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LOGARITHMIC CONCAVITY OF SCHUR AND

RELATED POLYNOMIALS

JUNE HUH, JACOB P. MATHERNE, KAROLA MÉSZÁROS, AND AVERY ST. DIZIER

Abstract. We show that normalized Schur polynomials are strongly log-
concave. As a consequence, we obtain Okounkov’s log-concavity conjecture
for Littlewood–Richardson coefficients in the special case of Kostka numbers.

1. Introduction

Schur polynomials are the characters of finite-dimensional irreducible polynomial
representations of the general linear group GLmpCq. Combinatorially, the Schur
polynomial of a partition λ in m variables is the generating function

sλpx1, . . . , xmq “

ÿ

T

xμpTq, xμpTq
“ x

μ1pTq

1 ¨ ¨ ¨xμmpTq
m ,

where the sum is over all Young tableaux T of shape λ with entries from rms, and

μipTq “ the number of i’s among the entries of T, for i “ 1, . . . ,m.

Collecting Young tableaux of the same weight together, we get

sλpx1, . . . , xmq “

ÿ

μ

Kλμ x
μ,

where Kλμ is the Kostka number counting Young tableaux of given shape λ and
weight μ [Kos82]. Correspondingly, the Schur module Vpλq, an irreducible repre-
sentation of the general linear group with highest weight λ, has the weight space
decomposition

Vpλq “
à

μ

Vpλqμ with dimVpλqμ “ Kλμ.

Schur polynomials were first studied by Cauchy [Cau09], who defined them as ratios
of alternants. The connection to the representation theory of GLmpCq was found
by Schur [Sch01]. For a gentle introduction to these remarkable polynomials, and
for all undefined terms, we refer to [Ful97].
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We prove several log-concavity properties of Schur polynomials. An operator
that turns generating functions into exponential generating functions will play an
important role. This linear operator, denoted N, is defined by the condition

Npxμ
q “

xμ

μ!
“

xμ1

1

μ1!
¨ ¨ ¨

xμm
m

μm!
for all μ P N

m.

Recall that a partition is a weakly decreasing sequence of nonnegative integers.

Theorem 1 (Continuous). For any partition λ, the normalized Schur polynomial

Npsλpx1, . . . , xmqq “

ÿ

μ

Kλμ
xμ

μ!

is either identically zero or its logarithm is concave on the positive orthant Rm
ą0.

Let ei be the i-th standard unit vector in Nm. For μ P Zm and distinct i, j P rms,
we set

μpi, jq “ μ ` ei ´ ej .

We show that the sequence of weight multiplicities of Vpλq we encounter is always
log-concave if we walk in the weight diagram along any root direction ei ´ ej .

Theorem 2 (Discrete). For any partition λ and any μ P Nm, we have

K2
λμ ě Kλμpi,jqKλμpj,iq for any i, j P rms.

For partitions ν, κ, λ, the Littlewood–Richardson coefficient cνκλ is given by the
decomposition

Vpκq b Vpλq »
à

ν

Vpνq
‘ cνκλ .

When the skew shape ν{κ has at most one box in each column, cνκλ is the Kostka
number Kλμ, where μ “ ν ´ κ. This equality follows from Pieri’s formula

hμ1
px1, . . . , xmq ¨ ¨ ¨hμm

px1, . . . , xmq “

ÿ

λ

Kλμsλpx1, . . . , xmq,

where hμi
is the μi-th complete symmetric function [Ful97, Section 6.1]. When ν{κ

has at most one box in each column, the left-hand side is the skew Schur function
sν{κ, given by the Littlewood–Richardson rule

sν{κpx1, . . . , xmq “

ÿ

λ

cνκλsλpx1, . . . , xmq.

Conversely, for any partition λ and any μ, we have

Kλμ “ cνκλ,

where ν and κ are the partitions given by νi “
řn

j“i μj and κi “
řn

j“i`1 μj . Thus
Theorem 2 verifies a special case of Okounkov’s conjecture that the discrete function

pν, κ, λq ÞÝÑ log cνκλ

is concave [Oko03, Conjecture 1]. The conjecture holds in the “classical limit”
[Oko03, Section 3], but the general case is refuted in [CDW07]:

c
p4n,3n,2n,1nq

p3n,2n,1nqp2n,1n,1nq
“

ˆ

n ` 2

2

˙

and c
p8n,6n,4n,2nq

p6n,4n,2nqp4n,2n,2nq
“

ˆ

n ` 5

5

˙

for all n.

The same example shows that the log-concavity conjecture for parabolic Kostka
numbers [Kir04, Conjecture 6.17] also fails.
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We point out that, for any fixed λ, the log-concavity of Kλμ along any direction
is known to hold asymptotically. By [Hec82], the Duistermaat–Heckman measure
obtained from the orbit of λ under SUm is a translate of the weak limit

lim
kÑ8

ř

μ Kkλμδ 1
kμ

ř

μ Kkλμ
,

where δ 1
kμ is the point mass at 1

kμ. It follows from [Gra96] that, in this case, the

density function of the Duistermaat–Heckman measure is log-concave. We refer to
[BGR04, Section 3] for an exposition.

In [BH20], the authors introduce Lorentzian polynomials as a generalization of
volume polynomials in algebraic geometry and stable polynomials in optimization
theory. See Section 2 for a brief introduction. We show that normalized Schur
polynomials are Lorentzian in the sense of [BH20], and deduce Theorems 1 and 2
from the Lorentzian property.

Theorem 3. The normalized Schur polynomial Npsλpx1, . . . , xmqq is Lorentzian
for any λ.

Using general properties of Lorentzian polynomials [BH20, Section 6], Theorem
3 can be strengthened as follows.

Corollary 4. For any sequence of partitions λ1, . . . , λ� and any positive integers
m1, . . . , m�,

(1) the normalized product of Schur polynomials Np
ś�

k“1 sλkpx1, . . . , xmk
qq is

Lorentzian, and

(2) the product of normalized Schur polynomials
ś�

k“1 Npsλkpx1, . . . , xmk
qq is

Lorentzian.

We prove Theorem 3 in Section 2 in a more general context of Schubert polyno-
mials, but the main idea is simple enough to be outlined here. Recall that a Cartier
divisor on a complete variety Y is nef if it intersects every curve in Y nonnegatively
(see [Laz04] for an introduction). The volume polynomial of an irreducible complex
projective variety Y , with respect to a sequence of nef divisor classes H “ pH1, . . . ,
Hmq, is the homogeneous polynomial

volY,Hpx1, . . . , xmq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xmHmq
dimY ,

where the intersection product of Y is used to expand the integrand. Volume
polynomials are prototypical examples of Lorentzian polynomials [BH20, Section
10]. To show that the normalized Schur polynomial of λ is a volume polynomial,
we suppose that the partition λ has m parts, and choose a large integer � to get a
complementary pair of partitions

λ “ pλ1, λ2, . . . , λmq and κ “ p�, �, . . . , �q ´ pλm, λm´1, . . . , λ1q.

It is easy to check that the dual of the Schur module Vpλq has highest weight
p´λm, . . . , ´λ1q, see [FH91, Exercise 15.50]. Hence, the Schur polynomials of the
partitions λ and κ are related by the identity

sκpx1, . . . , xmq “ x�
1 ¨ ¨ ¨x�

msλpx´1
1 , . . . , x´1

m q.
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Let X be the product of projective spaces pP�qm, and let Y be a subvariety of X
whose fundamental class satisfies

rY s “ sκpH1, . . . ,Hmq X rXs, Hi “ c1pπ˚
i Op1qq,

where πi is the i-th projection. The volume polynomial of Y with respect to H is

volY,Hpx1, . . . , xmq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHmq
dimY

“
1

dimY !

ż

X

sκpH1, . . . ,Hmqpx1H1 ` ¨ ¨ ¨ ` xmHmq
dimY

“ Npsλpx1, . . . , xmqq.

Such Y can be constructed from a sequence of generic global sections
Àm

i“1 π
˚
i Op1q

as a degeneracy locus [Ful98, Example 14.3.2], completing the argument.
In Section 2, we introduce Lorentzian polynomials and prove the main results. In

Section 3, we present evidence for the ubiquity of Lorentzian polynomials through
a series of results and conjectures.

2. Normalized Schur polynomials are Lorentzian

A subset J Ď Zn is M-convex if, for any index i P rns and any α P J and β P J
whose i-th coordinates satisfy αi ą βi, there is an index j P rns satisfying

αj ă βj and α ´ ei ` ej P J and β ´ ej ` ei P J.

The notion of M-convexity forms the foundation of discrete convex analysis [Mur03].
The convex hull of an M-convex set is a generalized permutohedron in the sense of
[Pos09], and conversely, the set of integral points in an integral generalized permu-
tohedron is an M-convex set [Mur03, Theorem 1.9].

Lorentzian polynomials connect discrete convex analysis with many log-concavity
phenomena in combinatorics. See [AOGV18, ALGV19, ALOGV18, BES20, BH18,
BH20,EH20] for recent applications. Here we briefly summarize the relevant results,
and refer to [BH20] for details.

We fix integers d and e “ d ´ 2. By the support of a polynomial hpx1, . . . , xnq,
we mean the set of monomials appearing in h, viewed as a subset of Nn.

Definition 5. Let hpx1, . . . , xnq be a degree d homogeneous polynomial. We say
that h is strictly Lorentzian if all the coefficients of h are positive and

B

Bxi1

¨ ¨ ¨
B

Bxie

h has the signature p`,´, . . . ,´q for any i1, . . . , ie P rns.

We say that h is Lorentzian if it satisfies any one of the following equivalent condi-
tions.

(1) All the coefficients of h are nonnegative, the support of h is M-convex, and

B

Bxi1

¨ ¨ ¨
B

Bxie

h has at most one positive eigenvalue for any i1, . . . , ie P rns.

(2) All the coefficients of h are nonnegative and, for any i1, i2, . . . P rns and
any positive k,

the functions h and
B

Bxi1

¨ ¨ ¨
B

Bxik

h are either identically zero or log-concave on R
n
ą0.

(3) The polynomial h is a limit of strictly Lorentzian polynomials.
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For example, a bivariate polynomial
řd

k“0 akx
k
1x

d´k
2 with nonnegative coeffi-

cients is Lorentzian if and only if the sequence a0, . . . , ad has no internal zeros
and

a2k
`

d
k

˘2 ě
ak´1
`

d
k´1

˘

ak`1
`

d
k`1

˘ for all 0 ă k ă d.

Polynomials satisfying the second condition of Definition 5, introduced by Gurvits
in [Gur09], are called strongly log-concave. See [BH20, Section 5] for a proof of the
equivalence of the three conditions in Definition 5.

We write Sn for the group of permutations of rns. The Schubert polynomial
Swpx1, . . . , xnq for w P Sn can be defined recursively as follows.

(1) If w “ w˝ is the longest permutation n n ´ 1 ¨ ¨ ¨ 2 1, then

Swpx1, . . . , xnq “ xn´1
1 xn´2

2 ¨ ¨ ¨x1
n´1.

(2) If wpiq ą wpi ` 1q for some i and si is the adjacent transposition pi i ` 1q,
then

Swsipx1, . . . , xnq “ BiSwpx1, . . . , xnq.

The symbol Bi stands for the i-th divided difference operator defined by the formula

BiSw “
Sw ´ siSw

xi ´ xi`1
,

where siSw is the polynomial obtained from Sw by interchanging xi and xi`1.
The divided difference operators satisfy the braid relations, and it follows that the
Schubert polynomials are well-defined [MS05, Exercise 15.3]. For any w P Sn, we
define

S_
w “ Npxn´1

1 ¨ ¨ ¨xn´1
n Swpx´1

1 , . . . , x´1
n qq.

Theorem 6. The polynomial S_
wpx1, . . . , xnq is Lorentzian for any w P Sn.

We conjecture that NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn, see Section
3.2.

Proof. Recall that the volume polynomial of a projective variety Y , with respect
to a sequence of Cartier divisor classes H “ pH1, . . . , Hnq, is the homogeneous
polynomial

volY,Hpx1, . . . , xnq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHnq
dimY .

By [BH20, Theorem 10.1], the volume polynomial is Lorentzian whenever Y is
irreducible and H1, . . . , Hn are nef. We show that S_

w is a volume polynomial for
suitable Y “ Yw and H.

Let X be the product of projective spaces pPn´1qn. We write xi1, xi2, . . . , xin

for the homogeneous coordinates of the i-th projective space, and write πi for the
i-th projection. We consider the map between the rank n vector bundles

Ψ :
n

à

i“1

OX ÝÑ

n
à

j“1

π˚
j Op1q, Ψpxq “ pxijq1ďiďn,1ďjďn.

For p, q P rns, the induced map
Àp

i“1 OX Ñ
Àq

j“1 π
˚
j Op1q will be denoted Ψpˆq.

We set

Y “ Yw :“
!

x P X | rank Ψpˆqpxq ď rank wpˆq for all p and q
)

,
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where wpˆq is the p ˆ q partial permutation matrix with ij-entry 1 for wpiq “ j.
The locus Y is defined by all minors of pxijq1ďiďp,1ďjďq of size one more than the
rank of wpˆq for all p and q.

By [Ful92, Theorem 8.2], the fundamental class of Y in the Chow group of X is
given by

rY s “ SwpH1, . . . ,Hnq X rXs, Hi “ c1pπ˚
i Op1qq.

An alternative proof of the displayed formula, in a more refined setting, was ob-
tained in [KM05] through an explicit degeneration of Y . An important point for us
is that Y is irreducible of expected codimension deg Sw [Ful92]. For an elementary
proof that the multi-homogeneous ideal defining Y is prime, see [MS05, Section
16.4]. The volume polynomial of Y with respect to H “ pH1, . . . , Hnq is

volY,Hpx1, . . . , xnq “
1

dimY !

ż

Y

px1H1 ` ¨ ¨ ¨ ` xnHnq
dimY

“
1

dimY !

ż

X

SwpH1, . . . ,Hnqpx1H1 ` ¨ ¨ ¨ ` xnHnq
dimY

“ S
_
wpx1, . . . , xnq.

The second equality is the projection formula, and the third equality follows from
ż

X

Hμ
“

"

1 if μ “ pn ´ 1, . . . , n ´ 1q,
0 if μ ‰ pn ´ 1, . . . , n ´ 1q.

Now the Lorentzian property ofS_
w can be deduced from [BH20, Theorem 10.1]. �

Lemma 7. For any μ P N
n and any polynomial f “ fpx1, . . . , xnq,

Npfq is Lorentzian if and only if Npxμfq is Lorentzian.

Proof. If a polynomial gpx1, . . . , xnq is Lorentzian, then so is its partial derivative

B
μg “

´

B

Bx1

¯μ1

¨ ¨ ¨

´

B

Bxn

¯μn

gpx1, . . . , xnq.

Therefore, the “if” direction follows from the equality of linear operators

B
μ

˝ N ˝ xμ
“ N.

The “only if” direction is a special case of [BH20, Corollary 6.8]. �

Proof of Theorem 3. As in the introduction, given a partition λ with m parts, we
choose a large integer � and write κ for the partition complementary to λ in the
m ˆ � rectangle. Choose another large integer n, and let w be the unique element
of Sn satisfying

κ “
`

wpmq ´ m, . . . , wp1q ´ 1
˘

and wpmq ą wpm ` 1q ă wpm ` 2q ă ¨ ¨ ¨ ă wpnq.

The element w is the Grassmannian permutation in Sn with the Lehmer code

Lpwq “ pwp1q ´ 1, . . . , wpmq ´ m, 0, . . . , 0q “ pκm, . . . , κ1, 0, . . . , 0q.

The Schubert polynomial of w satisfies

Swpx1, . . . , xnq “ sκpx1, . . . , xmq “ x�
1 ¨ ¨ ¨x�

msλpx´1
1 , . . . , x´1

m q,

where the first equality is [Man01, Proposition 2.6.8] and the second equality
is [FH91, Exercise 15.50]. By Theorem 6, we know that the polynomial S_

w is
Lorentzian, which is equal to

Npxn´1
1 ¨ ¨ ¨xn´1

n sκpx´1
1 , . . . , x´1

m qq “ Npxμsλpx1, . . . , xmqq for some μ P N
n.
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Therefore, by Lemma 7, the Lorentzian property of S_
w implies that of Npsλpx1,

. . . , xmqq. �

Proofs of Theorems 1 and 2. Since any nonzero Lorentzian polynomial is log-
concave on the positive orthant, Theorem 1 follows from Theorem 3. For The-
orem 2, we may suppose that

μ1 ` ¨ ¨ ¨ ` μm “ λ1 ` ¨ ¨ ¨ ` λm ě 2 and κ :“ μ ´ ei ´ ej P N
m.

We consider the quadratic form with at most one positive eigenvalue

Bκ1

Bxκ1
1

¨ ¨ ¨
Bκm

Bxκm
m

Npsλpx1, . . . , xmqq,

viewed as an m ˆ m symmetric matrix. Its 2 ˆ 2 principal submatrix correspond-
ing to i and j is either identically zero or has exactly one positive eigenvalue, by
Cauchy’s interlacing theorem. The nonpositivity of the 2 ˆ 2 principal minor gives
the conclusion

K2
λμ ě Kλμpi,jqKλμpj,iq. �

Proof of Corollary 4. The first part follows from Theorem 3 and [BH20, Corollary
6.8]. The second part follows from Theorem 3 and [BH20, Corollary 5.5]. �

In general, if h is a Lorentzian polynomial, then its normalization Nphq is a
Lorentzian polynomial [BH20, Corollary 6.7]. We record here that Schur polyno-
mials, before the normalization, need not be Lorentzian.

Example 8. The Schur polynomial of the partition λ “ p2, 0q in two variables is

sλpx1, x2q “ x2
1 ` x1x2 ` x2

2.

The quadratic form has eigenvalues 3
2 and 1

2 , and hence sλ is not Lorentzian.

A polynomial fpx1, . . . , xmq is stable if f has no zeros in the product of m open
upper half planes [Wag11]. Homogeneous stable polynomials with nonnegative
coefficients are motivating examples of Lorentzian polynomials [BH20, Proposition
2.2]. We record here that normalized Schur polynomials, although Lorentzian, need
not be stable.

Example 9. The normalized Schur polynomial of λ “ p3, 1, 1, 1, 1q in five variables
is

Npsλpx1, . . . , x5qq “
1

12
x1x2x3x4x5

´

ÿ

1ďiăjď5

3xixj `
ÿ

1ďiď5

2x2
i

¯

.

By [Wag11, Lemma 2.4], if Npsλq is stable, then so is its univariate specialization

Npsλq|x2“x3“x4“x5“1 “
1

6
x1

´

x2
1 ` 6x1 ` 13

¯

.

However, the displayed cubic has a pair of nonreal zeros, and hence Npsλq is not
stable.
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3. Ubiquity of Lorentzian polynomials

It follows from Definition 5 that the support of any Lorentzian polynomial is
M-convex. In particular, the Newton polytope of any Lorentzian polynomial is a
type A generalized permutohedron in the sense of [Pos09]. Generalized permuto-
hedra have appeared in several works as the supports of multivariate polynomials
related to the representation theory of GLmpCq and its Weyl group Sm, and to the
Schubert calculus of the flag variety. These polynomials are natural candidates for
the Lorentzian property. We collect results and conjectures for various families of
polynomials from this setting.

3.1. Multiplicities of highest weight modules. We point to [Hum08] for back-
ground on representation theory of semisimple Lie algebras. Let Λ be the integral
weight lattice of the Lie algebra slmpCq, let 
1, . . . , 
m´1 be the fundamental
weights, and let ρ be the sum of the fundamental weights. For λ P Λ, we write
Vpλq for the irreducible slmpCq-module with highest weight λ, and consider its
decomposition into finite-dimensional weight spaces

Vpλq “
à

μ

Vpλqμ.

For μ P Λ and distinct i, j P rms, we write μpi, jq for the element μ ` ei ´ ej P Λ.

Conjecture 10. For any λ P Λ and any μ P Λ, we have

pdimVpλqμq
2

ě dimVpλqμpi,jq dimVpλqμpj,iq for any i, j P rms.

When λ is dominant, the dimension of the weight space Vpλqμ is the Kostka
number Kλμ, and Theorem 2 shows that Conjecture 10 holds in this case. When
λ is antidominant [Hum08, Section 4.4], Vpλq is the Verma module Mpλq, the
universal highest weight module of highest weight λ. We note that Conjecture 10
holds in this case as well.

Proposition 11. For any λ P Λ and any μ P Λ, we have

pdimMpλqμq
2

ě dimMpλqμpi,jq dimMpλqμpj,iq for any i, j P rms.

One may deduce Proposition 11 from its stronger variant Proposition 13 below.

Alternative proof. The Poincaré–Birkhoff–Witt theorem shows that the dimensions
of the weight spaces are given by the Kostant partition function p:

dimMpλqμ “ ppμ´λq “ number of ways to write μ ´ λ as a sum of negative roots.

Lidskij’s volume formula for flow polytopes shows that all Kostant partition func-
tion evaluations are mixed volumes of Minkowski sums of polytopes [BV08]. The
Alexandrov–Fenchel inequality for mixed volumes [Sch14, Section 7.3] yields the
desired log-concavity property. �

The diagram in Figure 1 shows some of the weight multiplicities of the irreducible
sl4pCq-module with highest weight ´2
1 ´ 3
2. We start from the highlighted
vertex 
1 ´ 6
2 ´ 3
3 and walk along negative root directions in the hyperplane
spanned by e2 ´ e1 and e3 ´ e2. In the shown region, the sequence of weight
multiplicities along any line is log-concave, as predicted by Conjecture 10.

We note, however, that a naive analog of Conjecture 10 does not hold for sym-
plectic Lie algebras. In the weight diagram of the irreducible representation of
sp4pCq with highest weight 2
2 shown in Figure 2, the weight multiplicities along
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the two diagonals of the square do not form log-concave sequences. On the other
hand, the Newton polytope of any homogeneous strongly log-concave polynomial
is necessarily a generalized permutohedron of type A: Any edge of the Newton
polytope should be parallel to ei ´ ej for some i and j.

To strengthen Conjecture 10, we extend the normalization operator N to the
space of Laurent generating functions by the formula

N

˜

ÿ

αPZn

cαx
α

¸

“
ÿ

αPNn

cα
xα

α!
.

For λ P Λ, we introduce the Laurent generating functions

chλpx1, . . . , xmq “

ÿ

μPΛ

dimVpλqμ x
μ´λ and chλpx1, . . . , xmq “

ÿ

μPΛ

dimMpλqμ x
μ´λ.

Note that every monomial appearing in the shifted characters chλ and chλ is a
product of degree zero monomials of the form xix

´1
j with i ą j.
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We tested the following statement for λ “ ´wρ ´ ρ and δ “ p1, . . . , 1q, for
all permutations w in Sm for m ď 6. We point to https://github.com/avstdi/

Lorentzian-Polynomials for code supporting the computations in Section 3.

Conjecture 12. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any
λ P Λ and δ P Nm.

For example, when m “ 4 and λ “ ´wρ ´ ρ for the transposition w “ p1, 2q, we
have

Npx1x2x3x4chλpx1, x2, x3, x4qq “
4

24
x4
4 `

2

6
x1x

3
4 `

2

6
x2x

3
4 `

4

6
x3x

3
4 `

3

4
x2
3x

2
4

`
1

2
x1x2x

2
4 `

2

2
x1x3x

2
4 `

2

2
x2x3x

2
4 `

1

6
x3
3x4 `

1

2
x1x

2
3x4 `

1

2
x2x

2
3x4 `

1

1
x1x2x3x4,

which is a Lorentzian polynomial. In general, the homogeneous polynomial Npxδchλq

can be computed using the Kazhdan–Lusztig theory [Hum08, Chapter 8].
Theorem 3 and Lemma 7 show that Conjecture 12 holds for any δ when λ is

dominant. We show that Conjecture 12 holds for any δ when λ is antidominant.

Proposition 13. The polynomial Npxδ chλpx1, . . . , xmqq is Lorentzian for any
λ P Λ and δ P Nm.

Proof. Recall that the dimensions of the weight spaces of Mpλq are given by the
Kostant partition function p. In other words, we have

chλpx1, . . . , xmq “

ź

iąj

p1 ` xix
´1
j ` x2

ix
´2
j ` ¨ ¨ ¨ q.

It is clear that the product is well-defined. Officially, the product occurs in the ring
of formal characters of the category O of slmpCq-modules, denoted X in [Hum08,
Section 1.15]. Note that in the expansion of the above product, only the terms of
degree at least ´δ contribute to Npxδchλq. Therefore, we may choose a suitably
large α P Nm depending on δ P Nm so that

Npxδchλq “ Npxδx´β
ź

iąj

px
αj

j `xix
αj´1
j `¨ ¨ ¨`x

αj

i qq, where βi “ pm ´ iqαi for all i.

Observe that the right-hand side is the β-th partial derivative of the normalized

product of xδ and
ř

k x
αj´k
i xk

j , whose normalization is the Lorentzian polynomial

Npx
αj

j ` xix
αj´1
j ` ¨ ¨ ¨ ` x

αj

i q “
1

αj !
pxi ` xjq

αj .

The conclusion now follows from [BH20, Corollary 6.8]. �
Conjecture 10 for λ and μ follows from Conjecture 12 for λ and a sufficiently

large δ. Conjecture 12 for λ and δ follows from Conjecture 12 for λ and any δ1

larger than δ componentwise.

3.2. Schubert polynomials. For w P Sn and μ P Zn, we define the number Kwμ

by

Swpx1, . . . , xnq “
ÿ

μ

Kwμx
μ.

As before, for μ P Zn and distinct i, j P rms, we set

μpi, jq “ μ ` ei ´ ej .

We note that Theorem 2 can be strengthened as follows.

https://github.com/avstdi/Lorentzian-Polynomials
https://github.com/avstdi/Lorentzian-Polynomials
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Proposition 14. For any w P Sn and any μ P Nn, we have

K2
wμ ě Kwμpi,jqKwμpj,iq for any i, j P rns.

Proof. By Theorem 6, the polynomial S_
w is Lorentzian. The inequality follows

from [BH20, Proposition 9.4] applied to the Lorentzian polynomial S_
w . �

Are normalized Schubert polynomials Lorentzian? We tested the following state-
ment for all permutations in Sn for n ď 8.

Conjecture 15. The polynomial NpSwpx1, . . . , xnqq is Lorentzian for any w P Sn.

More generally, we conjecture that, for double Schubert polynomials [MS05,
Section 15.5],

NpSwpx1, . . . , xn,´y1, . . . ,´ynqq is Lorentzian for any w P Sn.

This would imply that the support of any double Schubert polynomial is M-convex,
and hence “saturated” [MTY19, Conjecture 5.2].

Proposition 16. The support of Swpx1, . . . , xnq is M-convex for any w P Sn.

Proposition 16 was conjectured in [MTY19, Conjecture 5.1] and proved in
[FMSD18] using an explicit description of flagged Schur modules. Here we give an
alternative proof based on Theorem 6. A similar argument can be used more gener-
ally to show that the supports of single quiver polynomials appearing in [MS05, Sec-
tion 17.4] are M-convex.

Proof. By Theorem 6, the support of S_
w is M-convex. It is straightforward to

check using the definition of M-convexity the general fact that, if the support of
hpx1, . . . , xnq is M-convex, then the support of xμhpx´1

1 , . . . , x´1
n q is M-convex for

any monomial xμ divisible by all monomials in the support of h. This general fact
extends matroid duality [Oxl11, Chapter 2], which is the special case μ “ p1, . . . ,
1q. �

Proposition 17. Conjecture 15 holds when w P Sn avoids the patterns 1423 and
1432.

Sketch of Proof. By [BH20, Corollary 6.7], the Lorentzian property of Sw implies
that of NpSwq. We deduce the Lorentzian property of Sw from known results on
Schubert and Lorentzian polynomials, for permutations avoiding 1423 and 1432.

It is shown in [FMSD18, Theorem 7] that, for any w P Sn, the support of Sw

is the set of integral points in the Minkowski sum of n matroid polytopes. The set
Jw of integral points in the Cartesian product of these matroid polytopes is an M-
convex subset of Nnˆn, and hence the generating function fw of Jw is a Lorentzian
polynomial in n2 variables xij [BH20, Theorem 7.1]. Since any nonnegative linear
change of coordinates preserves the Lorentzian property [BH20, Theorem 2.10],
substituting the variables xij by xi in the generating function fw gives a Lorentzian
polynomial. According to [FMSD21, Corollary 5.6] and [FG19, Theorem 1.1], this
specialization of fw coincides with Sw when w avoids 1423 and 1432, and thus Sw

is Lorentzian for such permutations. �

We note that the Schubert polynomials S1423 and S1432 are not Lorentzian.
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3.3. Degree polynomials. Let w ă wpi, jq be a covering relation in the Bruhat
order of Sn labelled by the transposition of i ă j in rns. The Chevalley multiplicity
is the assignment

w ă wpi, jq ÞÝÑ

ÿ

iďkăj

xk,

where xk are independent variables. The degree polynomial of w P Sn is the gener-
ating function

Dwpx1, . . . , xn´1q “

ÿ

C

mCpx1, . . . , xn´1q,

where the sum is over all saturated chains C from the identity permutation to w,
and mC is the product of Chevalley multiplicities of the covering relations in C. The
degree polynomials were introduced by Bernstein, Gelfand, and Gelfand [BGG73]
and studied from a combinatorial perspective by Postnikov and Stanley [PS09].

Proposition 18. The degree polynomial Dwpx1, . . . , xn´1q is Lorentzian for any
w P Sn.

Proof. Let B be the group of upper triangular matrices in GLnpCq, and let Xw

be the closure of the B-orbit of the permutation matrix corresponding to w in the
flag variety GLnpCq{B. By [PS09, Proposition 4.2], the degree polynomial of w is,
up to a normalizing constant, the volume polynomial of Xw with respect to the
line bundles associated to the fundamental weights 
1, . . . , 
n´1. The conclusion
follows from [BH20, Theorem 10.1]. �

The same argument shows that the analogous statement holds for Weyl groups
in other types.

3.4. Skew Schur polynomials. Let λ{ν be a skew Young diagram. The skew
Schur polynomial of λ{ν in m variables is the generating function

sλ{νpx1, . . . , xmq “

ÿ

T

xμpTq, xμpTq
“ x

μ1pTq

1 ¨ ¨ ¨xμmpTq
m ,

where the sum is over all Young tableaux T of skew shape λ{ν with entries from
rms, and

μipTq “ the number of i’s among the entries of T, for i “ 1, . . . ,m.

Are normalized skew Schur polynomials Lorentzian? We tested the following state-
ment for all partitions λ with at most 12 boxes and at most 6 parts.

Conjecture 19. The polynomial Npsλ{νpx1, . . . , xmqq is Lorentzian for any λ{ν.

Theorem 3 shows that Conjecture 19 holds when ν is zero, and Corollary 4
provides some further evidence. We remark that the M-convexity of the support of
any skew Schur polynomial can be deduced from [MTY19, Proposition 2.9].

In [LPP07], Lam, Postnikov, and Pylyavskyy show that, for two skew shapes
λ{μ and ν{ρ,

´

sλ`ν
2 {

μ`ρ
2

¯2

´ sλ{μsν{ρ

is a nonnegative linear combination of Schur polynomials, when both λ ` ν and
μ ` ρ have only even parts. It would be interesting to know if there are relations
between different notions of log-concavity for skew Schur polynomials.
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3.5. Schur P -polynomials. Let λ be a strict partition, that is, a decreasing se-
quence of positive integers. The Schur P -polynomial of λ in m variables is the
generating function

Pλpx1, . . . , xmq “

ÿ

T

xμpTq, xμpTq
“ x

μ1pTq

1 ¨ ¨ ¨xμmpTq
m ,

where the sum is over all marked shifted Young tableaux of shape λ with entries
from rms. See [Mac15, Chapter III] for this and other equivalent definitions of the
polynomial Pλ.

Are normalized Schur P -polynomials Lorentzian? We tested the following state-
ment for all strict partitions λ with λ1 ď 12 and at most 4 parts.

Conjecture 20. The polynomial NpPλpx1, . . . , xmqq is Lorentzian for any strict
partition λ.

The M-convexity of the support of Pλ was observed in [MTY19, Proposition 3.5].

3.6. Grothendieck polynomials. Grothendieck polynomials are polynomial rep-
resentatives of the Schubert classes in the Grothendieck ring introduced by Las-
coux and Schützenberger [LS83]. If w is the longest permutation w˝ P Sn, then the
Grothendieck polynomial of w is the monomial

Gw˝ px1, . . . , xnq “ xn´1
1 xn´2

2 ¨ ¨ ¨x1
n´1.

In general, if wpiq ą wpi`1q for some i and si is the adjacent transposition pi i`1q,
then

Gwsipx1, . . . , xnq “ πiGwpx1, . . . , xnq, where πi “ Bi ´ Bixi`1.

Let �pwq be the degree of the Schubert polynomial of w, let dpwq be the degree of
the Grothendieck polynomial of w, and let Gk

w be the degree �pwq `k homogeneous
component of the Grothendieck polynomial.

Conjecture 21. The polynomial p´1qkNpGk
wpx1, . . . , xnqq is Lorentzian for any

w P Sn and k P N.

Conjecture 21 coincides with Conjecture 15 in the case of k “ 0.
The M-convexity of the support of Gk

w was conjectured in [MSD20, Conjecture
5.1] and proved in [EY17] when w is a Grassmannian permutation. Conjecture 21
implies Conjecture 15 because the degree �pwq homogeneous component of Gw is
the Schubert polynomial Sw.

We may strengthen Conjecture 21 in terms of the homogeneous Grothendieck
polynomial

rGwpx1, . . . , xn, zq :“

dpwq´�pwq
ÿ

k“0

p´1q
k
G

k
wpx1, . . . , xnqzdpwq´�pwq´k,

where z is a new variable. Are normalized homogeneous Grothendieck polynomials
Lorentzian? We tested the following statement for all permutations in Sn for n ď 7.

Conjecture 22. The polynomial NprGwpx1, . . . , xn, zqq is Lorentzian for any w P

Sn.

Conjecture 22 implies Conjecture 21 because taking partial derivatives and set-
ting a variable equal to zero preserve the Lorentzian property. We expect an anal-
ogous Lorentzian property for double Grothendieck polynomials.
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3.7. Key polynomials. Key polynomials were introduced by Demazure for Weyl
groups [Dem74] and studied by Lascoux and Schützenberger for symmetric groups
[LS90]. When μ P N

n is a partition, the key polynomial of μ is the monomial

κμpx1, . . . , xnq “ xμ
“ xμ1

1 ¨ ¨ ¨xμn
n .

If μi ă μi`1 for some i and si is the adjacent transposition pi i ` 1q, then

κμpx1, . . . , xnq “ Bixiκν , where ν “ μsi “ pμ1, . . . , μi`1, μi, . . . , μnq.

We refer to [RS95] for more information about key polynomials.
Are normalized key polynomials Lorentzian? We tested the following statement

for all compositions μ with at most 12 boxes and at most 6 parts.

Conjecture 23. The polynomial Npκμpx1, . . . , xnqq is Lorentzian for any μ P Nn.

Theorem 3 shows that Conjecture 23 holds when μ is a weakly increasing se-
quence of nonnegative integers, because in this case the key polynomial of μ is a
Schur polynomial. The M-convexity of the supports of key polynomials was con-
jectured in [MTY19, Conjecture 3.13] and proved in [FMSD18].

We remark that key polynomials [Dem74] and Schubert polynomials [KP87] are
both characters of flagged Schur modules. Flagged Schur modules are representa-
tions of the group of upper triangular matrices in GLnpCq labelled by diagrams.
They are also called flagged dual Weyl modules, and, in special cases, key modules.
We refer to [RS95, Section 5] and [Mag98, Section 4] for expositions.

It is shown in [FMSD18, Theorem 11] that the character of any flagged Schur
module has M-convex support. Are normalized characters of flagged Schur modules
Lorentzian?
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