Remarks on the fractional Laplacian with Dirichlet boundary conditions
and applications
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ABSTRACT. We prove nonlinear lower bounds and commutator estimates for the Dirichlet fractional Lapla-
cian in bounded domains. The applications include bounds for linear drift-diffusion equations with nonlocal
dissipation and global existence of weak solutions of critical surface quasi-geostrophic equations.

1. Introduction

Drift-diffusion equations with nonlocal dissipation naturally occur in hydrodynamics and in models of
electroconvection. The study of these equations in bounded domains is hindered by a lack of explicit infor-
mation on the kernels of the nonlocal operators appearing in them. In this paper we develop tools adapted
for the Dirichlet boundary case: the Cérdoba-Cérdoba inequality ([3]]) and a nonlinear lower bound in the
spirit of ([2]), and commutator estimates. Lower bounds for the fractional Laplacian are instrumental in
proofs of regularity of solutions to nonlinear nonlocal drift-diffusion equations. The presence of boundaries
requires natural modifications of the bounds. The nonlinear bounds are proved using a representation based
on the heat kernel and fine information regarding it ([4], [7]], [8]]). Nonlocal diffusion operators in bounded
domains do not commute in general with differentiation. The commutator estimates are proved using the
method of harmonic extension and results of ([1]). We apply these tools to linear drift-diffusion equations
with nonlocal dissipation, where we obtain strong global bounds, and to global existence of weak solutions
of the surface quasi-geostrophic equation (SQG) in bounded domains.

We consider a bounded open domain  C R? with smooth (at least C*>®) boundary. We denote by A the
Laplacian operator with homogeneous Dirichlet boundary conditions. Its L?(£2) - normalized eigenfunctions
are denoted w;, and its eigenvalues counted with their multiplicities are denoted A;:

- ij = )\jwj. (1)

It is well known that 0 < A; < ... < A; — oo and that —A is a positive selfadjoint operator in L?(2) with
domain D (—A) = H?(2) N H} (). The ground state w; is positive and

cod(z) < wi(z) < Cod(x) )

holds for all z € €2, where
d(x) = dist(x,0Q) 3)

and cg, Cy are positive constants depending on €2. Functional calculus can be defined using the eigenfunc-
tion expansion. In particular

(A" F =X fjw; “4)
j=1

with

fi= /Q fy)w;(y)dy
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for f € D((=A)") = {f] (A\$f;) € £*(N)}. We will denote by
H=(-A)", s=2a« )

the fractional powers of the Dirichlet Laplacian, with 0 < o < 1 and with || f||s p the norm in D (A%,):

=> Nf7. (6)
j=1

It is well-known and easy to show that
D (Ap) = H)(Q).
Indeed, for f € D (—A) we have

IV 1220 / F (=) fdz = | ApflEa = £

We recall that the Poincaré inequality implies that the Dirichlet integral on the left-hand side above is equiv-
alent to the norm in H}(Q) and therefore the identity map from the dense subset D (—A) of H{(Q) to
D (Ap) is an isometry, and thus Hg () C D (Ap). But D (—A) is dense in D (Ap) as well, because finite
linear combinations of eigenfunctions are dense in D (Ap). Thus the opposite inclusion is also true, by the
same isometry argument.

Note that in view of the identity

oo
Y = ¢, / (1 —e Myttt (7
0
with
o0
1= ca/ (1—e*%)s 17,
0
valid for 0 < a < 1, we have the representation
[e.e]
(2 D)@ =ca [ 7o) = (@) 7t ®
0
for f € D ((—A)™). We use precise upper and lower bounds for the kernel Hp (¢, x, y) of the heat operator,

mf /HDtxy y)dy. 9)

These are as follows ([4l,[7],[8]]). There exists a time 7" > 0 depending on the domain {2 and constants c,
C, k, K, depending on T" and {2 such that

w2
cmin (Tul(x?J) m1n< (y),1>t_%e_‘ w

—y|? (10)
Hp(t..y) < Cmin ({245, 1) min (5407,1) =5~ =
holds for all 0 < ¢ < T'. Moreover
1 )
[VaHp(t.z.y)| _ ) d@) if V> d(z), .

holds for all 0 < ¢t < T'. Note that, in view of

[e.9]

plt,z,y) = Ze Mwj (2)w;(y), (12)
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elliptic regularity estimates and Sobolev embedding which imply uniform absolute convergence of the series
(if 0% is smooth enough), we have that

O Hp(t,y,2) = 0 Hp(t,z,y) = Y e d0w;(y)w;(z) (13)
7=1

for positive ¢, where we denoted by 8? and 825 derivatives with respect to the first spatial variables and the
second spatial variables, respectively.
Therefore, the gradient bounds (TT]) result in

IV, Hp(t, 2, y)| { ) if VE > d(y),
— < e
VAR

14
Hp(t,2,9) ) i Vi < d(y). o

2. The Cérdoba - Cérdoba inequality

PROPOSITION 1. Let ® be a C? convex function satisfying ®(0) = 0. Let f € C$°(Q2) and let 0 < s <
2. Then

'(f)ADS — Ap(®(f)) =0 (15)

holds pointwise almost everywhere in §Q.

Proof. In view of the fact that both f € HE(Q) N H2(Q) and ®(f) € HL(Q) N H%(Q), the terms in the
inequality (T5) are well defined. We define

(AP D@ =eo [ (@) = e p@)] e 16)
and approximate the representation (8)):
(=A)% f) (z) = lim [(=A)" f], (2). (17

The limit is strong in L?(Q2). We start the calculation with this approximation and then we rearrange terms:

' (f(2) [ATf], (@) - [AQD‘( ()], @)
:Cafoot*kadtfg{ ' (f(z)) [\Qlf( ) —Hp(t,z,y)f(y)| —

1
= co [ 1710t fQHDtxmcb( (1)) - 0/ (2)) — ' () (/ <y f(@))]dy
o Jo2 170 Jo [F@)® (7)) — D(f(@)] (g — Hp(t.a,y))dy
= co [0 HDtxmcb(f(y)) D) = ¥ (@)10) - S dy
U (f (@) = ()] ca [ 101 — e D)t

Because of the convexity of <I> we have
b(b) — ®(a) —d'(a)(b—a) >0, V a,beR,
and because ®(0) = 0 we have
a®’(a) > ®(a), V a€cR.
Consequently f(z)®'(f(z)) — ®(f(x)) > 0 holds everywhere. The function
6 = et1

solves the heat equation 0;0 — Af = 0 in €2, with homogeneous Dirichlet boundary conditions, and with
initial data equal everywhere to 1. Although 1 is not in the domain of —A, e** has a unique extension to
L?(9) where 1 does belong, and on the other hand, by the maximum principle 0 < 6(z,¢) < 1 holds for
t > 0,2 € Q. Itis only because 1 ¢ D(—A) that we had to use the e approximation. Now we discard the
nonnegative term

[f(x)cI)’(f(x)) — (I)(f(w))] Co /Oo(l B 9<m7t))t_l_adt
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in the calculation above, and deduce that
'(f(2)) [ABf], (x) = [AB(®()] (2) > 0 (18)

as an element of L?(£2). (This simply means that its integral against any nonnegative L?(£2) function is
nonnegative.) Passing to the limit e — 0 we obtain the inequality (I5). If ® and the boundary of the domain
are smooth enough then we can prove that the terms in the inequality are continuous, and therefore the
inequality holds everywhere.

3. The Nonlinear Bound

We prove a bound in the spirit of ([2]]). The nonlinear lower bound was used as an essential ingredient
in proofs of global regularity for drift-diffusion equations with nonlocal dissipation.

THEOREM 1. Let f € L®(Q) N D(A%Y), 0 < o < 1. Assume that f = 9q with ¢ € L°°(Q) and 0 a
first order derivative. Then there exist constants ¢, C depending on Q) and o such that

FABf - fA S 12> cllqll | fal e (19)
holds pointwise in <), with
‘fd(fU)’ _ ‘f(xN? if ‘f(x)’ > CHQHLOO(Q) max diaIil(Q)’ ﬁ ) 20)
0, if [f(@)] < Cllallzos () max ( grmy at

Proof. We start the calculation using the inequality

N - 0B > e [ "y (t) s [ o) (@) - fwPl D
0 Q

T

where 7 > 0 is arbitrary and 0 < /(s) < 1 is a smooth function, vanishing identically for 0 < s < 1 and
equal identically to 1 for s > 2. This follows repeating the calculation of the proof of the Cérdoba-Cérdoba
inequality with ®(f) = 3 f*:
Fla) [AB 1], (@) -} [AF
= ca [ fo { [ £ @) — F@) Hp(t.2.9)F(5)] = gy (@) + $Hp(t2.9) () f dy
= co [0 |, {% [Hp(t,2,9)(f() = f()?] + 3 12(@) | = Ho(t,p)| } dy
=co [Ft717dt [, {5 [Hp(t,z,y)(f(z) — f(y)) 2dy+ 3£23(z) [1 - e21]) (2)}
> co [7t710dt Jo 5 Hp(t2,y) (f(2) — £(9)* dy

where in the last inequality we used the maximum principle again. Then, we choose 7 > 0 and let e < 7. It
follows that

) (331, 0) - 5 [0, 02 gen [0 ()0 [ Hon) (@) - 1) ay

T

f2]<>

We obtain by letting ¢ — 0. We restrictto ¢ < T,
2a 1 T t —1l-«a 2
PR N5 P @) 2 geo [0 (L)oo [ Hp(ton) (@) - S0Py @)
0 T Q

and open brackets in @:

[FAB [ = 3A5 1] (=)

> 52 @)ca fy & (£) 1710t fo Hp(t,a,y)dy — f(w)ea fy o (L) 671 70dt fo Hp(t,,y)f(y)dy

>

F@I R @)1() - J(@)]
(23)



with

T
Hw)zca/"@b(t>t‘kﬂdf/ HD@szd% (24)
0 Q

-
and

J(x) = ¢q ‘fOT P (%) t—l-oqt fﬂ Hp(t,x, y)f(y)dy‘
Jo ¢ (£) 71t [, ayHD(t,%y)Q(y)dy’ :

We proceed with a lower bound on I and an upper bound on J. For the lower bound on I we note that

(25)

:COL

9m0=/mﬁmw@2/ Hp(t, z,y)dy

Q |z—y|< 42

because Hp is positive. Using the lower bound in (2) we have that |z — y| < = implies
bt (x) > 2¢g, o (y) = Co,
|z =y |z =yl

and then, using the lower bound in (I0) we obtain

lz—y[?

Hp(t,z,y) > 2ccgt*%e* Kt

Integrating it follows that
d(z)

)
O(x,t) > Qchwd_lk% /2 " p e dp
0

If ;\(/‘% > 1 then the integral is bounded below by fol pCl*le*F’2 dp. If ;\(/:% < 1then p < 1 implies that the
exponential is bounded below by e~! and so

0@@t)2cqnﬂn{1,<%$?>d} (26)

for all 0 < t < T where ¢; is a positive constant, depending on ). Because

I(z) = /0 " C) 1100, 1) dt

L R O L
=7 @ flT (min(T,d*(z))) w(s)s—l—ads

we have

Therefore we have that
I(x) > com™ @ 27

with c; = ¢1 [ 12 ¥(s)s~17%ds, a positive constant depending only on €2 and «, provided 7 is small enough,
1
T < 3 min(7T, d*(x)). (28)
In order to bound J from above we use the upper bound which yields

/Q IV Hp(t, o, y)|dy < Cyt ™2 (29)
with C] depending only on (2. Indeed,
fd(y)zﬁ \VyHp(t,z,y)|dy
< CQt_% Jra (1 + %) t_ge_II;f‘Q dy
— Cat2




6 PETER CONSTANTIN AND MIHAELA IGNATOVA
and, in view of the upper bound in , @wl (y) < Cy and the upper bound in li

fd(y)g\/f |vyHD(t7 x, y) |d2y
d _lz—yl

< Cy Jpa ﬁt_ie Ki-dy = C5t™2

Now

T t _ -~
7 < Nl /0 ¢( )t -0 gy /Q IV, Hp(t 2, y)|dy

T

T £\ s
J < Cillgllz=( / o (L)t
0 T

J < Collql| ooy 2~ (30)

and therefore, in view of (29)

and therefore

with
o0 3
Ce = C1/ P(s)s 2" %ds
1
a constant depending only on €2 and . Now, because of the lower bound (23), if we can choose 7 so that
1
J(@) £ {11 @)1 (@)

then it follows that

1 1
{fA%”‘f - QA%“fQ} () = 1 (@)1 (2). (31)
Because of the bounds (27), the choice
lgll7~
() = c3 (32)
|f ()2

with c3 = 160%05 2 achieves the desired bound. The requirement limits the possibility of making this
choice to the situation

laFe _ 1 . 2
c3 < —min(7,d"(x (33)
Fop =3 )
which leads to the statement of the theorem. Indeed, if (32) is allowed then the lower bound in (31)) becomes
1 _
P - 305 (@) 2 clall 211 34

: _ 1 —«
with ¢ = Jcacg™.

4. Commutator estimates

We start by considering the commutator [V, Ap]in Q = Ri. The heat kernel with Dirichlet boundary

]. . .
d ‘1—11\2 |x— \2
H(:,U, y71) = (I 2 <€ — Y )

where ¥y = (y1,...,Yd—1, —Yaq). We claim that
22
/(Vx + Vy)H(z,y,t)dy < Ct2e . (35)
Q

Indeed, the only nonzero component occurs when the differentiation is with respect to the normal direction,
and then 2
_a _1=y? (g + _ (zgtyy)
(Ony 4 0, ) H ) = e T (TEU ) e

t



where we denoted 2’ = (x1,...,24-1) and ¢y’ = (y1,...,yq_1). Therefore

(zgt+yy)?

fﬂ v -I—V ) (x Y, )dy < Ct 2 f ($di_yd) e 4t dyd
—Ct 3 I e~ de

x2

=Ct~ 56 ir

Consequently
K(z,y) = / t_%(vm + Vy)H(z,y,t)dt
0

[ee] 22
/ K(z,y)dy < 0/ t2e 3t dt = %
9) 0 Lq

The commutator [V, Ap] is computed as follows

obeys

IV, Aplf(2) = [t [ [VoHp (2, y. ) f(y) — Hp(z,y, 1)V, f(y)] dydt
= Jo t fQ V + Vy)Hp(z,y,t) f(y)dydt
- fQ )dy

We have proved thus that the kernel K (x, y) of the commutator obeys
/ K(z,y)dy < Cd(x)~> (36)
Q

and therefore we obtain, for instance, for any p, ¢ € [1, co] with p_l +q¢l=1

/Q[VAD]fd:n<C</d )72 f () |pdx> (/d ) 2|g(x) |de>

In general domains, the absence of explicit expressions for the heat kernel with Dirichlet boundary
conditions requires a less direct approach to commutator estimates.

We take thus an open bounded domain  C R? with smooth boundary and describe the square root of
the Dirichlet Laplacian using the harmonic extension. We denote

Q=0xRy ={(z,2)] z€Q,2>0}

. . . 1
and consider the traces of functions in Hj ; (Q),

Hy(Q)={ve H'(Q) | v(z,2) =0, x €09, 2> 0}

Vo(Q) ={f | 3ve Hy(Q), f(z)=wv(z,0),z € Q} (37
where we slightly abused notation by referring to the images of v under restriction operators as v(x, z) for
x € 09, and as v(x, 0) for x € Q. We recall from ([1]]) that, on one hand,

1 2 x
@) = e @ | [ L8 <o) G8)

with norm

f*(x)

171, = 17125, +

1

and on the other hand V() = D(A%), i.e.

V(@) = {f e @) | F =3 fwy, SOAZf2 < oo} (39)
J J

o)
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with equivalent norm
2 o~ b 2 3 2
113 5 = 32312 = 1Al
j=1
The harmonic extension of f will be denoted v;. It is given by

v, 2) =3 eV w()
j=1

and the operator A p is then identified with
Apf=-— (azvf)| 2=0
Note that if f € V5(Q) thenvy € H 1(@Q). Note also, that v ¢ decays exponentially in the sense that
[vglletrr @) = 1€ Vsl ey + lle sl 2i@) < CllfIve
holds with £ = %. We use a lemma in Q:
LEMMA 1. Let F € H=Y(Q) (the dual of H}(Q)). Then the problem

—Au=F, inQ,
u=0, ondQ

has a unique weak solution v € H}(Q). If F € L*(Q) and if there exists | > 0 so that
HeZlFHQLz(Q) = /€2Zl|F(:E,Z)|2d:EdZ < oo

then v € H}(Q) N H?(Q) and it satisfies
ullr2(g) < Clle™ F| 2 g
with C' a constant depending only on ) and .

(40)

4D

(42)

(43)

Proof. We consider the domain U = 2 x R and take the odd extension of F' to U, F'(z, —z) = —F(z, 2).

The existence of a weak solution in H} (U) follows by variational methods, by minimizing

1
I(v) = / <2|Vv|2 +UF) dxdz
U

among all odd functions v € H} (U). The domain U has finite width, so the Poincaré inequality

IVOllZ2ry = ellollZeq

is valid for functions in HZ(U). This allows to show existence and uniqueness of weak solutions. If F' €

L?(U) we obtain locally uniform elliptic estimates

lull g2,y < CIF [ L2(vy)

where U; = {(z,2)| 2 € Q,z € (j—1,j+1D}LV; = {(z,2)| 2 € Q,2 € (j —2,5 +2)}, and
j= :l:%, +1, :l:%, ..., le j € %Z. The constant C' does not depend on j. Because of the decay assumption

on F', the estimates can be summed.

THEOREM 2. Let a € B(Q) where B(Q2) = W24(Q) N WH2(Q), ifd > 3, and B(Q) = W?P(Q)

with p > 2, if d = 2. There exists a constant C, depending only on €}, such that

lla; Aplflly p < Cllalseyllfllz b
holds for any f € Vy(Q2), with

lallB@) = lallw2.aq) + llallwre@)

(44)



ifd > 3 and
lallB) = llallw2r@)
withp > 2, ifd = 2.
Proof. In order to compute v, ¢, let us note that avy € H& (@), and
A(avy) = vpAgza +2Vza - Vo
and, because vy € ¢! H(Q) and a € B(2) we have that
[A(ave) || 2(extazazy < Cllall Byllvelleztagy-

Solving
Au = A(avy) inQ,
u=0 ondQ,

we obtain u € H}(Q) N H%(Q). This follows from Lemmaabove. Note that 9,u € Hg 1 (Q). Then
Vaf = QUf — U

and
aApf — AD(af) = _a(azvf)\zzo + 8Z(wa - U)\z:o = _azu|z:0~
The estimate follows from elliptic estimates and restriction estimates

1021y .=0llvy < CllOzullr(q) < Cllallp@llvflleim ) < Cllallp@llfllve
THEOREM 3. Let a vector field a have components in B(Q) defined above, a € (B())%. Assume that
the normal component of the trace of a on the boundary vanishes,
ajpn-n=>0
(i.e the vector field is tangent to the boundary). There exists a constant C' such that

lla- ¥, Aplflly p < Cllallz@lflls.o 45)
3
holds for any f such that f € D <A127>.

Proof. In order to compute v,.v ¢ we note that
A(a-Vvg) = Aa-Vvr+ Va-VVuy,
and because v € e H?(Q) and a € B(£2) we have that
[A(a - Vvg)llr2(estazan) < CllallB@llvellestmz()-

Then solving
Au=A(a-Vvy) inQ,
u=0 ondQ,

we obtain u € H?(Q) (by Lemma and therefore 0,u € H& 1(Q). Consequently —0,u|,—g € Vo(Q2).
Because v vanishes on the boundary and @ - V is tangent to the boundary, it follows that a- Vvy € H &7 (@)
(vanishes on the lateral boundary of () and is in H'((Q)) and therefore

Vg.vf = a- VUf — u.

Consequently
la-V,Ap]f = —0.u|,—o.
The estimate (45)) follows from the elliptic estimates and restriction estimates on u, as above:

10:u).=0llvy < CllO:ullg () < Cllallpyllvslletmzgy < C||@||B(Q)||f||g,p
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5. Linear transport and nonlocal diffusion

We study the equation

Ol +u-VO+Apd =0 (46)

with initial data
8(z,0) = 6o 47)
in the bounded open domain Q C R? with smooth boundary. We assume that u = u(x, t) is divergence-free
V-u=0, (48)

that u is smooth
u e L*(0,T; B()?), (49)

and that v is parallel to the boundary

We consider zero boundary conditions for §. Strictly speaking, because this is a first order equation, it is
better to think of these as a constraint on the evolution equation. We satrt with initial data 8y which vanish
on the boundary, and maintain this property in time. The transport evolution

and, separately, the nonlocal diffusion
o0+ Apb =0
keep the constraint of 6| 5 = 0. Because the operators u-V and A p have the same differential order, neither

dominates the other, and the linear evolution needs to be treated carefully. We start by considering Galerkin
approximations. Let

Puf =) fjw;, forf=>" fuw, (D
=1 j=1
and let .
O (z,t) = 3 0" (Hyw;(2) (52)
j=1
obey
00, + P (u-VOy) + Apby, =0 (53)
with initial data
O (2,0) = (Prbo)(z). (54)

These are ODE:s for the coefficients 6?](-m) (t), written conveniently. We prove bounds that are independent of
m and pass to the limit. Note that by construction

Om € D(AD), Vr=>0.
We start with

1d
5 i 10m 720y + 10mlT, = 0 (55)
which implies
sup 1||9m<-,t>lliz(m +/T||0m|!2v dt < 1H«%H%z(m- (56)
0<t<T 2 0 0 2

This follows because of the divergence-free condition and the fact that u|sq is parallel to the boundary.
Next, we apply Ap to (53). For convenience, we denote

[Ap,u-V]f=Tf (57)
because u is fixed throughout this section. Because P, and Ap commute, we have thus
OApOy + Py (- VADO,, +16,,) + A%6,, = 0. (58)
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Now, we multiply (38) by A%,6,, and integrate. Note that
/ P (u-VADOy, +T0,,) A 0,,da = / (- VApOm +T0,,) A0, dx
Q Q

because P,,,0,, = 0,, and P, is selfadjoint. We bound the term

[0,,A%0,,dx
Q

< Tl lvo 1T Ol 220
and use Theorem 3| to deduce

< Cllull gy |ADOm v, AL O]l 25

[0,,A%0,,dx
Q

We compute

Jo(u- VAD0 AL Omda = [, A% (u- VApOy)Apby,

= [ol( Au VApbm —2Vu - VVApROy] ApbOmdz + [ (u - VA%H JA DO, dx

= Jo l(— VADe —2Vu - VVApOn,] Apbydx — fQA%G w-VApby, )dx
_fQ VADH )ADGm—I-QVuVADQmVADQ dx—fﬂ u-VApb,, )A O,dx.

In the first integration by parts we used the fact that A3D6m is a finite linear combination of eigenfunctions
which vanish at the boundary. Then we use the fact that A% = —A is local. In the last equality we
integrated by parts using the fact that A6, is a finite linear combination of eigenfunctions which vanish at
the boundary and the fact that u is divergence-free. It follows that

/(u . VADQm)A%deJZ = ;/ [((—Au) . VADHW)ADQm + QVUVADHWVADG,TJ dx
Q Q

and consequently

/Q (- VApOm) A0, da

< CHUHB(Q)HA%Hm”%?(Q)
‘We obtain thus
T T
o u d.
sup (1450 1) a0 + /O |AD O g dt < CIAB B 72y oo™, (59)

Passing to the limit m — oo is done using the Aubin-Lions Lemma ([6]]). We obtain

THEOREM 4. Let u € L?(0,T; B(Q)?) be a vector field parallel to the boundary. Then the equation
(14__6]) with initial data 0y € H} () N H%(Q) has unique solutions belonging to

0 € L>=(0,T; H*(Q) N Hi(Q)) N L0, T; H*5(Q)).
If the initial data 0y € LP(2), 1 < p < o0, then
sup [|0(-, )l zr2) < 100l Lo (o) (60)
0<t<T
holds.

The estimate holds because, by use of Proposition [I] for the diffusive part and integration by parts
for the transport part, we have for solutions of

d p
01 0y <0,

1 < p < co0. The L* bound follows by taking the limit p — oo in (60).
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6. SQG
We consider now the equation
O +u-VO+Aph =0 (61)
with
u= Rp0 (62)
and
Rp = VAL (63)

in a bounded open domain in Q@ C R? with smooth boundary. Local existence of smooth solutions is
possible to prove using methods similar to those developed above for linear drift-diffusion equations. We
will consider weak solutions (solutions which satisfy the equations in the sense of distributions).

THEOREM 5. Let 0y € L*(Q) and let T > 0. There exists a weak solution 0f
6 € L(0,T5 L7(Q)) N L*(0, T; Vo(2))
satisfying limy_o0(t) = 0 weakly in L*().

Proof. We consider Galerkin approximations, 6,

m

Om (1) =) 0;(t)w;(x)

Jj=1

obeying the ODEs (written conveniently as PDEs):
86um + P [Rf)(em) : vem} I —

with initial datum
0 (0) = Prn(60)-
We observe that, multiplying by 6,, and integrating we have
1d
2dt
which implies that the sequence 6, is bounded in

O, € L0, T; L*(Q)) N L2(0,T; Vo ()

16 ]1% + 10m13 ;, = O

It is known ([T]) that Vo(Q2) C L*(£2) with continuous inclusion. It is also known ([5]) that
Rp : LY (Q) — LY(Q)

are bounded linear operators. It is then easy to see that 9,6, are bounded in L2(0,T; H~1(Q)). Applying
the Aubin-Lions lemma, we obtain a subsequence, renamed 6,,, converging strongly in L2(0, T'; L?(2)) and
weakly in L2(0, T'; Vo(2)) and in L2(0, T'; L*(2)). The limit solves the equation (61)) weakly. Indeed, this
follows after integration by parts because the product (R560,,)0;, is weakly convergent in L2(0, T; L%(£2))
by weak-times-strong weak continuity. The weak continuity in time at ¢ = 0 follows by integrating

(B(8):6) = (0,0).) = [ L0 (s)as

and use of the equation and uniform bounds. We omit further details.
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