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Introduction

Maximum likelihood estimation (MLE) is a fundamental computational problem in
statistics, and it has recently been studied with some success from the perspective of
algebraic geometry. In these notes we give an introduction to the geometry behind
MLE for algebraic statistical models for discrete data. As is customary in algebraic
statistics [LiAS], we shall identify such models with certain algebraic subvarieties
of high-dimensional complex projective spaces.

The article is organized into four sections. The first three sections correspond to
the three lectures given at Levico Terme. The last section will contain proofs of new
results.

In Sect. 1, we start out with plane curves, and we explain how to identify the
relevant punctured Riemann surfaces. We next present the definitions and basic
results for likelihood geometry in Pn. Theorems 1.6 and 1.7 are concerned with
the likelihood correspondence, the sheaf of differential one-forms with logarithmic
poles, and the topological Euler characteristic. The ML degree of generic complete
intersections is given in Theorem 1.10. Theorem 1.15 shows that the likelihood
fibration behaves well over strictly positive data. Examples of Grassmannians and
Segre varieties are discussed in detail. Our treatment of linear spaces in Theo-
rem 1.20 will appeal to readers interested in matroids and hyperplane arrangements.

Section 2 begins leisurely, with the question Does watching soccer on TV cause
hair loss? [MSS]. This leads us to conditional independence and low rank matrices.
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We study likelihood geometry of determinantal varieties, culminating in the duality
theorem of Draisma and Rodriguez [DR]. The ML degrees in Theorems 2.2 and 2.6
were computed using the software Bertini [Bertini], underscoring the benefits of
using numerical algebraic geometry for MLE. After a discussion of mixture models,
highlighting the distinction between rank and nonnegative rank, we end Sect. 2 with
a review of recent results in [ARSZ] on tensors of nonnegative rank 2.

Section 3 starts out with toric models [PS, §1.22] and geometric programming
[BoydVan, §4.5]. Theorem 3.2 identifies the ML degree of a toric variety with the
Euler characteristic of the complement of a hypersurface in a torus. Theorem 3.7
furnishes the ML degree of a variety parametrized by generic polynomials. Theo-
rem 3.10 characterizes varieties of ML degree 1 and it reveals a beautiful connection
to theA-discriminant of [GKZ]. We introduce the ML bidegree and the sectional ML
degree of an arbitrary projective variety in Pn, and we explain how these two are
related. Section 3 ends with a study of the operations of intersection, projection, and
restriction in likelihood geometry. This concerns the algebro-geometric meaning of
the distinction between sampling zeros and structural zeros in statistical modeling.

In Sect. 4 we offer precise definitions and technical explanations of more
advanced concepts from algebraic geometry, including logarithmic differential
forms, Chern–Schwartz–MacPherson classes, and schön very affine varieties. This
enables us to present complete proofs of various results, both old and new, that are
stated in the earlier sections.

We close the introduction with a disclaimer regarding our overly ambitious title.
There are many important topics in the statistical study of likelihood inference that
should belong to “Likelihood Geometry” but are not covered in this article. Such
topics include Watanabe’s theory of singular Bayesian integrals [Wat], differential
geometry of likelihood in information geometry [AN], and real algebraic geometry
of Gaussian models [Uhl]. We regret not being able to talk about these topics and
many others. Our presentation here is restricted to the setting of [LiAS, §2.2],
namely statistical models for discrete data viewed as projective varieties in Pn.

1 First Lecture

Let us begin our discussion with likelihood on algebraic curves in the complex
projective plane P2. We fix a system of homogeneous coordinates p0; p1; p2 on P2.
The set of real points in P2 with sign.p0/ D sign.p1/ D sign.p2/ is identified with
the open triangle

!2 D
˚
.p0; p1; p2/ 2 R3 W p0; p1; p2 > 0 and p0 C p1 C p2 D 1

!
:

Given three positive integers u0; u1; u2, the corresponding likelihood function is

`u0;u1;u2 .p0; p1; p2/ D
pu0
0 p

u1
1 p

u2
2

.p0 C p1 C p2/u0Cu1Cu2
:
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This defines a rational function on P2, and it restricts to a regular function on P2nH,
where

H D
˚
.p0 W p1 W p2/ 2 P2 W p0p1p2.p0 C p1 C p2/ D 0

!

is our arrangement of four distinguished lines. The likelihood function `u0;u1;u2 is
positive on the triangle !2, it is zero on the boundary of !2, and it attains its
maximum at the point

. Op0; Op1; Op2/ D
1

u0 C u1 C u2
.u0; u1; u2/: (1)

The corresponding point . Op0 W Op1 W Op2/ is the only critical point of the function
`u0;u1;u2 on the four-dimensional real manifold P2nH. To see this, we consider the
logarithmic derivative

dlog.`u0;u1;u2 /D
"

u0
p0

! u0 C u1 C u2
p0 C p1 C p2

;
u1
p1

! u0 C u1 C u2
p0 C p1 C p2

;
u2
p2

! u0 C u1 C u2
p0 C p1 C p2

#
:

We note that this equals .0; 0; 0/ if and only if .p0 W p1 W p2/ is the point . Op0 W Op1 W
Op2/ in (1).

Let X be a smooth curve in P2 defined by a homogeneous polynomial
f .p0; p1; p2/. This curve plays the role of a statistical model, and our task is
to maximize the likelihood function `u0;u1;u2 over its set X \ !2 of positive real
points. To compute that maximum algebraically, we examine the set of all critical
points of `u0;u1;u2 on the complex curve XnH. That set of critical points is the
likelihood locus. Using Lagrange Multipliers from Calculus, we see that it consists
of all points of XnH such that dlog.`u0;u1;u2 / lies in the plane spanned by df and
.1; 1; 1/ in C3. Thus, our task is to study the solutions in P2nH of the equations

f .p0; p1; p2/ D 0 and det

0

B@
1 1 1
u0
p0

u1
p1

u2
p2

@f
@p0

@f
@p1

@f
@p2

1

CA D 0: (2)

Suppose that X has degree d . Then, after clearing denominators, the second
equation has degree d C 1. By Bézout’s Theorem, we expect the likelihood locus
to consist of d.d C 1/ points in P2nH. This is indeed what happens when f is a
generic polynomial of degree d .

We define the maximum likelihood degree (or ML degree) of our curveX to be the
cardinality of the likelihood locus for generic choices of u0; u1; u2. Thus a general
plane curve of degree d has ML degree d.d C 1/. However, for special curves, the
ML degree can be smaller.
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Theorem 1.1. Let X be a smooth curve of degree d in P2, and a D #.X \H/ the
number of its points on the distinguished arrangement. Then the ML degree of X
equals d2 ! 3d C a.

This is a very special case of Theorem 1.7 which identifies the ML degree with
the signed Euler characteristic of XnH. For a general curve of degree d in P2, we
have a D 4d , and so d2 ! 3d C a D d.d C 1/ as predicted. However, the number
a of points in X \H can drop:

Example 1.2. Consider the case d D 1 of lines. A generic line has ML degree 2.
The line X D V.p0 C cp1/ has ML degree 1 provided c 62 f0; 1g. The special line
X D V.p0Cp1/ has ML degree 0: (2) has no solutions onXnH unless u0Cu1 D 0.
In the three cases, XnH is the Riemann sphere P1 with four, three, or two points
removed. }
Example 1.3. Consider the case d D 2 of quadrics. A general quadric has ML
degree 6. The Hardy–Weinberg curve, which plays a fundamental role in population
genetics, is given by

f .p0; p1; p2/ D det
"
2p0 p1
p1 2p2

#
D 4p0p2 ! p21:

The curve has only three points on the distinguished arrangement:

X \H D
˚
.1 W 0 W 0/; .0 W 0 W 1/; .1 W !2 W 1/

!
:

Hence the ML degree of the Hardy–Weinberg curve equals 1. This means that the
maximum likelihood estimate (MLE) is a rational function of the data. Explicitly,
the MLE equals

. Op0; Op1; Op2/ D
1

4.u0 C u1 C u2/2
$
.2u0Cu1/2 ; 2.2u0Cu1/.u1C2u2/ ; .u1C2u2/2

%
:

(3)

In applications, the Hardy–Weinberg curve arises via its parametric representa-
tion

p0.s/ D s2

p1.s/ D 2s.1 ! s/
p2.s/ D .1 ! s/2

(4)

Here the parameter s is the probability that a biased coin lands on tails. If we
toss that same biased coin twice, then the above formulas represent the following
probabilities:

p0.s/ D probability of 0 heads
p1.s/ D probability of 1 head
p2.s/ D probability of 2 heads
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Suppose now that the experiment of tossing the coin twice is repeated N times. We
record the following counts, where N D u0 C u1 C u2 is the sample size of our
repeated experiment:

u0 D number of times 0 heads were observed
u1 D number of times 1 head was observed
u2 D number of times 2 heads were observed

The MLE problem is to estimate the unknown parameter s by maximizing

`u0;u1;u2 D p0.s/
u0p1.s/

u1p2.s/
u2 D 2u1s2u0Cu1 .1 ! s/u1C2u2 :

The unique solution to this optimization problem is

Os D 2u0 C u1
2u0 C 2u1 C 2u2

:

Substituting this expression into (4) gives the estimator
$
p0.Os/; p1.Os/; p2.Os/

%
for the

three probabilities in our model. The resulting rational function coincides with (3).
}

The ML degree is also defined when the given curve X " P2 is not smooth, but
it counts critical points of `u only in the regular locus of X . Here is an example to
illustrate this.

Example 1.4. A general cubic curve X in P2 has ML degree 12. Suppose now that
X is a cubic which meets H transversally but has one isolated singular point in
P2nH. If the singular point is a node then the ML degree of X is 10, and if the
singular point is a cusp then the ML degree of X is 9. The ML degrees are found by
saturating the equations in (2) with respect to the homogenous ideal of the singular
point. }

Moving beyond likelihood geometry in the plane, we shall introduce our objects
in any dimension. We fix the complex projective space Pn with coordinates
p0; p1; : : : ; pn, representing probabilities. We summarize the observed data in a
vector u D .u0; u1; : : : ; un/ 2 NnC1, where ui is the number of samples in state
i . The likelihood function on Pn given by u equals

`u D pu0
0 p

u1
1 # # #pun

n

.p0 C p1 C # # # C pn/u0Cu1C!!!Cun
:

The unique critical point of this rational function on Pn is the data point itself:

.u0 W u1 W # # # W un/:
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Moreover, this point is the global maximum of the likelihood function `u on the
probability simplex !n. Throughout, we identify !n with the set of all positive real
points in Pn.

The linear forms in `u define an arrangement H of n C 2 distinguished
hyperplanes in Pn. The differential of the logarithm of the likelihood function is
the vector of rational functions

dlog.`u/ D
$ u0
p0
;

u1
p1
; : : : ;

un
pn

%
! uC
pC

# .1; 1; : : : ; 1/: (5)

Here pC DPn
iD0 pi and uC DPn

iD0 ui . The vector (5) represents a section of the
sheaf of differential one-forms on Pn that have logarithmic singularities along H.
This sheaf is denoted

"1
Pn.log.H//:

Our aim is to study the restriction of `u to a closed subvariety X $ Pn. We will
assume that X is defined over the real numbers, irreducible, and not contained in
H. Let Xsing denote the singular locus of X , and Xreg denote XnXsing. When X
serves as a statistical model, the goal is to maximize the rational function `u on the
semialgebraic set X \ !n. To solve this problem algebraically, we determine all
critical points of the log-likelihood function log.`u/ on the complex varietyX . Here
we must exclude points that are singular or lie in H.

Definition 1.5. The maximum likelihood degree of X is the number of complex
critical points of the function `u on XregnH, for generic data u. The likelihood
correspondence LX is the universal family of these critical points. To be precise,
LX is the closure in Pn % Pn of

˚
.p; u/ W p 2 XregnH and dlog.`u/ vanishes at p

!
:

We sometimes write Pnp % Pnu for Pn % Pn to highlight that the first factor is
the probability space, with coordinates p, while the second factor is the data space,
with coordinates u. The first part of the following result appears in [Huh1, §2]. A
precursor was [HKS, Proposition 3].

Theorem 1.6. The likelihood correspondence LX of any irreducible subvariety X
in Pnp is an irreducible variety of dimension n in the product Pnp % Pnu . The map
pr1 W LX ! Pnp is a projective bundle over XregnH, and the map pr2 W LX ! Pnu is
generically finite-to-one.

See Sect. 4 for a proof. The degree of the map pr2 W LX ! Pnu to data space
is the ML degree of X . This number has a topological interpretation as an Euler
characteristic, provided suitable assumptions onX are being made. The relationship
between the homology of a manifold and critical points of a suitable function on it
is the topic of Morse theory.
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The study of ML degrees was started in [CHKS, §2] by developing the
connection to the sheaf "1

X.log.H// of differential one-forms on X with logarith-
mic poles along H. It was shown in [CHKS, Theorem 20] that the ML degree of X
equals the signed topological Euler characteristic

.!1/dimX # #.XnH/;

provided X is smooth and the intersection H\X defines a normal crossing divisor
in X $ Pn. A major drawback of that early result was that the hypotheses are so
restrictive that they essentially never hold for varieties X that arise from statistical
models used in practice. From a theoretical point view, this issue can be addressed
by passing to a resolution of singularities. However, in spite of existing algorithms
for resolution in characteristic zero, these algorithms do not scale to problems of the
sizes of interest in algebraic statistics. Thus, whatever computations we wish to do
should not be based on resolution of singularities.

The following result due to [Huh1] gives the same topological interpretation of
the ML degree. The hypotheses here are much more realistic and inclusive than
those in [CHKS, Theorem 20].

Theorem 1.7. If the very affine varietyXnH is smooth of dimension d , then the ML
degree of X equals the signed topological Euler characteristic of .!1/d # #.XnH/.

The term very affine variety refers to a closed subvariety of some algebraic torus
.C"/m. Our ambient space PnnH is a very affine variety because it has a closed
embedding

PnnH !! .C"/nC1; .p0 W # # # W pn/ 7!!
$ p0
pC

; : : : ;
pn

pC

%
:

The study of such varieties is foundational for tropical geometry. The special case
when XnH is a Riemann surface with a punctures, arising from a curve in P2, was
seen in Theorem 1.1. We remark that Theorem 1.7 can be deduced from works of
Gabber–Loeser [Gabber-Loeser] and Franecki–Kapranov [Franecki-Kapranov] on
perverse sheaves on algebraic tori.

The smoothness hypothesis is essential for Theorem 1.7 to hold. If X is singular
then, generally, neither XnH nor XregnH has its signed Euler characteristic equal
to the ML degree of X . Varieties X that demonstrate this are the two singular cubic
curves in Example 1.4.

Conjecture 1.8. For any projective variety X $ Pn of dimension d , not contained
in H,

.!1/d # #.XnH/ & MLdegree .X/:

In particular, the signed topological Euler characteristic .!1/d ##.XnH/ is nonneg-
ative.



70 J. Huh and B. Sturmfels

Analogous conjectures can be made in the slightly more general setting of
[Huh1]. In particular, we conjecture that the inequality

.!1/d # #.V / & 0

holds for any closed d -dimensional subvariety V $ .C"/m.

Remark 1.9. We saw in Example 1.2 that the ML degree of a projective variety X
can be 0. In all situations of statistical interest, the variety X " Pn intersects the
open simplex!n in a subset that is Zariski dense in X . If that intersection is smooth
then MLdegree.X/ & 1. In fact, arguing as in [CHKS, Proposition 11], it can be
shown that for smooth X ,

MLdegree .X/ & #.bounded regions of XRnH/:

Here a bounded region is a connected component of the semialgebraic set XRnH
whose classical closure is disjoint from the distinguished hyperplane V.pC/ in Pn.

If X is singular then the number of bounded regions of XRnH can exceed
MLdegree .X/. For instance, let X " P2 be the cuspidal cubic curve defined by

.p0Cp1Cp2/.7p0!9p1!2p2/2 D .3p0C5p1C4p2/3:

The real part XRnH consists of 8 bounded and 2 unbounded regions, but the ML
degree of X is 7. The bounded region that contains the cusp .13 W 17 W !31/ has no
other critical points for `u. }

In what follows we present instances that illustrate the computation of the ML
degree. We begin with the case of generic complete intersections. Suppose that
X " Pn is a complete intersection defined by r generic homogeneous polynomials
g1; : : : ; gr of degrees d1; d2; : : : ; dr .

Theorem 1.10. The ML degree of X equals Dd1d2 # # # dr , where

D D
X

i1Ci2C!!!Cir#n$r
d i11 d

i2
2 # # # d irr : (6)

Proof. By Bertini’s Theorem, the generic complete intersection X is smooth in Pn.
All critical points of the likelihood function `u on X lie in the dense open subset
XnH. Consider the following .rC2/%.nC1/-matrix with entries in the polynomial
ring RŒp0; p1; : : : ; pn$:

&
u
QJ .p/

'
D

2

6666666664

u0 u1 # # # un
p0 p1 # # # pn
p0

@g1
@p0

p1
@g1
@p1

# # # pn @g1@pn

p0
@g2
@p0

p1
@g2
@p1

# # # pn @g2@pn
:::

:::
: : :

:::

p0
@gr
@p0

p1
@gr
@p1

# # # pn @gr@pn

3

7777777775

: (7)
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Let Y denote the determinantal variety in Pn given by the vanishing of its .r C 2/%
.r C 2/ minors. The codimension of Y is at most n ! r , which is a general upper
bound for ideals of maximal minors, and hence the dimension of Y is at least r . Our
genericity assumptions ensure that the matrix QJ .p/ has maximal row rank r C 1
for all p 2 X . Hence a point p 2 X lies in Y if and only if the vector u is in the row
span of QJ .p/. Moreover, by Theorem 1.6,

.XregnH/ \ Y D X \ Y

is a finite subset of Pn, and its cardinality is the desired ML degree of X .
Since X has dimension n ! r , we conclude that Y has the maximum possible

codimension, namely n ! r , and that the intersection of X with the determinantal
variety Y is proper. We note that Y is Cohen–Macaulay, since Y has maximal
codimension n ! r , and ideals of minors of generic matrices are Cohen–Macaulay.
Bézout’s Theorem implies

MLdegree.X/ D degree.X/ # degree.Y / D d1 # # # dr # degree.Y /:

The degree of the determinantal variety Y equals the degree of the determinantal
variety given by generic forms of the same row degrees. By the Thom–Porteous–
Giambelli formula, this degree is the complete homogeneous symmetric function of
degree codim.Y / D n! r evaluated at the row degrees of the matrix. Here, the row
degrees are 0; 1; d1; : : : ; dr , and the value of that symmetric function is preciselyD.
We conclude that degree.Y / D D. Hence the ML degree of the generic complete
intersection X D V.g1; : : : ; gr / equals D # d1d2 # # # dn. ut

Example 1.11 (r D 1). A generic hypersurface of degree d in Pn has ML degree

d #D D d C d2 C d3 C # # # C dn:

Example 1.12 (r D 2; n D 3). A space curve that is the generic intersection of two
surfaces of degree d and e in P3 has ML degree de C d2e C de2. }
Remark 1.13. It was shown in [HKS, Theorem 5] that (6) is an upper bound for
the ML degree of any variety X of codimension r that is defined by polynomials of
degree d1; : : : ; dr . In fact, the same is true under the weaker hypothesis that X is cut
out by polynomials of degrees d1 & # # # & dr & drC1 & # # # & ds , soX need not be a
complete intersection. However, the hypothesis codim.X/ D r is essential in order
for MLdegree.X/ ' (6) to hold. That codimension hypothesis was forgotten when
this upper bound was cited in [LiAS, Theorem 2.2.6] and in [PS, Theorem 3.31].
Hence these two book references are not correct as stated.

Here is a simple counterexample. Let n D 3 and d1 D d2 D d3 D 2.
Then the bound (6) is the Bézout number 8, and this is also the correct ML
degree for a general complete intersection of three quadrics in P3. Now let X be
a general rational normal curve in P3. The curve X is defined by three quadrics,
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namely, the 2 % 2-minors of a 2 % 3-matrix filled with general linear forms in
p0; p1; p2; p3. Since X is a Riemann sphere with 15 punctures, Theorem 1.7 tells
us that MLdegree.X/ D 13, and this exceeds the bound of 8. }

We now come to a variety that is ubiquitous in statistics, namely the model
of independence for two binary random variables [LiAS, §1.1]. This model is
represented by Segre’s quadric surfaceX in P3. By this we mean the surface defined
by the 2 % 2-determinant:

X D V.p00p11 ! p01p10/ " P3:

The surface X is isomorphic to P1 % P1, so it is smooth, and we can apply
Theorem 1.7 to find the ML degree. In other words, we seek to determine the Euler
characteristic of the open complex surface XnH where

H D
˚
p 2 P3 W p00p01p10p11.p00Cp01Cp10Cp11/ D 0

!
:

To this end, we write X D P1 % P1 with coordinates
$
.x0 W x1/; .y0 W y1/

%
. Our

surface is parametrized by pij D xiyj , and hence

XnH D
$
P1 % P1

%
n
˚
x0x1y0y1.x0 C x1/.y0 C y1/ D 0

!

D
$
P1nfx0x1.x0 C x1/ D 0g

%
%
$
P1nfy0y1.y0 C y1/ D 0g

%

D
$
2-spherenfthree pointsg

%
%
$
2-spherenfthree pointsg

%
:

Since the Euler characteristic is additive and multiplicative,

#.XnH/ D .!1/ # .!1/ D 1:

This means that the map u 7! Op from the data to the MLE is a rational function
in each coordinate. The following “word problem for freshmen” is aimed at finding
that function.

Example 1.14. Do this exercise: A biologist friend of yours wishes to test whether
two binary random variables are independent. She collects data and records the
matrix of counts

u D
"

u00 u01
u10 u11

#
:

How to ascertain whether u lies close to the independence model

X D V.p00p11 ! p01p10/ ‹

A statistician who recently started working in her lab explains that, as the first step
in the analysis of her data, the biologist should calculate the maximum likelihood
estimate (MLE)
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Op D
"
Op00 Op01
Op10 Op11

#
:

Can you help your friend by supplying the formula for Op as a rational function in u?
The solution to this word problem is as follows. The MLE is the rank 1 matrix

Op D 1

.uCC/2

"
u0C
u1C

#
#
$
uC0 uC1

%
: (8)

We illustrate the concepts introduced above by deriving this well-known formula.
The likelihood correspondence LX of X D V.p00p11 ! p01p10/ is the subvariety
of X % P3 defined by

U # .p00; p01; p10; p11/T D 0; (9)

where U is the matrix

U D

0

BB@

0 !u10 ! u11 0 u00 C u01
u11 C u01 !u00 ! u10 0 0

u11 C u10 0 !u01 ! u00 0

0 0 !u01 ! u11 u00 C u10

1

CCA :

We urge the reader to derive (9) from Definition 1.5 using a computer algebra
system.

Note that the determinant of U vanishes identically. In fact, for generic uij, the
matrix U has rank 3, so its kernel is spanned by a single vector. The coordinates of
that vector are given by Cramer’s rule, and we find them to be equal to the rational
functions in (8).

The locus where the function u 7! Op is undefined consists of those u where the
matrix rank of U drops below 3. A computation shows that the rank of U drops to
2 on the variety

V.u00 C u10; u01 C u11/ [ V.u00 C u01; u10 C u11/;

and it drops to 0 on the point V.u00 C u01; u10 C u11; u01 C u11/. In particular, the
likelihood function `u given by that point u has infinitely many critical points in the
quadric X . }

We note that all coefficients of the linear forms that define the exceptional loci
in P3u for the independence model are positive. This means that data points u with
all coordinates positive can never be exceptional. We will prove in Sect. 4 that this
usually holds. Let pr1 W LX ! Pnp and pr2 W LX ! Pnu be the projections from the
likelihood correspondence to p-space and u-space respectively. We are interested in
the fibers of pr2 over positive points u.
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Theorem 1.15. Let u 2 RnC1>0 , and let X " Pn be an irreducible variety such that
no singular points of any intersectionX\fpi D 0g lies in the hyperplane at infinity
fpC D 0g. Then

(1) the likelihood function `u onX has only finitely many critical points inXregnH;
(2) if the fiber pr$1

2 .u/ is contained in Xreg, then its length equals the ML degree
of X .

The hypothesis concerning “no singular point” will be satisfied for essentially all
statistical models of interest. Here is an example which shows that this hypothesis
is necessary.

Example 1.16. We consider the smooth cubic curve X in P2 that is defined by

f D .p0 C p1 C p2/
3 C p0p1p2:

The ML degree of the curve X is 3. Each intersection X \ fpi D 0g is a triple
point that lies on the line at infinity fpC D 0g. The fiber pr$1

2 .u/ of the likelihood
fibration over the positive point u D .1 W 1 W 1/ is the entire curve X . }

If u is not positive in Theorem 1.15, then the fiber of pr2 over u may have positive
dimension. We saw an instance of this at the end of Example 1.14. Such resonance
loci have been studied extensively when X is a linear subspace of Pn. See [CDFV]
and references therein.

The following cautionary example shows that the length of the scheme-theoretic
fiber of LX ! Pnu over special points u in the open simplex !n may exceed the ML
degree of X .

Example 1.17. Let X be the curve in P2 defined by the ternary cubic

f D p2.p1 ! p2/2 C .p0 ! p2/3:

This curve intersects H in eight points, has ML degree 5, and has a cuspidal
singularity at

P WD .1 W 1 W 1/:

The prime ideal in RŒp0; p1; p2; u0; u1; u2$ for the likelihood correspon-
dence LX is minimally generated by five polynomials, having degrees
.3; 0/; .2; 2/; .3; 1/; .3; 1/; .3; 1/. They are obtained by saturating the two equations
in (2) with respect to hp0p2i \ hp0 ! p1; p2 ! p1i.

The scheme-theoretic fiber of pr1 over a general point of X is a reduced line in
the u-plane, while the fiber of pr1 over P is the double line

L WD
˚
.u0 W u1 W u2/ 2 P2 W .2u0 ! u1 ! u2/2 D 0

!
:
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The reader is invited to verify the following assertions using a computer algebra
system:

(a) If u is a general point of P2u, then pr$1
2 .u/ consists of 5 reduced points inXregnH.

(b) If u is a general point on the line L, then the locus of critical points pr$1
2 .u/

consists of four reduced points in XregnH and the reduced point P .
(c) If u is the point .1 W 1 W 1/ 2 L, then pr$1

2 .u/ is a zero-dimensional scheme of
length 6. This scheme consists of three reduced points inXregnH and P counted
with multiplicity 3.

In particular, the fiber in (c) is not algebraically equivalent to the general fiber (a).
This example illustrates one of the difficulties classical geometers had to face when
formulating the “principle of conservation of numbers”. See [Fulton, Chap. 10] for
a modern treatment. }

It is instructive to examine classical varieties from projective geometry from the
likelihood perspective. For instance, we may study the Grassmannian in its Plücker
embedding. Grassmannians are a nice test case because they are smooth, so that
Theorem 1.7 applies.

Example 1.18. Let X D G.2; 4/ denote the Grassmannian of lines in P3. In its
Plücker embedding in P5, this Grassmannian is the quadric hypersurface defined by

p12p34 ! p13p24 C p14p23 D 0: (10)

As in (7), the critical equations for the likelihood function `u are the 3%3-minors of

2

4
u12 u13 u14 u23 u24 u34
p12 p13 p14 p23 p24 p34
p12p34 !p13p24 p14p23 p14p23 !p13p24 p12p34

3

5 : (11)

By Theorem 1.6, the likelihood correspondence LX is a five-dimensional subvariety
of P5 % P5. The cohomology class of this subvariety can be represented by the
bidegree of its ideal:

BX.p; u/ D 4p5 C 6p4u C 6p3u2 C 6p2u3 C 2pu4: (12)

This is the multidegree, in the sense of [ch3:MS, §8.5], of LX with respect to
the natural Z2-grading on the polynomial ring RŒp; u$. We can use [ch3:MS,
Proposition 8.49] to compute the bidegree from the prime ideal of LX . Its leading
coefficient 4 is the ML degree of X . Its trailing coefficient 2 is the degree of X . The
polynomials BX.p; u/ will be studied in Sect. 3.

The prime ideal of LX is computed from the equations in (10) and (11) by
saturation with respect to H. It is minimally generated by the following eight
polynomials in RŒp; u$:
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(a) one polynomial of degree .2; 0/, namely the Plücker quadric,
(b) six polynomials of degree .1; 1/, given by 2 % 2-minors of

"
p12 ! p34 p13 ! p24 p14 ! p23
u12 ! u34 u13 ! u24 u14 ! u23

#
and

"
p12Cp13Cp23 p12Cp14Cp24 p13Cp14Cp34 p23Cp24Cp34
u12Cu13Cu23 u12Cu14Cu24 u13Cu14Cu34 u23Cu24Cu34

#
;

(c) one polynomial of degree .2; 1/, for instance

2u24p12p34 C 2u34p13p24 C .u23 C u24 C u34/p14p24

! .u13 C u14 C u34/p224 ! .u12 C 2u13 C u14 ! u24/p24p34:

For a fixed positive data vector u > 0, these six polynomials in (b) reduce to three
linear equations, and these cut out a plane P2 inside P5. To find the four critical
points of `u on X D G.2; 4/, we must then intersect the two conics (a) and (c) in
that plane P2.

The ML degree of the Grassmannian G.r;m/ in P.mr /$1 is the signed Euler char-
acteristic of the manifold G.r;m/nH obtained by removing

$
m
r

%
C 1 distinguished

hyperplane sections. It would be very interesting to find a general formula for this
ML degree. At present, we only know that the ML degree of G.2; 5/ is 26, and that
the ML degree of G.2; 6/ is 156. By Theorem 1.7, these numbers give the Euler
characteristic of G.2;m/nH for m ' 6. }

We end this lecture with a discussion of the delightful case when X is a linear
subspace of Pn, and the open variety XnH is the complement of a hyperplane
arrangement. In this context, following Varchenko [Varchenko], the likelihood
function `u is known as the master function, and the statement of Theorem 1.7 was
first proved by Orlik and Terao in [Orlik-Terao]. We assume thatX has dimension d ,
is defined over R, and does not contain the vector 1 D .1; 1; : : : ; 1/. We can regard
X as a .d C 1/-dimensional linear subspace of RnC1. The orthogonal complement
X? with respect to the standard dot product is a linear space of dimension n ! d
in RnC1. The linear space X? C 1 spanned by X? and the vector 1 has dimension
n ! d C 1 in RnC1, and hence can be viewed as subspace of codimension d in
Pnu . In our next formula, the operation ? is the Hadamard product or coordinatewise
product.

Proposition 1.19. The likelihood correspondence LX in Pn % Pn is defined by

p 2 X and u 2 p ? .X? C 1/: (13)

The prime ideal of LX is obtained from these constraints by saturation with respect
to H.
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Proof. If all pi are non-zero then u 2 p ? .X? C 1/ says that

u=p WD
$ u0
p0
;

u1
p1
; : : : ;

un
pn

%

lies in the subspace X? C 1. Equivalently, the vector obtained by adding a multiple
of .1; 1; : : : ; 1/ to u=p is perpendicular to X . We can take that vector to be the
differential (5). Hence (13) expresses the condition that p is a critical point of
`u on X . ut

The intersection X \H is an arrangement of nC 2 hyperplanes in X ' Pd . For
special choices of the subspace X , it may happen that two or more hyperplanes
coincide. Taking fpC D 0g as the hyperplane at infinity, we view X \ H
as an arrangement of n C 1 hyperplanes in the affine space Rd . A region of this
arrangement is bounded if it is disjoint from fpC D 0g.
Theorem 1.20. The ML degree of X is the number of bounded regions of the
real affine hyperplane arrangement X \ H in Rd . The bidegree of the likelihood
correspondence LX is the h-polynomial of the broken circuit complex of the rank
dC1matroid associated with X \H.

We need to explain the second assertion. The hyperplane arrangement X \ H
consists of the intersections of the n C 2 hyperplanes in H with X ' Pd . We
regard these as hyperplanes through the origin in RdC1. They define a matroid M
of rank d C 1 on n C 2 elements. We identify these elements with the variables
x1; x2; : : : ; xnC2. For each circuit C of M let mC D .

Q
i2C xi /=xj where j is the

smallest index such that xj 2 C . The broken circuit complex of M is the simplicial
complex with Stanley–Reisner ring RŒx1; : : : ; xnC2$=hmC W C circuit of M i. See
[ch3:MS, §1.1] for Stanley–Reisner basics. The Hilbert series of this graded ring
has the form

h0 C h1z C # # # C hd zd

.1 ! z/dC1
:

What is being claimed in Theorem 1.20 is that the bidegree of LX equals

BX.p; u/ D .h0ud C h1pud$1 C h2p
2ud$2 C # # # C hdp

d / # pn$d (14)

Equivalently, this is the class of LX in the cohomology ring

H".Pn % PnIZ/ D ZŒp; u$=hpnC1; unC1i:

There are several (purely combinatorial) definitions of the invariants hi of the
matroid M . For instance, they are coefficients of the following specialization of
the characteristic polynomial:

#M.q C 1/ D q #
(
h0q

d ! hd$1qd$1 C # # # C .!1/d$1h1q C .!1/dh0
)
: (15)
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Theorem 1.20 was used in [Huh0] to prove a conjecture of Dawson, stating that
the sequence h0; h1; : : : ; hd is log-concave, when M is representable over a field of
characteristic zero.

The first assertion in Theorem 1.20 was proved by Varchenko in [Varchenko]. For
definitions and characterizations of the characteristic polynomial #, and many point-
ers to matroid basics, we refer to [OTBook]. A proof of the second assertion was
given by Denham et al. in a slightly different setting [Denham-Garrousian-Schulze,
Theorem 1]. We give a proof in Sect. 4 following [Huh1, §3]. The ramification locus
of the likelihood fibration pr2 W LX ! Pnu is known as the entropic discriminant
[SSV].

Example 1.21. Let d D 2 and n D 4, so X is a plane in P4, defined by two linear
forms

c10p0 C c11p1 C c12p2 C c13p3 C c14p4 D 0;

c20p0 C c21p1 C c22p2 C c23p3 C c24p4 D 0:
(16)

Following Theorem 1.20, we view X \ H as an arrangement of five lines in the
affine plane

fp 2 X W p0 C p1 C p2 C p3 C p4 6D 0 g ' C2:

Hence, for generic cij, the ML degree of X is equal to 6, the number of bounded
regions of this arrangement. The condition u 2 p ? .X? C 1/ in Proposition 1.19
translates into

rank

2

664

u0 u1 u2 u3 u4
p0 p1 p2 p3 p4
c10p0 c11p1 c12p2 c13p3 c14p4
c20p0 c21p1 c22p2 c23p3 c24p4

3

775 ' 3: (17)

The 4%4-minors of this 4%5-matrix, together with the two linear forms definingX ,
form a system of equations that has six solutions in P4, for generic cij. All solutions
have real coordinates. In fact, there is one solution in each bounded region of XnH.
The likelihood correspondence LX is the fourfold in P4 % P4 given by the Eqs. (16)
and (17).

We now illustrate the second statement in Theorem 1.20. Suppose that the real
numbers cij are generic, so M is the uniform matroid of rank three on six elements.
The Stanley–Reisner ring of the broken circuit complex of M equals

RŒx1; x2; x3; x4; x5; x6$=hx2x3x4; x2x3x5; x2x3x6; : : : ; x4x5x6i:

The Hilbert series of this graded algebra is

h0 C h1z C h2z2

.1 ! z/3
D 1C 3z C 6z2

.1 ! z/3
:
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We conclude that the bidegree (14) of the likelihood correspondence LX equals

BX.p; u/ D 6p4 C 3p3u C p2u2:

For special choices of the coefficients cij in (16), some triples of lines in the
arrangement X \H may meet in a point. For such matroids, the ML degree drops
from 6 to some integer between 0 and 5. We recommend it as an exercise to the
reader to explore these cases. For instance, can you find explicit cij so that the ML
degree of X equals 3? What are the prime ideal and the bidegree of LX in that case?
How can the ML degree of X be 0 or 1? }

It would be interesting to know which statistical model X in Pn defines the
likelihood correspondence LX which is a complete intersection in Pn%Pn. WhenX
is a linear subspace of Pn, this question is closely related to the concept of freeness
of a hyperplane arrangement.

Proposition 1.22. If the hyperplane arrangement X \ H in X is free, then the
likelihood correspondence LX is an ideal-theoretic complete intersection in Pn%Pn.

Proof. For the definition of freeness see §1 in the paper [CDFV] by Cohen,
Denman, Falk and Varchenko. The proposition is implied by their [CDFV, Theo-
rem 2.13] and [CDFV, Corollary 3.8]. ut

Using Theorem 1.20, this provides a likelihood geometry proof of Terao’s
theorem that the characteristic polynomial of a free arrangement factors into integral
linear forms [Terao].

2 Second Lecture

In our newspaper we frequently read about studies aimed at proving that a behavior
or food causes a certain medical condition. We begin the second lecture with an
introduction to statistical issues arising in such studies. The “medical question” we
wish to address is Does Watching Soccer on TV Cause Hair Loss? We learned this
amusing example from [MSS, §1].

In a fictional study, 296 British subjects aged between 40 and 50 were inter-
viewed about their hair length and how many hours per week they watch soccer
(a.k.a. “football”) on TV. Their responses are summarized in the following contin-
gency table of format 3 % 3:

U D

0

@

lots of hair medium hair little hair
' 2 h 51 45 33
2–6 h 28 30 29
& 6 h 15 27 38

1

A
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For instance, 29 respondents reported having little hair and watching between 2 and
6 h of soccer on TV per week. Based on these data, are these two random variables
independent, or are we inclined to believe that watching soccer on TV and hair loss
are correlated?

On first glance, the latter seems to be the case. Indeed, being independent means
that the data matrix U should be close to a rank 1matrix. However, all 2% 2-minors
of U are strictly positive, indeed by quite a margin, and this suggests a positive
correlation.

However, this interpretation is deceptive. A much better explanation of our data
can be given by identifying a certain hidden random variable. That hidden variable
is gender. Indeed, suppose that among the respondents 126 were males and 170
were females. Our data matrix U is then the sum of the male table and the female
table, maybe as follows:

U D

0

@
3 9 15

4 12 20

7 21 35

1

A C

0

@
48 36 18

24 18 9

8 6 3

1

A : (18)

Both of these tables have rank 1, hence U has rank 2. Hence, the appropriate null
hypothesis H0 for analyzing our situation is not independence but it is conditional
independence:

H0 W Soccer on TV and Hair Loss are Independent given Gender.

And, based on the data U , we most definitely do not reject that null hypothesis.
The key feature of the matrix U above was that it has rank 2. We now define low

rank matrix models in general. Consider two discrete random variables X and Y
having m and n states respectively. Their joint probability distribution is written as
an m % n-matrix

P D

0

BBB@

p11 p12 # # # p1n
p21 p22 # # # p2n
:::

:::
: : :

:::

pm1 pm2 # # # pmn

1

CCCA

whose entries are nonnegative and sum to 1. Here pij represents the probability that
X is in state i and Y is in state j . The of all probability distributions is the standard
simplex !mn$1 of dimension mn ! 1. We write Mr for the manifold of rank r
matrices in !mn$1.

The matrices P in M1 represent independent distributions. Mixtures of r
independent distributions correspond to matrices in Mr . As always in applied
algebraic geometry, we can make any problem that involves semi-algebraic sets
progressively easier by three steps:
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• disregard inequalities,
• replace real numbers with complex numbers,
• replace affine space by projective space.

In our situation, this leads us to replacing Mr with its Zariski closure in complex
projective space Pmn$1. This Zariski closure is the projective variety Vr of complex
m%nmatrices of rank ' r . Note that Vr is singular along Vr$1. The codimension of
Vr is .m! r/.n! r/. It is a non-trivial exercise to write the degree of Vr in terms of
m; n; r . Hint: [ch3:MS, Example 15.2].

Suppose now that i.i.d. samples are drawn from an unknown joint distribution
on our two random variables X and Y . We summarize the resulting data in a
contingency table

U D

0

BBB@

u11 u12 # # # u1n
u21 u22 # # # u2n
:::

:::
: : :

:::

um1 um2 # # # umn

1

CCCA
:

The entries of the matrix U are nonnegative integers whose sum is uCC.
The likelihood function for the contingency table U is the following function on

!mn$1:

P 7!
 

uCC
u11u12 # # # umn

!
mY

iD1

nY

jD1
p

uij
ij :

Assuming fixed sample size, this is the likelihood of observing the data U given
an unknown probability distribution P in !mn$1. In what follows we suppress the
multinomial coefficient. Furthermore, we regard the likelihood function as a rational
function on Pmn$1, so we write

`U D
Qm
iD1

Qn
jD1 p

uij
ij

p
uCC
CC

:

We wish to find a low rank probability matrix P that best explains the data U .
Maximum likelihood estimation means solving the following optimization problem:

Maximize `U .P / subject to P 2 Mr . (19)

The optimal solution OP is a rank r matrix. This is the maximum likelihood estimate
for U .

For r D 1, the independence model, the maximum likelihood estimate OP is
obtained from the data matrix U by the following formula, already seen for m D
n D 2 in (8). Multiply the vector of row sums with the vector of column sums and
divide by the sample size:
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OP D 1

.uCC/2
#

0

BBB@

u1C
u2C
:::

umC

1

CCCA
#
$
uC1 uC2 # # # uCn

%
: (20)

Statisticians, scientists and engineers refer to such a formula as an “analytic
solution”. In our view, it would be more appropriate to call this an “algebraic
solution”. After all, we are here using algebra not analysis. Our algebraic solution
for r D 1 reveals the following points:

• The MLE OP is a rational function of the data U .
• The function U 7! OP is an algebraic function of degree 1.
• The ML degree of the independence model V1 equals 1.

We next discuss the smallest case when the ML degree is larger than 1.

Example 2.1. Let m D n D 3 and r D 2. Our MLE problem is to maximize

`U D .pu11
11 p

u12
12 p

u13
13 p

u21
21 p

u22
22 p

u23
23 p

u31
31 p

u32
32 p

u33
33 /=p

uCC
CC

subject to the constraints P & 0 and rank.P / D 2, where P D .pij/ is a 3%3-matrix
of unknowns. The equations that characterize the critical points of this optimization
problem are

det.P / D p11p22p33 $ p11p23p32 $ p12p21p33
Cp12p23p31 C p13p21p32 $ p13p22p31

D 0

and the vanishing of the 3 % 3-minors of the following 3 % 9-matrix:

2

4
u11 u12 u13 u21 u22 u23 u31 u32 u33
p11 p12 p13 p21 p22 p23 p31 p32 p33
p11a11p12a12p13a13 p21a21p22a22p33a33 p31a31p32a32p33a33

3

5

where aij D @det.P /
@pij

is the cofactor of pij in P . For random positive data uij,

these equations have ten solutions with rank.P / D 2 in P8nH. Hence the ML
degree of V2 is 10. If we regard the uij as unknowns, then saturating the above
determinantal equations with respect to H [ V1 yields the prime ideal of the
likelihood correspondence LV2 " P8 % P8. See Example 4.8 for the bidegree and
other enumerative invariants of the eight-dimensional variety LV2 . }

Recall from Definition 1.5 that the ML degree of a statistical model (or a
projective variety) is the number of critical points of the likelihood function for
generic data.

Theorem 2.2. The known values for the ML degrees of the determinantal varieties
Vr are
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.m; n/ D .3; 3/ .3; 4/ .3; 5/ .4; 4/ .4; 5/ .4; 6/ .5; 5/

r D 1 1 1 1 1 1 1 1

r D 2 10 26 58 191 843 3119 6776
r D 3 1 1 1 191 843 3119 61326
r D 4 1 1 1 6776
r D 5 1

The numbers 10 and 26were computed back in 2004 using the symbolic software
Singular, and they were reported in [HKS, §5]. The bold face numbers were
found in 2012 in [HRS] using the numerical software Bertini. In what follows
we shall describe some of the details.

Remark 2.3. Each determinantal variety Vr is singular along the smaller variety
Vr$1. Hence, the very affine variety VrnH is singular for r & 2, so Theorem 1.7
does not apply. Here, H D fpCC

Q
pij D 0g. According to Conjecture 1.8, the ML

degree above provides a lower bound for the signed topological Euler characteristic
of VrnH. The difference between the two numbers reflect the nature of the singular
locus Vr$1nH inside VrnH. For plane curves that have nodes and cusps, we
encountered this issue in Examples 1.4 and 1.17.

We begin with a geometric description of the likelihood correspondence. Anm%
n-matrix P is a regular point in Vr if and only if rank.P / D r . The tangent space
TP is a subspace of dimension rnCrm!r2 in Cm%n. Its orthogonal complement T ?

P

has dimension .m!r/.n!r/.
The partial derivatives of the log-likelihood function log.`U / on Pmn$1 are

@log.`U /
@pij

D uij

pij
! uCC
pCC

:

Proposition 2.4. An m% n-matrix P of rank r is a critical point for log.`U / on Vr
if and only if the linear subspace T ?

P contains the matrix

&
uij

pij
! uCC
pCC

'

iD1;:::;m
jD1;:::;n

In order to get to the numbers in Theorem 2.2, the geometric formulation was
replaced in [HRS] with a parametric representation of the rank constraints. The
following linear algebra formulation worked well for non-trivial computations.
Assume m ' n. Let P1;R1; L1 and ƒ be matrices of unknowns of formats r % r ,
r % .n!r/, .m!r/ % r , and .n!r/ % .m!r/. Set

L D
$
L1!Im$r

%
; P D

"
P1 P1R1
L1P1 L1P1R1

#
; and R D

"
R1

!In$r

#
;
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where Im$r and In$r are identity matrices. In the next statement we use the symbol
? for the Hadamard (entrywise) product of two matrices that have the same format.

Proposition 2.5. Fix a general m % n data matrix U . The polynomial system

P ? .R #ƒ # L/T C uCC # P D U

consists of mn equations in mn unknowns. For generic U , it has finitely many
complex solutions .P1; L1;R1;ƒ/. The m%n-matrices P resulting from these
solutions are precisely the critical points of the likelihood function `U on the
determinantal variety Vr .

We next present the analogue to Theorem 2.2 for symmetric matrices

P D

0

BBBBB@

2p11 p12 p13 # # # p1n
p12 2p22 p23 # # # p2n
p13 p23 2p33 # # # p3n
:::

:::
:::

: : :
:::

p1n p2n p3n # # # 2pnn

1

CCCCCA
:

Such matrices, with nonnegative coordinates pij that sum to 1, represent joint
probability distributions for two identically distributed random variables with n
states. The case n D 2 and r D 1 is the Hardy–Weinberg curve, which we discussed
in detail in Example 1.3.

Theorem 2.6. The known values for ML degrees of symmetric matrices of rank at
most r (mixtures of r independent identically distributed random variables) are

n D 2 3 4 5 6

r D 1 1 1 1 1 1

r D 2 1 6 37 270 2341
r D 3 1 37 1394 ‹

r D 4 1 270 ‹

r D 5 1 2341

At present we do not know the common value of the ML degree for n D 6 and
r D 3; 4. In what follows we take a closer look at the model for symmetric 3 % 3-
matrices of rank 2.

Example 2.7. Let n D 3 and r D 2, so X is a cubic hypersurface in P5. The
likelihood correspondence LX is a five-dimensional subvariety of P5 % P5 having
bidegree

BX.p; u/ D 6p5 C 12p4u C 15p3u2 C 12p2u3 C 3pu4:
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The bihomogeneous prime ideal of LX is minimally generated by 23 polynomials,
namely:

• One polynomial of bidegree .3; 0/; this is the determinant of P .
• Three polynomials of degree .1; 1/. These come from the underlying toric model

frank.P / D 1g. As suggested in Proposition 3.5, they are the 2 % 2-minors of
"
2p0 C p1 C p2 p1 C 2p3 C p4 p2 C p4 C 2p5
2u0 C u1 C u2 u1 C 2u3 C u4 u2 C u4 C 2u5

#
:

• One polynomial of degree .2; 1/,
• three polynomial of degree .2; 2/,
• nine polynomials of degree .3; 1/,
• six polynomials of degree .3; 2/.

It turns out that this ideal represents an expression for the MLE OP in terms of
radicals in U .

We shall work this out for one numerical example. Consider the data matrix U
with

u11 D 10; u12 D 9; u13 D 1; u22 D 21; u23 D 3; u33 D 7:

For this choice, all six critical points of the likelihood function are real and positive:

p11 p12 p13 p22 p23 p33 log `U .p/
0:1037 0:3623 0:0186 0:3179 0:0607 0:1368 !82:18102
0:1084 0:2092 0:1623 0:3997 0:0503 0:0702 !84:94446
0:0945 0:2554 0:1438 0:3781 0:4712 0:0810 !84:99184

0:1794 0:2152 0:0142 0:3052 0:2333 0:0528 !85:14678
0:1565 0:2627 0:0125 0:2887 0:2186 0:0609 !85:19415
0:1636 0:1517 0:1093 0:3629 0:1811 0:0312 !87:95759

The first three points are local maxima in !5 and the last three points are local
minima. These six points define an algebraic field extension of degree 6 over Q. One
might expect that the Galois group of these six points over Q is the full symmetric
group S6. If this were the case then the above coordinates could not be written in
radicals. However, that expectation is wrong. The Galois group of the likelihood
fibration pr2 W LX ! P5U given by the 3% 3 symmetric problem is a subgroup of S6
isomorphic to the solvable group S4.

To be concrete, for the data above, the minimal polynomial for the MLE Op33
equals

9528773052286944p633 ! 4125267629399052p533 C 713452955656677p433

! 63349419858182p333 C 3049564842009p233 ! 75369770028p33
C 744139872 D 0:
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We solve this equation in radicals as follows:

p33 D 16427
227664

C 1
12

$
% ! %2

%
!2 ! 66004846384302

19221271018849
!22C$

14779904193
211433981207339

%2 ! 14779904193
211433981207339

%
%
!1!

2
2 C 1

2
!3;

where % is a primitive third root of unity, !21 D 94834811=3, and

!32D
$

5992589425361
150972770845322208

% ! 5992589425361
150972770845322208

%2
%
C 97163

40083040181952
!1;

!23D 5006721709
1248260766912

C
$
212309132509
4242035935404

% ! 212309132509
4242035935404

%2
%
!2 ! 2409

20272573168
!1!2

! 158808750548335
76885084075396

!22 C
$

17063004159
422867962414678

%2 ! 17063004159
422867962414678

%
%
!1!

2
2 :

The explanation for the extra symmetry stems from the duality theorem below. It
furnishes an involution on the set of six critical points that allows us to express them
in radicals. }

The tables in Theorems 2.2 and 2.6 suggest that the columns will always be
symmetric. This fact was conjectured in [HRS] and subsequently proved by Draisma
and Rodriguez in [DR].

Theorem 2.8. Fix m ' n and consider the determinantal varieties Vi for either
general or symmetric matrices. Then the ML degrees for rank r and for rank
m!rC1 coincide.

In fact, the main result in [DR] establishes the following more precise statement.
Given a data matrix U of format m % n, we write "U for the m % n-matrix whose
.i; j / entry equals

uij # uiC # uCj
.uCC/3

:

Theorem 2.9. Fix m ' n and U an m % n-matrix with strictly positive integer
entries. There exists a bijection between the complex critical points P1; P2; : : : ; Ps
of the likelihood function `U on Vr and the complex critical points Q1;Q2; : : : ;Qs

of `U on Vm$rC1 such that

P1 ? Q1 D P2 ? Q2 D # # # D Ps ? Qs D "U :

Thus, this bijection preserves reality, positivity, and rationality.

The key to computing the ML degree tables and to formulating the duality
conjectures in [HRS], was the use of numerical algebraic geometry. The software
Bertini allowed for the computation of thousands of instances in which the
formula of Theorem 2.9 was confirmed.

Bertini is numerical software, based on homotopy continuation, for finding
all complex solutions to a system of polynomial equations (and much more).
The software is available at [Bertini]. The developers, Daniel Bates, Jonathan
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Hauenstein, Andrew Sommese, Charles Wampler, have just completed a new
textbook [BHSW] on the mathematics behind Bertini.

For the past two decades, algebraic geometers have increasingly employed
computational methods as a tool for their research. However, these computations
have almost always been symbolic (and hence exact). They relied on Gröbner-
based software such as Singular or Macaulay2. Algebraists often feel a certain
discomfort when asked to trust a numerical computation. We encourage discussion
about this issue, by raising the following question.

Example 2.10. In the rightmost column of Theorem 2.6, it is asserted that the
solution to a certain enumerative geometry problem is 2341. Which of these would
you trust most:

• the output of a symbolic computation?
• the output of a numerical computation?
• a proof written by an algebraic geometer?

In the authors’ view, it always pays off to be critical and double-check all
computations, regardless of how they were carried out. And, this applies to all three
of the above. }

One of the big advantages of numerical algebraic geometry over Gröbner bases
when it comes to MLE is the separation between Preprocessing and Solving. For
any particular variety X " Pn, such as X D Vr , we preprocess by solving the
likelihood equations once, for a generic data set U0 chosen by us. The coordinates
of U0 may be complex (rather than real) numbers. We can chose them with stable
numerics in mind, so as to compute all critical points up to high accuracy. This step
can take a long time, but the output is highly reliable.

After solving the equations once, for that generic U0, all subsequent computa-
tions for any other data set U are very fast. In particular, the computation is fully
parallelizable. If we have m processors at our disposal, where m D MLdegree .X/,
then each processor can track one of the paths. To be precise, homotopy continuation
starts from the critical points of `U0 and transform them into the critical points of
`U . Geometrically speaking, for fixed X , the homotopy amounts to walking on the
sheets of the likelihood fibration pr2 W LX ! Pnu .

To illustrate this point, here are the timings (in seconds) that were reported in
[HRS] for the determinantal varieties X D Vr . Those computations were carried
out in Bertini on a 64-bit Linux cluster with 160 processors. The first row is
the preprocessing time for solving the equations once. The second row is the time
needed to solve any subsequent instance:

.m; n; r/ .4; 4; 2/ .4; 4; 3/ .4; 5; 2/ .4; 5; 3/ .5; 5; 2/ .5; 5; 4/

Preprocessing 257 427 1938 2902 348555 146952
Solving 4 4 20 20 83 83
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This table suggests that combining numerical algebraic geometry with existing tools
from computational statistics might lead to a viable tool for certifiably solving MLE
problems.

We are now at the point where it is essential to offer a disclaimer. The low rank
model Mr does not correctly represent the notion of conditional independence. The
model we should have used instead is the mixture model Mixr . By definition, Mixr
is the set of probability distributions P in !mn$1 that are convex combinations of
r independent distributions, each taken from M1. Equivalently, the mixture model
Mixr consists of all matrices

P D A #ƒ # B; (21)

whereA is a nonnegativem%r-matrix whose rows sum to 1,ƒ is a nonnegative r%r
diagonal matrix whose entries sum to 1, and B is a nonnegative r%n-matrix whose
columns sum to 1. The formula (21) expresses Mixr as the image of a trilinear map
between polytopes:

& W .!m$1/r %!r$1 % .!n$1/r ! !mn$1 ; .A;ƒ;B/ 7! P:

The following result is well-known; see e.g. [LiAS, Example 4.1.2].

Proposition 2.11. Our low rank model Mr is the Zariski closure of the mixture
model Mixr in the probability simplex !mn$1. If r ' 2 then Mixr D Mr . If
r & 3 then Mixr ¨ Mr .

The point here is the distinction between the rank and the nonnegative rank of
a nonnegative matrix. Matrices in Mr have rank ' r and matrices in Mixr have
nonnegative rank ' r . Thus elements of MrnMixr are matrices whose nonnegative
rank exceeds its rank.

Example 2.12. The following 4 % 4-matrix has rank 3 but nonnegative rank 4:

P D 1

8
#

0

BB@

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1

CCA

This is the slack matrix of a regular square. It is an element of M3nMix3. }
Engineers and scientists care more about Mixr than Mr . In many applications,

nonnegative rank is more relevant than rank. The reason can be seen in (18). In such
a low-rank decomposition, we do not want the female table or the male table to have
a negative entry.

This raises the following important questions: How to maximize the likelihood
function `U over Mixr? What are the algebraic degrees associated with that
optimization problem?
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Statisticians seek to maximize the likelihood function `U on Mixr by using the
expectation-maximization (EM) algorithm in the space .!m$1/r %!r$1 % .!n$1/r

of parameters .A;ƒ;B/. In each iteration, the EM algorithm strictly decreases the
Kullback–Leibler divergence from the current model point P D &.A;ƒ;B/ to the
empirical distribution 1

uCC # U . The hope in running the EM algorithm for given

data U is that it converges to the global maximum OP on Mixr . For a presentation
of the EM algorithm for discrete algebraic models see [PS, §1.3]. A study of the
geometry of this algorithm for the mixture model Mixr is undertaken in [KRS].

If the EM algorithm converges to a point that lies in the interior of the parameter
polytope, and is non-singular with respect to &, then that point will be among the
critical points on Mr . These are characterized by Proposition 2.4. However, since
Mixr is properly contained in Mr , it frequently happens that the true MLE OP lies
on the boundary of Mixr . In that case, OP is not a critical point of `U on Mr , meaning
that . OP ;U / is not in the likelihood correspondence on Vr . Such points will never be
found by the method described above.

In order to address this issue, we need to identify the divisors in the variety
Vr " Pmn$1 that appear in the algebraic boundary of Mixr . By this we mean the
irreducible components W1;W2; : : : ;Ws of the Zariski closure of @Mixr . Each of
these Wi has codimension 1 in Vr . Once the Wi are identified, one would need to
examine their ML degree, and also the ML degree of the various strataWi1\# # #\Wis

in which `U might attain its maximum. At present we do not have this information
even in the smallest non-trivial case m D n D 4 and r D 3.

Example 2.13. We illustrate this issue by describing one of the components W of
the algebraic boundary for the mixture model Mix3 when m D n D 4. Consider the
equation

0

BB@

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

1

CCA D

0

BB@

0 a12 a13
0 a22 a23
a31 0 a33
a41 a42 0

1

CCA #

0

@
0 b12 b13 b14
b21 0 b23 b24
b31 b32 b33 0

1

A

This parametrizes a 13-dimensional subvariety W of the hypersurface V3 D
fdet.P / D 0g in P15. The variety W is a component in the algebraic boundary
of Mix3. To see this, we choose the aij and bij to be positive, and we note that P lies
outside Mix3 when precisely one of the 0 entries gets replaced by !'. The prime
ideal of W in QŒp11; : : : ; p44$ is obtained by eliminating the 17 unknowns aij and
bij from the 16 scalar equations. A direct computation with Macaulay 2 shows
that the variety W is Cohen–Macaulay of codimension-2. By the Hilbert–Burch
Theorem, it is defined by the 4%4-minors of the 4%5-matrix. This following specific
matrix representation was suggested to us by Aldo Conca and Matteo Varbaro:

0

BB@

p11 p12 p13 p14 0

p21 p22 p23 p24 0

p31 p32 p33 p34 p34.p11p22 ! p12p21/
p41 p42 p43 p44 p41.p12p24 ! p14p22/C p44.p11p22 ! p12p21/

1

CCA :
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Tte algebraic boundary of Mix3 consists of precisely 304 irreducible components,
namely the 16 coordinate hyperplanes and 288 hypersurfaces that are all isomorphic
to W . This is proved in [KRS]. In that paper, it is also shown that the ML degree of
W equals 633. }

The definition of rank varieties and mixture models extends to m-dimensional
tensors P of arbitrary format d1 % d2 % # # # % dm. We refer to Landsberg’s book
[Land] for an introduction to tensors and their rank. Now, Vr is the variety of tensors
of borderrank ' r , the model Mr is the set of all probability distributions in Vr , and
the model Mixr is the subset of tensors of nonnegative rank ' r . Unlike in the matrix
case m D 2, the mixture model for borderrank r D 2 is already quite interesting
when m & 3. We state two theorems that characterize our objects. The set-theoretic
version of Theorem 2.14 is due to Landsberg and Manivel [LM]. The ideal-theoretic
statement was proved more recently by Raicu [Rai].

Theorem 2.14. The variety V2 is defined by the 3%3-minors of all flattenings of P .

Here, flattening means picking any subset A of Œn$ D f1; 2; : : : ; ng with 1 '
jAj ' n ! 1 and writing the tensor P as an ordinary matrix with

Q
i2A di rows andQ

j 62A dj columns.

Theorem 2.15. The mixture model Mix2 is the subset of supermodular distribu-
tions in M2.

This theorem was proved in [ARSZ]. Being supermodular means that P satisfies
a natural family of quadratic binomial inequalities. We explain these for m D
3; d1 D d2 D d3 D 2.

Example 2.16. We consider 2%2%2 tensors. Since secant lines of the Segre variety
P1%P1%P1 fill all of P7, we have that V2 D P7 and M2 D !7. The mixture model
Mix2 is an interesting, full-dimensional, closed, semi-algebraic subset of !7. By
definition, Mix2 is the image of a 2-to-1 map & W .!1/

7 ! !7 analogous to (21).
The branch locus is the 2%2%2-hyperdeterminant, which is a hypersurface in P7 of
degree 4 and ML degree 13.

The analysis in [ARSZ, §2] represents the model Mix2 as the union of four toric
cells. One of these toric cells is the set of tensors satisfying

p111p222 & p112p221 p111p222 & p121p212 p111p222 & p211p122
p112p222 & p122p212 p121p222 & p122p221 p211p222 & p212p221
p111p122 & p112p121 p111p212 & p112p211 p111p221 & p121p211

(22)

A nonnegative 2%2%2-tensor P in !7 is supermodular if it satisfies these inequal-
ities, possibly after label swapping 1 $ 2. We visualize Mix2 by restricting to the
three-dimensional subspace H given by p111 D p222; p112 D p221; p121 D p212
and p211 D p122. The intersection H \ !7 is a tetrahedron, and we consider
H \ Mix2 inside that tetrahedron. The restricted model H \ Mix2 is shown on the
left in Fig. 1. It consists of four toric cells as shown on the right side. The boundary
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Fig. 1 A three-dimensional slice of the seven-dimensional model of 2%2%2 tensors of nonnega-
tive rank # 2. Each toric cell is bounded by 3 quadrics and contains a vertex of the tetrahedron

is given by three quadratic surfaces, shown in red, green and blue, and which are
obtained from either the first or the second row in (22) by restriction to H .

The boundary analysis suggested in Example 2.13 turns out to be quite simple
in the present example. All boundary strata of the model Mix2 are varieties of ML
degree 1.

One such boundary stratum for Mix2 is the five-dimensional toric variety

X D V.p112p222 ! p122p212; p111p122 ! p112p121; p111p222 ! p121p212/ " P7:

As a preview for what is to come, we report its ML bidegree and its sectional ML
degree:

BX.p; u/ D p7 C 2p6u C 3p5u2 C 3p4u3 C 3p3u4 C 3p2u5;
SX.p; u/ D p7 C 14p6u C 30p5u2 C 30p4u3 C 15p3u4 C 3p2u5:

(23)

In the next section, we shall study the class of toric varieties and the class of varieties
having ML degree 1. Our variety X lies in the intersection of these two important
classes. }

3 Third Lecture

In our third lecture we start out with the likelihood geometry of embedded toric
varieties. Fix a .dC1/ % .nC1/ integer matrix A D .a0; a1; : : : ; an/ of rank dC1
that has .1; 1; : : : ; 1/ as its last row. This matrix defines an effective action of the
torus .C"/d on projective space Pn:

.C"/d %Pn !! Pn; t%.p0 W p1 W # # # W pn/ 7!! .t Qa0 #p0 W t Qa1 #p1 W # # # W t Qan #pn/:
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Here Qai is the column vector ai with the last entry 1 removed. We also fix

c D .c0; c1; : : : ; cn/ 2 .C"/nC1;

viewed as a point in Pn. Let Xc be the closure in Pn of the orbit .C"/d # c.
This is a projective toric variety of dimension d , defined by the pair .A; c/. The
ideal that defines Xc is the familiar toric ideal IA as in [LiAS, §1.3], but with
p D .p0; : : : ; pn/ replaced by

p=c D
"
p0

c0
;
p1

c1
; : : : ;

pn

cn

#
: (24)

Example 3.1. Fix d D 2 and n D 3. The matrix

A D

0

@
0 3 0 1

0 0 3 1

1 1 1 1

1

A

specifies the following family of toric surfaces of degree three in P3:

Xc Df.c0 W c1x31 W c2x32 W c3x1x2/ W .x1; x2/ 2 .C"/2gDV.c33 #p0p1p2 ! c0c1c2#p33/:

Of course, the prime ideal of any particular surface Xc is the principal ideal
generated by

p0

c0

p1

c1

p2

c2
!
"
p3

c3

#3
:

How does the ML degree of Xc depend on the parameter c D .c0; c1; c2; c3/ 2
.C"/4? }

We shall express the ML degree of the toric variety Xc in terms of the
complement of a hypersurface in the torus .C"/d . The pair .A; c/ define the sparse
Laurent polynomial

f .x/ D c0 # x Qa0 C c1 # x Qa1 C # # # C cn # x Qan :

Theorem 3.2. The ML degree of the d -dimensional toric variety Xc " Pn is equal
to .!1/d times the Euler characteristic of the very affine variety

XcnH '
˚
x 2 .C"/d W f .x/ 6D 0

!
: (25)

For generic c, the ML degree agrees with the degree of Xc , which is the normalized
volume of the d -dimensional lattice polytope conv.A/ obtained as the convex hull
of the columns of A.



Likelihood Geometry 93

Proof. We first argue that the identification (25) holds. The map

x 7!! p D .c0 # x Qa0 W c1 # x Qa1 W # # # W cn # x Qan/

defines an injective group homomorphism from .C"/d into the dense torus of Pn. Its
image is equal to the dense torus of Xc , so we have an isomorphism between .C"/d

and the dense torus of Xc . Under this isomorphism, the affine open set ff 6D 0g
in .C"/d is identified with the affine open set fp0 C # # # C pn 6D 0g in the dense
torus ofXc . The latter is preciselyXcnH. Since .C"/d is smooth, we see that XcnH
is smooth, so our first assertion follows from Theorem 1.7. The second assertion
is a consequence of the description of the likelihood correspondence LXc via linear
sections of Xc that is given in Proposition 3.5 below. ut
Example 3.3. We return to the cubic surface Xc in Example 3.1. For a general
parameter vector c, the ML degree of Xc is 3. For instance, the surface V.p0p1p2 !
p33/ " P3 has ML degree 3. However, the ML degree of Xc drops to 2 whenever the
plane curve defined by

f .x1; x2/ D c0 C c1x
3
1 C c2x

3
2 C c3x1x2

has a singularity in .C"/2. For instance, this happens for c D .1 W 1 W 1 W !3/. The
corresponding surface V.27p0p1p2 C p33/ " P3 has ML degree 2. }

The isomorphism (25) has a nice interpretation in terms of Convex Optimization.
Namely, it implies that maximum likelihood estimation for toric varieties is equiv-
alent to global minimization of posynomials, and hence to the most fundamental
case of Geometric Programming. We refer to [BoydVan, §4.5] for an introduction
to posynomials and geometric programming.

We write j # j for the one-norm on RnC1, we set b D Au, and we assume that
c D .c0; c1; : : : ; cn/ is in RnC1>0 . Maximum likelihood estimation for toric models is
the problem

Maximize
pu

jpjjuj subject to p 2 Xc \!n: (26)

Setting pi D ci # x Qai as above, this problem becomes equivalent to the geometric
program

Minimize
f .x/juj

xb
subject to x 2 Rd>0: (27)

By construction, f .x/juj=xb is a posynomial whose Newton polytope contains the
origin. Such a posynomial attains a unique global minimum on the open orthant Rd>0.
This can be seen by convexifying as in [BoydVan, §4.5.3]. This global minimum
of (27) corresponds to the solution of (26), which exists and is unique by Birch’s
Theorem [PS, Theorem 1.10].
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Example 3.4. Consider the geometric program for the surfaces in Example 3.1, with

A D

0

@
0 3 0 1

0 0 3 1

1 1 1 1

1

A and u D .0; 0; 0; 1/:

The problem (27) is to find the global minimum, over all positive x D .x1; x2/, of
the function

f .x1; x2/

x1x2
D c0x

$1
1 x$1

2 C c1x
2
1x

$1
2 C c2x

$1
1 x22 C c3:

This is equivalent to maximizing p3=pC subject to p 2 V.c33 # p0p1p2 ! c0c1c2 #
p33/ \!3. }

We now describe the toric likelihood correspondence LXc in Pn % Pn associated
with the pair .A; c/. This is the likelihood correspondence of the toric variety Xc "
Pn defined above.

Proposition 3.5. On the open subset .XcnH/%Pn, the toric likelihood correspon-
dence LXc is defined by the 2 % 2-minors of the 2 % .dC1/-matrix

"
p=c # AT
u=c # AT

#
: (28)

Here the notation p=c is as in (24). In particular, for any fixed data vector u, the
critical points of `u are characterized by a linear system of equations in p restricted
to Xc .

Proof. This is an immediate consequence of Birch’s Theorem [PS, Theorem 1.10].
ut

Example 3.6. The Hardy–Weinberg curve of Example 1.3 is the subvariety Xc D
V.p21 ! 4p0p2/ in the projective plane P2. As a toric variety, this plane curve is
given by

A D
"
0 1 2

2 1 0

#
and c D .1; 2; 1/:

The likelihood correspondence of Xc is the surface in P2 % P2 given by

det
"
2p0 p1
p1 2p2

#
D det

"
p1 C 2p2 2p0 C p1
u1 C 2u2 2u0 C u1

#
D 0: (29)

Note that the second determinant equals the determinant of the 2 % 2-matrix (28)
times 4. Saturating (29) with respect to p0 C p1 C p2 reveals two further equations
of degree .1; 1/:
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2.u1 C 2u2/p0 D .2u0 C u1/p1 and .u1 C 2u2/p1 D 2.2u0 C u1/p2:

For fixed u, these equations have a unique solution in P2, given by the formula in (3).
}

Toric varieties are rational varieties that are parametrized by monomials. We now
examine those varieties that are parametrized by generic polynomials. Understand-
ing these is useful for statistics since many widely used models for discrete data are
given in the form

f W ‚! !n;

where ‚ is a d -dimensional polytope and f is a polynomial map. The coordinates
f0; f1; : : : ; fn are polynomial functions in the parameters ( D .(1; : : : ; (d /
satisfying f0 C f1 C # # # C fn D 1. Such models include the mixture models in
Proposition 2.11, phylogenetic models, Bayesian networks, hidden Markov models,
and many others arising in computational biology [PS].

The model specified by the polynomials f0; : : : ; fn is the semialgebraic set
f .‚/ " !n. We study its Zariski closure X D f .‚/ in Pn. Finding its equations
is hard and interesting.

Theorem 3.7. Let f0; f1; : : : ; fn be polynomials of degrees b0; b1; : : : ; bn satisfyingP
fi D 1. The ML degree of the variety X is at most the coefficient of zd in the

generating function

.1 ! z/d

.1 ! zb0/.1 ! zb1/ # # # .1 ! zbn/
:

Equality holds when the coefficients of f0; f1; : : : ; fn are generic relative toP
fi D 1.

Proof. This is the content of [CHKS, Theorem 1]. ut

Example 3.8. We examine the case of quartic surfaces in P3. Let d D 2; n D 3, pick
random affine quadrics f1; f2; f3 in two unknowns and set f0 D 1 ! f1 ! f2 ! f3.
This defines a map

f W C2 ! C3 " P3:

The ML degree of the image surface X D f .C2/ in P3 is equal to 25 since

.1 ! z/2

.1 ! 2z/4
D 1C 6z C 25z2 C 88z3 C # # #

The rational surface X is a Steiner surface (or Roman surface). Its singular locus
consists of three lines that meet in a point P . To understand the graph of f , we
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observe that the linear span of ff0; f1; f2; f3g in CŒx; y$ has a basis f1;L2;M2;N 2g
where L;M;N represent lines in C2. Let l denote the line through M \N parallel
to L,m the line through L\N parallel toM , and n the line through L\M parallel
to N . The map C2 ! X is a bijection outside these three lines, and it maps each
line 2-to-1 onto one of the lines in Xsing. The fiber over the special point P on X
consists of three points, namely, l \m, l \ n and m\ n. If the quadric f0 were also
picked at random, rather than as 1 ! f1 ! f2 ! f3, then we would still get a Steiner
surface X " P3. However, now the ML degree of X increases to 33.

On the other hand, if we take X to be a general quartic surface in P3, so X
is a smooth K3 surface of Picard rank 1, then X has ML degree 84. This is the
formula in Example 1.11 evaluated at n D 3 and d D 4. Here XnH is the generic
quartic surface in P3 with five plane sections removed. The number 84 is the Euler
characteristic of that open K3 surface.

In the first case, XnH is singular, so we cannot apply Theorem 1.7 directly to
our Steiner surface X in P3. However, we can work in the parameter space and
consider the smooth very affine surface C2nV.f0f1f2f3/. The number 25 is the
Euler characteristic of that surface.

It is instructive to verify Conjecture 1.8 for our three quartic surfaces in P3. We
found

#.XnH/ D 38 > 25 D MLdegree .X/;
#.XnH/ D 49 > 33 D MLdegree .X/;
#.XnH/ D 84 D 84 D MLdegree .X/:

The Euler characteristics of the three surfaces were computed using Aluffi’s method
[AluJSC]. }

We now turn to the following question: which projective varieties X have ML
degree one? This question is important for likelihood inference because a model
having ML degree one means that the MLE Op is a rational function in the data u.
It is known that Bayesian networks and decomposable graphical models enjoy this
property, and it is natural to wonder which other statistical models are in this class.
The answer to this question was given by the first author in [Huh2]. We shall here
present the result of [Huh2] from a slightly different angle.

Our point of departure is the notion of the A-discriminant, as introduced and
studied by Gel’fand, Kapranov and Zelevinsky in [GKZ]. We fix an r % m integer
matrix A D .a1; a2; : : : ; am/ of rank r which has .1; 1; : : : ; 1/ in its row space. The
Zariski closure of

˚
.ta1 W t a2 W # # # W t am/ 2 Pm$1 W t 2 .C"/r

!

is an .r ! 1/-dimensional toric variety YA in Pm$1. We here intentionally changed
the notation relative to that used for toric varieties at the beginning of this section.
The reason is that d and n are always reserved for the dimension and embedding
dimension of a statistical model.
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The dual variety Y "
A is an irreducible variety in the dual projective space

.Pm$1/_ whose coordinates are x D .x1 W x2 W # # # W xm/. We identify points x
in .Pm$1/_ with hypersurfaces

˚
t 2 .C"/r W x1 # t a1 C x2 # t a2 C # # # C xm # t am D 0

!
: (30)

The dual variety Y "
A is the Zariski closure in .Pm$1/_ of the locus of all hyper-

surfaces (30) that are singular. Typically, Y "
A is a hypersurface. In that case, Y "

A is
defined by a unique (up to sign) irreducible polynomial !A 2 ZŒx1; x2; : : : ; xm$.
The homogeneous polynomial !A is called the A-discriminant. Many classical
discriminants and resultants are instances of !A. So are determinants and hyperde-
terminants. This is the punch line of the book [GKZ].

Example 3.9. Let m D 4; r D 2, and A D
"
3 2 1 0

0 1 2 3

#
. The associated toric variety

is the twisted cubic curve

YA D
˚
.1 W t W t 2 W t 3/ j t 2 C

!
" P3:

The variety Y "
A that is dual to the curve YA is a surface in .P3/_. The surface Y "

A

parametrizes all planes that are tangent to the curve YA. These represent univariate
cubics

x1 C x2t C x3t
2 C x4t

3

that have a double root. Here the A-discriminant is the classical discriminant

!A D 27x21x
2
4 ! 18x1x2x3x4 C 4x1x

3
3 C 4x32x4 ! x22x23 :

The surface Y "
A in P3 defined by this equation is the discriminant of the univariate

cubic. }
Theorem 3.10. Let X $ Pn be a projective variety of ML degree 1. Each
coordinate Opi of the rational function u 7! Op is an alternating product of linear
forms in u0; u1; : : : ; un.

The paper [Huh2] gives an explicit construction of the map u 7! Op as a Horn
uniformization. A precursor was [Kapranov]. We explain this construction. The
point of departure is a matrix A as above. We now take !A to be any non-zero
homogenous polynomial that vanishes on the dual variety Y "

A of the toric variety
YA. If Y "

A is a hypersurface then !A is the A-discriminant.
First, we write !A as a Laurent polynomial by dividing it by one of its

monomials:

1

monomial
#!A D 1 ! c0 # xb0 ! c1 # xb1 ! # # # ! cn # xbn : (31)
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This expression defines an m % .nC 1/ integer matrix B D .b0; : : : ; bn/ satisfying
AB D 0. Second, we define X to be the rational subvariety of Pn that is given
parametrically by

pi

p0 C p1 C # # # C pn
D ci # xbi for i D 0; 1; : : : ; n: (32)

The defining ideal of X is obtained by eliminating x1; : : : ; xm from the equations
above. Then X has ML degree 1, and, by Huh [Huh2], every variety of ML degree
1 arises in this manner.

Example 3.11. The following curve in P3 happens to be a variety of ML degree 1:

X D V
$
9p1p2 ! 8p0p3 ; p20 ! 12.p0Cp1Cp2Cp3/p3

%
:

This curve comes from the discriminant of the univariate cubic in Example 3.9:

1

monomial
#!A D 1 !

$2
3

x2x3

x1x4

%
!
$
! 4

27

x32
x21x4

%
!
$
! 4

27

x33
x1x

2
4

%
!
$ 1
27

x22x
2
3

x21x
2
4

%
:

We derived the curve X from the four parenthesized monomials via the for-
mula (32). The maximum likelihood estimate for this model is given by the products
of linear forms

Op0 D
2

3

x2x3

x1x4
Op1 D ! 4

27

x32
x21x4

Op2 D ! 4

27

x33
x1x

2
4

Op3 D
1

27

x22x
2
3

x21x
2
4

where

x1 D !u0 ! u1 ! 2u2 ! 2u3 x2 D u0 C 3u2 C 2u3
x3 D u0 C 3u1 C 2u3 x4 D !u0 ! 2u1 ! u2 ! 2u3

These expressions are the alternating products of linear forms promised in Theo-
rem 3.10. }

We now give the formula for Opi in general. This is the Horn uniformization of
[GKZ, §9.3].

Corollary 3.12. Let X " Pn be the variety of ML degree 1 with parametriza-
tion (32) derived from a scaled A-discriminant (31). The coordinates of the MLE
function u 7! Op are

Opk D ck #
mY

jD1
.

nX

iD0
bijui /bkj :
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It is not obvious (but true) that Op0 C Op1 C # # # C Opn D 1 holds in the formula
above. In light of its monomial parametrization, our variety X is toric in PnnH. In
general, it is not toric in Pn, due to appearances of the factor .p0Cp1C # # #Cpn/ in
equations for X . Interestingly, there are numerous instances when this factor does
not appear and X is toric also in Pn.

One toric instance is the independence model X D V.p00p11 ! p01p10/, whose
MLE was derived in Example 1.14. What is the matrix A in this case? We shall
answer this question for a slightly larger example, which serves as an illustration for
decomposable graphical models.

Example 3.13. Consider the conditional independence model for three binary
variables given by the graph (—–(—–(. We claim that this graphical model is
derived from

A D

0

BBBB@

a00 a10 a01 a11 b00 b01 b10 b11 c0 c1 d

1 1 1 1 1 1 1 1 1 1 1
x 1 1 0 0 0 0 0 0 1 0 0
y 0 0 1 1 0 0 0 0 0 1 0
z 0 0 0 0 1 1 0 0 1 0 0
w 0 0 0 0 0 0 1 1 0 1 0

1

CCCCA
:

The discriminant of the corresponding family of hypersurfaces

˚
.x; y; z;w/ 2 .C"/4 j .a00 C a10/x C .a01 C a11/y C .b00 C b01/z

C .b10 C b11/w C c0xz C c1yw C d D 0
!

equals

!A D c0c1d ! a01b10c0 ! a11b10c0 ! a01b11c0 ! a11b11c0
! a00b00c1 ! a10b00c1 ! a00b01c1 ! a10b01c1:

We divide this A-discriminant by its first term c0c1d to rewrite it in the form (31)
with n D 7. The parametrization of X " P7 given by (32) can be expressed as

pijk D aij # bjk

cj # d for i; j; k 2 f0; 1g: (33)

This is indeed the desired graphical model (—–(—–( with implicit representation

X D V
$
p000p101 ! p001p100 ; p010p111 ! p011p110

%
" P7:

The linear forms used in the Horn uniformization of Corollary 3.12 are

aij D uijC bjk D uCjk cj D uCjC d D uCCC
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Substituting these expressions into (33), we obtain

Opijk D
uijC # uCjk

uCjC # uCCC
for i; j; k 2 f0; 1g:

This is the formula in Lauritzen’s book [Lau] for MLE of decomposable graphical
models. }

We now return to the likelihood geometry of an arbitrary d -dimensional projec-
tive varietyX in Pn, as always defined over R and not contained in H. We define the
ML bidegree ofX to be the bidegree of its likelihood correspondence LX " Pn%Pn.
This is a binary form

BX.p; u/ D .b0 # pd C b1 # pd$1u C # # # C bd # ud / # pn$d ;

where b0; b1; : : : ; bd are certain positive integers. By definition, BX.p; u/ is the
multidegree [ch3:MS, §8.5] of the prime ideal of LX , with respect to the natural Z2-
grading on the polynomial ring RŒp; u$ D RŒp0; : : : ; pn; u0; : : : ; un$. Equivalently,
the ML bidegree BX.p; u/ is the class defined by LX in the cohomology ring

H".Pn % PnIZ/ D ZŒp; u$=hpnC1; unC1i:

We already saw some examples, for the Grassmannian G.2; 4/ in (12), for arbitrary
linear spaces in (14), and for a toric model of ML degree 1 in (23). We note
that the bidegree BX.p; u/ can be computed conveniently using the command
multidegree in Macaulay2.

To understand the geometric meaning of the ML bidegree, we introduce a second
polynomial. LetLn$i be a sufficiently general linear subspace of Pn of codimension
i , and define

si D MLdegree .X \ Ln$i /:

We define the sectional ML degree of X to be the polynomial

SX.p; u/ D .s0 # pd C s1 # pd$1u C # # # C sd # ud / # pn$d ;

Example 3.14. The sectional ML degree of the Grassmannian G.2; 4/ in (10)
equals

SX.p; u/ D 4p5 C 20p4u C 24p3u2 C 12p2u3 C 2pu4:

Thus, if H1;H2;H3 denote generic hyperplanes in P5, then the threefold G.2; 4/ \
H1 has ML degree 20, the surface G.2; 4/ \ H1 \ H2 has ML degree 24, and the
curve G.2; 4/ \H1 \H2 \H3 has ML degree 12. Lastly, the coefficient 2 of pu4

is simply the degree of G.2; 4/ in P5. }
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Conjecture 3.15. The ML bidegree and the sectional ML degree of any projective
variety X " Pn, not lying in H, are related by the following involution on binary
forms of degree n:

BX.p; u/ D
u # SX.p; u ! p/ ! p # SX.p; 0/

u ! p ;

SX.p; u/ D
u # BX.p; u C p/C p # BX.p; 0/

u C p
:

This conjecture is a theorem when XnH is smooth and its boundary is schön.
See Theorem 4.6 below. In that case, the ML bidegree is identified, by Huh
[Huh1, Theorem 2], with the Chern–Schwartz–MacPherson (CSM) class of the
constructible function on Pn that is 1 on XnH and 0 elsewhere. Aluffi proved in
[Alu, Theorem 1.1] that the CSM class of an locally closed subset of Pn satisfies
such a log-adjunction formula. Our formula in Conjecture 3.15 is precisely the
homogenization of Aluffi’s involution. The combination of [Alu, Theorem 1.1]
and [Huh1, Theorem 2] proves Conjecture 3.15 in cases such as generic complete
intersections (Theorem 1.10) and arbitrary linear spaces (Theorem 1.20). In the
latter case, it can also be verified using matroid theory. Conjecture 3.15 says
that this holds for any X , indicating a deeper connection between likelihood
correspondences and CSM classes.

We note that BX.p; u/ and SX.p; u/ always share the same leading term and the
same trailing term, and this is compatible with our formulas. Both polynomials start
and end like

MLdegree .X/ # pn C # # # C degree .X/ # pcodim.X/udim.X/:

We now illustrate Conjecture 3.15 by verifying it computationally for a few more
examples.

Example 3.16. Let us examine some cubic fourfolds in P5. If X is a generic
hypersurface of degree 4 in P5 then its sectional ML degree and ML bidegree satisfy
the conjectured formula:

SX.p; u/ D 1364p5 C 448p4u C 136p3u2 C 32p2u3 C 3pu4;
BX.p; u/ D 1364p5 C 341p4u C 81p3u2 C 23p2u3 C 3pu4:

Of course, in algebraic statistics, we are more interested in special hypersurfaces
that are statistically meaningful. One such instance was seen in Example 2.7.
The mixture model for two identically distributed ternary random variables is the
fourfold X " P5 defined by

det

0

@
2p11 p12 p13
p12 2p22 p23
p13 p23 2p33

1

A D 0: (34)
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The sectional ML degree and the ML bidegree of this determinantal fourfold are

SX.p; u/ D 6p5 C 42p4u C 48p3u2 C 21p2u3 C 3pu4

BX.p; u/ D 6p5 C 12p4u C 15p3u2 C 12p2u3 C 3pu4:

For the toric fourfold X D V.p11p22p33 !p12p13p23/, ML bidegree and sectional
ML degree are

BX.p; u/ D 3p5 C 3p4u C 3p3u2 C 3p2u3 C 3pu4;
SX.p; u/ D 3p5 C 12p4u C 18p3u2 C 12p2u3 C 3pu4:

Now, taking X D V.p11p22p33Cp12p13p23/ instead, the leading coefficient 3
changes to 2. }
Remark 3.17. Conjecture 3.15 is true when Xc is a toric variety with c generic, as
in Theorem 3.2. Here we can use Proposition 3.5 to infer that all coefficients of BX
are equal to the normalized volume of the lattice polytope conv.A/. In symbols, for
generic c, we have

BXc .p; u/ D degree .Xc/ #
dX

iD0
pn$iui :

It is now an exercise to transform this into a formula for the sectional ML degree
SXc .p; u/.

In general, it is hard to compute generators for the ideal of the likelihood
correspondence.

Example 3.18. The following submodel of (34) was featured prominently in [HKS,
§1]:

det

0

@
12p0 3p1 2p2
3p1 2p2 3p3
2p2 3p3 12p4

1

A D 0: (35)

This cubic threefold X is the secant variety of a rational normal curve in P4, and it
represents the mixture model for a binomial random variable (tossing a biased coin
four times). It takes several hours in Macaulay2 to compute the prime ideal of
the likelihood correspondence LX " P4 %P4. That ideal has 20 minimal generators
one in degree .1; 1/, one in degree .3; 0/, five in degree .3; 1/, ten in degree .4; 1/
and three in degree .3; 2/. After passing to a Gröbner basis, we use the formula in
[ch3:MS, Definition 8.45] to compute the bidegree of LX :

BX.p; u/ D 12p4 C 15p3u C 12p2u2 C 3pu3:
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We now intersect X with random hyperplanes in P4, and we compute the ML
degrees of the intersections. Repeating this experiment many times reveals the
sectional ML degree of X :

SX.p; u/ D 12p4 C 30p3u C 18p2u2 C 3pu3:

The two polynomials satisfy our transformation rule, thus confirming Conjec-
ture 3.15. We note that Conjecture 1.8 also holds for this example: using Aluffi’s
method [AluJSC], we find #.XnH/ D !13. }

Our last topic is the operation of restriction and deletion. This is a standard
tool for complements of hyperplane arrangements, as in Theorem 1.20. It was
developed in [Huh1] for arbitrary very affine varieties, such as XnH. We motivate
this by explaining the distinction between structural zeros and sampling zeros for
contingency tables in statistics [BFH, §5.1.1].

Returning to the “hair loss due to TV soccer” example from the beginning of
Sect. 2, let us consider the following questions. What is the difference between the
data set

U D

0

@

lots of hair medium hair little hair
' 2 h 15 0 9
2–6 h 20 24 12
& 6 h 10 12 6

1

A

and the data set

QU D

0

@

lots of hair medium hair little hair
' 2 h 10 0 5
2–6 h 9 3 6
& 6 h 7 9 8

1

A ‹

How should we think about the zero entries in row 1 and column 2 of these two
contingency tables? Would the rank 1 model M1 or the rank 2 model M2 be more
appropriate?

The first matrix U has rank 2 and it can be completed to a rank 1 matrix by
replacing the zero entry with 18. Thus, the model M1 fits perfectly except for the
structural zero in row 1 and column 2. It seems that this zero is inherent in the
structure of the problem: planet Earth simply has no people with medium hair length
who rarely watch soccer on TV.

The second matrix QU also has rank two, but it cannot be completed to rank 1.
The model M2 is a perfect fit. The zero entry in QU appeared to be an artifact of the
particular group that was interviewed in this study. This is a sampling zero. It arose
because, by chance, in this cohort nobody happened to have medium hair length and
watch soccer on TV rarely. We refer to the book of Bishop et al. [BFH, Chap. 5] for
an introduction.
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We now consider an arbitrary projective varietyX $ Pn, serving as our statistical
model. Suppose that structural zeros or sampling zeros occur in the last coordinate
un. Following [Rapallo, Theorem 4], we model structural zeros by the projection
)n.X/. This model is the variety in Pn$1 that is the closure of the image of X under
the rational map

)n W Pn Ü Pn$1; .p0 W p1 W # # # W pn$1 W pn/ 7!! .p0 W p1 W # # # W pn$1/:

Which projective variety is a good representation for sampling zeros? We propose
that sampling zeros be modeled by the intersection X \ fpnD0g. This is now to be
regarded as a subvariety in Pn$1. In this manner, both structural zeros and sampling
zeros are modeled by closed subvarieties of Pn$1. Inside that ambient Pn$1, our
standard arrangement H consists of n C 1 hyperplanes. Usually, none of these
hyperplanes contains X \ fpnD0g or )n.X/.

It would be desirable to express the (sectional) ML degree of X in terms of those
of the intersection X \ fpn D 0g and the projection )n.X/. As an alternative to the
ML degree of the projection )n.X/ into Pn$1, here is a quantity in Pn that reflects
the presence of structural zeros even more accurately. We denote by

MLdegree .X junD0/

the number of critical points Op D . Op0 W Op1 W # # # W Opn$1 W Opn/ of `u in XregnH
for those data vectors u D .u0; u1; : : : ; un$1; 0/ whose first n coordinates ui are
positive and generic.

Conjecture 3.19. The maximum likelihood degree satisfies the inductive formula

MLdegree .X/ D MLdegree .X \ fpnD0g/ C MLdegree .X junD0/; (36)

provided X and X \ fpnD0g are reduced, irreducible, and not contained in their
respective H.

We expect that an analogous formula will hold for the sectional ML degree
SX.p; u/. The intuition behind equation (36) is as follows. As the data vector u
moves from a general point in Pnu to a general point on the hyperplane fun D 0g, the
corresponding fiber pr$1

2 .u/ of the likelihood fibration splits into two clusters. One
cluster has size MLdegree .X junD0/ and stays away from H. The other cluster moves
onto the hyperplane fpn D 0g in Pnp , where it approaches the various critical points
of `u in that intersection. This degeneration is the perfect scenario for a numerical
homotopy, e.g. in Bertini, as discussed in Sect. 2. These homotopies are currently
being studied for determinantal varieties by Elizabeth Gross and Jose Rodriguez
[GR]. The formula (36) has been verified computationally for many examples. Also,
Conjecture 3.19 is known to be true in the slightly different setting of [Huh1], under
a certain smoothness assumption. This is the content of [Huh1, Corollary 3.2].
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Example 3.20. Fix the space P8 of 3%3-matrices as in Sect. 2. For the rank 2 variety
X D V2, the formula (36) reads 10 D 5C5. For the rank 1 varietyX D V1, it reads
1 D 0C 1. }
Example 3.21. If X is a generic .d; e/-curve in P3, then

MLdegree .X/ D d2e C de2 C de and X \ fp3 D 0g D .d # e distinct points/:

Computations suggest that

MLdegree .X ju3D0/ D d2e C de2 and MLdegree .)3.X// D d2e C de2:

To derive the second equality geometrically, one may argue as follows. Both curves
X " P3 and )3.X/ " P2 have degree de and genus 1

2
.d2e C de2/ ! 2de C 1.

Subtracting this from the expected genus 1
2
.de ! 1/.de ! 2/ of a plane curve of

degree de, we find that )3.X/ has 1
2
d.d ! 1/e.e ! 1/ nodes. Example 1.4 suggests

that each node decreases the ML degree of a plane curve by 2. Assuming this to bet
the case, we conclude

MLdegree .)3.X// D de.de C 1/ ! d.d ! 1/e.e ! 1/ D d2e C de2:

Here we are using that a general plane curve of degree de has ML degree de.deC1/.
}

This example suggests that, in favorable circumstances, the following identity
would hold:

MLdegree .X junD0/ D MLdegree .)n.X//: (37)

However, this is certainly not true in general. Here is a particularly telling example:

Example 3.22. Suppose that X is a generic surface of degree d in P3. Then

MLdegree .X/ D d C d2 C d3;

MLdegree .X \ fp3 D 0g/ D d C d2;

MLdegree .X ju3D0/ D d3;

MLdegree .)3.X// D 1:

Indeed, for most hypersurfaces X " Pn, the same will happen, since )n.X/ D
Pn$1. }

As a next step, one might conjecture that (37) holds when the map is birational
and the center .0 W # # # W 0 W 1/ of the projection does not lie on the variety X . But
this also fails:

Example 3.23. LetX be the twisted cubic curve in P3 defined by the 2%2-minors of
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"
p0 C p1 ! p2 2p0 ! p2 C 9p3 p0 ! 6p1 C 8p2
2p0 ! p2 C 9p3 p0 ! 6p1 C 8p2 7p0 C p1 C 2p2

#
:

The ML degree of X is 13 D 3 C 10, and X intersects fp3 D 0g in three distinct
points. The projection of the curve X into P2 is a cuspidal cubic, as in Example 1.4.
We have

MLdegree .X ju3D0/ D 10 and MLdegree .)3.X// D 9:

It is also instructive to compare the number 13 D !#.XnH/ with the number 11
one gets in Theorem 3.7 for the special twisted cubic curve with d D 1, n D 3 and
b0 D b1 D b2 D b3 D 3. There are many mysteries still to be explored in likelihood
geometry, even within P3. }

4 Characteristic Classes

We start by giving an alternative description of the likelihood correspondence
which reveals its intimate connection with the theory of Chern classes on possibly
noncompact varieties. An important role will be played by the Lie algebra and
cotangent bundle of the algebraic torus .C"/nC1. This section ties our discussion
to the work of Aluffi [AluJSC, AluLectures, Alu] and Huh [Huh1, Huh0, Huh2]. In
particular, we introduce and explain Chern–Schwartz–MacPherson (CSM) classes.
And, most importantly, we present proofs for Theorems 1.6, 1.7, 1.15, and 1.20.

LetX $ Pn be a closed and irreducible subvariety of dimension d , not contained
in our distinguished arrangement of nC 2 hyperplanes,

H D
˚
.p0 W p1 W # # # W pn/ 2 Pn j p0 # p1 # # #pn # pC D 0 g; pC D

nX

iD0
pi :

Let 'i denote the restriction of the rational function pi=pC to XnH. The closed
embedding

' W XnH !! .C"/nC1; ' D .'0; : : : ; 'n/;

shows that the variety XnH is very affine. Let x be a smooth point of XnH. We
define

*x W TxX !! T'.x/.C"/nC1 !! g WD T1.C"/nC1 (38)

to be the derivative of ' at x followed by that of left-translation by '.x/$1. Here g
is the Lie algebra of the algebraic torus .C"/nC1. In local coordinates .x1; : : : ; xd /
around the smooth point x, the linear map *x is represented by the logarithmic
Jacobian matrix
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@ log'i
@xj

!
; 0 ' i ' n; 1 ' j ' d:

The linear map *x in (38) is injective because ' is injective. We write q0; : : : ; qn
for the coordinate functions on the torus .C"/nC1. These functions define a C-linear
basis of the dual Lie algebra g_ corresponding to differential forms

dlog.q0/; : : : ; dlog.qn/ 2 H0
(
.C"/nC1;"1

.C!/nC1

)
' g_ ' CnC1:

We fix this choice of basis of g_, and we identify P.g_/ with the space of data
vectors Pnu :

g_ '
n nX

iD0
ui # dlog.qi / j u D .u0; : : : ; un/ 2 CnC1

o
:

Consider the vector bundle homomorphism defined by the pullback of differential
forms

*_ W g_XregnH !! "1
XregnH; .x; u/ 7!!

nX

iD0
ui # dlog.'i /.x/: (39)

Here g_
XregnH is the trivial vector bundle over XregnH modeled on the vector space

g_. The induced linear map *_x between the fibers over a smooth point x is dual to
the injective linear map *x W TxX !! g. Therefore *_ is surjective and ker.*_/ is
a vector bundle over XregnH. This vector bundle has positive rank n ! d C 1, and
hence its projectivization is nonempty.

Proof of Theorem 1.6. Under the identification P.g_/ ' Pnu , the projective bundle
P.ker *_/ corresponds to the following constructible subset of dimension n:

LX \
(
.XregnH/ % Pnu

)
$ Pnp % Pnu :

Therefore its Zariski closure LX is irreducible of dimension n, and pr1 W LX ! Pnp
is a projective bundle over XregnH. The likelihood vibration pr2 W LX ! Pnu is
generically finite-to-one because the domain and the range are algebraic varieties of
the same dimension. ut

Our next aim is to prove Theorem 1.15. For this we fix a resolution of
singularities
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)$1.XregnH/ !!

""

QX

)

""

XregnH !! X !! Pn;

where ) is an isomorphism over XregnH, the variety QX is smooth and projective,
and the complement of )$1.XregnH/ is a simple normal crossing divisor in QX with
irreducible componentsD1; : : : ;Dk . Each 'i lifts to a rational function on QX which
is regular on )$1.XnH/. If u D .u0; : : : ; un/ is an integer vector in ZnC1, then these
functions satisfy

ordDj .`u/ D
nX

iD0
ui # ordDj .'i /: (40)

If u 2 CnC1nZnC1 then ordDj .`u/ is the complex number defined by the Eq. (40)
for j D 1; : : : ; k. We write Hi WD fpi D 0g and HC WD fpC D 0g for the nC 2
hyperplanes in H.

Lemma 4.1. Suppose that X \ Hi is smooth along HC, and let Dj be a divisor
in the boundary of QX such that ).Dj / $ H. Then the following three statements
hold:

(1) If ).Dj / ª HC then ordDj .'i / is

(
positive if ).Dj / $ Hi ,

zero if ).Dj / ª Hi .

(2) If ).Dj / $ HC then !ordDj .'i / is

(
positive if ).Dj / ª Hi ,

nonnegative if ).Dj / $ Hi .
(3) In each of the above two cases, ordDj .'i / is non-zero for at least one index i .

Proof. Write H 0
i and H 0

C for the pullbacks of Hi and HC to X respectively. Note
that ordDj .)

".H 0
i // is positive if Dj is contained in )$1.H 0

i / and otherwise zero.
Since

ordDj .'i / D ordDj .)
".H 0

i // ! ordDj .)
".H 0

C//;

this proves the first and second assertion, except for the case when ).Dj / $ Hi \
HC. In this case, our assumption that H 0

i is smooth along H 0
C shows that ).Dj / $

Xreg and the order of vanishing of H 0
i along ).Dj / is 1. Therefore

!ordDj .'i / D ordDj .)
".H 0

C// ! 1 & 0:

The third assertion of Lemma 4.1 is derived by the following set-theoretic
reasoning:
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• If ).Dj / ª HC, then ).Dj / $ Hi for some i because ).Dj / $ H is
irreducible.

• If ).Dj / $ HC, then ).Dj / ª Hi for some i because
Tn
iD0 Hi D ;.

ut

From Lemma 4.1 and Eq. (40) we deduce the following result. In Lemmas 4.2
and 4.3 we retain the hypothesis from Lemma 4.1 which coincides with that in
Theorem 1.15.

Lemma 4.2. If ).Dj / $ H and u 2 RnC1>0 is strictly positive, then ordDj .`u/ is
nonzero.

Consider the sheaf of logarithmic differential one-forms "1
QX.logD/, whereD is

the sum of the irreducible components of )$1.H/. If u is an integer vector, then the
corresponding likelihood function `u on QX defines a global section of this sheaf:

dlog.`u/ D
nX

iD0
ui # dlog.'i / 2 H0

$ QX;"1
QX.logD/

%
: (41)

If u 2 CnC1nZnC1 then we define the global section dlog.`u/ by the above
expression (41).

Lemma 4.3. If u 2 RnC1>0 is strictly positive, then dlog.`u/ does not vanish on
)$1.H/.

Proof. Let x 2 )$1.H/ and D1; : : : ;Dl the irreducible components of D contain-
ing x, with local equations g1; : : : ; gl on a small neighborhood G of x. Clearly,
l & 1. By passing to a smaller neighborhood if necessary, we may assume that
"1

QX.logD/ trivializes over G, and

dlog.`u/ D
lX

jD1
ordDj .`u/ # dlog.gj / C  ;

where  is a regular 1-form. Since the dlog.gj / form part of a free basis of a
trivialization of "1

QX.logD/ over G, Lemma 4.2 implies that dlog.`u/ is nonzero

on )$1.H/ if u 2 RnC1>0 . ut

Proof of Theorem 1.7. In the notation above, the logarithmic Poincaré–Hopf theo-
rem states

Z

QX
cd
$
"1

QX.logD/
%
D .!1/d # #

$ QXn)$1.H/
%
:

See [AluLectures, Sect. 3.4] for example. IfXnH is smooth, then Lemma 4.3 shows
that, for generic u, the zero-scheme of the Eq. (41) is equal to the likelihood locus
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˚
x 2 XnH j dlog.`u/.x/ D 0

!
:

Since the likelihood locus is a zero-dimensional scheme of length equal to the ML
degree of X , the logarithmic Poincaré–Hopf theorem implies Theorem 1.7. ut

Proof of Theorem 1.15. Suppose that the likelihood locus fx 2 XregnH j
dlog.`u/.x/ D 0g contains a curve. Let C and QC denote the closures of that
curve in X and QX respectively. Let )".H/ be the pullback of the divisor H \ X of
X . If u 2 RnC1>0 then Lemma 4.3 implies that )".H/ # QC is rationally equivalent to
zero in QX . It then follows from the Projection Formula that H # C is also rationally
equivalent to zero in Pn. But this is impossible. Therefore the likelihood locus does
not contain a curve. This proves the first part of Theorem 1.15.

For the second part, we first show that pr$1
2 .u/ is contained in XnH for a strictly

positive vector u. This means there is no pair .x; u/ 2 LX with x 2 H which is a
limit of the form

.x; u/ D lim
t!0

.xt ; ut /; xt 2 XregnH; dlog.`ut /.xt / D 0:

If there is such a sequence .xt ; ut /, then we can take its limit over QX to find a point
Qx 2 QX such that dlog.`u/. Qx/ D 0, but this would contradict Lemma 4.3.

Now suppose that the fiber pr$1
2 .u/ is contained in Xreg, and hence in XregnH.

By Theorem 1.6, this fiber pr$1
2 .u/ is contained the smooth variety .LX/reg.

Furthermore, by the first part of Theorem 1.15, pr$1
2 .u/ is a zero-dimensional

subscheme of .LX/reg. The assertion on the length of the fiber now follows from a
standard result on intersection theory on Cohen–Macaulay varieties. More precisely,
we have

MLdegree.X/ D .U1 # : : : # Un/LX D .U1 # : : : # Un/.LX /reg D deg.pr$1
2 .u//;

where the Ui are pullbacks of sufficiently general hyperplanes in Pnu containing u,
and the two terms in the middle are the intersection numbers defined in [Fulton,
Definition 2.4.2]. The fact that .LX/reg is Cohen–Macaulay is used in the last
equality [Fulton, Example 2.4.8]. ut

Remark 4.4. If X is a curve, then the zero-scheme of the Eq. (41) is zero-
dimensional for generic u, even if XnH is singular. Furthermore, the length of this
zero-scheme is at least as large as ML degree of X . Therefore

!#.XnH/ & !#
$ QXn)$1.H/

%
& MLdegree .X/:

This proves that Conjecture 1.8 holds for d D 1.

Next we give a brief description of the Chern–Schwartz–MacPherson (CSM)
class. For a gentle introduction we refer to [AluLectures]. The group C.X/ of
constructible functions on a complex algebraic variety X is a subgroup of the group
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of integer valued functions on X . It is generated by the characteristic functions
1Z of all closed subvarieties Z of X . If f W X ! Y is a morphism between
complex algebraic varieties, then the pushforward of constructible functions is the
homomorphism

f" W C.X/ !! C.Y /; 1Z 7!!
(
y 7!! #

$
f $1.y/ \Z

%
; y 2 Y

)
:

If X is a compact complex manifold, then the characteristic class of X is the Chern
class of the tangent bundle c.TX/ \ ŒX $ 2 H".X IZ/. A generalization to possibly
singular or noncompact varieties is provided by the Chern–Schwartz–MacPherson
class, whose existence was once a conjecture of Deligne and Grothendieck.

In the next definition, we write C for the functor of constructible functions from
the category of complete complex algebraic varieties to the category of abelian
groups.

Definition 4.5. The CSM class is the unique natural transformation

cSM W C !! H"

such that cSM.1X/ D c.TX/ \ ŒX $ 2 H".X IZ/ when X is smooth and complete.

The uniqueness follows from the naturality, the resolution of singularities over C,
and the requirement for smooth and complete varieties. We highlight two properties
of the CSM class which follow directly from Definition 4.5:

1. The CSM class satisfies the inclusion–exclusion relation

cSM.1U[U 0/ D cSM.1U /C cSM.1U 0/ ! cSM.1U\U 0/ 2 H".X IZ/: (42)

2. The CSM class captures the topological Euler characteristic as its degree:

#.U / D
Z

X

cSM.1U / 2 Z: (43)

Here U and U 0 are arbitrary constructible subsets of a complete variety X .
What kind of information on a constructible subset is encoded in its CSM class?

In likelihood geometry, U is a constructible subset in the complex projective space
Pn, and we identify cSM.1U / with its image in H".Pn;Z/ D ZŒp$=hpnC1i. Thus
cSM.1U / is a polynomial of degree ' n is one variable p. To be consistent with the
earlier sections, we introduce a homogenizing variable u, and we write cSM.1U / as
a binary form of degree n in .p; u/.

The CSM class of U carries the same information as the sectional Euler
characteristic

#sec.1U / D
nX

iD0
#.U \ Ln$i / # pn$iui :
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HereLn$i is a generic linear subspace of codimension i in Pn. Indeed, it was proved
by Aluffi in [Alu, Theorem 1.1] that cSM.1U / is the transform of #sec.1U / under a
linear involution on binary forms of degree n in .p; u/. In fact, our involution in
Conjecture 3.15 is nothing but the signed version of the Aluffi’s involution. This is
explained by the following result.

Theorem 4.6. Let X " Pn be closed subvariety of dimension d that is not
contained in H. If the very affine variety XnH is schön then, up to signs, the ML
bidegree equals the CSM class and the sectional ML degree equals the sectional
Euler characteristic. In symbols,

cSM.1XnH/ D .!1/n$d # BX.!p; u/ and #sec.1XnH/ D .!1/n$d # SX.!p; u/:

Proof. The first identity is a special case of [Huh1, Theorem 2], here adapted to Pn
minus nC 2 hyperplanes, and the second identity follows from the first by way of
[Alu, Theorem 1.1]. ut

To make sense of the statement in Theorem 4.6, we need to recall the definition
of schön. This term was coined by Tevelev in his study of tropical compactifications
[Tevelev]. Let U be an arbitrary closed subvariety of the algebraic torus .C"/nC1.
In our application, U D XnH. We consider the closures U of U in various
(not necessarily complete) normal toric varieties Y with dense torus .C"/nC1.
The closure U is complete if and only if the support of the fan of Y contains
the tropicalization of U [Tevelev, Proposition 2.3]. We say that U is a tropical
compactification of U if it is complete and the multiplication map

m W .C"/nC1 % U !! Y; .t; x/ 7!! t # x

is flat and surjective. Tropical compactifications exist, and they are obtained from
toric varieties Y defined by sufficiently fine fan structures on the tropicalization of
U [Tevelev, §2]. The very affine variety U is called schön if the multiplication
is smooth for some tropical compactification of U . Equivalently, U is schön if
the multiplication is smooth for every tropical compactification of U , by Tevelev
[Tevelev, Theorem 1.4].

Two classes of schön very affine varieties are of particular interest. The first is
the class of complements of essential hyperplane arrangements. The second is the
class of nondegenerate hypersurfaces. What we need from the schön hypothesis
is the existence of a simple normal crossings compactification which admits suffi-
ciently many differential one-forms which have logarithmic singularities along the
boundary. For complements of hyperplane arrangements, such a compactification
is provided by the wonderful compactification of De Concini and Procesi [DP].
For nondegenerate hypersurfaces, and more generally for nondegenerate complete
intersections, the needed compactification has been constructed by Khovanskii
[Hovanskii].
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We illustrate this in the setting of likelihood geometry by a d -dimensional linear
subspace of X " Pn. The intersection of X with distinguished hyperplanes H of Pn
is an arrangement of nC 2 hyperplanes in X ' Pd , defining a matroid M of rank
d C 1 on nC 2 elements.

Proposition 4.7. If X is a linear space of dimension d then the CSM class of XnH
in Pn is

cSM.1XnH/ D
dX

iD0
.!1/ihiud$ipn$dCi :

where the hi are the signed coefficients of the shifted characteristic polynomial
in (15).

Proof. This holds because the recursive formula for a triple of arrangement
complements

cSM.1U1/ D cSM.1U ! 1U0/ D cSM.1U / ! cSM.1U0/;

agrees with the usual deletion-restriction formula [OTBook, Theorem 2.56]:

#M1.q C 1/ D #M.q C 1/ ! #M0.q C 1/:

Here our notation is as in [Huh1, §3]. We now use induction on the number of
hyperplanes. ut

Proof of Theorem 1.20. The very affine variety XnH is schön when X is linear.
Hence the asserted formula for the ML bidegree of X follows from Theorem 4.6
and Proposition 4.7. ut

Rank constraints on matrices are important both in statistics and in algebraic
geometry, and they provide a rich source of test cases for the theory developed
here. We close our discussion with the enumerative invariants of three hypersurfaces
defined by 3 % 3-determinants. It would be very interesting to compute these
formulas for larger determinantal varieties.

Example 4.8. We record the ML bidegree, the CSM class, the sectional ML degree,
and the sectional Euler characteristic for three singular hypersurfaces seen earlier
in this paper. These examples were studied already in [HKS]. The classes we present
are elements of H".Pnp % Pnu/ and of H".PnpIZ/ respectively, and they are written
as binary forms in .p; u/ as before.

• The 3 % 3 determinantal hypersurface in P8 (Example 2.1) has

BX.p; u/ D 10p8 C 24p7u C 33p6u2 C 38p5u3 C 39p4u4

C33p3u5 C 12p2u6 C 3pu7;
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cSM.1XnH/ D !11p8 C 26p7u ! 37p6u2 C 44p5u3 ! 45p4u4

C33p3u5 ! 12p2u6 C 3pu7;

SX.p; u/ D 11p8 C 182p7u C 436p6u2C518p5u3C351p4u4

C138p3u5C30p2u6C3pu7;

#sec.1XnH/ D !11p8 C 200p7u ! 470p6u2C542p5u3!357p4u4

C138p3u5!30p2u6C3pu7:

• The 3 % 3 symmetric determinantal hypersurface in P5 (Example 2.7) has

BX.p; u/ D 6p5 C 12p4u C 15p3u2 C 12p2u3 C 3pu4;

cSM.1XnH/ D 7p5 ! 14p4u C 19p3u2 ! 12p2u3 C 3pu4;

SX.p; u/ D 6p5 C 42p4u C 48p3u2 C 21p2u3 C 3pu4;

#sec.1XnH/ D 7p5 ! 48p4u C 52p3u2 ! 21p2u3 C 3pu4:

• The secant variety of the rational normal curve in P4 (Example 3.18) has

BX.p; u/ D 12p4 C 15p3u C 12p2u2 C 3pu3;

cSM.1XnH/ D !13p4 C 19p3u ! 12p2u2 C 3pu3;

SX.p; u/ D 12p4 C 30p3u C 18p2u2 C 3pu3;

#sec.1XnH/ D !13p4 C 34p3u ! 18p2u2 C 3pu3:

In all known examples, the coefficients of BX.p; u/ are less than or equal to the
absolute value of the corresponding coefficients of cSM.1XnH/, and similarly for
SX.p; u/ and #sec.1XnH/. That this inequality holds for the first coefficient is
Conjecture 1.8 which relates the ML degree of a singular X to the signed Euler
characteristic of the very affine variety XnH. }
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