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ABSTRACT. We obtain estimates near the boundary for the critical dissipative SQG equation in bounded do-
mains, with the square root of the Dirichlet Laplacian dissipation. We prove that global regularity up to the
boundary holds if and only if a certain quantitative vanishing of the scalar at the boundary is maintained.

1. Introduction

The Surface Quasigeostrophic equation (SQG) of geophysical origin ([16]) was proposed as a two di-
mensional model for the study of inviscid incompressible formation of singularities ([3], [7]). The equation
has been studied extensively. Blow up from smooth initial data is still an open problem, although the orig-
inal blow-up scenario of [7] has been ruled out analytically ([13]) and numerically ([6]). The addition of
fractional dissipation produces globally regular solutions if the power of the Laplacian is larger or equal than
one half. When the linear dissipative operator is precisely the square root of the Laplacian, the equation is
commonly referred to as the “critical dissipative SQG”, or “critical SQG”. The global regularity of solutions
for critical SQG in the whole space or on the torus was obtained independently in [1] and [18] by very
different methods. Several subsequent proofs were obtained (see [11] and references therein).

The critical SQG equation in bounded domains is given by

∂tθ + u · ∇θ + ΛDθ = 0 (1)
with

u = ∇⊥Λ−1
D θ. (2)

Here Ω ⊂ Rd is a bounded open set with smooth boundary, ΛD is the square root of the Laplacian with
vanishing Dirichlet boundary conditions, and ∇⊥ = J∇ with J an invertible antisymmetric matrix. The
local existence and uniqueness of solutions of (1) given in [5] is

PROPOSITION 1. Let d = 2, and let θ0 ∈ H1
0 (Ω)∩H2(Ω) = D(Λ2

D). There exists T > 0 and a unique
solution of (1) with initial datum θ0 satisfying

θ ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩ L2

(
0, T ;D

(
Λ2.5
D

))
. (3)

Local existence of solutions of the same type holds also for supercritical SQG in bounded domains ([9]).
Weak solutions exist globally ([4]), even without dissipation ([8]), but are not known to be unique. How-
ever, if the initial data are interior Lipschitz continuous, then weak solutions are globally interior Lipschitz
continuous. A priori bounds for smooth solutions were given in [5] and a construction was given in [17].
Let

d(x) = dist(x, ∂Ω) (4)
denote the distance from x to the boundary of Ω.

The main result of [17] is

THEOREM 1. Let θ0 ∈ H1
0 (Ω) ∩W 1,∞(Ω) and let 0 < T ≤ ∞. There exists θ(x, t), a solution of (1)

on the time interval [0, T ), with initial data θ(x, 0) = θ0(x) and a constant Γ1 depending only on Ω such
that

‖θ(·, t)‖L∞(Ω) ≤ ‖θ0‖L∞(Ω), (5)
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and

sup
0≤t<T

sup
x∈Ω

d(x)|∇xθ(x, t)| ≤ Γ1

[
sup
x∈Ω

d(x)|∇xθ0(x)|+
(
1 + ‖θ0‖L∞(Ω)

)4]
:= M (6)

hold.

This result holds in any dimension d. Interior Lipschitz regularity is obtained using nonlinear lower
bounds for the square root of the Dirichlet Laplacian ([5]) and commutator estimates. The main obstacle to
obtain regularity up to the boundary is the absence of translation invariance, which is most sharply felt near
the boundary. The nonlinear lower bounds for the square root of the Dirichlet Laplacian ([4], [5]) are similar
to those available in the whole space ([10]), but have a cut-off due to the boundary. The lack of translation
invariance is manifested in the commutator estimates, where the commutator between the square root of the
Laplacian and differentiation is of the order d(x)−2 pointwise.

In this paper we investigate the behavior of solutions near the boundary. The local solutions obtained in
Proposition 1 belong to Cα(Ω) up to the boundary, for any 0 < α < 1, but this fact follows from embedding
of H2(Ω) ⊂ Cα(Ω) in d = 2 and the control of the H2(Ω) norm is only for short time. An interesting
recent work [19] in the spirit of [1] shows that a solution-dependent Cα(Ω) regularity holds as long as the
solution is sufficiently smooth. Unfortunately, as we mentioned earlier, smooth solutions can be guaranteed
to exist only for a short time.

The currently available quantitative global in time information for solutions with smooth initial data is
comprised of following three components:

I) Energy bounds, which imply that θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;D(Λ
1
2
D)),

II) A maximum principle, which implies θ ∈ L∞(0, T ;L∞(Ω)), and,
III) For solutions constructed by a judicious method mentioned above, the interior Lipschitz bound (6).

No uniqueness is guaranteed. The velocity is given by rotated Riesz transforms. It is known ([2]) that if
θ vanishes at the boundary and belongs to Cα then its Dirichlet Riesz transforms are in Cα(Ω). If θ belongs
to Cα and vanishes at the boundary, then the stream function ψ = Λ−1

D θ belongs to C1,α and vanishes at
the boundary, and therefore so do its tangential derivatives. Thus, the normal component of the velocity
vanishes at the boundary, but no rate is available if θ belongs to Cα.

In this work we show that the problem of controlling the Hölder continuity of the solution up to the
boundary depends solely on quantitative bounds on the the vanishing of θ at the boundary. We prove two
results detailing this fact. We consider

b1(x, t) =
θ(x, t)

w1(x)
(7)

where w1 is the normalized positive first eigenfunction of the Dirichlet Laplacian, which is known to be
smooth and to vanish as d(x) at the boundary. In Theorem 3 we show that for solutions constructed from
smooth initial data obeying the a priori information detailed above (I, II, III), and for any p > d, there exists
a time T0 and a constant B, depending only on ‖θ0‖L∞ , M (of 6) and the initial norm ‖b1(0)‖Lp(Ω), such
that

sup
0≤t≤T0

‖b1(t)‖Lp(Ω) ≤ B (8)

holds. This is a local existence theorem, local because the control of ‖b1(t)‖Lp(Ω) is maintained for finite
time, although the interior Lipschitz bound and the L∞ bound are global.

Our second main result, Theorem 4, shows that if the bound (8) holds for some interval of time, then
the solutions constructed in ([17]) are in Cα(Ω) on that interval of time. The Hölder exponent α is explicit,
it is given by α < 1 − d

p where p is the exponent in (8). Thus, the condition (8), which can be maintained
for short time, is sufficient for global Hölder regularity up to the boundary. This condition also implies a
quantitative vanishing of the normal component of velocity at the boundary, u · N = O(d(x)α) with rate
depending on M and B.
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The boundedness of ‖b1‖Lp(Ω) is a weaker condition than θ ∈ W 1,p1
0 (Ω), p1 > p > d. Thus our

condition is necessary for regularity. Local well-posedness in W 1,p1
0 (Ω) is not known. The previously

known local existence theory was established in the domain of the Laplacian, which is a strictly smaller
space. If the solution is in W 1,p

0 (Ω), p > d, then by embedding results, it is in Cα up to the boundary for
any 0 < α < 1− d

p .
In order to prove our results, we obtain key quantitative bounds using B. We show first that if B is

finite, then the velocity is bounded (Proposition 6). By contrast, if only the available a priori information (I,
II, III) is used, then the velocity logarithmically diverges with the distance to the boundary (Proposition 5).

Secondly, we obtain bounds for the finite difference quotients of velocity which diverge at the boundary
with a sublinear power of the distance, d(x)

− d
p , (Proposition 8), as opposed to d(x)−1 in the case of the a

priori global information, as was shown in [5]. A quantitative rate of vanishing of the normal component of
velocity is proved in Proposition 9.

Thirdly, we obtain bounds for the commutator between finite differences and ΛD which diverge sub-
quadratically near the boundary, d(x)

−1− d
p , (Proposition 10) as opposed to quadratically d(x)−2, which is

the case in which only the global a priori information (I, II, III) is used.
These three elements, together with the strong boundary repulsive damping effect of the square root of

the Laplacian, form the basis of the proof of persistence of Cα regularity, with α < 1− d
p .

In the whole space, any Cα, α > 0 regularity can be upgraded to Lipschitz regularity (and further to
C∞ ([12])). In bounded domains, while any interior Cα regularity can be upgraded to interior Lipschitz reg-
ularity ([5]), in general, the problem of global Lipschitz regularity up to the boundary is open. The passage
to Lipschitz bounds up to the boundary is not achievable with our tools, even conditioned on knowledge of
linear vanishing of θ (i.e. even assuming a time-independent bound for b1 in L∞). This is due to the fact
that the commutator between derivatives and ΛD still costs d(x)−1 near the boundary.

The paper is organized as follows. After recalling basic facts in Section 2 we prove in Section 3 a re-
markable generalization of the Córdoba-Córdoba inequality ([14]) which was obtained in bounded domains
in [4]. This new pointwise inequality involves weights w,

Φ′(b)ΛD(wb)− ΛD(wΦ(b)) ≥ (ΛD(w))
(
bΦ′(b)− Φ(b)

)
(9)

(see (32, 33)) and is valid for any convex function Φ of one variable which satisfies Φ(0) = 0, any smooth
function b and any smooth positive function w which vanishes at ∂Ω. The inequality implies a comparison
principle for solutions of drift diffusion equations with Dirichlet square root Laplacian and may have inde-
pendent interest. We use it with b = θ

w1
and prove that B of (8) persists to be finite if the drift is the sum of

a regular function in L∞ whose normal component vanishes at the boundary and a small L∞ function. In
Section 4 we derive bounds for the Dirichlet Riesz transforms and in Section 5 we obtain bounds for finite
differences of the Dirichlet Riesz transforms. Section 6 is devoted to the improved bounds on the commu-
tator between local finite differences and ΛD, and Section 7 contains the bound for the Hölder seminorms
near the boundary.

2. Preliminaries

We consider Ω ⊂ Rd a bounded open set with smooth boundary. TheL2(Ω) - normalized eigenfunctions
of −∆ are denoted wj , and its eigenvalues counted with their multiplicities are denoted λj :

−∆wj = λjwj . (10)

It is well known that 0 < λ1 ≤ ... ≤ λj →∞ and that −∆ is a positive selfadjoint operator in L2(Ω) with
domain D (−∆) = H2(Ω) ∩H1

0 (Ω). The ground state w1 is positive and

c0d(x) ≤ w1(x) ≤ C0d(x) (11)
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holds for all x ∈ Ω, where c0, C0 are positive constants depending on Ω. Functional calculus can be defined
using the eigenfunction expansion. In particular

(−∆)β f =
∞∑
j=1

λβj fjwj (12)

with

fj =

∫
Ω
f(y)wj(y)dy

for f ∈ D
(

(−∆)β
)

= {f | (λβj fj) ∈ `2(N)}. We denote by

ΛsD = (−∆)
s
2 , (13)

the fractional powers of the Dirichlet Laplacian, with 0 ≤ s ≤ 2 and with ‖f‖s,D the norm in D (ΛsD):

‖f‖2s,D =

∞∑
j=1

λsjf
2
j . (14)

It is well-known that
D (ΛD) = H1

0 (Ω).

Note that in view of the identity

λ
s
2 = cs

∫ ∞
0

(1− e−tλ)t−1− s
2dt, (15)

with

1 = cs

∫ ∞
0

(1− e−τ )τ−1− s
2dτ,

valid for 0 ≤ s < 2, we have the representation

((ΛD)s f) (x) = cs

∫ ∞
0

[
f(x)− et∆f(x)

]
t−1− s

2dt (16)

for f ∈ D ((−ΛD)s). We use precise upper and lower bounds for the kernelHD(t, x, y) of the heat operator,

(et∆f)(x) =

∫
Ω
HD(t, x, y)f(y)dy. (17)

These are as follows ([15],[20],[21]). There exists a time T > 0 depending on the domain Ω and constants
c, C, k, K, depending on T and Ω such that

cmin
(
w1(x)
|x−y| , 1

)
min

(
w1(y)
|x−y| , 1

)
t−

d
2 e−

|x−y|2
kt ≤

HD(t, x, y) ≤ C min
(
w1(x)
|x−y| , 1

)
min

(
w1(y)
|x−y| , 1

)
t−

d
2 e−

|x−y|2
Kt

(18)

holds for all 0 ≤ t ≤ T . Moreover

|∇xHD(t, x, y)|
HD(t, x, y)

≤ C

{ 1
d(x) , if

√
t ≥ d(x),

1√
t

(
1 + |x−y|√

t

)
, if
√
t ≤ d(x)

(19)

holds for all 0 ≤ t ≤ T . Note that

HD(t, x, y) =

∞∑
j=1

e−tλjwj(x)wj(y), (20)
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and therefore long time t ≥ T estimates are rather straightforward. The gradient bounds (19) result by
symmetry in

|∇yHD(t, x, y)|
HD(t, x, y)

≤ C

{ 1
d(y) , if

√
t ≥ d(y),

1√
t

(
1 + |x−y|√

t

)
, if
√
t ≤ d(y).

(21)

We use as well the bounds ([5])

∇x∇xHD(x, y, t) ≤ Ct−1− d
2 e−

|x−y|2

K̃t (22)

valid for t ≤ cd(x)2 and 0 < t ≤ T , and

∇x∇xHD(x, y, t) ≤ Cd(x)−2t−
d
2 e−

|x−y|2

K̃t (23)

for t ≥ cd(x)2, which follow from the upper bounds (18), (19). Important additional bounds we use are∫
Ω
|(∇x +∇y)HD(x, y, t)| dy ≤ Ct−

1
2 e−

d(x)2

K̃t , (24)

with pointwise version

|(∇x +∇y)HD(x, y, t)| ≤ ct−
d+1
2 e−

d(x)2

K̃t , (25)

and ∫
Ω
|∇x(∇x +∇y)HD(x, y, t)| dy ≤ Ct−1e−

d(x)2

K̃t , (26)

with pointwise version

|∇x(∇x +∇y)HD(x, y, t)| ≤ Ct−
d+2
2 e−

d(x)2

K̃t . (27)

valid for t ≤ cd(x)2 and 0 < t ≤ T . These bounds reflect the fact that translation invariance is remembered
in the solution of the heat equation with Dirichlet boundary data for short time, away from the boundary.
They were proved in [5], [8].

The following elementary lemma is used in several instances:

LEMMA 1. Let ρ > 0, p > 0. Then∫ ∞
0

t−1−m
2

(
p√
t

)j
e−

p2

Ktdt ≤ CK,m,jp−m (28)

if m ≥ 0, j ≥ 0, m+ j > 0, and ∫ ρ2

0
t−1e−

p2

Ktdt =

∫ ∞
p2

Kρ2

x−1e−xdx (29)

if m = 0 and j = 0, with constants CK,m,j independent of ρ and p. Note that when m + j > 0, ρ = ∞ is
allowed. Note also that the right-hand side of (29) is exponentially small if ρ ≤ εp.

We recall from [4] that the Córdoba-Córdoba inequality ([14]) holds in bounded domains. In fact, more
is true: there is a lower bound that provides a strong boundary repulsive term:

PROPOSITION 2. Let Ω be a bounded domain with smooth boundary. Let 0 ≤ s < 2. There exists
a constant c > 0 depending only on the domain Ω and on s, such that, for any Φ, a C2 convex function
satisfying Φ(0) = 0, and any f ∈ C∞0 (Ω), the inequality

Φ′(f)ΛsDf − ΛsD(Φ(f)) ≥ c

d(x)s
(
fΦ′(f)− Φ(f)

)
(30)

holds pointwise in Ω.



6 PETER CONSTANTIN AND MIHAELA IGNATOVA

We specialize from now on to s = 1. We use in particular the result above in the form ([4])

D(f)(x) =

(
fΛDf −

1

2
ΛD
(
f2
))

(x) ≥ γ1
f2(x)

d(x)
(31)

with γ1 > 0 depending only on Ω.

3. Weighted estimates

Let w(x) be a function which is positive in Ω and belongs to D(ΛD), for instance w(x) = w1(x).

LEMMA 2. Let Φ be a convex function of one variable with Φ(0) = 0. Let b be a continuous function
in the open set Ω, with wb ∈ D(ΛD). Then

Φ′(b(x))ΛD(wb)(x)− ΛD(wΦ(b))(x) = (ΛDw)(x)
(
b(x)Φ′(b(x))− Φ(b(x)

)
+DΦ(x) (32)

with

DΦ(x) = c

∫ ∞
0

t−
3
2

∫
Ω
w(y)HD(x, y, t)

[
Φ(b(y))− Φ(b(x))− Φ′(b(x))(b(y)− b(x))

]
dydt (33)

Proof. Let φ(x) = Φ(b(x)) and φ̃(x) = Φ′(b(x)). We have

(φ̃ΛD(wb)− ΛD(wφ))(x) = c
∫∞

0 t−
3
2

[
φ̃(x)w(x)b(x)−

∫
Ω φ̃(x)w(y)HD(x, y, t)b(y)dy

]
dt

−c
∫∞

0 t−
3
2

[
w(x)φ(x)−

∫
Ωw(y)HD(x, y, t)φ(y)dy

]
dt

= (b(x)φ̃(x)− φ(x))c
∫∞

0 t−
3
2

[
w(x)−

∫
Ωw(y)HD(x, y, t)dy

]
dt+DΦ(x)

= (b(x)φ̃(x)− φ(x))ΛD(w)(x) +DΦ(x)

REMARK 1. We note that DΦ ≥ 0 for convex functions Φ because the integrand is nonnegative, in view
of HD ≥ 0. Convexity of Φ is not needed for the statement of the lemma, but the lemma is used only when
DΦ is nonnegative.

Let us consider now an evolution equation

∂tθ + v · ∇θ + ΛDθ = 0 (34)

with v = v(x, t) a divergence-free vector field tangent to the boundary of Ω. Let us consider a smooth
enough weight w(x, t) > 0 which vanishes at the boundary of Ω and compute the evolution of Φ(b(x, t))
where Φ is a nonnegative convex function of one variable, with Φ(0) = 0, and where

b(x, t) =
θ(x, t)

w(x, t)
. (35)

In view of (32), we obtain the remarkable equation

(∂t + v · ∇+ ΛD)(wΦ(b)) + ((∂t + v · ∇+ ΛD)w) (bΦ′(b)− Φ(b)) +DΦ = 0, (36)

where DΦ is defined above in (33). Denoting

Lv = ∂t + v · ∇+ ΛD (37)

we have thus
Lv(wΦ(b)) + (Lv(w))(bΦ′(b)− Φ(b)) +DΦ = 0 (38)

for w > 0 and Φ convex with Φ(0) = 0. There are several important consequences of this identity. In view
of the fact that ∫

Ω
ΛD(wΦ(b))dx =

∫
Ω
wΦ(b)ΛD(1)dx, (39)

where ΛD(1) is defined by duality and wΦ(b) ∈ D(ΛD), and the lower bound ([5])

ΛD(1)(x) ≥ c0
1

w1(x)
, (40)
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we have that ∫
Ω

ΛD(wΦ(b))dx ≥ c0

∫
Ω

(
w(x)

w1(x)

)
Φ(b(x))dx. (41)

Therefore, from (38) we obtain

d

dt

∫
Ω
wΦ(b)dx+c0

∫
Ω

(
w(x)

w1(x)

)
Φ(b(x))dx+

∫
Ω

(Lv(w))(bΦ′(b)−Φ(b))dx+

∫
Ω
DΦ(x, t)dx ≤ 0. (42)

Let us take now Φ to be (a smooth convex approximation of) the function

ΦB(b) = (b−B)+ (43)

where B is a large fixed number. Notice that in this case

bΦ′B(b)− ΦB(b) = BH(b−B), (44)

where H(x) is the Heaviside function. Because bΦ′B(b)− ΦB(b) ≥ 0, if Lv(w) ≥ 0, then

d

dt

∫
Ω
w(x, t)ΦB(b(x, t))dx ≤ 0. (45)

It follows that, If ΦB(b(x, 0)) = 0, then ΦB(b(x, t)) = 0 for t ≥ 0. Applying this reasoning to the functions
b defined above in (35) as well as to b− = −θ

w1
, we obtain

|θ(x, t)| ≤ Bw(x, t). (46)

REMARK 2. This shows that if Lv(w) ≥ 0 and |θ0(x)| ≤ Bw(x, 0), then (46) holds.

THEOREM 2. Let θ solve (34) where v is a continuous, divergence-free field, tangent to the boundary.
Assume that there exists a constant γ(t) such that

v · ∇w1 + γ(t)w1 ≥ 0 (47)

holds for x ∈ Ω and t ≥ 0. Assume that the initial data θ0 obeys

|θ0(x)| ≤ Bw1(x) (48)

for all x ∈ Ω. Then

|θ(x, t)| ≤ Bw1(x)e−t
√
λ1+

∫ t
0 γ(s)ds (49)

holds for all x ∈ Ω and all t ≥ 0.

Proof. Consider
w(x, t) = e−t

√
λ1+

∫ t
0 γ(s)dsw1. (50)

Note that the assumption (47) implies that

Lv(w(x, t)) ≥ 0 (51)

Then we use (46) and conclude the proof.
If v is bounded and if its normal component vanishes of first order at the boundary then the condition

(47) is satisfied.

PROPOSITION 3. Condition (47) is satisfied if v is bounded,

‖v(t)‖L∞ ≤ V (t), (52)

and has a normal component which vanishes to first order near the boundary of Ω,

|v(x, t) ·N(x)| ≤ V (t)d(x), (53)

where N(x) is a continuous unit vector defined near the boundary ∂Ω and extending the normal at ∂Ω.
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Indeed, for any smooth vector field T (x) defined near the boundary and tangent to the boundary, we
have by the smoothness of w1 and its equivalence to the distance to the boundary,

T (x) · ∇w1(x) ≤ Cw1(x) (54)

near the boundary Ω. This inequality is true because T · ∇w1 is continuously differentiable with bounded
derivatives in Ω (hence Lipschitz continuous) and vanishes at the boundary, so it is bounded by a multiple
of d(x), and hence by a multiple of w1(x). Then we decompose v = (v · T )T + (v ·N)N = vT + vN with
T smooth near the boundary and tangent to the boundary, and use the fact that

|vN (x)| ≤ Cw1(x), (55)

near the boundary, which follows by the assumption (53). The fact that |v · ∇w1| ≤ Cw1 away from the
boundary follows from the boundedness of v. This concludes the proof of Proposition 3.

REMARK 3. Theorem 2 can be proved also using

Φ(b) = b2m. (56)

We note that in this case
bΦ′(b)− Φ(b) = (2m− 1)Φ(b). (57)

We take w = w1 and use the fact that

Lv(w1) = v · ∇w1 +
√
λ1w1, (58)

and returning to (42) we obtain

d

dt

∫
Ω
w1(x)Φ(b(x, t))dx ≤ (2m− 1)(γ(t)−

√
λ1)

∫
Ω
w1(x)Φ(b(x, t))dx (59)

where

γ(t) = sup
x∈Ω

(
−v(x, t) · ∇w1(x)

w1(x)

)
(60)

Integrating in time, taking 2m roots and then the limit m→∞, we arrive at

‖b(t)‖L∞ ≤ ‖b0‖L∞e−t
√
λ1+

∫ t
0 γ(s)ds. (61)

Note that if (47) holds then (61) is precisely (49).

We consider now the case of fixed m.

PROPOSITION 4. Let m ≥ 1 be an integer, let v be a bounded divergence-free function which can be
decomposed

v = vr + vs (62)
with vr(x, t) obeying γr ∈ L1[0, T ], where γr(t) is defined as in (60) by

sup
x∈Ω

(
−vr(x, t) · ∇w1(x)

w1(x)

)
= γr(t) (63)

and with
‖vs(t)‖L∞ ≤

c0

(2m− 1)‖∇w1‖L∞
(64)

where c0 is the constant from (42). Then∫
Ω
w1(x)

(
θ(x, t)

w1(x)

)2m

dx ≤ e(2m−1)(−t
√
λ1+

∫ t
0 γr(s)ds)

∫
Ω
w1(x)

(
θ0(x)

w1(x)

)2m

dx (65)

holds for t ∈ [0, T ].

REMARK 4. Note that the right hand side of (64) depends only on Ω and m.
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Proof. The proof follows along the same lines as above. We take Φ as in (56), w = w1, and using the
decomposition we have that

Lv(w1) = vs · ∇w1 +

(√
λ1 +

(
vr · ∇w1

w1

))
w1. (66)

Consequently, from (63) and (64) we have

(2m− 1)Lv(w1) ≥ −c0 + (2m− 1)(
√
λ1 − γr(t))w1(x). (67)

We use this inequality and (57) in (38), integrate in time, and deduce (65).
We record here a lemma relating weighted and unweighted norms of b:

LEMMA 3. Let m > p ≥ 1. Then, there exists a constant Cm,p depending only on Ω, m and p such that

‖b‖Lp(Ω) ≤ Cm,p
(∫

Ω
w1(x)b2m(x)dx

) 1
2m

(68)

holds for any b. Conversely, let p ≥ 2m− 1 ≥ 1 and let b1 = θ
w1

. Then(∫
Ω
w1(x)b2m1 (x)dx

) 1
2m

≤ ‖θ‖
1

2m

L∞(Ω)‖b1‖
2m−1
m

Lp(Ω)|Ω|
p+1−2m

2mp (69)

Proof. The first inequality uses just the Hölder inequality for the functions w1(x)
p

2m |b(x)|p and w1(x)−
p

2m ,
with exponents 2m

p , 2m
2m−p , and

Am,p =

∫
Ω
w1(x)

− p
2m−pdx <∞ (70)

which holds because p
2m−p < 1. Then Cm,p = A

2m−p
2mp
m,p . The second inequality is straighforward.

4. Bounds for Riesz transforms

We consider u given in (2),
u = ∇⊥Λ−1

D θ.

where we recall that ∇⊥ = J∇ with J an invertible antisymmetric matrix. We are interested in estimates
of u in terms of θ.

PROPOSITION 5. Let u be given by (2) and let θ be bounded and interior Lipschitz, i.e., obeying

d(y)|∇θ(y)| ≤M. (71)

Then, there exist constants C depending only on the domain Ω such that

|u(x)| ≤ CM + C‖θ‖L∞
(

1 + log

(
C

d(x)

))
. (72)

As a consequence, there exist constants γ > 0 and C, depending only on the domain Ω, M and ‖θ‖L∞ such
that ∫

Ω
eγ|u(x)|dx ≤ C. (73)

REMARK 5. The bound (72) does not use any information about vanishing of θ at the boundary, but it
uses (71) which follows in our case from a priori bounds (6). The bound is in particular true for θ = 1,
where we know that the Riesz transform is in general only BMO and is not bounded all the way to the
boundary.
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Proof. In view of the representation

Λ−1
D = c

∫ ∞
0

t−
1
2 et∆dt (74)

we have that

u(x) = c

∫ ∞
0

t−
1
2dt

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy. (75)

We split
u = uin + uout (76)

with

uin(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy (77)

with ρ = ρ(x) a length scale smaller than the distance from x to the boundary of Ω:

ρ ≤ εd(x). (78)

We split further
uin(x) =

∫ ρ2
0 t−

1
2

∫
Ω(∇⊥x +∇⊥y )HD(x, y, t)θ(y)dydt+ v(x)

= uin1 (x) + v(x)
(79)

and then
uin1 (x) =

∫ ρ2
0 t−

1
2

∫
Ω(∇⊥x +∇⊥y )HD(x, y, t)(φ(y) + (1− φ(y)))θ(y)dydt

= v1 + v2
(80)

where φ is a standard cutoff compactly supported in a ball of radius ` = ηd(x)
4 around x and identically one

in the ball of radius `
4 . Above ε > 0 and η > 0 are small numbers at our disposal.

We use (25) to bound

t−
1
2

∣∣∣(∇⊥x +∇⊥y )HD(x, y, t)
∣∣∣ ≤ C(d(x))−(d+2)

and thus

|v1(x)| =

∣∣∣∣∣
∫ ρ2

0
t−

1
2dt

∫
Ω

(∇⊥x +∇⊥y )HD(x, y, t)φ(y)θ(y)dy

∣∣∣∣∣ ≤ Cε2ηd‖θ‖L∞ . (81)

Here we estimate the volume of the support of φ by Cηdd(x)d. For v2 we use the bounds (19) and (21) and
the fact that |x− y| ≥ ηd(x)/8 on the support of 1− φ to obtain

|v2(x)| ≤ C ε
2

η2
‖θ‖L∞ . (82)

Here we used the fact that t−
d+2
2 e−

|x−y|2
Kt ≤ C|x− y|−(d+2), and

ρ2

∫
|x−y|≥ηd(x)/8

|x− y|−(d+2)dy ≤ C ε
2

η2
.

Now we write

v(x) = −c
∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥y HD(x, y, t)(φ(y) + 1− φ(y))θ(y)dy = v3 + v4 (83)

We observe that v4 is estimated exactly like v2,

|v4(x)| ≤ C ε
2

η2
‖θ‖L∞ (84)

In v3 we integrate by parts

v3(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
HD(x, y, t)∇⊥(φ(y)θ(y))dy. (85)
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We use here |∇φ| ≤ C(ηd(x))−1, and (71). Because on the support of φ we have d(x) ≤ 2d(y), we deduce
that

|v3(x)| ≤ CM + η−1‖θ‖L∞
d(x)

∫ ρ2(x)

0
t−

1
2dt ≤ Cε(M + η−1‖θ‖L∞), (86)

and consequently, from (81), (82), (84) and (86) that

|uin(x)| ≤ C
(
εM + (

ε2

η2
+ ε2ηd +

ε

η
)‖θ‖L∞

)
(87)

We write uout as
uout(x) = uT (x) + uT (x) (88)

where

uT (x) =

∫ ∞
T

t−
1
2

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy (89)

and

uT (x) =

∫ T

ρ2(x)
t−

1
2

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy. (90)

Because (20) uT is smooth, and in particular

‖uT ‖L∞ ≤ C‖θ‖L∞ (91)

We take ε = η = 1. From (87) and (91) we have

|uin(x)|+ |uT (x)| ≤ C(‖θ‖L∞ +M). (92)

On the other hand, from (11) and (18) we bound
1

d(x)
HD(x, y, t) ≤ C 1

|x− y|
t−

d
2 e
|x−y|2
Kt (93)

and using (19) we obtain

|uT (x)| ≤ c
∫ T
ρ2 t
− 1

2dt
∫

Ω t
− d

2 e−
|x−y|2
Kt

1
|x−y| |θ(y)|dy

≤ C‖θ‖L∞
(∫

R2 |y|−1e−|y|
2
dy
) ∫ T

ρ2 t
−1dt

= C log
(

T
ρ2(x)

)
‖θ‖L∞ .

(94)

For this result we used ε = η = 1, but ε may be used to show that the dependence on M is logarithmic
for large M. This concludes the proof of Proposition 5.

The next proposition uses information about vanishing of θ at the boundary.

PROPOSITION 6. Let θ be bounded and interior Lipschitz, i.e., obeying (71). Let

b1(x) =
θ(x)

w1(x)
. (95)

Let u be given by (2). For any p > d, there exist constants C depending only on the domain Ω and p such
that

‖u‖L∞ ≤ CM + C‖θ‖L∞
(
1 + log ‖b1‖Lp(Ω)

)
. (96)

Proof. We proceed like in the proof of Proposition 5, and in particular we use the bound (92). We bound uT

differently. We take a small number δ and we split

uT = u1 + u2 (97)

where

u1(x) =

∫ T

ρ2
t−

1
2

∫
Ω∩ |x−y|≤δ

∇⊥xHD(x, y, t)θ(y)dy (98)
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and

u2(x) =

∫ T

ρ2
t−

1
2

∫
Ω∩ |x−y|≥δ

∇⊥xHD(x, y, t)θ(y)dy (99)

For u2 we have, using (19), the bound (93) and Lemma 1 with j = 0 and m = d− 1,

|u2(x)| ≤ C‖θ‖L∞
∫

Ω∩ |x−y|≥δ
|x− y|−de−

|x−y|2
2KT dy ≤ C‖θ‖L∞e−

δ2

2KT log

(
C

δ

)
. (100)

In order to estimate u1 we write
θ(y) = b1(y)w1(y) (101)

and use
w1(y) ≤ Cd(y) ≤ C(d(x) + |x− y|) (102)

and (93) to estimate

|u1(x)| ≤ C
∫ T
ρ2 t
− 1

2

∫
Ω∩ |x−y|≤δ |b1(y)|

(
1 + d(x)

|x−y|

)
t−

d
2 e−

|x−y|2
Kt dy

≤ C
∫

Ω∩ |x−y|≤δ |b1(y)||x− y|−(d−1)dy + C 1
ε

∫ T
ρ2 t
− d

2 e−
|x−y|2
Kt dt

∫
Ω∩ |x−y|≤δ |b1(y)||x− y|−1dy

≤ C(1 + 1
ε )
∫

Ω∩ |x−y|≤δ |b1(y)||x− y|−(d−1)dy

(103)
where we used Lemma 1 with j = 0 and m = d − 1 in the first term of the second inequality and d(x) ≤
ε−1
√
t and Lemma 1 with j = 0 and m = d − 2 in the second term. If d = 2 we treat the second term of

the second inequality directly, ignoring the exponential and integrating

d(x)

∫ T

ρ2
t−

3
2dt ≤ 2

ε
.

From the bounds above we obtain

|uT (x)| ≤ C‖θ‖L∞e−
δ2

2KT log

(
C

δ

)
+ C

(
1 +

1

ε

)∫
Ω∩ |x−y|≤δ

|b1(y)||x− y|−(d−1)dy. (104)

We take now η = ε = 1. Putting together the estimates (92) and (104) we obtain

|u(x)| ≤ C(M + ‖θ‖L∞) + C‖θ‖L∞ log

(
C

δ

)
+ C

∫
Ω∩ |x−y|≤δ

|b1(y)||x− y|−(d−1)dy. (105)

The estimate (96) follows by appropriately choosing δ small enough. This ends the proof of Proposition 6.
Clearly, the condition b1 ∈ Lp(Ω), p > d can be relaxed to

lim
δ→0

∫
Ω∩|x−y|≤δ

|b1(y)||x− y|−(d−1)dy = 0. (106)

We show now a decomposition of the type (62).

PROPOSITION 7. If p > d and if b1 = θ
w1
∈ Lp(Ω) then, for any cr > 0, there exists τ > 0 depending

only on Ω, the norm ‖b1‖Lp(Ω), the constant M of (71) and on ‖θ‖L∞ such that

us(x) :=

∫ τ

0
t−

1
2dt

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy (107)

obeys
‖us‖L∞ ≤ cr. (108)
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Proof. We note that
us(x) = uin(x) + uτ (x) (109)

where uin is defined in (77) and hence obeys (87) and where uτ is uT of (90) for T = τ . We choose η > 0
of order one, then ε to be small enough such that εη−1 also is small enough, so that from (87) we obtain

|uin(x)| ≤ cr
4
. (110)

With these choices of ε and η we use the fact that∫
Ω∩|x−y|≤δ

|b1(y)||x− y|−(d−1)dy ≤ ‖b1‖Lp(Ω)δ
1− d

p (111)

to choose δ small enough so that

C

(
1 +

1

ε

)∫
Ω∩ |x−y|≤δ

|b1(y)||x− y|−1dy ≤ cr
4
. (112)

Now, once these choices have been made , we choose τ small enough so that

C‖θ‖L∞e−
δ2

2Kτ log

(
C

δ

)
≤ cr

2
. (113)

The result then follows from the bounds (110), (112), (113) and (104). This concludes the proof of Propo-
sition 7.

We state now the result of local control of ‖b1‖Lp .

THEOREM 3. Let θ0 ∈ H1
0 (Ω) ∩W 1,∞(Ω). Let m > d. There exists a time T0 depending only on

‖θ0‖L∞ , supx∈Ω d(x)|∇θ0(x)| and ‖b1(0)‖L2m(w1dx) and a solution θ(x, t) of (1) obeying (6) and

‖b1(t)‖L2m(w1dx) =

(∫
Ω
w1(x)b1(x, t)2mdx

) 1
2m

≤ C (114)

for t ≤ T0. Consequently, for d < p < m there exists Bp such that

sup
0≤t≤T0

‖b1(t)‖Lp(Ω) ≤ Bp (115)

holds.

Proof. The Proposition 4 and Proposition 7 are used in conjunction with Theorem 1 and Lemma 3.

REMARK 6. We observe that if θ0 vanishes at the boundary of the order d(x)β with β > 1 − 1
m then

b1(0) ∈ L2m(w1dx).

5. Bounds for finite differences of Riesz transforms

We consider now finite differences

δhu(x) = c

∫ ∞
0

t−
1
2dt

∫
Ω
δxh∇⊥xHD(x, y, t)θ(y)dy (116)

with |h| ≤ d(x)
16 .

DEFINITION 1. Let us consider a small length `0, and take 0 ≤ ` ≤ `0. We consider a ball B centered
at a point x0 with d(x0) ≥ 2` and of radius `. We take a smooth nonnegative function φ = Ψ

(
|x−x0|
`

)
with

Ψ a smooth, nonincreasing function of z ∈ R+, Ψ(z) = 1 for z ≤ 5
16 and Ψ(z) = 0 for z ≥ 7

16 . We also

take a function χ = Ψ
(
|x−x0|

2`

)
, noting that 0 ≤ φ ≤ χ ≤ 1, χφ = φ and that the support of 1 − χ is

included in |x− x0| ≥ 5`
8 , and that of∇χ in 5`

8 ≤ |x− x0| ≤ 7`
8 , so they both are disjoint from the support

of φ which is included in |x − x0| ≤ 7`
16 . We refer to φ as a “standard cutoff with scale `” and center x0,

and to χ as its “companion”.
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PROPOSITION 8. Let φ be a standard cutoff with scale ` and companion χ, let p > d, and let u be given
by (2). Then for any ε > 0, there exists δ(ε) with limε→0 δ(ε) = 0, and a constant Cε depending only on Ω,
ε and p such that

|φ(x)δhu(x)|
≤
√
εd(x)D(χδhθ) + Cε|h|d(x)

− d
p ‖b1‖Lp(Ω) + δ(ε)φ(x)|δhθ(x)|

(117)

holds pointwise.

Above D(χδhθ) is given in (31).
Proof. We start with bouunds for the gradient. We use the representation

∇u(x) = ∇uin(x) +∇uout(x) (118)

where

∇uin(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇x∇⊥xHD(x, y, t)θ(y)dy (119)

and ρ = ρ(x) ≤ εd(x). For∇uout we split in three parts. The inner portion of the integral∫ εd(x)2

ρ2
t−

1
2dt

∫
|x−y|≤d(x)

∇x∇⊥xHD(x, y, t)θ(y)dy

is bounded using (22) and ignoring the exponential, yielding∫ εd(x)2

ρ2
t−

d+3
2 dt

∫
|x−y|≤d(x) |b1(y)|(d(x) + |x− y|)dy

≤ Cρ−(d+1)d(x)
∫
|x−y|≤d(x) |b1(y)|dy ≤ Cd(x)

− d
p

(
d(x)
ρ

)d+1
‖b1‖Lp .

(120)

We use |∇x∇xHD(x, y, t)| ≤ Ct−
d
2 d(x)−2 for t ≥ cd2(x) and |x− y| ≤ d(x) to bound the integral∫ ∞

εd(x)2
t−

d+1
2 dt

∫
|x−y|≤d(x)

d(x)−2|b1(y)|(d(x) + |x− y|)dy ≤ Cεd(x)
− d
p ‖b1‖Lp . (121)

From |∇x∇xHD(x, y, t)| ≤ Cd(x)−2t−
d
2 e−

|x−y|2
Kt for t ≥ Cd(x)2, |x − y| ≥ d(x) and Lemma 1 with

m = d− 1 we obtain∫∞
0 t−

d+1
2

∫
|x−y|≥d(x)

1
d(x)2
|b1(y)|(d(x) + |x− y|)e−

|x−y|2
Kt dydt

≤ Cd(x)−1
∫
|x−y|≥d(x) |b1(y)||x− y|−d+1(1 + |x−y|

d(x) )dy

≤ Cd(x)
− d
p ‖b1‖Lp .

(122)

We used for the last integral d > 2. In the case d = 2 we take advantage of the fact that HD is smooth for
large time to bound

d(x)−2
∫ T

0 t−
3
2dt
∫
|x−y|≥d(x) |x− y|e

− |x−y|
2

Kt |b1(y)|dy
≤ CTd(x)−2

∫
|x−y|≥d(x) |x− y|

−2|b1(y)|dy
≤ Cd(x)

− 2
p ‖b1‖Lp .

(123)

We have thus

|∇uout(x)| ≤ Cεd(x)
− d
p

(
1 +

(
d(x)

ρ

)d+1
)
‖b1‖Lp(Ω) (124)

with C depending on p, ε and Ω only.
We split

δhu = δhu
in + δhu

out (125)
with

δhu(x)in = c

∫ ρ2

0
t−

1
2dt

∫
Ω
δxh∇⊥xHD(x, y, t)θ(y)dy (126)
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with ρ satisfying ρ ≤ εd(x). From the bound (124) we have

|δhuout(x)| ≤ Cε|h|d(x)
− d
p

(
1 +

(
d(x)

ρ

)d+1
)
‖b1‖Lp(Ω) (127)

with a constant depending only on Ω, ε and p. Note that if

ρ(x) = εd(x) (128)

then the estimate becomes
|δhuout(x)| ≤ Cε|h|d(x)

− d
p ‖b1‖Lp(Ω) (129)

with a constant depending only on Ω, ε and p.
We take a standard cutoff φ with scale ` and its companion χ and write

φ(x)δhu
in(x) = uh(x) + vh(x) (130)

with

uh(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥xH(x, y, t)(χ(y)δhθ(y)− χ(x)δhθ(x))dy (131)

and where
vh(x) = e1(x) + e2(x) + e3(x) + e5(x) + φ(x)δhθ(x)e4(x) (132)

with

e1(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥x (HD(x+ h, y, t)−HD(x, y, t))φ(x)(1− χ(y))θ(y)dy, (133)

e2(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥x (HD(x+ h, y, t)−HD(x, y − h, t))φ(x)χ(y)θ(y)dy, (134)

e3(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥xHD(x, y, t)(χ(y + h)− χ(y))φ(x)θ(y + h)dy, (135)

and

e4(x) = c

∫ ρ2

0
t−

1
2dt

∫
Ω
∇⊥xHD(x, y, t)dy. (136)

We used here the facts that φ = χφ and that (χθ)(·) and (χθ)(· + h) are compactly supported in Ω and
hence ∫

Ω
∇⊥xHD(x, y − h, t)φ(x)χ(y)θ(y)dy =

∫
Ω
∇⊥xHD(x, y, t)φ(x)χ(y + h)θ(y + h)dy.

From (22) we have

|e1(x)| ≤ Cρ2(x)|h|
∫ 1

0
dλ

∫
A

1

|x+ λh− y|d+3
(d(x) + |x− y|)|b1(y)|dy

where A = {y ∈ Ω | |x0 − y| ≥ 5`
8 } is the support of 1 − χ(y). Because x belongs to the support of φ, it

follows that
|e1(x)| ≤ C|h|d(x)

− d
p ‖b1‖Lp(Ω). (137)

We bound e3 using |∇χ| ≤ C`−1, Lemma 1 with m = d in conjunction with (19):

|e3(x)| ≤ C|h|
∫

Ω
|∇χ(y)| 1

|x− y|d
|b1(y)|dy,

and consequently, because x belongs to the support of φ,

|e3(x)| ≤ C|h|d(x)
− d
p ‖b1‖Lp(Ω). (138)

Regarding e4, in view of ∫
Ω
∇⊥y HD(x, y, t)dy = 0 (139)
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we have

e4(x) = c

∫ ρ2

0
t−

1
2

∫
Ω

(
∇⊥x +∇⊥y

)
HD(x, y, t)dy.

From (24) and Lemma 1 with m = j = 0, choosing ε = ε(δ) small enough in ρ = εd(x), we obtain

|e4(x)| ≤ δ. (140)

In order to estimate e2 we write

HD(x+ h, y, t)−HD(x, y − h, t) = h ·
∫ 1

0
(∇x +∇y)HD(x+ λh, y + (λ− 1)h, t)dλ (141)

and use (27) to obtain

|e2(x)|
≤ |h|

∫ 1
0 dλ

∫ ρ2
0 t−

1
2dt
∫

Ω |∇
⊥
x (∇x +∇y)HD(x+ λh, y + (λ− 1)h)||χ(y)|(d(x) + |x− y|)|b1(y)|dy

≤ C|h|‖b1‖Lpd(x)
1+d(1− 1

p
) ∫ ρ2

0 t−
d+3
2 e−

d(x)2

4Kt dt,

and therefore
|e2(x)| ≤ C|h|d(x)

− d
p ‖b1‖Lp(Ω). (142)

Finally, by a Schwartz inequality,
|uh(x)| ≤ C

√
ρD(χδhθ). (143)

This concludes the proof of the proposition.
We give also a bound for the normal component of the velocity at the boundary.

PROPOSITION 9. Let T be a C1 divergence-free vector field tangent to the boundary of Ω. Let N =
−T⊥. Let 0 < α < 1 and p > d. There exist constants `0 > 0 and C depending on the domain Ω, on p > d
and on α such that

|u(x) ·N(x)| ≤ C
(
d(x)

1− d
p ‖b1‖Lp + d(x)α‖θ‖Cα(Ω)

)
‖T‖L∞ + Cd(x)

2− d
p ‖b1‖Lp‖∇T‖L∞ (144)

holds for d(x) ≤ `0.

Proof. In view of (124), the fact that T = N⊥ is tangent to the boundary, and T · ∇xHD(x, y, t) = 0 for
x ∈ ∂Ω, we have

|uout(x) ·N(x)| ≤ Cd(x)
1− d

p ‖b1‖Lp (145)
where

uout(x) =

∫ ∞
cd2(x)

t−
1
2dt

∫
Ω
∇⊥xHD(x, y, t)θ(y)dy. (146)

We consider now uin and we write

uin(x) ·N(x) = −
∫ cd2(x)

0 t−
1
2dt
∫

Ω T (x) · ∇xHD(x, y, t)θ(y)dy

=
∫ cd2(x)

0 t−
1
2dt
∫

Ω(T (y)− T (x)) · ∇xHD(x, y, t)θ(y)dy

−
∫ cd2(x)

0 t−
1
2dt
∫
|x−y|≥cd(x) T (y) · (∇x +∇y)HD(x, y, t)θ(y)dy

−
∫ cd2(x)

0 t−
1
2dt
∫
|x−y|≤cd(x) T (y) · (∇x +∇y)HD(x, y, t)θ(y)dy

+
∫ cd2(x)

0 t−
1
2dt
∫

Ω T (y) · ∇yHD(x, y, t)(θ(y)− θ(x))dy
= U1 + U2 + U3 + U4.

(147)

Because |T (x)− T (y)| ≤ C|x− y| we have that

|U1| ≤ ‖∇T‖L∞
∫ cd2(x)

0
t−

1
2dt

∫
Ω
t−

d
2
|x− y|
t
1
2

e−
|x−y|2
Kt (d(x) + |x− y|)|b1(y)|dy

and therefore
|U1| ≤ Cd(x)

2− d
p ‖b1‖Lp‖∇T‖L∞ (148)
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holds. For U2 we use the bounds (19), (21), θ = w1b (102) and Lemma 1 to obtain

|U2| ≤ C
∫
|x−y|≥d(x)

|x− y|−d (d(x) + |x− y|) |b1(y)|dy ≤ Cd(x)
1− d

p ‖b1‖Lp (149)

with the understanding that if p = ∞ then d(x)
1− d

p is replaced by d(x) log
(

diam Ω
d(x)

)
. For U3 we use the

bound (25) and Lemma 1 to write

d(x)

∫ cd2(x)

0
t−

1
2

∫
|x−y|≤d(x)

|(∇x +∇y)HD(x, y, t)||b1(y)|dy ≤ Cd(x)
1− d

p ‖b1‖Lp . (150)

Finally, for U4 we use (21) and the fact that∫ cd2(x)

0
t−1− d

2

∫
Rd
|x− y|αe−

|x−y|2
t dy ≤ Cd(x)α (151)

to obtain
|U4| ≤ Cd(x)α‖θ‖Cα . (152)

This concludes the proof of the lemma.

6. Commutators

We consider the finite difference

(δhΛDθ)(x) = (ΛDθ)(x+ h)− (ΛDθ)(x) (153)

with |h| ≤ d(x)
32 . We use a standard cutoff with scale `, φ and its companion χ.

PROPOSITION 10. We consider the commutator

Ch(θ) = φ(x)(δhΛDθ)(x)− φ(x)ΛD(χδhθ)(x). (154)

There exists a constant Γ0 such that the commutator Ch(θ) obeys

|Ch(θ)(x)| ≤ Γ0
|h|
d(x)
‖b1‖Lp(Ω)d(x)

− d
p (155)

for |h| ≤ `
16 , θ ∈ H1

0 (Ω) ∩ L∞(Ω) and b1 = θ
w1
∈ Lp(Ω) with p > d. The constant is bounded as p→∞

and if p =∞ the estimate is

|Ch(θ)(x)| ≤ Γ0
|h|
d(x)
‖b1‖L∞(Ω). (156)

Proof. We compute the commutator as follows

(φδhΛDθ)(x)− φ(ΛDχδhθ)(x)

= c
∫∞

0 t−
3
2dt
∫

Ω(HD(x, y, t)−HD(x+ h, y, t))φ(x)(1− χ(y))θ(y)dy

−c
∫∞

0 t−
3
2dt
∫

Ω(HD(x+ h, y, t)−HD(x, y − h, t))φ(x)χ(y)θ(y)dy

−c
∫∞

0 t−
3
2dt
∫

ΩHD(x, y, t)φ(x)(δhχ)(y)θ(y + h)dy
= E1(x) + E2(x) + E3(x).

(157)

We use (157). We observe by triangle inequlaity d(y) ≤ d(x) + |x− y| and thus

|θ(y)| ≤ C|b1(y)|(d(x) + |x− y|) (158)

holds for any x, y ∈ Ω. For E1(x) we use the inequalities (18), (19), and Lemma 1 with m = d + 2

when t ≤ d(x)2, and m = d + 1 when t ≥ d(x)2, together with d(x)−1HD ≤ C|x − y|−1t−
d
2 e−

|x−y|2
Kt .

Substituting (158) for θ, we deduce

|E1(x)| ≤ C|h|
∫

Ω
|x− y|−(d+2)(d(x) + |x− y|)|b1(y)|φ(x)|1− χ(y)|dy
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and then, using a Hölder inequality we obtain

E1(x) ≤ C |h|
d(x)
‖b1‖Lpd(x)

− d
p . (159)

ForE2 we use (141) like in the proof of the estimate (142) and (25), together with Lemma 1 withm = d+2,
j = 0, and bounds ∫∞

0 t−
3
2 t−

d+1
2 e−

d(x)2

Kt dt
∫
|x−y|≤d(x) |b1(y)|(d(x) + |x− y|)dy

≤ C(d(x))−2−dd(x)
∫
|x−y|≤d(x) |b1(y)|dy

≤ Cd(x)
−1− d

p ‖b1‖Lp

(160)

and ∫∞
0 t−

3
2

∫
|x−y|≥d(x)(t

− 1
2 + 1

d(x) + 1
d(y))HD(x, y, t)|b1(y)|(d(x) + |x− y|)dydt

≤ C
∫∞

0 t−
3
2

∫
|x−y|≥d(x)(t

− 1
2 + 1

|x−y|)t
− d

2 e−
|x−y|2
Kt |b1(y)|(d(x) + |x− y|)dy

≤ C
∫
|x−y|≥d(x)

1
|x−y|d+2 |b1(y)|(d(x) + |x− y|)dy ≤ Cd(x)

−1− d
p ‖b1‖Lp

(161)

to obtain

|E2(x)| ≤ C |h|
d(x)
‖b1‖Lpd(x)

− d
p . (162)

For E3 we have

|E3(x)| ≤ |h|
∫ ∞

0
t−

3
2dt

∫
Ω
HD(x, y, t)φ(x)|∇χ(y)|(d(x) + |x− y|)b1(y)dy

and from Lemma 1 with m = d, d+ 1, j = 0 we obtain

|E3(x)| ≤ C |h|
d(x)
‖b1‖Lpd(x)

− d
p .

This concludes the proof.

7. SQG: Hölder bounds

We consider the equation (1) with u given by (2) and with initial data θ0 ∈ H1
0 (Ω) ∩ L∞(Ω). We note

we have
‖θ(t)‖L∞ ≤ ‖θ0‖L∞ . (163)

We prove the following result.

THEOREM 4. Let θ(x, t) be a solution of (1) in the bounded domain with smooth boundary Ω, obeying
(6) on a time interval [0, T ]. Assume that

sup
0≤t≤T

‖b1(t)‖Lp(Ω) ≤ B (164)

holds with p > d. Then for 0 < α < 1− d
p there exists a constant K, depending only on the domain Ω and

p, such that

sup
0≤t≤T

sup
x∈Ω

sup
|h|≤ d(x)

32

|δhθ(x, t)|
|h|α

≤ 2‖θ0‖Cα +KB(M + 1) (165)

holds, where M is the a priori bound in (1). Moreover, the velocity u is bounded u ∈ L∞(0, T ;L∞(Ω)),
obeying (96) and the normal component of the velocity vanishes near the boundary of order d(x)α, obeying
(144).

REMARK 7. In view of Theorem 3 there exists T0 > 0 such that condition (164) is satisfied on [0, T0].
We recall that (6) holds unconditionally, in view of Theorem 1.
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Proof. We take

|h| ≤ `

16
. (166)

We take x with d(x) ≤ 2`0. From the SQG equation we obtain the equation
1

2
(∂t + u · ∇) |δhθ|2 + (δhθ)δhΛDθ = −(δhθ)δhu · ∇θ(x+ h). (167)

We use a standard cutoff φ with scale `, and companion χ. We multiply by φ2 and obtain

φ2

2
(∂t + u · ∇)(|δhθ|2) + φ2δhθΛD(χδhθ) = −(φδhθ)Ch(θ)− (φδhθ)φδhu · ∇θ(x+ h) (168)

where Ch(θ) is the commutator given above in (154).
Multiplying by |h|−2α where α > 0 is smaller than 1− d

p , we obtain

φ2

2
(∂t + u · ∇) (f2) + φ2fΛD(χf) = −|h|−αφfCh(θ)− |h|−αφfφδhu · ∇θ(x+ h) (169)

where
f(x, t;h) = f = |h|−αδhθ(x, t). (170)

The first term in the right hand side of (169) is bounded using the commutator estimate (155).

φ|f ||h|−α|Ch(θ)| ≤ φ|f ||h|−αΓ0
|h|
d(x)Bd(x)

− d
p

≤ (CΓ0B|h|1−α−
d
p ) 1
d(x)φ|f |

≤ 1
d(x)

[
CΓ0B`

1−α− d
p

]
φ|f |.

(171)

In view of (6) we have that

|∇θ(x+ h)| ≤M 1

d(x)
. (172)

The second term in the right hand side of (169) is estimated using (117) with δ = δ(ε) ≤ γ1
8M with ε

sufficiently small (depending on γ1 and M but not on B). We obtain

φ|f ||h|−α|φδhu||∇θ(x+ h)|
≤Md(x)−1φ|f ||h|−α

[√
εd(x)D(χδhθ) + Cε|h|d(x)

− d
pB + γ1

8M φ|δhθ(x)|
]

≤ 1
2D(χf) + γ1

4d(x)φ
2|f |2 + CεBM |h|1−αd(x)

−1− d
pφ|f |.

(173)

where D(g) is given in (31) and where we also used M2ε ≤ γ1
8 . Therefore, if we have

0 < α < 1− d

p
(174)

we obtain from (169), (171), (173) that

φ2

2
(∂t + u · ∇) (f2) + φ2fΛD(χf) ≤ 1

2
D(χf) +

γ1

4d(x)
φ2|f |2 +

1

d(x)

[
K1B(M + 1)`

1−α− d
p

]
φ|f |

(175)
holds for |h| ≤ `

16 . Note that K1 does not depend on ` nor on h and that, in view of (174) we may take |h|
and ` > 0 as small as we wish.

The rest of the argument is by contradiction. We fix T > 0 and take 0 < ` < `0. We consider the
compact region

A` = {x ∈ Ω | ` ≤ d(x) ≤ 2`}. (176)

We assume by contradiction that there exists x1 ∈ A`, t0 ∈ [0, T ) and h0 with |h0| ≤ d(x1)
32 such that

|h0|−α|δh0θ(x1, t0)| ≥ 2‖θ0‖Cα +KB(M + 1)`
1−α− d

p

0 . (177)
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with K = 5K1
γ1

where K1 appears in (175). We may assume without loss of generality that t0 is the
infimum of such t that (177) holds for some x1 ∈ A`. The prefactor 2 in front of ‖θ0‖Cα was put there for
convenience, in order to make sure that t0 > 0 (it could have been any number larger than one). We fix h0

and t0 and take x0 ∈ A` to be a point where the maximum of the function f2(x, t0;h0) is achieved in the
region A`. We know that θ is interior Lipschitz, so |h0| > 0 and f2 is Lipschitz continuous there. Therefore
(177) holds with x0 replacing x1. We take a standard cutoff with scale `, center x0 and companion χ. We
use the inequality (30):

χfΛD(χf)− 1

2
ΛD(χ2f2) = D(χf) ≥ γ1(d(x))−1χ2|f |2, (178)

valid pointwise. We also use the fact that ΛD(χ2f2)(x0) > 0 because χ2f2 is maximized at x0. In fact,
more is true,

ΛD(χ2f2)(x0) ≥ χ2(x0)f2(x0)ΛD1.

Indeed, for any function g in the domain of ΛD which achieves its maximum at x0 ∈ Ω we have

(ΛDg)(x0) = c

∫ ∞
0

t−
3
2

(
g(x0)−

∫
Ω
HD(x, y, t)g(y)dy

)
≥ g(x0)ΛD1.

Using φ(x0) = χ(x0) = 1 we have from (175), (177) and (178) and the fact that u · ∇f2 = 0 at an interior
local maximum,

1
2∂tf

2 ≤ −χfΛDχf + 1
2D(χf) + γ1

4d(x0)φ
2f2 + 1

d(x0)K1B(M + 1)`
1−α− d

pφ|f |

≤ −1
2ΛD(χ2f2)− 1

2D(χf) + γ1
4d(x0)φ

2f2 + 1
d(x0)K1B(M + 1)`

1−α− d
pφ|f |

≤ − γ1
4d(x0)φ

2f2 + 1
d(x0)K1B(M + 1)`

1−α− d
pφ|f |

≤ − γ1
4d(x0)B(M + 1)`

1−α− d
p

0 φ|f |(K − 4K1
γ1

)

≤ − 1
4d(x0)B(M + 1)`

1−α− d
p

0 K1 < 0,

(179)

which is a contradiction. Thus (165) holds, and the proof of the uniform bound on the Hölder norm is
concluded. The fact that u obeys (96) follows from Lemma 6 and the vansihing of the normal component of
velocity follows from Proposition 9, in view of the bound (165).
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