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HIGH REYNOLDS NUMBER AND HIGH WEISSENBERG NUMBER
OLDROYD-B MODEL WITH DISSIPATION

PETER CONSTANTIN1, JIAHONG WU2, JIEFENG ZHAO3 AND YI ZHU4

Abstract. We give a small data global well-posedness result for an incompressible

Oldroyd-B model with wave number dissipation in the equation of stress tensor. The

result is uniform in solvent Reynolds numbers, and requires only fractional wave-number

dependent dissipation (−∆)β , β ≥ 1
2 in the added stress.

1. Introduction

A class of models of complex fluids is based on an equation for a solvent coupled with

a kinetic description of particles suspended in it. In the case of dilute suspensions weakly

confined by a Hookean spring potential, a rigorously established exact closure for the

moments in the kinetic equation of this Navier-Stokes-Fokker-Planck system yields the

Oldroyd-B system ([21]). After non-dimensionalization, the coupled Oldroyd-B system is
∂tu+ u · ∇u+∇p− 1

Re
∆u = K∇ · σ,

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − 1
We

(σ − I),
∇ · u = 0,

(1.1)

where σ is the conformation tensor, σ = E(m ⊗m) with m the end-to-end vector in Rd

and E the average with respect to the local distribution, u is the solvent velocity, p is

the pressure, Re is the Reynolds number of the solvent, We is the Weissenberg number,

K = 1
γReWe

and γ is the ratio of solvent viscosity to polymeric viscosity. In the limit

of zero Reynolds number, the system (1.1) reduces further and it becomes a nonlinear

evolution for σ

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − 1

We
(σ − I) (1.2)

where u is obtained from σ by solving the Stokes system

−∆u+∇p =
1

γWe
∇ · σ, ∇ · u = 0. (1.3)

The system (1.2) with (1.3) is an example of an equation which might develop finite time

singularities for large data, even in R2. The forcing in the right hand side of (1.3) or in

the right hand side of the momentum equation of (1.1) depends only on the added stress

τ = σ − I, (1.4)
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because any multiple of the identitity matrix added to σ is balanced by a pressure, even

if the factor is a function of space and time. For small added stress it is known ([7]) that

the system (1.2), (1.3) has global solutions. The problem of global existence of smooth

solutions for large data is open and challenging. The large Weissenberg number problem

is challenging both numerically and analytically. If we replace the damping term by

a wave-number dependent dissipative term we obtain an equation for the conformation

stress

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − ηP (D)(σ − I) (1.5)

with P (D) a dissipative differential operator and η a positive number. If a small diffusive

term (P (D) = −∆ in (1.5)) is added to the equation for σ coupled with (1.3) then global

existence of smooth solutions with arbitrary data has been established ([8]) in d = 2. For

the small data problem one can discuss a less stringent wave-number dependence, and

allow the solvent Reynolds number to be arbitrarily large.

In this paper we consider an Oldroyd-B model
∂tu+ u · ∇u+∇p = ∇ · τ, x ∈ Rd, t > 0,

∂tτ + u · ∇τ + η(−∆)βτ +Q(τ,∇u) = D(u),

∇ · u = 0,

u(0, x) = u0(x), τ(0, x) = τ0(x),

(1.6)

where 0 6 β 6 1 and η > 0 are real parameters, u = u(x, t) represents the velocity field of

the fluid, p = p(x, t) the pressure and τ = τ(x, t) the non-Newtonian added stress tensor

(see (1.4)) (a d-by-d symmetric matrix). Here D(u) is the symmetric part of the velocity

gradient,

D(u) =
1

2

(
∇u+ (∇u)>

)
and the bilinear term Q is taken to be

Q(τ,∇u) = τW (u)−W (u)τ − b
(
D(u)τ + τD(u)

)
with b ∈ [−1, 1] a constant and W (u) the skew-symmetric part of the ∇u,

W (u) =
1

2

(
∇u− (∇u)>

)
.

The fractional Laplacian operator (−∆)γ is defined through the Fourier transform,

̂(−∆)γf(ξ) = |ξ|2γ f̂(ξ).

For notational convenience, we also write Λ = (−∆)
1
2 denoting the Zygmund operator.

Background information on the Oldroyd-B model can be found in many references (see,

e.g., [2, 26]).

Our main result is the small data global well-posedness of (1.6) with any 1
2
6 β 6

1. There is no damping mechanism in the equation of τ in (1.6): strictly speaking

the Weissenberg number is infinite, but wave-number dependent dissipation is added.

Whether or not (1.6) with 0 ≤ β < 1
2

possesses small data global well-posedness remains

an open problem.
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Theorem 1.1. Consider (1.6) with 1
2
6 β 6 1. Let d = 2, 3 and s > 1 + d

2
. Assume

(u0, τ0) ∈ Hs(Rd), ∇ · u0 = 0, and τ0 is symmetric. Then there exists a small constant

ε > 0 such that, if

‖u0‖Hs + ‖τ0‖Hs 6 ε,

then (1.6) has a unique global solution (u, b) satisfying, for some constant C > 0 and all

t > 0.

‖u‖Hs + ‖τ‖Hs 6 Cε.

The small data global well-posedness for an Oldroyd-B model without dissipation in

the velocity equation has previously been examined by T. Elgindi and F. Rousset in the

2D case [11] and by T. Elgindi and J. Liu for the 3D case [12]. They focus on the following

Oldroyd-B model without velocity dissipation,
ut + u · ∇u+∇p = ∇ · τ, x ∈ Rd, t > 0,

τt + u · ∇τ +Q(τ,∇u)− η∆τ + aτ = D(u),

∇ · u = 0,

(1.7)

where a > 0 is a parameter. The small data global well-posedness result in [11] is for

(1.7) with d=2 and a > 0. The damping term plays a crucial role in the proof of their

result and can not be removed. It was used to form a damping term in the equation of a

combined quantity. [12] examined (1.7) with d = 3 and a > 0 and obtained the small data

global well-posedness for any sufficiently small data (u0, τ0) ∈ H3. The damping term aτ

in (1.7) is also necessary for their result.

The velocity equation in (1.6) is a forced Euler equation. As it is known, the Hs-norm

of a solution of the Euler equation may grow in time, even perhaps at a double exponential

rate (see, e.g., [10, 20, 35]). The Oldroyd-B system discussed has a dissipative structure,

and a main reason why Theorem 1.1 holds is a key observation on the linearized system

of (1.6). Clearly, any solution (u, τ) of (1.6) also solves
∂tu+ P(u · ∇u) = P∇ · τ, x ∈ Rd, t > 0,

∂tP∇ · τ + P∇ · (u · ∇τ) + η(−∆)βP∇ · τ + P∇ ·Q(τ,∇u) = 1
2
∆u,

∇ · u = 0,

(1.8)

where P denotes the Leray projection onto divergence-free vector fields. The corresponding

linearized system is given by
∂tu = P∇ · τ,
∂tP∇ · τ + η(−∆)βP∇ · τ = 1

2
∆u,

∇ · u = 0,
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which can be easily reduced to a system of decoupled wave type equations
∂ttu+ η(−∆)β∂tu− 1

2
∆u = 0,

∂tt(P∇ · τ) + η(−∆)β∂t(P∇ · τ)− 1
2
∆(P∇ · τ) = 0,

∇ · u = 0.

(1.9)

The structure in (1.9) reveals that there are both dissipative and dispersive effects on u in

(1.6). We remark that the Oldroyd-B model with only velocity dissipation share a similar

structure and has been shown by Yi Zhu to possess a unique global small solution [33].

In order to prove the existence part of Theorem 1.1, we construct a suitable Lyapunov

functional that incorporate these effects. We set the Lyapunov functional to be

L(t) = ‖u(t)‖2Hs(Rd) + ‖τ(t)‖2Hs(Rd) + 2k(u(t),∇ · τ(t))Hs−β(Rd),

where (f, g)Hσ(Rd) denotes the inner product in Hσ(Rd). When the parameter k > 0 is

sufficiently small and when 1
2
≤ β ≤ 1, we are able to show that, for any t ≥ 0,

E(t) := ‖u(t)‖2Hs(Rd) + ‖τ(t)‖2Hs(Rd)

+2

∫ t

0

(
η‖Λβτ(t′)‖2Hs +

k

2
‖∇u(t′)‖2Hs−β

)
dt′ (1.10)

obeys

E(t) ≤ E(0) + C E
3
2 (t). (1.11)

A bootstrap argument applied to (1.11) implies that, if E(0) is sufficiently small, namely

E(0) ≤ ε

for some suitable ε > 0, then E(t) is bounded uniformly for all time t > 0, or

E(t) ≤ C ε,

which allows us to establish the global existence of solutions to (1.6). In order to prove

the uniqueness, we distinguish between two cases, β = 1 and 1
2
≤ β < 1. When β = 1,

the term Q(τ,∇u) can be bounded directly. When 1
2
≤ β < 1, one needs to make use of

the wave structure to generate a dissipative term in the velocity field in order to deduct

a suitable bound for Q(τ,∇u).

The second part of this paper rigorously assesses that the Oldroyd-B system in (1.6) is

the vanishing viscosity limit of the Oldroyd-B system with kinematic dissipation
∂tu+ u · ∇u+∇p+ ν(−∆)αu = ∇ · τ, x ∈ Rd, t > 0,

∂tτ + u · ∇τ + η(−∆)βτ +Q(τ,∇u) = D(u),

∇ · u = 0,

u(0, x) = u0(x), τ(0, x) = τ0(x),

(1.12)

where ν > 0, η > 0, 0 ≤ α ≤ 1 and 1
2
≤ β ≤ 1. First of all, (1.12) always possesses a

unique global solution when the initial data is sufficiently small.
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Theorem 1.2. Consider (1.12) with

ν > 0, η > 0,
1

2
≤ β ≤ 1 and 0 ≤ α ≤ min{1, 3β − 1}.

Assume (u0, τ0) ∈ Hs(Rd) with s > 1 + d
2
. There exists small number ε > 0 (independent

of ν) such that, if

‖(u0, τ0)‖Hs ≤ ε,

then (1.12) has a unique global solution (u(ν), τ (ν)) satisfying

u(ν) ∈ C([0,∞);Hs) ∩ L2(0,∞;Hs+α) ∩ L2(0,∞;Hs+1−β);

τ (ν) ∈ C([0,∞);Hs) ∩ L2(0,∞;Hs+β).

In addition, (u(ν), τ (ν)) admits the following bound that is uniform in time and in ν,

‖(u(ν)(t), τ (ν)(t))‖Hs ≤ C ε, (1.13)

where C is independent of t and ν.

In particular, Theorem 1.2 holds for the case when α = 1 and β = 1, namely the

standard Laplacian case. We emphasize that ε in Theorem 1.2 is independent of ν. In

addition, the fact that the bound for the solution (u(ν), τ (ν)) in Hs is uniform in terms

of ν plays crucial role in the proof of the following vanishing viscosity limit. As ν → 0,

(1.12) converges to (1.6) in the sense as stated in the following theorem.

Theorem 1.3. Assume

ν > 0, η > 0,
1

2
≤ β ≤ 1 and 0 ≤ α ≤ min{1, 3β − 1}.

Let (u0, τ0) ∈ Hs(Rd) with s > 1 + d
2

and s ≥ 2α + 2β − 1. Assume that the norm of

(u0, τ0) ∈ Hs is sufficiently small, namely

‖(u0, τ0)‖Hs ≤ ε

such that (1.6) and (1.12) each has a unique global solution. Let (u, τ) and (u(ν), τ (ν)) be

the solutions of (1.6) and (1.12), respectively. Then,

‖(u(ν)(t), τ (ν)(t))− (u(t), τ(t))‖L2 ≤ C ν, (1.14)

where C may depend on t and the initial data but is independent of ν.

We remark that small data global solutions of (1.6) in critical homogeneous Besov

spaces have also been obtained ([28]). Due to its special features, the Oldroyd-B model

has recently attracted considerable interests from the community of mathematical fluids.

A rich array of results have been established on the well-posedness and closely related

problems. Interested readers can consult some of the references listed here, see, e.g., [1, 3,

4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 22, 18, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34].

This list is by no means exhaustive.
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2. Proof of Theorem 1.1

This section proves Theorem 1.1.

Proof. The proof is naturally divided into two parts. The first part is for the existence

while the second part is for the uniqueness.

To prove the global existence of solutions, it suffices to establish the energy inequality

in (1.11) with E(t) being defined in (1.10). The proof of (1.11) is via energy estimates.

We need to separate the homogeneous part of the Hs-norm from the inhomogeneous part.

Due to the equivalence of the norm ‖f‖Hs with ‖f‖L2 +‖Λsf‖L2 , we combine the L2-part

with the homogeneous Ḣs-part. Dotting (1.6) by (u, τ) in L2, integrating by parts and

making use of ∇ · u = 0, we find

1

2

d

dt
(‖u‖2L2 + ‖τ‖2L2) + η‖Λβτ‖2L2 = −(Q(τ,∇u), τ), (2.1)

where (f, g) denotes the inner product in L2(R2) and we used∫
R2

(u · (∇ · τ) +D(u) · τ) dx = 0.

Applying Λs to (1.6) and dotting by (Λsu,Λsτ), we obtain

1

2

d

dt
(‖Λsu‖2L2 + ‖Λsτ‖2L2) + η‖Λs+βτ‖2L2

= −(Λs(u · ∇u),Λsu)− (Λs(u · ∇τ),Λsτ)− (ΛsQ(τ,∇u),Λsτ), (2.2)

where we used ∫
R2

(Λsu · (Λs∇ · τ) + ΛsD(u) · Λsτ)dx = 0.

We now make use of (1.8) to generate a dissipative term on the velocity field u. It is not

difficult to check that

d

dt
(u,∇ · τ) +

1

2
‖∇u‖2L2 − ‖P∇ · τ‖2L2

= −((u · ∇u),P∇ · τ)− (P∇ · (u · ∇τ), u)− (P∇ ·Q(τ,∇u), u)

−η((−∆)βP∇ · τ, u). (2.3)

A similar equality also holds for the Ḣs−β inner product,

d

dt
(Λs−βu,Λs−β∇ · τ) +

1

2
‖Λs−β∇u‖2L2 − ‖Λs−βP∇ · τ‖2L2

= −(Λs−β(u · ∇u),Λs−βP∇ · τ)− (Λs−βP∇ · (u · ∇τ),Λs−βu)

−(Λs−βP∇ ·Q(τ,∇u),Λs−βu)− η(Λs−β(−∆)βP∇ · τ,Λs−βu). (2.4)

For a constant k > 0, (2.1)+(2.2)+ k(2.3)+ k(2.4) leads to

1

2

d

dt
(‖u‖2Hs + ‖τ‖2Hs + 2k(u,∇ · τ)Hs−β) + η‖Λβτ‖2Hs

+
k

2
‖∇u‖2Hs−β − k‖P∇ · τ‖2Hs−β =

7∑
i=1

Ii, (2.5)
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where

I1 = −k((u · ∇u),P∇ · τ)Hs−β ,

I2 = −k(P∇ · (u · ∇τ), u)Hs−β ,

I3 = −k(P∇ ·Q(τ,∇u), u)Hs−β ,

I4 = −kη(Λ2βP∇ · τ, u)Hs−β ,

I5 = −(Λs(u · ∇u),Λsu),

I6 = −(Λs(u · ∇τ),Λsτ),

I7 = −(Q(τ,∇u), τ)Hs .

Now we estimate I1 through I7. We use the simple facts that Pu = u if u is divergence-

free, P is bounded by 1 on Hs(Rd) and (Pf, g) = (f,Pg). Thanks to s > 1 + d
2
, 1

2
6 β 6 1

and ∇ · u = 0, we have

|I1| . ‖u‖L∞‖∇u‖L2‖∇τ‖L2 + ‖Λs−β+1τ‖L2‖u‖L∞‖Λs−β+1u‖L2

. ‖u‖Hs‖∇u‖Hs−β‖Λβτ‖Hs .

Due to 1
2
6 β 6 1 and ∇ · u = 0, we have, by integration by parts,

|I2| . ‖u‖L∞‖∇u‖L2‖∇τ‖L2

+‖Λs−β+1u‖L2(‖Λs−β+1u‖L2‖τ‖L∞ + ‖u‖L∞‖Λs−β+1τ‖L2)

. ‖u‖Hs‖∇u‖Hs−β‖Λβτ‖Hs + ‖∇u‖2Hs−β‖τ‖Hs .

Due to s > 1 + d
2

and 1
2
6 β 6 1, we have, by integration by parts,

|I3| . ‖∇u‖2L2‖τ‖L∞ + ‖Λs−β+1u‖L2(‖Λs−β+1u‖L2‖τ‖L∞ + ‖∇u‖L∞‖Λs−βτ‖L2)

. ‖τ‖Hs‖∇u‖2Hs−β + ‖u‖Hs‖∇u‖Hs−β‖Λβτ‖Hs .

I4 is bounded by

|I4| 6 kη‖Λβτ‖Hs‖∇u‖Hs−β 6
η

4
‖Λβτ‖2Hs + k2η‖∇u‖2Hs−β .

By ∇ · u = 0, 1
2
6 β 6 1 and s > 1 + d

2
, we obtain

|I5| =

∣∣∣∣∫ (Λs(u · ∇u)− u · ∇Λsu)Λsudx

∣∣∣∣
. ‖Λsu‖2L2‖∇u‖L∞ . ‖u‖Hs‖∇u‖2Hs−β .

Similarly,

|I6| =

∣∣∣∣∫ (Λs(u · ∇τ)− u · ∇Λsτ)Λsτdx

∣∣∣∣
. ‖Λsτ‖L2(‖∇u‖L∞‖Λsτ‖L2 + ‖Λsu‖L2‖∇τ‖L∞)

. ‖u‖Hs‖Λβτ‖2Hs .

Thanks to 1
2
6 β 6 1, s > 1 + d

2
and d = 2, 3, we have

|I7| = |(Q(τ,∇u), τ) + (Λs−βQ(τ,∇u),Λs+βτ)|
. ‖∇u‖L2‖τ‖2L4 + ‖Λs+βτ‖L2(‖Λs−β∇u‖L2‖τ‖L∞ + ‖∇u‖L∞‖Λs−βτ‖L2)
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. ‖∇u‖L2‖τ‖2(1−
d
4
)

L2 ‖∇τ‖
d
2

L2 + ‖τ‖Hs‖Λβτ‖Hs‖∇u‖Hs−β + ‖Λβτ‖2Hs‖u‖Hs

. ‖τ‖Hs‖Λβτ‖Hs‖∇u‖Hs−β + ‖Λβτ‖2Hs‖u‖Hs .

In addition, due to 1
2
6 β 6 1,

k‖P∇ · τ‖2Hs−β 6 k‖Λβτ‖2Hs .

Inserting the estimates for I1 through I7 into (2.5), we obtain

1

2

d

dt

(
‖u‖2Hs + ‖τ‖2Hs + 2k(u,∇ · τ)Hs−β

)
+

(
3

4
η − k

)
‖Λβτ‖2Hs +

(
k

2
− k2η

)
‖∇u‖2Hs−β

. ‖u‖Hs‖∇u‖Hs−β‖Λβτ‖Hs + ‖∇u‖2Hs−β‖τ‖Hs + ‖u‖Hs‖∇u‖2Hs−β

+‖u‖Hs‖Λβτ‖2Hs + ‖τ‖Hs‖Λβτ‖Hs‖∇u‖Hs−β

. (‖u‖Hs + ‖τ‖Hs)(‖Λβτ‖2Hs + ‖∇u‖2Hs−β). (2.6)

By moving Λs on u, and in view of 1
2
6 β 6 1, importantly, we have

|2k(u,∇ · τ)Hs−β | 6 2k‖u‖Hs‖τ‖Hs+1−2β

6 2c3k‖u‖Hs‖τ‖Hs

6
1

2
‖u‖2Hs + 2c23k

2‖τ‖2Hs . (2.7)

Choosing k small enough and integrating (2.6) in time and using (2.7), we have

sup
t
‖u‖2Hs + sup

t
‖τ‖2Hs + 2

∫ t

0

(η‖Λβτ‖2Hs +
k

2
‖∇u‖2Hs−β)dt′

. ‖u0‖2Hs + ‖τ0‖2Hs + (sup
t
‖u‖Hs + sup

t
‖τ‖Hs)

∫ t

0

(‖Λβτ‖2Hs + ‖∇u‖2Hs−β)dt′.

Thus, we have established (1.11). This concludes the proof for the existence part.

We now prove the uniqueness. The term Q(τ,∇u) requires special attention. We split

the consideration into two cases: β = 1 and 1
2
≤ β < 1. The uniqueness for the case

when β = 1 is direct, but the case when 1
2
≤ β < 1 is difficult and has to be dealt with

by constructing suitable energy functional.

Case 1: β = 1. Assume (u1, τ1) and (u2, τ2) are two solutions of (1.6) with the same

initial data. Denote δu = u1 − u2, δτ = τ1 − τ2. Then (δu, δτ) satisfies
∂tδu = ∇ · δτ − u1 · ∇δu− δu · ∇u2 −∇δP,
∂tδτ + u1 · ∇δτ − η∆δτ = D(δu)− δu · ∇τ2 −Q(τ1,∇δu)−Q(δτ,∇u2),
∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0,

(2.8)
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where δP is the corresponding pressure difference. Taking the L2 inner product of (2.8)

with (δu, δτ), we have

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖∇δτ‖2L2

= −
∫
δu · ∇u2 · δudx−

∫
δu · ∇τ2 · δτdx−

∫
Q(τ1,∇δu) · δτdx

−
∫
Q(δτ,∇u2) · δτdx+

∫
(δu · (∇ · δτ) +D(δu) · δτ)dx

6 ‖∇u2‖L∞‖δu‖2L2 + ‖∇τ2‖L∞‖δu‖L2‖δτ‖L2

+ c (‖τ1‖L∞‖∇δτ‖L2 + ‖∇τ1‖L∞‖δτ‖L2)‖δu‖L2 + ‖∇u2‖L∞‖δτ‖2L2

6 c (‖∇u2‖L∞ + ‖∇τ2‖L∞ + ‖∇τ1‖L∞ + ‖τ1‖2L∞)(‖δu‖2L2 + ‖δτ‖2L2) +
η

2
‖∇δτ‖2L2 ,

where we have used the fact that∫
(δu · (∇ · δτ) +D(δu) · δτ)dx = 0.

It then follows from Gronwall’s inequality that δu = δτ = 0.

Case 2: 1
2
6 β < 1. Assume (u1, τ1) and (u2, τ2) are two solutions of (1.6) with the

same initial data. Denote δu = u1 − u2, δτ = τ1 − τ2. Then (δu, δτ) satisfies
∂tδu = ∇ · δτ − u1 · ∇δu− δu · ∇u2 +∇δP,
∂tδτ + u1 · ∇δτ + ηΛ2βδτ = D(δu)− δu · ∇τ2 −Q(τ1,∇δu)−Q(δτ,∇u2),
∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0.

(2.9)

Dotting (2.9) by (δu, δτ) yields

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖Λβδτ‖2L2

= −(δu · ∇u2, δu)− (δu · ∇τ2, δτ)− (Q(τ1,∇δu), δτ)− (Q(δτ,∇u2), δτ). (2.10)

Applying Λβ to (2.9) and then dotting by (Λβδu,Λβδτ) lead to

1

2

d

dt
(‖Λβδu‖2L2 + ‖Λβδτ‖2L2) + η‖Λ2βδτ‖2L2

= −(Λβ(u1 · ∇δu),Λβδu)− (Λβ(δu · ∇u2),Λβδu)− (Λβ(u1 · ∇δτ),Λβδτ)

−(Λβ(δu · ∇τ2),Λβδτ)− (ΛβQ(τ1,∇δu),Λβδτ)− (ΛβQ(δτ,∇u2),Λβδτ). (2.11)

Applying P∇· to the second equation of (2.9), we have

∂tP∇ · δτ + P∇ · (u1 · ∇δτ) + ηΛ2βP∇ · δτ

=
1

2
∆δu− P∇ · (δu · ∇τ2)− P∇ ·Q(τ1,∇δu)− P∇ ·Q(δτ,∇u2). (2.12)
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Taking the L2 inner product of the first equation of (2.9) with P∇ · δτ and the L2 inner

product of (2.12) with δu separately, we have

d

dt
(δu,∇ · δτ) +

1

2
‖∇δu‖2L2 − ‖P∇ · δτ‖2L2

= −((u1 · ∇δu),P∇ · δτ)− ((δu · ∇u2),P∇ · δτ)− (P∇ · (u1 · ∇δτ), δu)

−(P∇ · (δu · ∇τ2), δu)− (P∇ ·Q(τ1,∇δu), δu)− (P∇ ·Q(δτ,∇u2), δu)

−η(Λ2βP∇ · δτ, δu). (2.13)

For a positive constant k1 to be determined later, (2.10) + (2.11) + k1(2.13) gives

1

2

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k1(δu,∇ · δτ)) + η‖Λβδτ‖2Hβ

+
k1
2
‖∇δu‖2L2 − k1‖P∇ · δτ‖2L2 =

7∑
i=1

I ′i, (2.14)

where

I ′1 = −k1((u1 · ∇δu),P∇ · δτ)− k1((δu · ∇u2),P∇ · δτ),

I ′2 = −k1(P∇ · (u1 · ∇δτ), δu)− k1(P∇ · (δu · ∇τ2), δu),

I ′3 = −k1(P∇ ·Q(τ1,∇δu), δu)− k1(P∇ ·Q(δτ,∇u2), δu),

I ′4 = −k1η(Λ2βP∇ · δτ, δu),

I ′5 = −(Λβ(u1 · ∇δu),Λβδu)− ((δu · ∇u2), δu)Hβ ,

I ′6 = −(Λβ(u1 · ∇δτ),Λβδτ)− ((δu · ∇τ2), δτ)Hβ ,

I ′7 = −(Q(τ1,∇δu), δτ)Hβ − (Q(δτ,∇u2), δτ)Hβ .

By Hölder’s and Sobolev’s inequalities,

|I ′1| . ‖u1‖L∞‖∇δu‖L2‖∇δτ‖L2 + ‖∇u2‖L∞‖δu‖L2‖∇δτ‖L2 ,

|I ′2| . ‖u1‖L∞‖∇δu‖L2‖∇δτ‖L2 + ‖∇τ2‖L∞‖∇δu‖L2‖δu‖L2 ,

|I ′3| . ‖τ1‖L∞‖∇δu‖2L2 + ‖∇u2‖L∞‖∇δu‖L2‖δτ‖L2 ,

|I ′4| 6
η

4
‖Λ2βδτ‖2L2 + k21η‖∇δu‖2L2 .

Since ∇ · u1 = 0, I ′5 can be written as

I ′5 = −(Λβ(u1 · ∇δu)− u1 · ∇Λβδu,Λβδu)− ((δu · ∇u2), δu)Hβ .

By a standard commutator estimate,

|I ′5| . ‖∇u1‖
L

d
2−2β
‖Λβδu‖2

L
2d

d−2+2β
+ ‖Λβu1‖

L
d

1−β
‖∇δu‖L2‖Λβδu‖

L
2d

d−2+2β

+‖∇u2‖L∞‖δu‖2L2 + ‖∇u2‖L∞‖Λβδu‖2L2 + ‖δu‖
L

2d
d−2β
‖Λβ∇u2‖

L
d
β
‖Λβδu‖L2

. (‖∇u1‖
L

d
2−2β

+ ‖Λβu1‖
L

d
1−β

)‖∇δu‖2L2 + ‖∇u2‖L∞‖δu‖2L2

+(‖∇u2‖L∞ + ‖Λβ∇u2‖
L
d
β

)‖Λβδu‖2L2 .
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By Hölder’s inequality,

|I ′6| . ‖u1‖L∞‖∇δτ‖L2‖Λ2βδτ‖L2

+‖∇τ2‖L∞‖δu‖L2(‖δτ‖L2 + ‖Λ2βδτ‖L2),

|I ′7| . ‖τ1‖L∞‖∇δu‖L2(‖δτ‖L2 + ‖Λ2βδτ‖L2)

+‖∇u2‖L∞‖δτ‖L2(‖δτ‖L2 + ‖Λ2βδτ‖L2).

We insert the estimates above for I ′1 through I ′7 in (2.14). If the initial data is small

enough, namely

‖u0‖Hs + ‖τ0‖Hs 6 ε

for sufficiently small ε > 0, we can choose k1 and t small enough to obtain the desired

uniqueness. This completes the proof of Theorem 1.1. �

3. Proof of Theorems 1.2 and 1.3

This section proves Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The proof of Theorem 1.2 is very close to that for Theorem 1.1.

We shall omit most of the details but to point out the differences. The differences are due

to the extra term ν(−∆)αu(ν). (2.5) would now contain two extra terms and is given by

1

2

d

dt
(‖u(ν)‖2Hs + ‖τ (ν)‖2Hs + 2k(u(ν),∇ · τ (ν))Hs−β) + η‖Λβτ (ν)‖2Hs + ν‖Λαu(ν)‖2Hs

+
k

2
‖∇u(ν)‖2Hs−β − k‖P∇ · τ (ν)‖2Hs−β =

8∑
i=1

Ii,

where I1 through I7 are the same as before, and I8 is given by

I8 = ν k ((−∆)αu(ν),∇ · τ (ν))Hs−β .

The estimates for I1 through I7 are the same as before and I8 can be bounded by

|I8| ≤ νk‖Λ2α−3β+1u(ν)‖Hs ‖Λβτ (ν)‖Hs .

When α ≤ min{1, 3β − 1}, we have 2α− 3β + 1 ≤ α and

|I8| ≤
ν

2
‖Λαu(ν)‖2Hs +

νk2

2
‖Λβτ (ν)‖2Hs .

The rest of the proof is almost identical to that for Theorem 1.1. The crucial fact that the

bound for (u(ν), τ (ν)) in Hs obtained from this process is uniform in ν. We omit further

details. �

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We distinguish between two cases: Case I: β = 1 and Case II:
1
2
≤ β < 1. The first case is relatively easy while the second case is more delicate. The

fact that the bound for the solution (u(ν), τ (ν)) in Hs is uniform in terms of ν plays crucial

role in the proof.
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Case I: β = 1. The difference (δu, δτ) with

δu = u(ν) − u, δτ = τ (ν) − τ

satisfies
∂tδu+ u(ν) · ∇δu+ ν (−∆)αδu = −ν (−∆)αu+∇ · δτ − δu · ∇u−∇δP,
∂tδτ + u(ν) · ∇δτ − η∆δτ = D(δu)− δu · ∇τ −Q(τ,∇δu)−Q(δτ,∇u(ν)),
∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0,

(3.1)

where δP is the corresponding pressure difference. Taking the L2 inner product of (3.1)

with (δu, δτ), we have

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + ν‖Λαδu‖2L2 + η‖∇δτ‖2L2

= −ν
∫

(−∆)αu · δu dx−
∫
δu · ∇u · δu dx−

∫
δu · ∇τ · δτ dx

−
∫
Q(τ,∇δu) · δτ dx−

∫
Q(δτ,∇u(ν)) · δτ dx

6 ν‖u‖H2α ‖δu‖L2 + ‖∇u‖L∞‖δu‖2L2 + ‖∇τ‖L∞‖δu‖L2‖δτ‖L2

+ c (‖τ‖L∞‖∇δτ‖L2 + ‖∇τ‖L∞‖δτ‖L2)‖δu‖L2 + ‖∇u(ν)‖L∞‖δτ‖2L2

6 ν2‖u‖2H2α +
η

2
‖∇δτ‖2L2

+C (1 + ‖u‖Hs + ‖τ‖Hs + ‖u(ν)‖Hs + ‖τ‖2Hs−1)(‖δu‖2L2 + ‖δτ‖2L2).

Here we have used the fact that∫
(δu · (∇ · δτ) +D(δu) · δτ)dx = 0.

(1.14) then follows from Gronwall’s inequality and the uniform bound (in ν) for ‖τ (ν)‖Hs .

Case 2: 1
2
6 β < 1. The difference (δu, δτ) satisfies

∂tδu+ u(ν) · ∇δu+ ν (−∆)αδu = −ν (−∆)αu+∇ · δτ − δu · ∇u−∇δP,
∂tδτ + u(ν) · ∇δτ + η(−∆)βδτ = D(δu)− δu · ∇τ −Q(τ,∇δu)−Q(δτ,∇u(ν)),
∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0.

(3.2)

Dotting (3.2) by (δu, δτ) yields

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖Λβδτ‖2L2 + ν‖Λαδu‖2L2

= −ν(Λ2αu, δu)− (δu · ∇u, δu)− (δu · ∇τ, δτ)

−(Q(τ,∇δu), δτ)− (Q(δτ,∇u(ν)), δτ).
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Applying Λβ to (3.2) and then dotting by (Λβδu,Λβδτ) lead to

1

2

d

dt
(‖Λβδu‖2L2 + ‖Λβδτ‖2L2) + η‖Λ2βδτ‖2L2 + ν‖Λα+βδu‖2L2

= −ν(Λ2α+βu,Λβδu)− (Λβ(u(ν) · ∇δu),Λβδu)− (Λβ(δu · ∇u),Λβδu)

−(Λβ(u(ν) · ∇δτ),Λβδτ)− (Λβ(δu · ∇τ),Λβδτ)− (ΛβQ(τ,∇δu),Λβδτ)

−(ΛβQ(δτ,∇u(ν)),Λβδτ). (3.3)

Applying P∇· to the second equation of (3.2), we have

∂tP∇ · δτ + P∇ · (u(ν) · ∇δτ) + ηΛ2βP∇ · δτ

=
1

2
∆δu− P∇ · (δu · ∇τ)− P∇ ·Q(τ,∇δu)− P∇ ·Q(δτ,∇u(ν)). (3.4)

Taking the L2 inner product of the first equation of (3.2) with P∇ · δτ and the L2 inner

product of (3.4) with δu, we have

d

dt
(δu,∇ · δτ) +

1

2
‖∇δu‖2L2 − ‖P∇ · δτ‖2L2

= −ν((−∆)αu(ν),∇ · δτ)− ((u(ν) · ∇δu),P∇ · δτ)− ((δu · ∇u),P∇ · δτ)

−(P∇ · (u(ν) · ∇δτ), δu)− (P∇ · (δu · ∇τ), δu)− (P∇ ·Q(τ,∇δu), δu)

−(P∇ ·Q(δτ,∇u(ν)), δu)− η(Λ2βP∇ · δτ, δu). (3.5)

We choose a positive constant k3 satisfying, for a suitable constant C > 0,

0 < k3 ≤ C min{1, η}.

Then (3.3) + k3(3.5) gives

1

2

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k3(δu,∇ · δτ)) + η‖Λβδτ‖2Hβ

+ν‖Λαδu‖2Hβ +
k3
2
‖∇δu‖2L2 − k3‖P∇ · δτ‖2L2 =

20∑
i=1

Ki, (3.6)

where

K1 = −ν(Λ2α+βu,Λβδu), K2 = −(Λβ(u(ν) · ∇δu),Λβδu),

K3 = −(Λβ(δu · ∇u),Λβδu), K4 = −(Λβ(u(ν) · ∇δτ),Λβδτ),

K5 = −(Λβ(δu · ∇τ),Λβδτ), K6 = −(ΛβQ(τ,∇δu),Λβδτ),

K7 = −(ΛβQ(δτ,∇u(ν)),Λβδτ), K8 = −k3 ν((−∆)αu(ν),∇ · δτ),

K9 = −k3((u(ν) · ∇δu),P∇ · δτ), K10 = −k3((δu · ∇u),P∇ · δτ),

K11 = −k3(P∇ · (u(ν) · ∇δτ), δu), K12 = −k3(P∇ · (δu · ∇τ), δu),

K13 = −k3(P∇ ·Q(τ,∇δu), δu), K14 = −k3(P∇ ·Q(δτ,∇u(ν)), δu),

K15 = −k3η(Λ2βP∇ · δτ, δu), K16 = −ν(Λ2αu, δu),

K17 = −(δu · ∇u, δu), K18 = −(δu · ∇τ, δτ),

K19 = −(Q(τ,∇δu), δτ), K20 − (Q(δτ,∇u(ν)), δτ).
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The terms above can be bounded as follows. All the constants in the estimates are

independent of ν. By Hölder’s inequality,

|K1| ≤ ν2‖Λ2α+βu‖2L2 + C ‖δu‖2Hβ .

Due to ∇ · u(ν) = 0 and by a standard commutator estimate,

|K2| ≤ C ‖u(ν)‖Hs ‖δu‖2Hβ + C ‖u(ν)‖Hs ‖∇δu‖L2‖Λβδu‖L2

≤ k3
16
‖∇δu‖2L2 + C (1 + k−13 ‖u(ν)‖Hs) ‖u(ν)‖Hs ‖δu‖2Hβ .

Clearly, for q1 and q2 satisfying 1
q1

= 1
2
− β

d
and 1

q2
= 1

2
− 1

q1
,

|K3| ≤ C ‖u‖Hs ‖δu‖2Hβ + ‖δu‖Lq1 ‖Λβ∇u‖Lq2 ‖Λβδu‖L2

≤ C ‖u‖Hs ‖δu‖2Hβ .

By a commutator estimate,

|K4| ≤ C ‖Λβu(ν)‖L∞ ‖∇δτ‖L2 ‖Λβδτ‖L2 + C ‖∇u(ν)‖L∞‖Λβδτ‖2L2

≤ η

16
‖Λβδτ‖2Hβ + C (η−1‖u(ν)‖2Hs + ‖u(ν)‖Hs)‖δτ‖2Hβ .

K5 can be similarly bounded as K3,

|K5| ≤ C ‖τ‖Hs (‖δu‖2Hβ + ‖δτ‖2Hβ).

By Hölder’s inequality,

|K6| ≤ ‖Λ2βδτ‖L2 ‖τ‖L∞ ‖∇δu‖L2

≤ η

16
‖Λβδτ‖2Hβ + C η−1‖τ‖2Hs−1 ‖∇δu‖2L2

≤ η

16
‖Λβδτ‖2Hβ +

k3
16
‖∇δu‖2L2 ,

where we have used the smallness of the solution

C η−1‖τ‖2Hs−1 ≤ C η−1 ε2 ≤ k3
16
.

By Hölder’s inequality,

|K7| ≤ ‖Λ2βδτ‖L2 ‖∇u(ν)‖L∞ ‖δτ‖L2

≤ η

16
‖Λβδτ‖2Hβ + C η−1‖u(ν)‖2Hs ‖δτ‖2L2 .

Clearly,

|K8| ≤ k3ν‖Λ2α+1−βu(ν)‖L2 ‖Λβδτ‖L2

≤ ν2‖Λ2α+1−βu(ν)‖2L2 + C k23 ‖δτ‖2Hβ .

K9 can be similarly handled as K6,

|K9| ≤ k3 ‖u(ν)‖L∞ ‖∇δu‖L2 ‖∇δτ‖L2

≤ η

16
‖Λβδτ‖2Hβ + C η−1k23 ‖u(ν)‖2Hs−1 ‖∇δu‖2L2

≤ η

16
‖Λβδτ‖2Hβ +

k3
16
‖∇δu‖2L2 ,
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where we have used the smallness of the solution

C k3η
−1‖u(ν)‖2Hs−1 ≤ C k3η

−1 ε2 ≤ 1

16
.

We emphasize that ‖u(ν)‖Hs ≤ C ε with ε independent of ν, as stated in Theorem 1.2.

For β ≥ 1
2
,

|K10| ≤ k3 ‖δu‖L2 ‖∇u‖L∞ ‖∇δτ‖L2

≤ η

16
‖Λβδτ‖2Hβ + C k23 ‖u‖2Hs ‖δu‖2L2 .

K11 admits the same bound as K9,

|K11| ≤ k3 ‖u(ν)‖L∞ ‖∇δu‖L2 ‖∇δτ‖L2

≤ η

16
‖Λβδτ‖2Hβ +

k3
16
‖∇δu‖2L2 .

K12 can be bounded directly,

|K12| ≤ k3 ‖δu‖L2 ‖∇τ‖L∞ ‖∇δu‖L2

≤ k3
16
‖∇δu‖2L2 + C k3‖τ‖2Hs ‖δu‖2L2 .

We use the smallness of the solution to bound K13,

|K13| ≤ C k3 ‖τ‖L∞ ‖∇δu‖2L2 ≤
k3
16
‖∇δu‖2L2 ,

where we have used

C ‖τ‖L∞ ≤ C ‖τ‖Hs−1 ≤ C ε ≤ 1

16
.

K14 is bounded similarly as K12,

|K14| ≤ k3 ‖∇δu‖L2 ‖δτ‖L2 ‖∇u(ν)‖L∞

≤ k3
16
‖∇δu‖2L2 + C k3‖u(ν)‖2Hs ‖δτ‖2L2 .

|K15| ≤ k3η ‖Λ2βδτ‖L2 ‖∇δu‖L2

≤ η

16
‖Λβδτ‖2Hβ + C k23η

−1‖∇δu‖2L2

≤ η

16
‖Λβδτ‖2Hβ +

k3
16
‖∇δu‖2L2 .

In addition, it is easy to obtain the following estimates

|K16| ≤ ν2‖Λ2αu‖2L2 + C ‖δu‖2L2 ,

|K17| ≤ C ‖u‖Hs ‖δu‖2L2 ,

|K18| ≤ C ‖τ‖Hs (‖δu‖2L2 + ‖δτ‖2L2),

|K19| ≤ C‖τ‖2Hs‖δτ‖2L2 +
k3
16
‖∇δu‖2L2 ,

|K20| ≤ C‖u(ν)‖Hs‖δτ‖2L2 .
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Inserting the bounds for K1 through K20 above in (3.6), we find

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k3(δu,∇ · δτ))

+2ν‖Λαδu‖2Hβ +
η

4
‖Λβδτ‖2Hβ +

k3
4
‖∇δu‖2L2

≤ C(1 + ‖u‖2Hs + ‖u(ν)‖2Hs + ‖τ‖2Hs)(‖δu‖2Hβ + ‖δτ‖2Hβ)

+C ν2(‖u‖2Hs + ‖u(ν)‖2Hs).

Choosing k3 ≤ 1
2
, applying Gronwall’s inequality and using the fact that ‖u(ν)‖Hs is

bounded uniformly in ν (see (1.13)), we obtain (1.14). This completes the proof of The-

orem 1.3. �
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