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HIGH REYNOLDS NUMBER AND HIGH WEISSENBERG NUMBER
OLDROYD-B MODEL WITH DISSIPATION

PETER CONSTANTIN!, JIAHONG WU?2, JIEFENG ZHAO3 AND YI ZHU*

ABSTRACT. We give a small data global well-posedness result for an incompressible
Oldroyd-B model with wave number dissipation in the equation of stress tensor. The
result is uniform in solvent Reynolds numbers, and requires only fractional wave-number
dependent dissipation (—A)?, g > % in the added stress.

1. INTRODUCTION

A class of models of complex fluids is based on an equation for a solvent coupled with
a kinetic description of particles suspended in it. In the case of dilute suspensions weakly
confined by a Hookean spring potential, a rigorously established exact closure for the
moments in the kinetic equation of this Navier-Stokes-Fokker-Planck system yields the
Oldroyd-B system ([21]). After non-dimensionalization, the coupled Oldroyd-B system is

8tu+u~Vu+Vp—éAu:KV-a,
o +u-Vo = (Vu)o + o(Vu)* — 7—(o0 —1I), (1.1)
V-u=0,

where o is the conformation tensor, o = E(m ® m) with m the end-to-end vector in R?
and E the average with respect to the local distribution, u is the solvent velocity, p is
the pressure, Re is the Reynolds number of the solvent, We is the Weissenberg number,
K = 7R61We and 7 is the ratio of solvent viscosity to polymeric viscosity. In the limit
of zero Reynolds number, the system (1.1) reduces further and it becomes a nonlinear

evolution for o

1
0o +u-Vo=(Vu)o +o(Vu)* — %(U—H) (1.2)
where u is obtained from o by solving the Stokes system
1
u+ Vp nyev o, V-u (1.3)

The system (1.2) with (1.3) is an example of an equation which might develop finite time
singularities for large data, even in R?. The forcing in the right hand side of (1.3) or in
the right hand side of the momentum equation of (1.1) depends only on the added stress

T=0-—1, (1.4)
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because any multiple of the identitity matrix added to ¢ is balanced by a pressure, even
if the factor is a function of space and time. For small added stress it is known ([7]) that
the system (1.2), (1.3) has global solutions. The problem of global existence of smooth
solutions for large data is open and challenging. The large Weissenberg number problem
is challenging both numerically and analytically. If we replace the damping term by
a wave-number dependent dissipative term we obtain an equation for the conformation
stress

0o +u-Vo=(Vu)og+o(Vu)* —nP(D)(c —1) (1.5)
with P(D) a dissipative differential operator and 7 a positive number. If a small diffusive
term (P(D) = —A in (1.5)) is added to the equation for o coupled with (1.3) then global
existence of smooth solutions with arbitrary data has been established ([8]) in d = 2. For
the small data problem one can discuss a less stringent wave-number dependence, and
allow the solvent Reynolds number to be arbitrarily large.

In this paper we consider an Oldroyd-B model

ou+u-Vu+Vp=V-7, 2R t>0,
T +u- VT +n(—=A)°1 4+ Q(,Vu) = D(u),
V-u=0,

u(0,z) = up(x), 7(0,2) = 1(x),

(1.6)

where 0 < 5 < 1 and 1 > 0 are real parameters, u = u(x, t) represents the velocity field of
the fluid, p = p(z,t) the pressure and 7 = 7(x,t) the non-Newtonian added stress tensor
(see (1.4)) (a d-by-d symmetric matrix). Here D(u) is the symmetric part of the velocity
gradient,

D(u) = = (Vu+ (Vu)")

N | —

and the bilinear term () is taken to be
Q(r, V) = TW(u) = W(u)r — b(D(w)r + rD(w))
with b € [—1,1] a constant and W (u) the skew-symmetric part of the Vu,

1
W(u) = 5(Vu - (Vu)').
The fractional Laplacian operator (—A)? is defined through the Fourier transform,

(=AY f(&) = €7 F(9).
For notational convenience, we also write A = (—A)% denoting the Zygmund operator.

Background information on the Oldroyd-B model can be found in many references (see,
e.g., [2, 26]).

Our main result is the small data global well-posedness of (1.6) with any % < B <
1. There is no damping mechanism in the equation of 7 in (1.6): strictly speaking
the Weissenberg number is infinite, but wave-number dependent dissipation is added.
Whether or not (1.6) with 0 < 8 < % possesses small data global well-posedness remains
an open problem.
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Theorem 1.1. Consider (1.6) with 1 < 8 < 1. Let d = 2,3 and s > 1+ 4. Assume
(ug,70) € H*(RY), V - ug = 0, and o is symmetric. Then there exists a small constant
€ > 0 such that, if

[wollms + lIoll s <,

then (1.6) has a unique global solution (u,b) satisfying, for some constant C' > 0 and all
t>0.

s < Ce.

s+ |7

ul

The small data global well-posedness for an Oldroyd-B model without dissipation in
the velocity equation has previously been examined by T. Elgindi and F. Rousset in the
2D case [11] and by T. Elgindi and J. Liu for the 3D case [12]. They focus on the following
Oldroyd-B model without velocity dissipation,

w+u-Vu+Vp=V-1, xR’ t>0,
7+ u- V71 4+ Q(1,Vu) — nA1 4+ at = D(u), (1.7)
V-u=0,

where a > 0 is a parameter. The small data global well-posedness result in [11] is for
(1.7) with d=2 and a > 0. The damping term plays a crucial role in the proof of their
result and can not be removed. It was used to form a damping term in the equation of a
combined quantity. [12] examined (1.7) with d = 3 and a@ > 0 and obtained the small data
global well-posedness for any sufficiently small data (ug, 79) € H®. The damping term ar
in (1.7) is also necessary for their result.

The velocity equation in (1.6) is a forced Euler equation. As it is known, the H*-norm
of a solution of the Euler equation may grow in time, even perhaps at a double exponential
rate (see, e.g., [10, 20, 35]). The Oldroyd-B system discussed has a dissipative structure,
and a main reason why Theorem 1.1 holds is a key observation on the linearized system
of (1.6). Clearly, any solution (u,7) of (1.6) also solves

Ou+Pu-Vu)=PV-7, z€RY t>0,
OPV -7+ PV (u-V7)+n(—=A)°PPV -7 +PV-Q(r,Vu) = ; Au, (1.8)
V.-u=0,

where IP denotes the Leray projection onto divergence-free vector fields. The corresponding
linearized system is given by

8tu =PV T,
0PV -7+ n(—=A)PPV - 7 = %Au,
V.-u=0,
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which can be easily reduced to a system of decoupled wave type equations

@tu + n(—A)BGtU — %AU = O,

V-u=0.
The structure in (1.9) reveals that there are both dissipative and dispersive effects on u in
(1.6). We remark that the Oldroyd-B model with only velocity dissipation share a similar
structure and has been shown by Yi Zhu to possess a unique global small solution [33].

In order to prove the existence part of Theorem 1.1, we construct a suitable Lyapunov
functional that incorporate these effects. We set the Lyapunov functional to be

L(t) = [u() s @) + 17O s gy + 26 (ut), V- 7(8) grems e

where (f, g)poray denotes the inner product in H 7(R?). When the parameter k& > 0 is
sufficiently small and when % < B <1, we are able to show that, for any ¢ > 0,

E(t) = [lut)lz: @ + I7@)]

w2 [ ()

E(t) < E(0) + C E2(t). (1.11)

2
He#(R4)

k
et Sl H) v (1.10)

obeys

A bootstrap argument applied to (1.11) implies that, if F(0) is sufficiently small, namely
E0) <e
for some suitable ¢ > 0, then F(t) is bounded uniformly for all time ¢ > 0, or
E(t) < Ce,

which allows us to establish the global existence of solutions to (1.6). In order to prove
the uniqueness, we distinguish between two cases, § = 1 and % < pB < 1. When g =1,
the term Q(7, Vu) can be bounded directly. When % < B < 1, one needs to make use of

the wave structure to generate a dissipative term in the velocity field in order to deduct
a suitable bound for Q(7, Vu).

The second part of this paper rigorously assesses that the Oldroyd-B system in (1.6) is
the vanishing viscosity limit of the Oldroyd-B system with kinematic dissipation

ou+u-Vu+Vp+v(—A)Pu=V-1, z€R t>0,
o7 +u- VT +n(—=A)P1 +Q(7,Vu) = D(u),

V.-u=0,

u(0,2) = ug(x), 7(0,2) = T19(2),

(1.12)

where v > 0,7 > 0,0 < a <1 and % < B < 1. First of all, (1.12) always possesses a
unique global solution when the initial data is sufficiently small.
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Theorem 1.2. Consider (1.12) with
1
v>0, n>0, §§ﬁ§1 and 0 <o <min{l,38 — 1}.

Assume (ug, 70) € H*(R?) with s > 1+ . There ezists small number € > 0 (independent
of v) such that, if

||<u0a7—0)| Hs S g,

then (1.12) has a unique global solution (u™), ™) satisfying
u) € C([0,00); H*) N L2(0, 00; H*+*) N L*(0, co; H17P);
7 e ([0, 00); H?) N L*(0, 00; H*HA).

In addition, (u(”),T(”)) admits the following bound that is uniform in time and in v,

1™ (), 7 (1))

where C' 1s independent of t and v.

s < Ce, (1.13)

In particular, Theorem 1.2 holds for the case when @ = 1 and f = 1, namely the
standard Laplacian case. We emphasize that € in Theorem 1.2 is independent of v. In
addition, the fact that the bound for the solution (u®),7%)) in H* is uniform in terms
of v plays crucial role in the proof of the following vanishing viscosity limit. As v — 0,
(1.12) converges to (1.6) in the sense as stated in the following theorem.

Theorem 1.3. Assume

1
§§ﬁ§1 and 0 <o <min{l,38 — 1}.

Let (ug,79) € H*(R?) with s > 1+ g and s > 2o + 28 — 1. Assume that the norm of
(uo, 70) € H® is sufficiently small, namely

v>0, n>0,

| (wo, 70) ||s < €

such that (1.6) and (1.12) each has a unique global solution. Let (u,) and (u™,7%) be
the solutions of (1.6) and (1.12), respectively. Then,

1™ (@), 7 (1)) = (u(t), 7())l|z2 < Cv, (1.14)

where C' may depend on t and the initial data but is independent of v.

We remark that small data global solutions of (1.6) in critical homogeneous Besov
spaces have also been obtained ([28]). Due to its special features, the Oldroyd-B model
has recently attracted considerable interests from the community of mathematical fluids.
A rich array of results have been established on the well-posedness and closely related
problems. Interested readers can consult some of the references listed here, see, e.g., [1, 3,
4,5,6,8,9,11, 12, 13, 14, 15, 16, 17, 22, 18, 19, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34].

This list is by no means exhaustive.
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2. PROOF OF THEOREM 1.1
This section proves Theorem 1.1.

Proof. The proof is naturally divided into two parts. The first part is for the existence
while the second part is for the uniqueness.

To prove the global existence of solutions, it suffices to establish the energy inequality
in (1.11) with E(t) being defined in (1.10). The proof of (1.11) is via energy estimates.
We need to separate the homogeneous part of the H*-norm from the inhomogeneous part.
Due to the equivalence of the norm || f||zs with || f||z2 + ||A® f|| 12, we combine the L*-part
with the homogeneous H*-part. Dotting (1.6) by (u,7) in L?, integrating by parts and
making use of V - u = 0, we find

1d
2dt
where (f,g) denotes the inner product in L?(R?) and we used

/R2(u-(v-7')—|—D(u)-7')dx:O.

Applying A® to (1.6) and dotting by (A®u, A®T), we obtain

(lullZ> + I7lZ2) + nllA%7 72 = —(Q(r, V), 7), (2.1)

1d
5 7 A ulZe + IA°TI72) + AP 2
= —(A°(u-Vu),Nu) — (A°(u- V1), A1) — (A°Q(T, Vu), A°T), (2.2)

where we used
/ (Au- (A°V -7)+ A°D(u) - A°7)dz = 0.
RQ

We now make use of (1.8) to generate a dissipative term on the velocity field u. It is not
difficult to check that

d 1
(Y - 7) 4 | Vul — [PV 7
= —((u-Vu),PV-7) = (PV - (u-V7),u) — (PV-Q(7,Vu),u)
—n((=A)°PV - 7,u). (2.3)
A similar equality also holds for the H*~# inner product,
d 1
G ATV ) 4 DIV — ARV ol
= —(AP(u-Vu), A" PPV - 7) — (A* PPV - (u- VT), A" Pu)
—(APPV - Q(7, V), A*~Pu) — n(A* P (—A)PPY - 7, A* Pu). (2.4)
For a constant k > 0, (2.1)+(2.2)+ k(2.3)+ k(2.4) leads to
1d
5 77 lellzz + 1715 + 20w, V- 7)gres) + | A7 [
k 2 2 -
+§||VU| e-p — KIPV - 75es = Zli (2.5)

=1
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where
I = —k((u-Vu),PV - 7)ys-s,
Iy =—k(PV - (u-V7),u)pyss,
I3y = —k(PV - Q(7, Vu), u)gs-s,
Iy = —kn(A*PV - 7,u) ya-s,
Is = —(A°(u - Vu), A’u),
Is = —(A°(u- V), A°T),
I; = —(Q(7,Vu), T)ys.

Now we estimate I; through I;. We use the simple facts that Pu = u if u is divergence-
free, P is bounded by 1 on H*(R%) and (Pf,g) = (f,Pg). Thankstos > 1+% 1 <3 <1
and V- u = 0, we have
L] S Mullee [ Vull 2 V7]l + A7 e [l oo | A7 ] 2
S Nullml| Vel ge-s | A”7]
Due to % < B <1and V-u=0, we have, by integration by parts,
1Ll S Nlullpel|Vull 2 V7|2
HATTT | 2 (AT g2 | 7] e + [Jul| e [ A7) 12)
S Nl IVullgs-s AT | = + [V

~

Hs Hs-

?{sw”ﬂ

Hs Hs-

Due to s > 1+ g and % < B < 1, we have, by integration by parts,
1] < IVullZaliTllzee + 1A a2 (A7 ul 2|7 (| e + [ V]| oo [|A* 7| 2)

S NrllaIVullie-s + llullas | Vulls-s | A7

~Y

14 is bounded by
14| < k| AP7]

Hs Hs Hs-

Vul

n
welValgs < IAPTI + Rol Vel s,

ByV-u:O,%gﬁélands>1—l—g,weobtain

|Is5] = ‘/(As(u -Vu) —u - VA u) A ude
< AUl Vull e S llellas ]|Vl F-e.
Similarly,
|Is] = ‘/(As(u V1) —u- VA T)A*rdx

S INTI(IVul e [AT] 2 + |Au] 2] VT ]| L)

<l as || AP s
Thanks to % <p<L1 s> 1—1—% and d = 2,3, we have

1| = [(Q(r,Vu),7) + (A7PQ(r, Vu), A7)

S IVullali7llzs + AT 7 (A Va2 7l + [Vl 2o |A* 77| 2)



8 PETER CONSTANTIN, JIAHONG WU, JIEFENG ZHAO AND YI ZHU

2(1-9) g 3 812
IVullzzl|Tll2 VTN e + T AT s |Vl gs-s + A7 7[5 | ul| ms

S
S Tl A TVl go-s + [ A7

uHHs
In addition, due to % <p <1,
k|PV - 7|

2 s < K|APT| .

Inserting the estimates for I; through I7 into (2.5), we obtain

1d

5 2 (Hulls + I + 2k, ¥ - 7)re0)
3 B2 k 2 2
(0= ) I + (5 = k0 IVl
S Ml IVl go-s ATz + 11Vl Frompl| 7l ez + el e[ Vel 3o
Al s || APT || %6 =+ 1|7 || s (| AP 7| s || Ve | gro—s
S (lullas + 7l ) (AT + [Vl F-s). (2.6)
By moving A® on u, and in view of % < B < 1, importantly, we have
2k(u, V- T) o] < 2K||ull s 17| o2
< 203]€”’LL’ Hs 7" Hs
1
< §\|u|y§{s + 262 K2|| 7| % - (2.7)

Choosing k small enough and integrating (2.6) in time and using (2.7), we have

2 o)At

k

w) [ (14

Thus, we have established (1.11). This concludes the proof for the existence part.

t
sup [l + sup 7. +2 / (nllA%r]
0

2 A | Vul|%s)dt .

11+ + |70l

< [Juol s+ (Sttlp ]| s +sgp||7|

We now prove the uniqueness. The term Q(7, Vu) requires special attention. We split
the consideration into two cases: [ = 1 and % < B < 1. The uniqueness for the case
when 8 = 1 is direct, but the case when % < B < 1 is difficult and has to be dealt with
by constructing suitable energy functional.

Case 1: f = 1. Assume (uy,71) and (ug, 72) are two solutions of (1.6) with the same
initial data. Denote du = u; — ug,d7 = 71 — 79. Then (du, d7) satisfies

0you =V - 61 —uy - Vou — 0u - Vuy — VOP,

00T + uy - VOT — nAdT = D(0u) — du - Vo — Q(11, Vou) — Q(d7, Vug),
V:ou=0,

du(x,0) = 0; o7(x,0) =0,

(2.8)
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where 6P is the corresponding pressure difference. Taking the L? inner product of (2.8)

with (du, 07), we have

1d
5 77 (19ullzz +110711Z2) + nllVor |7

= — /5u - Vugy - dudx — /5u -Vry-orde — /Q(Tl, Vou) - ordx

- /Q((ST, Vug) - ordz + /((5u (V- 61) 4+ D(ou) - o7)dx

N

Vsl [0l + [V 72l o |0ull 2|07 22
+e(Imlle=lIVorlze + IV7llze 67| o) l0ull 2 + [ Vuz| p< o772

Ui
< cIVuzlle + 1V7llee + 11V lle + [Imllze) (10ullZe + 167122) + S IVOT 122,

where we have used the fact that
/((5u -(V-071) 4+ D(du) - 67)dx = 0.

It then follows from Gronwall’s inequality that du = d7 = 0.

Case 2: 1 < B < 1. Assume (u;,7) and (up, 72) are two solutions of (1.6) with the

2
same initial data. Denote du = u; — ug, 07 = 7 — 7. Then (Ju, 7) satisfies
0ou =V - 01 —uy - Vou — ou - Vuy + VOP,
00T + uy - VO + nA?P67 = D(du) — du - Vo — Q(71, Vu) — Q(67, Vuy),
V:ou=0,
du(x,0) = 0; o7(x,0) = 0.

Dotting (2.9) by (0u, d7) yields

1d
5 g7 10ullz + l107172) + nllA%o7 |17

= —(0u-Vug,du) — (du - Vre,01) — (Q(11, Vou),01) — (Q(07, Vug), dT).
Applying A? to (2.9) and then dotting by (A?§u, APd7) lead to

1d
5 7 (A7 0ullZz + [IA%67[72) + nl| A 677

= —(A(uy - Vou), AP6u) — (AP(6u - Vug), APSu) — (AP (uy - VIT), AP67)

—(AP(6u - V), APo7) — (APQ(71, Vou), A°67) — (APQ(67, Viuy), AP67).

Applying PV- to the second equation of (2.9), we have
OPV - 01 + PV - (uy - V1) + nAPPV - 67
1
= §A6u —PV - (6u-Vr) —PV-Q(m, Vou) — PV - Q(6T, Vuy).

(2.9)

(2.10)

(2.11)

(2.12)
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Taking the L? inner product of the first equation of (2.9) with PV - §7 and the L? inner
product of (2.12) with du separately, we have

d 1
%(5% V-o1) + §||v5u||iz — [PV - 67|75

= —((uy - Vou),PV-61) — ((6u - Vuy),PV - 67) — (PV - (uy - VOT), du)
—(PV - (du - V1), 6u) — (PV - Q(11, Vou), du) — (PV - Q(d7, Vuz), du)
—n(APPV - 67, 0u). (2.13)
For a positive constant k; to be determined later, (2.10) 4 (2.11) + k;(2.13) gives

1d

o (180l + 6713 + 201 (5u, ¥ - 67)) + 0| A7 %,

+51Hv(5u|y§2 — ky|[PV - o732 = ;1{, (2.14)

where
I = —ki1((uy - Vou),PV - 67) — k1((6u - Vuy), PV - 67),
I, = =k (PV - (ug - VOT),0u) — k1 (PV - (du - VT13), du),
I, = =k (PV - Q(71, Vou), 0u) — k1 (PV - Q(07, Vug), du),
I = —kyn(A*PV - 67, 6u),
IL = —(AP(uy - Vou), APsu) — ((du - Vug), 0u) s,
Iy = —(AP(uy - V1), AP07) — ((6u - V'), 87) gy,
I = —(Q(m, Vou),07)gs — (Q(07, Vug), 0T) s

By Holder’s and Sobolev’s inequalities,
11| < M| Lo [VOul[ 2 [[VOT| 12 + [[ Vs oo [[0ul| 2| VT 12,
5] < Mlunl| Lo [VOul[ 2 [[VOT| 12 + [[ V72| oo [ VOul| 2| 6u]| 12,
1] S Il [ VOullZe + (| Vsl e [ VOul g2 |67 | 2,
|1 < _’|A2ﬁ57”L2 + k|| Voul|7..

Since V - u; = 0, I can be written as
—(AP(uy - Vu) — uy - VAPSu, APsu) — ((Su - Vuy), 6u) s

By a standard commutator estimate,

5] S
+||VUz||L°oH5UIILz+IIVUzHLwIIABMHm+\|5UII 24 1AV ua|| 2| A%0ull 2
S 4, 8w —)HV(SUHL2+”vu2HL°°H6uHL2

(HVUzHLw + HABWzHLg)HAﬁMHLz-

aa N o [[Voul| ]| A6

Ld— 2+2,3
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By Holder’s inequality,
1l S Muallze | Vo7 2 | A% 67| e
HI V2| o [[dull 2 (|07 2 + [[A2767 | 2),
1L S Il Voul (|07 2 + |A* 67| 2)
HVuz || = [[67 || 2 (167 22 + [|A*767 | 2).

We insert the estimates above for I] through [ in (2.14). If the initial data is small
enough, namely

ol zrs + [|70l|l s < €

for sufficiently small ¢ > 0, we can choose k; and ¢ small enough to obtain the desired
uniqueness. This completes the proof of Theorem 1.1. 0]

3. PROOF OF THEOREMS 1.2 AND 1.3

This section proves Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The proof of Theorem 1.2 is very close to that for Theorem 1.1.
We shall omit most of the details but to point out the differences. The differences are due
to the extra term v(—A)*u®. (2.5) would now contain two extra terms and is given by

1d ., .
S = ([ut]

2 dt e+ 2k, V7 oss) AT 3 + vl| AT

2
Hs

3+ 7))

8
PRI s — RIBY 7Oy = SO,

i=1

where I through I; are the same as before, and Ig is given by
Ii=vk((=A)*u™ V- 70)) s,
The estimates for I; through I7; are the same as before and I3 can be bounded by
| 5] < vk|| A2 3 | g (| A7)
When o < min{1,38 — 1}, we have 2a — 35 + 1 < v and
vk?
2

The rest of the proof is almost identical to that for Theorem 1.1. The crucial fact that the

bound for (u®, 7)) in H* obtained from this process is uniform in . We omit further
details. 0

Hs-

2

1A%,

1] < ZIIA"®) 7 +

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We distinguish between two cases: Case I: § = 1 and Case II:
% < B < 1. The first case is relatively easy while the second case is more delicate. The
fact that the bound for the solution (u®), 7)) in H* is uniform in terms of v plays crucial
role in the proof.
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Case I: § = 1. The difference (du, d7) with

satisfies

Oyou + u™ - Vou+ v (—=A)*0u = —v (=A)*u + V - 67 — du - Vu — V5P,
0,07 +u) - Vo1 — nAST = D(6u) — 6u - V1 — Q(1, Vou) — Q(o7, Vu),
V-ou=0,

du(x,0) =0; o7(x,0) =0,

(3.1)

where 0P is the corresponding pressure difference. Taking the L? inner product of (3.1)
with (du, 07), we have

1d
2dt
= —v /(—A)“u-éudm—/5u-Vu-5udx—/5u-V7'-5de

(lowllZz + 107II72) + v[[A%0ul[Z2 + 0l Vor]|7:

—/Q(T, Vou) - o7 dx — /Q(éT, Vu®) . 57 dz

vlull e [|0u] 2 + [|Vull o [ 0ullZz + V7 o |0ull 2|67 2
+e (7= V07Tl 22 + VT e 167 [l 2)[|6ul| 2 + V|| || 77

VAN

N\

Ve + 219072

i) (l0ullZ2 + [16711Z2)-

+C (1 + |lullgs + 7l + [[u® )= + | 7]
Here we have used the fact that

/((5u -(V-071) 4+ D(du) - 6T)dx = 0.

(1.14) then follows from Gronwall’s inequality and the uniform bound (in v) for ||7¢)|

He .
Case 2: 3 < 8 < 1. The difference (du, 67) satisfies
Opou +u - Vou +v(=A)0u = —v (—=A)*u +V - 7 — du - Vu — V6P,
0107 + u™ - VT + n(=A)’5T = D(6u) — du - V7 — Q(7, Viu) — Q(61, Vu),
V-dou=0,
du(x,0) = 0; o7(x,0) = 0.
(3.2)

Dotting (3.2) by (du,d7) yields

1d .
5 77 (10ullze + 1971172) + ml[AP67 (172 + v ]| A%GulZ:

= —v(A**u, du) — (du - Vu, 6u) — (6u - V1, 07)
—(Q(1,Vou), 1) — (Q(67, Vul), 67).
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Applying A? to (3.2) and then dotting by (A?du, A%67) lead to

1d .
5 T IAPSulZs + A8 32) + | A6 + v AT 5ul 3,

= —u(A* Py, APou) — (AP (u) - Vou), APou) — (AP (Su - Vu), APou)
— (NP (™) - Vo1, APo7) — (AP (6u - VT), APo7) — (APQ(T, Viu), APST)
—(APQ(o7, Vu), A57). (3.3)
Applying PV- to the second equation of (3.2), we have
PV - 01 + PV - (u") - V1) + nA¥PV - 67
— %A(Su — PV - (§u- V1) — PV -Q(r,Véu) — PV - Q(67, Vu). (3.4)
Taking the L? inner product of the first equation of (3.2) with PV - §7 and the L? inner
product of (3.4) with du, we have
a
dt
= —((-A)u", V- 67) — (¥ - Véu), PV - 67) — ((6u - Vu), PV - 67)
—(PV - (u™) - Vo7),0u) — (PV - (du - VT),0u) — (PV - Q(1, Viu), du)
—(PV - Q(67, Vu™), 6u) — n(A*’PV - 67, 6u). (3.5)

1
(0u,V - o1) + §||V5u||%2 —||PV - 57‘”%2

We choose a positive constant ks satisfying, for a suitable constant C' > 0,
0 < k3 < C min{1,n}.
Then (3.3) + k3(3.5) gives

1d
2dt(llétbllhm (1071170 + 2ks(6u, V - 67)) + | A7 s
|| A%6ul? 4 ||V5u||L2 ks||PV - 672, = ZKZ, (3.6)
where
K = —v(A*HPy, APsu), = —( Au™ v(su),Aﬁ(su),
K3 = —(A°(6u - Vu),/\ﬁéu), —(AP(u™) - V1), AP6T),
Ks = —(A°(6u - V1), A%67), —(APQ(r,Viu), A°67),

K, = —(A°Q(s, VU(V)),Aﬂ(ST), Kg = —ksv((=A)*u™,V - 67),
Ky = —ks((u®) - Véu),PV - 67),  Kip= —ks((6u- Vu),PV -67),
Ky = —ks(PV - (u) - Vé7),0u), Ko = —ks(PV - (6u- V1), 0u),
Ki3 = —ks(PV - Q(7,Vou),0u), Ky = —ks(PV - Q(d7, Vu), du),
Kis = —ksn(A*PPV - 67,6u),  Kig = —v(A**u, ou),

K7 = —(0u - Vu, ou), Ky = —(0u - V1,0T),

K9 = —(Q(7,Viu),or), Koy — (Q(07, Vul ) 0T).
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The terms above can be bounded as follows. All the constants in the estimates are
independent of v. By Holder’s inequality,

K| < VP[NPl + C | 6ul s
Due to V - u) = 0 and by a standard commutator estimate,

Ko < Cllu® g 16ullFs + C lla |l [|V0ull 2 | A%l 12

Hs Hs

k - v v
< 1elVaulis +C (kg ) [u® e (19ulZs.

HS) Hs

Clearly, for ¢; and ¢ satisfying qil = % — g and qiz = % — qil,

dullfgs + 10ull Lo A"Vl oo A" ]| 2

[Ks| < Clull

< Cllul

HS
By a commutator estimate,

(Kol < CIA W o V0712 [A%07 | 2 + C | Vu®|| oo |67 |7

< %HA%THEB +C (a3 + e ) 167 1775
K5 can be similarly bounded as K3,
|Ks| < Cli7llas (10wl Fs + 11071 7)-
By Holder’s inequality,
(Kol < [[A%07 |2 |7l = [ VOull 2
< 1IN s + O Il [ V6ul?
< DIN%5rs + T Tl

where we have used the smallness of the solution

Ct s < e <
By Holder’s inequality,
[Kel < 1A% ]|ge [V 157 2
< eIA%r e + O | 197
Clearly,
| K] kv | A2 50| (| APST | 2

<
<

VAR Ty C RS (|67 s
Ky can be similarly handled as Kg,
(Kol < ks [[u®| 1 ([ Voul g2 [ VO 2

Ui - v
< LN GTI G  C o ) 3 [Vl

IN

n ks
TLIA%67 30 + T2V Gl
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where we have used the smallness of the solution

_ v 1
C kgn™Hu®™)| 6

us < Ce with € independent of v, as stated in Theorem 1.2.

21 < Chkypte? <

We emphasize that |u®)|
Ror > 1.

Kol < ko [lSull2 [Vl o [ V67|12
L A%7 s + C 13 ulFy 1503

IA

K11 admits the same bound as Ko,
(Kl < ks [[ul]| o [|VOul 22 V07| 2
n k3
< LIS + I8l
K15 can be bounded directly,
[Kr2| < ks l[oullzz VT Lo [[VOul 22

k
< 1 lIVoulz: + Ckallr% lloullz..

2
Hs

We use the smallness of the solution to bound K3,

k
| Kis] < Chs |7l [Voul72 < TéIIVMIIiQ,

where we have used 1
Ci7llze < Ci7llmer < Ce < 2

K14 is bounded similarly as Ko,

[Kul < ks [[Voul|z2 (1072 | V™ 1

57—”%2.

2
Hs

k
< plIVoullz: + C kflu®|

|Kis| < ksn ||[A*P67 |12 | V6ul| 12
n _
< EHAB(STH%{ﬁ + C k3n~ | Voull7.
n k3
< E“A%TH%W + 1—6||V5U||%2

In addition, it is easy to obtain the following estimates

K| < V2[A* w72 + Cl0ullZ:,

K7l < Cllullgs ||6ul]7-,
|K1s| < C |7l ([|0ull72 + [107]172),
k
|K1o| < Ci7l|Hs 1107172 + %HVMH%%
| Kol < Cllul™| s [|67 3.
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Inserting the bounds for K; through Ky above in (3.6), we find

d
S 18ulFs + 107 |50 + 2ks(u, ¥ - 67))

k
+20]|A%Suls + TIA%07 s + 22 V6ul?,

< OO lullr + a1 + 713 (1ullFs + 167]150)
+CV([[ullf + [[u]32)-

Choosing k3 < %, applying Gronwall’s inequality and using the fact that ||[u®)||gs is
bounded uniformly in v (see (1.13)), we obtain (1.14). This completes the proof of The-
orem 1.3. 0
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