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Abstract
Why do natural and interesting sequences often turn out to be log-concave? We

give one of many possible explanations, from the viewpoint of “standard conjec-
tures”. We illustrate with several examples from combinatorics.

1 Log-concave and unimodal sequences

Logarithmic concavity is a property of a sequence of real numbers, occurring through-
out algebra, geometry, and combinatorics. A sequence of real numbers a0; : : : ; ad is
log-concave if

a2
i � ai�1ai+1 for all i :

When all the entries are positive, the log-concavity implies unimodality, a property
easier to visualize: the sequence is unimodal if there is an index i such that

a0 � � � � � ai�1 � ai � ai+1 � � � � � ad :

A rich variety of log-concave and unimodal sequences arising in combinatorics can be
found in the surveys Brenti [1994] and Stanley [1989, 2000]. For an extensive discus-
sion of log-concavity and its applications in probability and statistics, see Dharmad-
hikari and Joag-Dev [1988], Marshall, Olkin, and Arnold [2011], and Saumard and
Wellner [2014].

Why do natural and interesting sequences often turn out to be log-concave? Be-
low we give one of many possible explanations, from the viewpoint of standard con-
jectures. To illustrate, we discuss three combinatorial sequences appearing in Stanley
[2000, Problem 25], in Sections 2.4, 2.5, and 2.8. Another heuristic, based on the phys-
ical principle that the entropy of a system should be concave as a function of the energy,
can be found in Okounkov [2003].

Let X be a mathematical object of “dimension” d . Often it is possible to construct
from X in a natural way a graded vector space over the real numbers

A(X) =

dM
q=0

Aq(X);
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together with a symmetric bilinear map P : A(X) � A(X) ! R and a graded linear
map L : A�(X) ! A�+1(X) that is symmetric with respect to P. The linear operator L
usually comes in as a member of a family K(X), a convex cone in the space of linear
operators on A(X).1 For example, A(X) may be the cohomology of real (q; q)-forms
on a compact Kähler manifold (Gromov [1990]), the ring of algebraic cycles modulo
homological equivalence on a smooth projective variety (Grothendieck [1969]), Mc-
Mullen’s algebra generated by the Minkowski summands of a simple convex polytope
(McMullen [1993]), the combinatorial intersection cohomology of a convex polytope
(Karu [2004]), the reduced Soergel bimodule of a Coxeter group element (Elias and
Williamson [2014]), or the Chow ring of a matroid (Section 2.6).

Often, but not always, A(X) has the structure of a graded algebra, P is determined
by the multiplicative structure of A(X) up to a constant multiple, and L is the multipli-
cation by an element in A1(X). In any case, we expect the following properties to hold
for the triple (A(X);P(X);K(X)) for every nonnegative integer q �

d
2
:

(PD) The bilinear pairing

Aq(X) � Ad�q(X) �! R; (�; �) 7�! P(�; �)

is nondegenerate (the Poincaré duality for X ).

(HL) For any L1; : : : ;Ld�2q 2 K(X), the linear map

Aq(X) �! Ad�q(X); � 7�!
� d�2qY

i=1

Li

�
�

is bijective (the hard Lefschetz theorem for X ).

(HR) For any L0;L1; : : : ;Ld�2q 2 K(X), the bilinear form

Aq(X) � Aq(X) �! R; (�1; �2) 7�! (�1)q P(�1;
� d�2qY

i=1

Li

�
�2)

is positive definite on the kernel of the linear map

Aq(X) �! Ad�q+1(X); � 7�!
� d�2qY

i=0

Li

�
�

(the Hodge-Riemann relation for X ).

All three properties are known to hold for the objects listed above except one, which
is the subject of Grothendieck’s standard conjectures on algebraic cycles. The known
proofs of the hard Lefschetz theorems and the Hodge-Riemann relations for different
objects have certain structural similarities, but there is no known way of deducing one
of them from the others.

1“P” is for Poincaré, “L” is for Lefschetz, and “K” is for Kähler.
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Hard Lefschetz theorems for various X ’s have found numerous applications to prob-
lems of combinatorial nature. An early survey of these applications can be found in
Stanley [1984]. We highlight the following three:

(1) Erdős-Moser conjecture (Erdős [1965]), proved by Stanley [1980b]: Let E be a
subset of R and let f (E; k) be the number of subsets of E whose elements sum to
k. If the cardinality of E is 2n + 1, then

f (E; k) � f
�
[�n; n] \ Z; 0

�
:

(2) McMullen’s g-conjecture (McMullen [1971]), proved by Billera and Lee [1980]
and Stanley [1980a]: The f -vector of a d -dimensional convex polytope P is the
sequence f0(P); : : : ; fd (P), where

fi (P) = the number of (i � 1)-dimensional faces of P:

The h-vector of P is the sequence h0(P); : : : ; hd (P) defined by the identity

dX
i=0

hi (P)xi =

dX
i=0

fi (P)xi (1 � x)d�i :

The g-conjecture gives a complete numerical characterization of the h-vectors of
simplicial polytopes. In particular, for any d -dimensional simplicial polytope P,

hi (P) = hd�i (P) and hi (P) � hi+1(P) for all i < d/2:

(3) Dowling-Wilson conjecture (Dowling and Wilson [1974, 1975]), proved by Huh
and Wang [2017]: Let E be a finite subset of a vector space, and let wi (E) be
the number of i -dimensional subspaces spanned by subsets of E. If E spans a
d -dimensional subspace, then

wi (E) � wd�i (E) and wi (E) � wi+1(E) for all i < d/2:

All known proofs of the above statements use some version of HL.
When the Poincaré duality for X is known, the Hodge-Riemann relation for X is

stronger than the hard Lefschetz theorem for X in the sense that, for every q,

HR in degrees at most q H) HL in degrees at most q:

In the remainder of this survey, we give an overview of applications of the Hodge-
Riemann relations to concrete problems. We remark that most known applications
only use the following immediate consequence of HR in degrees q � 1: For any
L1; : : : ;Ld�2 2 K(X), any matrix representing the symmetric bilinear form

A1(X) � A1(X) �! R; (�1; �2) 7�! P(�1;
� d�2Y

i=0

Li

�
�2)
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has exactly one positive eigenvalue. One notable exception is the implication

Grothendieck standard conjectures on algebraic cycles H)

Weil conjectures on zeta functions over finite fields;

whichwas one of themainmotivations for formulating the standard conjectures (Colmez
and Serre [2001], Kleiman [1968], and Kleiman [1994]). It will be interesting to find
applications of HR for q > 1 in other contexts too.

2 Applications of the Hodge-Riemann relations

2.1 Mixed discriminants and permanents. The notion ofmixed discriminant arises
when one combines the determinant with the matrix sum. To define the mixed discrim-
inant, let A = (A1; : : : ;Ad ) be a collection of real symmetric d � d matrices, and
consider the function

detA : Rd
�! R; (t1; : : : ; td ) 7�! det(t1A1 + � � � + tdAd );

which is a homogeneous polynomial of degree d . The number

D(A1; : : : ;Ad ) =
@d

@t1 � � � @td
detA(t1; : : : ; td )

is called the mixed discriminant of A. The mixed discriminant is symmetric in A, and
it is nonnegative whenever all the matrices in A are positive semidefinite.2

Let P = (P1; : : : ; Pd�2) be any collection of d � d positive semidefinite matrices.
Define a symmetric bilinear form HR(P) on the space of real symmetric d �d matrices
by

HR(P) : Symd � Symd �! R; (�1; �2) 7�! D(�1; �2;P1; : : : ; Pd�2):

Aleksandrov [1938] proved the following statement and used it in his proof of the
Aleksandrov-Fenchel inequality for mixed volumes of convex bodies. To avoid triv-
ialities, we suppose that HR(P) is not identically zero.

Theorem 1. Any matrix representing HR(P) has exactly one positive eigenvalue.

It follows fromCauchy’s eigenvalue interlacing theorem that, for any positive semidef-
inite d � d matrices A1; : : : ;Ad ,

det
�

D(A1;A1;A3; : : : ;Ad ) D(A1;A2;A3; : : : ;Ad )

D(A1;A2;A3; : : : ;Ad ) D(A2;A2;A3; : : : ;Ad )

�
� 0:

Theorem 1 is, in fact, a Hodge-Riemann relation in degree 1. The object X is the d -
dimensional complex vector space Cd , the algebra A(X) is the ring of real differential

2The latter fact can be viewed as a Hodge-Riemann relation in degree 0.
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forms with constant coefficients onCd , and the cone K(X) is the spectrahedral cone of
all d � d positive definite matrices. Elementary proofs of the Hodge-Riemann relation
for this X in any degree can be found in Gromov [1990] and Timorin [1998].

In the important special case when all the matrices are diagonal, the mixed discrimi-
nant is a permanent. Precisely, if A = (aij ) is an d � d matrix and if Ai is the diagonal
matrix whose j -th diagonal element is aij , then

d !D(A1; : : : ;Ad ) = per(A) :=
X

�

dY
i=1

ai�(i);

where � runs through all permutations of f1; : : : ; dg. Therefore, for any column vectors
a1; : : : ; ad in Rn with nonnegative entries,

per(a1; a2; a3; : : : ; ad )
2

� per(a1; a1; a3; : : : ; ad )per(a2; a2; a3; : : : ; ad ):

The above special case of the Hodge-Riemann relations forCd was the main ingredient
in Egorychev’s and Falikman’s proofs of van der Waerden’s conjecture that the perma-
nent of any doubly stochastic d � d matrix is at least d !/d d . See Knuth [1981] and
van Lint [1982] for more on van der Waerden’s permanent conjecture.

2.2 Mixed volumes of convex bodies. The notion of mixed volume arises when one
combines the volume with the Minkowski sum. For any collection of convex bodies
P = (P1; : : : ; Pd ) in Rd , consider the function

volP : Rd
�0 �! R�0; (t1; : : : ; td ) 7�! vol(t1P1 + � � � + tdPd ):

Minkowski noticed that volP is a homogeneous polynomial of degree d , and called the
number

V (P1; : : : ; Pd ) =
@d

@t1 � � � @td
volP(t1; : : : ; td )

the mixed volume of P. The mixed volume is symmetric in P, and it is nonnegative for
any P.3

Now let �1; : : : ; �n be another collection of convex bodies inRd , and define an n�n

matrix AF = (AFij ) by

AFij = V (�i ; �j ;P1; : : : ; Pd�2):

If AF ¤ 0, then the mixed volume analog of Theorem 1 holds.

Theorem 2. The matrix AF has exactly one positive eigenvalue.

It follows that the mixed volume satisfies the Aleksandrov-Fenchel inequality

det
�

V (P1;P1;P3; : : : ; Pd ) V (P1;P2;P3; : : : ; Pd )

V (P1;P2;P3; : : : ; Pd ) V (P2;P2;P3; : : : ; Pd )

�
� 0:

3The latter fact can be viewed as a Hodge-Riemann relation in degree 0.
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In particular, the sequence of mixed volumes of two convex bodies is log-concave:

V (P1; : : : ; P1„ ƒ‚ …
i

;P2; : : : ; P2„ ƒ‚ …
d�i

)2 � V (P1; : : : ; P1„ ƒ‚ …
i�1

;P2; : : : ; P2„ ƒ‚ …
d�i+1

)V (P1; : : : ; P1„ ƒ‚ …
i+1

;P2; : : : ; P2„ ƒ‚ …
d�i�1

):

Aleksandrov reduced Theorem 2 to the case when theMinkowski sum of all the relevant
convex bodies, say4, is a simple convex polytope. Under this hypothesis, Theorem 2 is
a Hodge-Riemann relation in degree 1 (Gromov [1990], McMullen [1993], and Teissier
[1979]). The object X is the convex polytope 4, the algebra A(X) is McMullen’s
polytope algebra generated by the Minkowski summands of 4, and the cone K(X) is
the cone of convex polytopes that share the normal fan with 4. Elementary proofs of
the Hodge-Riemann relation for thisX in any degree can be found in Fleming and Karu
[2010], McMullen [1993], and Timorin [1999].

The Alexandrov-Fenchel inequality has been used to understand linear extensions of
partially ordered sets. For example, Chung, Fishburn, and Graham [1980] conjectured
that, for any finite poset Q,

Pri (x)2 � Pri�1(x)Pri+1(x) for all i and all x 2 Q;

where Pri (x) is the fraction of linear extensions of Q in which x is the i -th largest ele-
ment. Stanley [1981] proved the conjecture by constructing suitable convex polytopes
from x 2 Q and using the Alexandrov-Fenchel inequality. For another example, write
Pr(x1 < x2) for the fraction of linear extensions of Q in which x1 is smaller than x2.
Kahn and Saks [1984] employed Stanley’s method to deduce the following remarkable
fact from the Alexandrov-Fenchel inequality:

If Q is not a chain, then there are elements x1; x2 2 Q such that

3/11 < Pr(x1 < x2) < 8/11:

This confirmed a conjecture of Fredman [1975/76] and Linial [1984] that the informa-
tion theoretic lower bound for the general sorting problem is tight up to a multiplicative
constant.

2.3 The correlation constant of a field. Let G be a finite connected graph, let i ,
j be distinct edges, and let T be a random spanning tree of G. Kirchhoff’s effective
resistance formula can be used to show that the probability that i is in T can only
decrease by assuming that j is in T :

Pr(i 2 T ) � Pr(i 2 T j j 2 T ):

In other words, the number b� of spanning trees containing given edges satisfies

bi

b
�

bij

bj

:

Now letM be a finite spanning subset of a vector space V , let i , j be distinct nonzero
vectors in M, and write b� for the number of bases in M containing given vectors. Do
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we still have the negative correlation

bi

b
�

bij

bj

?

The previous statement on graphs is the special case when M is the vertex-edge inci-
dence matrix over the field with two elements.

Seymour and Welsh [1975] gave the first example of M over a field of characteristic
2 with b bij

bi bj
= 36

35
for some i and j . How large can the ratio be?

Definition 3. The correlation constant of a field k is the supremum of b bij

bi bj
over all

pairs of distinct vectors i and j in finite vector configurations in vector spaces over k.

The correlation constant may be an interesting invariant of a field, although it is not
immediately clear that the constant is finite. In fact, the finiteness of the correlation
constant is one of the consequences of the Hodge-Riemann relations for vector config-
urations. Let n be the number of vectors in M, and let HR(M) be the symmetric n � n

matrix

HR(M)ij =

(
0 if i = j ,

bij if i ¤ j .

To avoid the trivial case HR(M) = 0, we suppose that the dimension of V is at least 2.
For example, if K4 is the set of six column vectors of the matrix�

1 1 1 0 0 0

�1 0 0 1 1 0

0 �1 0 �1 0 1

0 0 �1 0 �1 �1

�
;

then HR(K4) is the 6 � 6 symmetric matrix0@ 0 3 3 3 3 4

3 0 3 3 4 3

3 3 0 4 3 3

3 3 4 0 3 3

3 4 3 3 0 3

4 3 3 3 3 0

1A :

In Huh and Wang [2017], the following statement was deduced from Theorem 12.

Theorem 4. The matrix HR(M) has exactly one positive eigenvalue.

In fact, the same statement holds more generally for any matroid M (Huh and Wang
[ibid., Remark 15]). To deduce a bound on the correlation constant, consider the re-
striction of HR(M) to the three-dimensional subspace of Rn spanned by ei , ej , and
(1; : : : ; 1). Cauchy’s eigenvalue interlacing theorem shows that the resulting 3�3 sym-
metricmatrix also has exactly one positive eigenvalue. Expressing the 3�3 determinant,
which should be nonnegative, we get the inequality

b bij

bi bj

� 2 � 2(dimV )�1:

Thus the correlation constant of any field is at most 2. What is the correlation constant
of, say, Z/2Z? Does the correlation constant depend on the field?
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2.4 The chromatic polynomial of a graph. Generalizing earlier work of Birkhoff,
Whitney [1932] introduced the chromatic polynomial of a connected graph G as the
function on N defined by

�G(q) = the number of proper q-colorings of G:

In other words, �G(q) is the number of ways to color the vertices of G using q colors
so that the endpoints of every edge have different colors. Whitney noticed that the
chromatic polynomial is indeed a polynomial. In fact, we can write

�G(q)/q = a0(G)qd
� a1(G)qd�1 + � � � + (�1)d ad (G)

for some positive integers a0(G); : : : ; ad (G), where d is one less than the number of
vertices.

Example 5. The cycle C4 with 4 vertices and 4 edges has the chromatic polynomial

�C4
(q) = 1q4

� 4q3 + 6q2
� 3q:

The chromatic polynomial was originally devised as a tool for attacking the Four
Color Problem, but soon it attracted attention in its own right. Read [1968] conjectured
that the coefficients of the chromatic polynomial form a unimodal sequence for any
graph. A few years later, Hoggar [1974] conjecturedmore generally that the coefficients
form a log-concave sequence:

ai (G)2 � ai�1(G)ai+1(G) for any i and G.

Notice that the chromatic polynomial can be computed using the deletion-contraction
relation: if Gne is the deletion of an edge e from G and G/e is the contraction of the
same edge, then

�G(q) = �Gne(q) � �G/e(q):

The first term counts the proper colorings of G, the second term counts the otherwise-
proper colorings ofG where the endpoints of e are permitted to have the same color, and
the third term counts the otherwise-proper colorings of G where the endpoints of e are
mandated to have the same color. For example, to compute the chromatic polynomial
of the cycle C4 in Example 5, we write

= –
,

and use that the chromatic polynomials of the two smaller graphs are q(q � 1)3 and
q(q � 1)(q � 2), respectively. Note that, in general, the sum of log-concave sequences
need not be log-concave.

The log-concavity conjecture for chromatic polynomials was proved in Huh [2012]
by showing that the absolute values of the coefficients of �G(q)/(q � 1) are mixed
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multiplicities of certain homogeneous ideals constructed from G. The notion of mixed
multiplicities is a commutative algebraic analog of the notion of mixed volumes, and it
can be shown that mixed multiplicities of homogeneous ideals satisfy a version of the
Aleksandrov-Fenchel inequality. To formulate the underlying Hodge-Riemann relation
in purely combinatorial terms was the primary motivation for Adiprasito, Huh, and
Katz [2015]. The main result of Adiprasito, Huh, and Katz [ibid.] will be reviewed in
Section 2.6 below.

2.5 Counting independent sets. Howmany linearly independent collection of i vec-
tors are there in a given configuration of vectors? Let’s write M for a finite subset of a
vector space and fi (M) for the number of independent subsets of M of size i .

Example 6. Let F be the set of all nonzero vectors in the three-dimensional vector space
over the field with two elements. Nontrivial dependencies between elements of F can
be read off from the picture of the Fano plane shown below.

The nonempty independent subsets of F correspond to the seven points in F, the twenty-
one pairs of points in F, and the twenty-eight triple of points in F not in one of the seven
lines:

f0(F) = 1; f1(F) = 7; f2(F) = 21; f3(F) = 28:

Welsh [1971] conjectured that the sequence fi (M) is unimodal for any M. Shortly
after, Mason [1972] conjectured more generally that the sequence is log-concave:

fi (M)2 � fi�1(M)fi+1(M) for any i and M.

In any small specific case, the conjecture can be verified by computing the fi (M)’s by
the deletion-contraction relation: if Mnv is the deletion of a nonzero vector v from M
and M/v is the projection of M in the direction of v, then

fi (M) = fi (Mnv) + fi�1(M/v):

The first term counts the number of independent subsets of size i , the second term
counts the independent subsets of size i not containing v, and the third term counts
the independent subsets of size i containing v. As in the case of graphs, we notice
the apparent conflict between the log-concavity conjecture and the additive nature of
fi (M).

The log-concavity conjecture for fi (M) was proved in Lenz [2013] by combining a
geometric construction of Huh and Katz [2012] and a matroid-theoretic construction of
Brylawski [1977]. Given a spanning subset M of a d -dimensional vector space over a
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field k, one can construct a d -dimensional smooth projective variety X(M) over k and
globally generated line bundles L1; L2 on X(M) so that

fi (M) =

Z
X(M)

Ld�i
1 Li

2:

TheHodge-Riemann relation for smooth projective varieties is known to hold in degrees
q � 1 (Grothendieck [1958] and Segre [1937]), and this implies the log-concavity
of fi (M) as in Sections 2.1, 2.2. To express and verify the general Hodge-Riemann
relation forX(M) in purely combinatorial terms was another motivation for Adiprasito,
Huh, and Katz [2015].

2.6 The Hodge-Riemann relations for matroids. In the 1930s, Hassler Whitney
observed that several notions in graph theory and linear algebra fit together in a common
framework, that of matroids (Whitney [1935]). This observation started a new subject
with applications to a wide range of topics like characteristic classes, optimization, and
moduli spaces.

Definition 7. A matroid M on a finite set E is a collection of subsets of E, called flats
of M, satisfying the following axioms:

(1) The ground set E is a flat.

(2) If F1 and F2 are flats, then F1 \ F2 is a flat.

(3) If F is a flat, then any element not in F is contained in exactly one flat covering
F .

Here, a flat is said to cover another flat F if it is minimal among the flats properly
containing F .

For our purposes, we may and will suppose that M is loopless:

(4) The empty subset of E is a flat.

Every maximal chain of flats in F has the same length, and this common length is
called the rank of the flat F . The rank of the flat E is called the rank of the matroid M.
Matroids are determined by their independent sets (the idea of “general position”), and
can be alternatively defined in terms of independent sets (Oxley [2011, Chapter 1]).
Example 8. Let E be the set of edges of a finite graph G. Call a subset F of E a flat
when there is no edge in E n F whose endpoints are connected by a path in F . This
defines a graphic matroid on E.
Example 9. A projective space P is a set with distinguished subsets, called lines, satis-
fying:

(1) Every line contains more than two points.

(2) If x; y are distinct points, then there is exactly one line xy containing x and y.
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(3) If x; y; z; w are distinct points, no three collinear, then

the line xy intersects the line zw H) the line xz intersects the line yw:

A subspace of P is a subset S of P such that

x and y are distinct points in S H) the line xy is in S:

For any finite subset E of P , the collection of sets of the form E \ S has the structure
of a matroid. Matroids arising from subsets of projective spaces over a field k are said
to be realizable over k (the idea of “coordinates”).

Not surprisingly, the notion of realizability is sensitive to the field k. A matroid may
arise from a vector configuration over one field while no such vector configuration
exists over another field.

Among the rank 3matroids pictured above, where rank 1 flats are represented by points
and rank 2 flats containing more than 2 points are represented by lines, the first is
realizable over k if and only if the characteristic of k is 2, the second is realizable over
k if and only if the characteristic of k is not 2, and the third is not realizable over any
field. Recently, Nelson [2016] showed that almost all matroids are not realizable over
any field Nelson [ibid.].

Definition 10. We introduce variables xF , one for each nonempty proper flat F of M,
and consider the polynomial ring

S(M) = R[xF ]F ¤¿;F ¤E :

The Chow ring A(M) of M is the quotient of S(M) by the ideal generated by the linear
forms X

i12F

xF �
X
i22F

xF ;

one for each pair of distinct elements i1 and i2 of E, and the quadratic monomials

xF1
xF2

;

one for each pair of incomparable nonempty proper flats F1 and F2 of M. We have

A(M) =
M

q

Aq(M);

where Aq(M) is the span of degree q monomials in A(M).



3090 JUNE HUH

Feichtner and Yuzvinsky introduced the Chow ring of M (Feichtner and Yuzvinsky
[2004]). When M is realizable over a field k, it is the Chow ring of the “wonderful”
compactification of the complement of a hyperplane arrangement defined over k stud-
ied by De Concini and Procesi [1995].

To formulate the hard Lefschetz theorem and theHodge-Riemann relations forA(M),
we define a matroid analog of the Kähler cone in complex geometry.

Definition 11. A real-valued function c on 2E is said to be strictly submodular if

c¿ = 0; cE = 0;

and, for any two incomparable subsets I1; I2 � E,

cI1
+ cI2

> cI1 \ I2
+ cI1 [ I2

:

We note that strictly submodular functions exist. For example,

I 7�! jI jjE n I j

is a strictly submodular function. A strictly submodular function c defines an element

Lc =
X
F

cF xF 2 A1(M):

The Kähler cone K(M) is defined to be the set of all such elements in A1(M).
Now let d + 1 be the rank of M, and write “deg” for the unique linear isomorphism

deg : Ad (M) �! R

which maps xF1
� � � xFd

to 1 for every maximal chain F1 ¨ � � � ¨ Fd of nonempty
proper flats (Adiprasito, Huh, and Katz [2015, Proposition 5.10]). We are ready to
state the hard Lefschetz theorem and the Hodge-Riemann relation for M (Adiprasito,
Huh, and Katz [ibid., Theorem 8.9]).

Theorem 12. Let q be a nonnegative integer �
d
2
, and let L0;L1; : : : ;Ld�2q 2 K(M).

(PD) The product in A(M) defines a nondegenerate bilinear pairing

Aq(M) � Ad�q(M) �! R; (�; �) 7�! deg(� �):

(HL) The multiplication by L1; : : : ;Ld�2q defines a linear bijection

Aq(M) �! Ad�q(M); � 7�!
� d�2qY

i=1

Li

�
�:

(HR) The symmetric bilinear form

Aq(M) � Aq(M) �! R; (�1; �2) 7�! (�1)q deg
�� d�2qY

i=1

Li

�
�1�2

�
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is positive definite on the kernel of the multiplication map

Aq(M) �! Ad�q+1(M); � 7�!
� d�2qY

i=0

Li

�
�:

We highlight the following consequence of HR in degrees � 1: For any �1; �2 2

K(M), 0@ deg
�� Qd�2

i=1 Li

�
�1�1

�
deg

�� Qd�2
i=1 Li

�
�1�2

�
deg

�� Qd�2
i=1 Li

�
�1�2

�
deg

�� Qd�2
i=1 Li

�
�2�2

�
1A

has exactly one positive eigenvalue. Taking the determinant, we get an analog of the
Alexandrov-Fenchel inequality

deg
�� d�2Y

i=1

Li

�
�1�2

�2
� deg

�� d�2Y
i=1

Li

�
�1�1

�
deg

�� d�2Y
i=1

Li

�
�2�2

�
:

We apply the inequality to the characteristic polynomial �M(q), a generalization of
the chromatic polynomial �G(q) to a matroid M that is not necessarily graphic (Welsh
[1976, Chapter 15]). For this, we consider two distinguished elements of A1(M). For
fixed j 2 E, the elements are

˛ =
X
j 2F

xF ; ˇ =
X
j …F

xF :

The two elements do not depend on the choice of j , and they are limits of elements
of the form `c for a strictly submodular function c. A bijective counting argument in
Adiprasito, Huh, and Katz [2015] shows that

ei (M) = deg(˛i ˇd�i ) for every i ;

where ei (M) is the sequence of integers satisfying the identity

�M(q)/(q � 1) = e0(M)qd
� e1(M)qd�1 + � � � + (�1)d ed (M):

Thus the sequence ei (M) is log-concave, which implies the following conjecture of
Heron [1972], Rota [1971], and Welsh [1976]:

The coefficients of �M(q) form a log-concave sequence for any matroid M.

The above implies the log-concavity of the sequence ai (G) in Section 2.4 and the log-
concavity of the sequence fi (M) in Section 2.5. See Oxley [2011, Chapter 15] and
White [1987, Chapter 8] for overviews and historical accounts.
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2.7 The reliability polynomial of a network. Let G be a finite connected graph
with v vertices and n edges. The reliability of G is the probability that any two vertices
remain connected when each edge is independently removed with the same probability
q. Let’s write oi (G) for the number of i -edge operational states. For example, ov�1(G)

is the number of spanning trees and on�1(G) is the number of non-bridges. Thus the
reliability of G is

RG(q) =
X

i

oi (G)(1 � q)i qn�i :

We define a sequence of integers h0(G); : : : ; hd (G) by the identity

RG(q)/(1 � q)v�1 = hd (G)qd + hd�1(G)qd�1 + � � � + h0(G);

where d is one more than the difference n � v.
Example 13. The complete graph on 4 vertices has the reliability polynomial

RK4
(q) = 16q3(1 � q)3 + 15q2(1 � q)4 + 6q(1 � q)5 + 1(1 � q)6

= (1 � q)3(6q3 + 6q2 + 3q + 1):

The numbers hi are closely related to the numbers fi of independent sets in Sec-
tion 2.5. Writing M for the dual of the graphic matroid of G, we have

dX
i=0

hi (G)xi =

dX
i=0

fi (M)xi (1 � x)d�i =

dX
i=0

hi (M)xi :

Dawson [1984] conjectured that the sequence hi (M) defined by the second equality is
log-concave for any matroid M:

hi (M)2 � hi�1(M)hi+1(M) for any i and M.

Colbourn [1987] independently conjectured the same in the context of reliability poly-
nomials.

When M is the dual of a graphic matroid, or more generally when M is realizable
over the complex numbers, the log-concavity conjecture for hi (M) was proved in Huh
[2015] by applying an algebraic analog of the Alexandrov-Fenchel inequality to the va-
riety of critical points of the master function of a realization of M studied by Denham,
Garrousian, and Schulze [2012]. The underlying combinatorial Hodge-Riemann rela-
tion is yet to be formulated, and Dawson’s conjecture for general matroids remains open.
The argument in the complex realizable case is tightly connected to the geometry of
characteristic cycles (Huh [2013]), suggesting that the combinatorial Hodge-Riemann
relation in this context will be strictly stronger than that of Section 2.6.

2.8 Unsolved problems. The log-concavity of a sequence is not only important be-
cause of its applications but because it hints the existence of a structure that satisfies
PD, HL, and HR. We close by listing some of the most interesting sequences that are
conjectured to be log-concave.
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(1) Rota’s unimodality conjecture (Rota [1971]): If wk(M) is the number of rank k

flats of a rank d matroid M, then the sequence w0(M); : : : ; wd (M) is unimodal.
Welsh [1976] conjectured more generally that the sequence is log-concave.

(2) Fox’s trapezoidal conjecture (Fox [1962]): The sequence of absolute values of the
coefficients of the Alexander polynomial of an alternating knot strictly increases,
possibly plateaus, then strictly decreases. Stoimenow [2005] conjectured more gen-
erally that the sequence is log-concave.

(3) Kazhdan-Lusztig polynomials ofmatroids (Elias, Proudfoot, andWakefield [2016]):
For any matroid M, the coefficients of the Kazhdan-Lusztig polynomial of M form
a nonnegative log-concave sequence.
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