straightforward consequence of the 
fact that ϕE\i

M ◦ θi and ϕE\i
M ◦ θi are the identity maps when i is a coloop.

Let F be a flat in Si. It is enough to show that

ϕF∪i
M

(
CH(i)

)
= CH(MF∪i) ⊗ θF∪i

i CH(MF ),
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since the result will then follow by applying ψF∪i
M . The projection πi maps the ray ρF∪i

to the ray ρF , and hence πi defines morphisms of fans

starρF∪i
ΠM ΠMF∪i

× ΠMF∪i Π(M/i)F × ΠMF∪i

starρF
ΠM\i Π(M\i)F × Π(M\i)F Π(M\i)F × ΠMF ,

π′
i

ιF∪i

π′′
i π′′′

i

ιF

where ιF∪i and ιF are the isomorphisms in Proposition 2.7. The main point is that 
the matroid (M/i)F is a quotient of (M \ i)F . In other words, we have the inclusion of 
Bergman fans

Π(M/i)F ⊆ Π(M\i)F .

Therefore, the morphism π′′′
i admits the factorization

Π(M/i)F × ΠMF∪i Π(M/i)F × ΠMF Π(M\i)F × ΠMF ,

where the second map induces a surjective pullback map q between the Chow rings. 
By the equality (M/i)F = MF∪i, we have the commutative diagram of pullback maps 
between the Chow rings

CH(M \ i) CH(M)

CH((M \ i)F ) ⊗ CH((M \ i)F ) CH(MF∪i) ⊗ CH(MF ) CH(MF∪i) ⊗ CH(MF∪i).

θi

ϕF
M\i ϕF∪i

M

q 1⊗θF∪i
i

The conclusion follows from the surjectivity of the pullback maps ϕF
M\i and q. �

Remark 3.7. Since i is a coloop in MF∪i when F ∈ Si or F ∈ Si, Proposition 3.5 implies 
that

xF∪iCHd−1
(i) = 0 for F ∈ Si and xF∪iCHd−2

(i) = 0 for F ∈ Si.

Proposition 3.8. The Poincaré pairing on the summands appearing in Theorems 1.2 and 
1.5 can be described as follows.

(1) If F ∈ Si, then for any μ1, μ2 ∈ CH(MF∪i) ⊗ CH(MF ) of complementary degrees,

degM
(
ψF∪i

M
(
1 ⊗ θF∪i

i (μ1)
)
· ψF∪i

M
(
1 ⊗ θF∪i

i (μ2)
))

= −deg ⊗ degMF (μ1μ2).
MF∪i
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(2) If F ∈ Si, then for any ν1, ν2 ∈ CH(MF∪i) ⊗ CH(MF ) of complementary degrees,

degM

(
ψF∪i

M

(
1 ⊗ θF∪i

i (ν1)
)
· ψF∪i

M

(
1 ⊗ θF∪i

i (ν2)
))

= −degMF∪i
⊗ degMF (ν1ν2).

It follows, assuming Poincaré duality for the Chow rings, that the restriction of the 
Poincaré pairing of CH(M) to the subspace xF∪i CH(i) is nondegenerate, and the restric-
tion of the Poincaré pairing of CH(M) to the subspace xF∪iCH(i) is nondegenerate.

Proof. We prove the first equality. The second equality can be proved in the same way.
Since the pushforward ψF∪i

M is a CH(M)-module homomorphism (Proposition 2.21), 
the left-hand side is

degM
(
ψF∪i

M
(
ϕF∪i

M ψF∪i
M

(
1 ⊗ θF∪i

i (μ1)
)
·
(
1 ⊗ θF∪i

i (μ2)
)))

.

The pushforward commutes with the degree maps (Remark 2.22), so the above is equal 
to

degMF∪i
⊗ degMF∪i

(
ϕF∪i

M ψF∪i
M

(
1 ⊗ θF∪i

i (μ1)
)
·
(
1 ⊗ θF∪i

i (μ2)
))
.

Using that the composition ϕF∪i
M ψF∪i

M is multiplication by ϕF∪i
M (xF∪i) (Proposition 2.21), 

we get

−degMF∪i
⊗ degMF∪i

((
1 ⊗ αMF∪i + βMF∪i

⊗ 1
)
·
(
1 ⊗ θF∪i

i (μ1)
)
·
(
1 ⊗ θF∪i

i (μ2)
))
.

Since i is a coloop of MF∪i and θF∪i
i is a graded ring homomorphism, the product

(1 ⊗ θF∪i
i (μ1)) · (1 ⊗ θF∪i

i (μ2)) = 1 ⊗ θF∪i
i (μ1 · μ2) ∈ CH(MF∪i) ⊗ CH(MF∪i)

does not involve the top degree component of CH(MF∪i). Thus,

−degMF∪i
⊗ degMF∪i

((
βMF∪i

⊗ 1
)
·
(
1 ⊗ θF∪i

i (μ1)
)
·
(
1 ⊗ θF∪i

i (μ2)
))

= 0,

and the left-hand side of the desired equality further simplifies to

−degMF∪i
⊗ degMF∪i

((
1 ⊗ αMF∪i

)
·
(
1 ⊗ θF∪i

i (μ1)
)
·
(
1 ⊗ θF∪i

i (μ2)
))
.

Now the third part of Lemma 3.3 shows that the above quantity is the right-hand side 
of the desired equality. �
Lemma 3.9. If flats F1, F2 are in Si and F1 is a proper subset of F2, then

xF1∪i xF2∪i ∈ xF1∪iCH(i).

Similarly, if F1, F2 are in Si and F1 is a proper subset of F2, then



T. Braden et al. / Advances in Mathematics 409 (2022) 108646 37
xF1∪i xF2∪i ∈ xF1∪iCH(i).

Proof. Since F1 ∪ i is not comparable to F2, we have

xF1∪i xF2∪i = xF1∪i(xF2 + xF2∪i) = xF1∪iθi(xF2).

The second part follows from the same argument. �
Proof of Theorem 1.2, Theorem 1.5, and parts (1) and (4) of Theorem 1.6. All the sum-
mands in the proposed decompositions are cyclic, and therefore indecomposable in the 
category of graded modules.14 We prove the decompositions by induction on the cardi-
nality of the ground set E. If E is empty, then Theorem 1.2, Theorem 1.5, and part (1) 
of Theorem 1.6 are vacuous, while part (4) of Theorem 1.6 is trivial. Furthermore, all of 
these results are trivial when E is a singleton. Thus, we may assume that i is an element 
of E, that E \ i is nonempty, and that all the results hold for loopless matroids whose 
ground set is a proper subset of E.

First we assume that i is not a coloop. Let us show that the terms in the right-hand 
side of the decomposition (D1) are orthogonal. Multiplying CH(i) and xF∪iCH(i) lands 
in xF∪iCH(i), and this ideal vanishes in degree d by Remark 3.7, so they are orthogonal. 
On the other hand, the product of xF1∪iCH(i) and xF2∪iCH(i) vanishes if F1, F2 ∈ Si are 
not comparable, while if F1 < F2 or F2 < F1, the product is contained in xF1∪iCH(i) or 
xF2∪iCH(i) respectively, by Lemma 3.9. So these terms are also orthogonal.

It follows from the induction hypothesis and Lemma 3.3 that the restriction of the 
Poincaré pairing of CH(M) to CH(i) is nondegenerate. By Proposition 3.5, Proposi-
tion 3.8, and the induction hypothesis, the restriction of the Poincaré pairing of CH(M)
to any other summand xF∪iCH(i) is also nondegenerate. Therefore, we can conclude that 
the sum on the right-hand side of (D1) is a direct sum with a nondegenerate Poincaré 
pairing.

To complete the proof of the decomposition (D1) and the Poincaré duality theorem 
for CH(M), we must show that the direct sum

CH(i) ⊕
⊕
F∈Si

xF∪iCH(i)

is equal to all of CH(M). This is obvious in degree 0. To see that it holds in degree 1, it 
is enough to check that xG is contained in the direct sum for any proper flat G of M. If 
G \ i /∈ Si, then xG = θi(xG\i) is in CH(i). If G \ i ∈ Si, then either i ∈ G or i /∈ G. In 
the first case, xG = x(G\i)∪i is an element of the summand indexed by F = G \ i. In the 
second case, we have xG = θi(xG) − xG∪i, which lies in CH(i) + xG∪iCH(i).

14 By [8, Corollary 2] or [18, Theorem 3.2], the indecomposability of the summands in the category of 
graded modules implies the indecomposability of the summands in the category of modules.



38 T. Braden et al. / Advances in Mathematics 409 (2022) 108646
Since our direct sum is a sum of CH(M \ i)-modules and it includes the degree 0 and 
1 parts of CH(M), it will suffice to show that CH(M) is generated in degrees 0 and 1 as 
a graded CH(M \ i)-module. In other words, we need to show that

CH1
(i) · CHk(M) = CHk+1(M) for any k � 1.

We first prove the equality when k = 1. Since we have proved that the decomposition 
(D1) holds in degree 1, we know that

CH2(M) = CH1(M) · CH1(M) =
(

CH1
(i) ⊕

⊕
F∈Si

QxF∪i

)
·
(

CH1
(i) ⊕

⊕
F∈Si

QxF∪i

)
.

Using Lemma 3.9, we may reduce the problem to showing that

x2
F∪i ∈ CH1

(i) · CH1(M) for any F ∈ Si.

We can rewrite the relation 0 = xF yi in the augmented Chow ring of M as

0 = (θi(xF ) − xF∪i)
∑
i/∈G

xG

= θi(xF )
(∑

i/∈G

xG

)
− xF∪i

( ∑
G�F

xG

)
,

= θi(xF )
(∑

i/∈G

xG

)
− (θi(xF ) − xF )

( ∑
G<F

xG

)
− xF∪ixF

= θi(xF )
(∑

i/∈G

xG −
∑
G<F

xG

)
+ xF

( ∑
G<F

xG

)
− xF∪iθi(xF ) + x2

F∪i,

thus reducing the problem to showing that

xFxG ∈ CH1
(i) · CH1(M) for any G < F ∈ Si.

The collection Si is downward closed, meaning that if G < F ∈ Si, then G ∈ Si; therefore,

xFxG = (θi(xF ) − xF∪i)(θi(xG) − xG∪i).

Lemma 3.9 tells us that xF∪ixG∪i ∈ CH1
(i) · CH1(M), thus so is xFxG.

We next prove the equality when k ≥ 2. In this case, we use the result for k = 1 along 
with the fact that the algebra CH(M) is generated in degree 1 to conclude that

CH1
(i) · CHk(M) = CH1

(i) · CH1(M) · CHk−1(M) = CH2(M) · CHk−1(M) = CHk+1(M).

This completes the proof of the decomposition (D1) and the Poincaré duality theorem 
for CH(M) when there is an element i that is not a coloop of M.
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The proof when i is a coloop is almost the same; we explain the places where something 
different must be said. The orthogonality of xE\iCH(i) and xF∪iCH(i) for F ∈ Si follows 
because E \ i and F ∪ i are incomparable. To show that the right-hand side of (D2) spans 
CH(M), one extra statement we need to check is that

x2
E\i ∈ CH1

(i) · CH1(M).

Since i is a coloop, Si is the set of all flats properly contained in E \ i, and we have

0 = xE\iyi =
∑
i/∈F

xFxE\i = x2
E\i +

∑
F∈Si

xE\ixF = x2
E\i +

∑
F∈Si

xE\iθi(xF ),

where the last equality follows because E \ i and F ∪ i are not comparable. Thus

x2
E\i = −

∑
F∈Si

xE\iθi(xF ) ∈ CH1
(i) · CH1(M).

By the induction hypothesis, we know CH(M \i) satisfies the Poincaré duality theorem. 
By the coloop case of Lemma 3.3, the Poincaré pairing on CH(M) restricts to a perfect 
pairing between CH(i) and xE\iCH(i). Since CH(i) is a subring of CH(M) and is zero in 
degree d, the restriction of the Poincaré pairing on CH(M) to CH(i) is zero. Therefore, 
the subspaces CH(i) and xE\iCH(i) intersect trivially, and the restriction of the Poincaré 
pairing on CH(M) to CH(i) ⊕ xE\iCH(i) is nondegenerate. This completes the proof of 
the theorems about CH(M) when i is a coloop.

Now, we show the statements about the decomposition (D1). By an argument identical 
to the one used for (D1), we know that the sum on the right-hand side of (D1) is a direct 
sum with a nondegenerate Poincaré pairing. Next, we observe that the surjectivity of 
the pullback ϕ∅

M gives the equality

CH1
(i) · CHk(M) = CHk+1(M) for any k � 1.

Thus, the direct sum decomposition (D1) and the Poincaré duality theorem for CH(M)
follow when i is not a coloop. When i is a coloop, we can prove (D2) and the Poincaré du-
ality theorem by making the same adjustments as the ones in the proof about CH(M). �
4. Proofs of the hard Lefschetz theorems and the Hodge–Riemann relations

In this section, we prove Theorem 1.6. Parts (1) and (4) have already been proved in 
the previous section. We will first prove parts (2) and (3) by induction on the cardinality 
of E. The proof of parts (5) and (6) is nearly identical to the proof of parts (2) and (3), 
with the added nuance that we use parts (2) and (3) for the matroid M in the proof of 
parts (5) and (6) for the matroid M.
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Proof of Theorem 1.6, parts (2) and (3). The statements are trivial when the cardinal-
ity of E is 0 or 1, so we will assume throughout the proof that the cardinality of E is at 
least 2.

Let B be the Boolean matroid on E. By the induction hypothesis, we know that for 
every nonempty proper flat F of M, the fans ΠMF

and ΠMF satisfy the hard Lefschetz 
theorem and the Hodge–Riemann relations with respect to any strictly convex piecewise 
linear functions on ΠBF

and ΠBF , respectively. By [1, Proposition 7.7], this implies that 
for every nonempty proper flat F of M, the product ΠMF

× ΠMF satisfies the hard 
Lefschetz theorem and the Hodge–Riemann relations with respect to any strictly convex 
piecewise linear function on ΠBF

× ΠBF . In other words, ΠM satisfies the local Hodge–
Riemann relations [1, Definition 7.14]:

The star of any ray in ΠM satisfies the Hodge–Riemann relations.

This in turn implies that ΠM satisfies the hard Lefschetz theorem with respect to any 
strictly convex piecewise linear function on ΠB [1, Proposition 7.15]. It remains to prove 
only that ΠM satisfies the Hodge–Riemann relations with respect to any strictly convex 
piecewise linear function on ΠB.

Let � be a piecewise linear function on ΠB, and let HRk
� (M) be the Hodge–Riemann 

form

HRk
� (M) : CHk(M) × CHk(M) −→ Q, (η1, η2) �−→ (−1)kdegM(�d−2k−1η1η2).

By [1, Proposition 7.6], the fan ΠM satisfies the Hodge–Riemann relations with respect 
to � if and only if, for all k < d

2 , the Hodge–Riemann form HRk
� (M) is nondegenerate 

and has the signature

k∑
j=0

(−1)k−j
(

dim CHj(M) − dim CHj−1(M)
)
.

Since ΠM satisfies the hard Lefschetz theorem with respect to any strictly convex piece-
wise linear function on ΠB and signature is a locally constant function on the space of 
nonsingular forms, the following statements are equivalent:

(i) The fan ΠM satisfies the Hodge–Riemann relations with respect to any strictly con-
vex piecewise linear function on ΠB.

(ii) The fan ΠM satisfies the Hodge–Riemann relations with respect to some strictly 
convex piecewise linear function on ΠB.

Furthermore, since satisfying the Hodge–Riemann relations with respect to a given piece-
wise linear function is an open condition on the function, statement (ii) is equivalent to 
the following:
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(iii) The fan ΠM satisfies the Hodge–Riemann relations with respect to some convex 
piecewise linear function on ΠB.

We show that statement (iii) holds using the semi-small decomposition in Theorem 1.2.15
If M is the Boolean matroid B, then CH(M) can be identified with the cohomology ring 

of the smooth complex projective toric variety XΠB . Therefore, in this case, Theorem 1.6
is a special case of the usual hard Lefschetz theorem and the Hodge–Riemann relations 
for smooth complex projective varieties.16

If M is not the Boolean matroid B, then it has some element i ∈ E that is not a 
coloop. Consider the morphism of fans

πi : ΠM −→ ΠM\i.

By induction, we know that ΠM\i satisfies the Hodge–Riemann relations with respect to 
any strictly convex piecewise linear function � on ΠB\i. We will show that ΠM satisfies the 
Hodge–Riemann relations with respect to the pullback �i := � ◦ πi, which is a piecewise 
linear function on ΠB that is convex but not necessarily strictly convex.

By Theorem 1.2, we have the orthogonal decomposition of CH(M) into CH(M \ i)-
modules

CH(M) = CH(i) ⊕
⊕
F∈Si

xF∪iCH(i).

By orthogonality, it is enough to show that each summand of CH(M) satisfies the Hodge–
Riemann relations with respect to �i:

(iv) For every nonnegative integer k < d
2 , the bilinear form

CHk
(i) × CHk

(i) −→ Q, (η1, η2) �−→ (−1)kdegM(�d−2k−1
i η1η2)

is positive definite on the kernel of multiplication by �d−2k
i .

(v) For every nonnegative integer k < d
2 , the bilinear form

xF∪iCHk−1
(i) × xF∪iCHk−1

(i) −→ Q, (η1, η2) �−→ (−1)kdegM(�d−2k−1
i η1η2)

is positive definite on the kernel of multiplication by �d−2k
i .

By Proposition 3.4, the homomorphism θi restricts to an isomorphism of CH(M \ i)-
modules

15 This inductive paradigm of [1] goes back to [23], where it was used to prove the hard Lefschetz theorem 
for simple polytopes.
16 It is not difficult to directly prove the hard Lefschetz theorem and the Hodge–Riemann relations for 
CH(B) using the coloop case of Theorem 1.2. Alternatively, we may apply McMullen’s hard Lefschetz 
theorem and Hodge–Riemann relations for polytope algebras [23] to the standard permutohedron in RE .
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CH(M \ i) ∼= CH(i).

Thus, statement (iv) follows from Lemma 3.3 and the induction hypothesis applied to 
M \ i. By Propositions 2.27, 3.4, and 3.5, the homomorphisms θF∪i

i and ψF∪i

M give a 
CH(M \ i)-module isomorphism

CH(MF∪i) ⊗ CH(MF ) ∼= CH(MF∪i) ⊗ θF∪i
i CH(MF ) ∼= xF∪iCH(i)[1].

Note that the pullback of a strictly convex piecewise linear function on ΠB\i to the star

Π(B\i)F × Π(B\i)F = ΠBF∪i
× ΠBF

is the class of a strictly convex piecewise linear function. Therefore, statement (v) follows 
from Proposition 3.8 and the induction applied to MF∪i and MF . �
Proof of Theorem 1.6, parts (5) and (6). This proof is nearly identical to the proof of 
parts (2) and (3). In that argument, we used the fact that rays of ΠM are indexed by 
nonempty proper flats of M and the star of the ray ρ

F
is isomorphic to ΠMF

×ΠMF , which 
we can show satisfies the hard Lefschetz theorem and the Hodge–Riemann relations using 
the induction hypothesis. When dealing instead with the augmented Bergman fan ΠM, 
we have rays indexed by elements of E and rays indexed by proper flats of M, with

starρi
ΠM ∼= ΠMcl(i) and starρF

ΠM ∼= ΠMF
× ΠMF .

Thus the stars of ρi and ρF for nonempty F can be shown to satisfy the hard Lefschetz 
theorem and the Hodge–Riemann relations using the induction hypothesis. However, the 
star of ρ∅ is isomorphic to ΠM, so we need to use parts (2) and (3) of Theorem 1.6 for 
M itself. �
Remark 4.1. It is possible to deduce Poincaré duality, the hard Lefschetz theorem, and 
the Hodge–Riemann relations for CH(M) using [1, Theorem 6.19 and Theorem 8.8], where 
the three properties are proved for generalized Bergman fans ΣN,P in [1, Definition 3.2]. 
We sketch the argument here, leaving details to the interested readers. Consider the 
direct sum M ⊕ 0 of M and the rank 1 matroid on the singleton {0} and the order filter 
P(M) of all proper flats of M ⊕0 that contain 0. The symbols B ⊕0 and P(B) are defined 
in the same way for the Boolean matroid B on E. It is straightforward to check that the 
linear isomorphism

RE −→ RE∪0/〈eE + e0〉, ej �−→ ej

identifies the complete fan ΠB with the complete fan ΣB⊕0,P(B), and the augmented 
Bergman fan ΠM with a subfan of ΣM⊕0,P(M). The third identity in Lemma 2.11 shows 
that the inclusion of the augmented Bergman fan ΠM into the generalized Bergman fan 
ΣM⊕0,P(M) induces an isomorphism between their Chow rings.
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).
5. Proof of Theorem 1.8

In this section, we prove the decomposition (D3) by induction on the cardinality of E. 
The decomposition (D3) can be proved using the same argument. The results are trivial 
when E has at most one element. Thus, we may assume that i is an element of E, that 
E \ i is nonempty, and that all the results hold for loopless matroids whose ground set 
is a proper subset of E.

We first prove that the summands appearing in the right-hand side of (D3) are or-
thogonal to each other.

Lemma 5.1. Let F and G be distinct nonempty proper flats of M.

(1) The spaces ψF

M CH(MF ) ⊗ Jα(MF ) and Hα(M) are orthogonal in CH(M).
(2) The spaces ψF

MCH(MF ) ⊗ Jα(MF ) and ψG

MCH(MG) ⊗ Jα(MG) are orthogonal in 
CH(M).

Proof. The fifth bullet point in Proposition 2.24, together with the fact that ψF

M
is a CH(M)-module homomorphism via ϕF

M (Proposition 2.25), implies that both 

ψF

M CH(MF ) ⊗Jα(MF ) and Hα(M) are Hα(M)-submodules of CH(M). Thus, the product 
of μ ∈ ψF

M CH(MF ) ⊗ Jα(MF ) and ν ∈ Hα(M) of complimentary degree lands in the 

degree d −1 component of ψF

M CH(MF ) ⊗Jα(MF ), which is zero. The first orthogonality 
follows.

For the second orthogonality, we may suppose that F is a proper subset of G. Since ψG

M
is a CH(M)-module homomorphism commuting with the degree maps (Proposition 2.29
and Remark 2.30), it is enough to show that

ϕG
MψF

MCH(MF ) ⊗ Jα(MF ) and CH(MG) ⊗ Jα(MG) are orthogonal in CH(MG) ⊗ CH(MG

For this, we use the commutative diagram of pullback and pushforward maps

CH(MF ) ⊗ CH(MF )
ψF

M

ϕG\F
MF

⊗ 1

CH(M)

ϕG

M

CH(MG) ⊗ CH(MG
F ) ⊗ CH(MF )

1 ⊗ ψF

MG

CH(MG) ⊗ CH(MG),

which further reduces to the assertion that

ψF

MGCH(MG
F ) ⊗ Jα(MF ) and Jα(MG) are orthogonal in CH(MG).

Since Jα(MG) ⊆ Hα(MG), the above follows from the first orthogonality for MG. �
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We next show that the restriction of the Poincaré pairing of CH(M) to each summand 
appearing in the right-hand side of (D3) is nondegenerate.

Lemma 5.2. Let F be a nonempty proper flat of M, and let k = rkM(F ).

(1) The restriction of the Poincaré pairing of CH(M) to Hα(M) is nondegenerate.
(2) The restriction of the Poincaré pairing of CH(M) to ψF

MCH(MF ) ⊗ Jα(MF ) is non-
degenerate.

Proof. The first statement follows from Proposition 2.32. We prove the second statement.
Let N = CH(MF ) ⊗ Jα(MF ) and Ni = CH(MF ) ⊗ Jiα(MF ). Notice that

Jiα(MF ) ∼=
{
Q, 0 � i � k − 2;
0, otherwise.

Therefore, the total dimensions of Ni are the same for 0 � i � k − 2. For the second 
statement, we need to show the nondegeneracy of the bilinear form on N = CH(MF ) ⊗
Jα(MF ) defined by

〈μ1 ⊗ ν1, μ2 ⊗ ν2〉 = degM

(
ψF

M(μ1 ⊗ ν1) · ψF

M(μ2 ⊗ ν2)
)
.

Since the pushfoward ψF

M is a CH(M)-module homomorphism (Proposition 2.24) and 
commutes with the degree maps (Remark 2.26), we have

degM

(
ψF

M(μ1 ⊗ ν1) · ψF

M(μ2 ⊗ ν2)
)

= degM

(
ψF

M

(
ϕF

MψF

M(μ1 ⊗ ν1) · (μ2 ⊗ ν2)
))

= degMF
⊗ degMF

(
ϕF

MψF

M(μ1 ⊗ ν1) · (μ2 ⊗ ν2)
)
.

Since the composition ϕF
MψF

M is multiplication by ϕF
M(xF ) (Proposition 2.25), the above 

becomes

−degMF
⊗ degMF

(
(1 ⊗ αMF + βMF

⊗ 1) · (μ1 ⊗ ν1) · (μ2 ⊗ ν2)
)
.

Assuming that ν1 ∈ Jk1
α (MF ) and ν2 ∈ Jk2

α (MF ), the above expression vanishes unless 
k1 + k2 = k − 1 or k − 2. In other words, the subspaces Ni and Nk−2−j are orthogonal 
with respect to the bilinear form on N , unless i = j or i = j+1. So the bilinear form can 
be represented by a block lower-triangular matrix, and its nondegeneracy is equivalent 
to the nondegeneracy of each diagonal block. Thus, it suffices to show that the induced 
pairing between Ni and Nk−2−i is nondegenerate.

For this, assume that ν1 ∈ Jiα(MF ) and ν2 ∈ Jk−2−i
α (MF ). By the above arguments, 

we have

〈μ1 ⊗ ν1, μ2 ⊗ ν2〉 = −deg ⊗ deg F

(
(1 ⊗ αMF + β ⊗ 1) · (μ1μ2 ⊗ ν1ν2)

)
.
MF M MF
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Since ν1ν2 ∈ CHk−2(MF ), we have degMF
⊗ degMF

(
βMF

μ1μ2 ⊗ ν1ν2
)

= 0, and hence

〈μ1⊗ν1, μ2⊗ν2〉 = −degMF
⊗degMF

(
μ1μ2⊗αMF ν1ν2

)
= −degMF

(μ1μ2)degMF (αMF ν1ν2).

Notice that for any nonzero ν1 ∈ Jiα(MF ) and nonzero ν2 ∈ Jk−2−i
α (MF ), we have 

degMF (αMF ν1ν2) 	= 0. The nondegeneracy of the pairing between Ni and Nk−2−i follows 
from the nondegeneracy of the Poincaré pairing of CH(MF ). �

To complete the proof, we only need to show that the graded vector spaces on both 
sides of (D3) have the same dimension, which is the next proposition.

Proposition 5.3. There exists an isomorphism of graded vector spaces

CH(M) ∼= Hα(M) ⊕
⊕

F∈Q(M)

CH(MF ) ⊗ Jα(MF )[−1], (D′
3)

where the sum is over the set Q(M) of proper flats of M with rank at least two.

Proof. We prove the proposition using induction on the cardinality of E. Suppose the 
proposition holds for any matroid whose ground set is a proper subset of E. Suppose 
that there exists an element i ∈ E that is not a coloop.

By Remark 3.6, for any G in Si, we have xG∪iCH(i)
∼= CH(MG∪i) ⊗ CH(MG)[−1] as 

graded vector spaces. Thus, the decomposition (D1) implies

CH(M) ∼= CH(M \ i) ⊕
⊕

G∈Si(M)

CH(MG∪i) ⊗ CH(MG)[−1].

By applying the induction hypothesis to the matroids M \ i and MG, we see that the 
left-hand side of (D′

3) is isomorphic to the graded vector space

Hα(M \ i) ⊕
⊕

G∈Q(M\i)
CH

(
(M \ i)G

)
⊗ Jα

(
(M \ i)G

)
[−1]

⊕
⊕

G∈Si(M)

CH(MG∪i) ⊗ Hα(MG)[−1]

⊕
⊕

G∈Si(M)

⊕
F∈Q(MG)

CH(MG∪i) ⊗ CH(MG
F ) ⊗ Jα(MF )[−2].

Since i is not a coloop, we may replace Hα(M \ i) by Hα(M).
Now, we further decompose the right-hand side of (D′

3) to match the displayed ex-
pression. For this, we split the index set Q(M) into three groups:

(1) F ∈ Q(M), i ∈ F, F \ i ∈ Si(M),
(2) F ∈ Q(M), i ∈ F, F \ i /∈ Si(M), and
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(3) F ∈ Q(M), i /∈ F .

Suppose F belongs to the first group. In this case, we have Jα(MF ) ∼= Hα(MF\i) as 
graded vector spaces, because they both have one-dimensional component from degree 
0 to rk(F ) − 2 by Proposition 2.32. Therefore, we have

⊕
F∈Q(M)

i∈F,F\i∈Si(M)

CH(MF ) ⊗ Jα(MF )[−1] ∼=
⊕

G∈Si(M)

CH(MG∪i) ⊗ Hα(MG)[−1].

Suppose F belongs to the second group. In this case, MF = (M \ i)F\i, and the 
matroids MF and (M \ i)F\i have the same rank. Therefore, we have

⊕
F∈Q(M)

i∈F,F\i/∈Si(M)

CH(MF )⊗Jα(MF )[−1] ∼=
⊕

G∈Q(M\i)\Q(M)

CH
(
(M\ i)G

)
⊗Jα

(
(M\ i)G

)
[−1].

Suppose F belongs to the third group. In this case, we apply (D1) to MF and get
⊕

F∈Q(M),i/∈F

CH(MF ) ⊗ Jα(MF )[−1]

∼=
⊕

F∈Q(M),i/∈F

(
CH

(
MF \ i

)
⊕

⊕
G∈Si(MF )

CH(MG∪i) ⊗ CH(MG
F )[−1]

)
⊗ Jα(MF )[−1]

∼=
⊕

F∈Q(M),i/∈F

CH
(
MF \ i

)
⊗ Jα(MF )[−1]

⊕
⊕

G∈Si(M)
F∈Q(MG)

CH(MG∪i) ⊗ CH(MG
F ) ⊗ Jα(MF )[−2]

∼=
⊕

G∈Q(M\i)∩Q(M)

CH
(
(M \ i)G

)
⊗ Jα

(
(M \ i)G

)
[−1]

⊕
⊕

G∈Si(M)
F∈Q(MG)

CH(MG∪i) ⊗ CH(MG
F ) ⊗ Jα(MF )[−2].

The decomposition (D′
3) follows.

Suppose now that every element of E is a coloop of M, that is, M is a Boolean matroid. 
We fix an element i ∈ E. The decomposition (D2) and Remark 3.6 imply

CH(M) ∼= CH(M \ i) ⊕ CH(M \ i)[−1] ⊕
⊕

G∈Si(M)

CH(MG∪i) ⊗ CH(MG)[−1].

The assumption that i is a coloop implies that Si(M) ∩Q(M) = Q(M \ i). The induction 
hypothesis applies to the matroids M \ i and MG, and hence the left-hand side of (D′

3)
is isomorphic to
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Hα(M \ i) ⊕
⊕

G∈Q(M\i)
CH

(
(M \ i)G

)
⊗ Jα

(
(M \ i)G

)
[−1]

⊕ Hα(M \ i)[−1] ⊕
⊕

G∈Q(M\i)
CH

(
(M \ i)G

)
⊗ Jα

(
(M \ i)G

)
[−2]

⊕
⊕

G∈Si(M)

CH(MG∪i) ⊗
(
Hα(MG) ⊕

⊕
F∈Q(MG)

CH(MG
F ) ⊗ Jα(MF )[−1]

)
[−1].

Now, we further decompose the right-hand side of (D′
3) to match the displayed ex-

pression. For this, we split the index set Q(M) into three groups:

(1) F ∈ Q(M), i ∈ F ,
(2) F ∈ Q(M), F = E \ i, and
(3) F ∈ Q(M), F ∈ Si(M).

If F belongs to the first group, then Jα(MF ) ∼= Hα(MF\i), and hence

⊕
F∈Q(M),i∈F

CH(MF ) ⊗ Jα(MF )[−1] ∼=
⊕

G∈Si(M)

CH(MG∪i) ⊗ Hα(MG)[−1].

If F is the flat E \ i, Hα(M) has one-dimensional component from degree 0 to d − 1; 
Hα(M \ i) has one-dimensional component from degree 0 to d − 2; and Jα(ME\i) has 
one-dimensional component from degree 0 to d − 3. Thus, we have

Hα(M) ⊕ CH(ME\i) ⊗ Jα(ME\i)[−1] ∼= Hα(M \ i) ⊕ Hα(M \ i)[−1].

If F belongs to the third group, we apply (D2) to MF and get
⊕

F∈Q(M)
F∈Si(M)

CH(MF ) ⊗ Jα(MF )[−1]

∼=
⊕

F∈Q(M)
F∈Si(M)

(
CH(MF \ i) ⊕ CH(MF \ i)[−1]

⊕
⊕

G∈Si(MF )

CH(MG∪i) ⊗ CH(MG
F )[−1]

)
⊗ Jα(MF )[−1]

∼=
⊕

G∈Q(M)
G∈Si(M)

CH(MG \ i) ⊗ Jα(MG)[−1] ⊕
⊕

G∈Q(M)
G∈Si(M)

CH(MG \ i) ⊗ Jα(MG)[−2] ⊕

⊕
G∈Si(M)
F∈Q(MG)

CH(MG∪i) ⊗ CH(MG
F ) ⊗ Jα(MF )[−2].

The decomposition (D′
3) follows. �
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Remark 5.4. The decomposition of graded vector spaces appearing in [1, Theorem 6.18]
specializes to decompositions of CH(M) and of CH(M), where the latter goes through 
Remark 4.1. At the level of Poincaré polynomials, these decompositions coincide with 
those of Theorem 1.8. However, the subspaces appearing in the decompositions are not 
the same. In particular, the decompositions in [1, Theorem 6.18] are not orthogonal, and 
they are not compatible with the Hα(M)-module structure on CH(M) or the Hα(M)-
module structure on CH(M).
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