Compressible fluids and active potentials
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ABSTRACT. We consider a class of one dimensional compressible systems with degenerate diffusion coeffi-
cients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish,
and give local and global existence results. The models include compressible Navier-Stokes equations, shallow
water systems and lubrication approximation of slender jets. In all these models the momentum equation is
forced by the gradient of a solution-dependent potential: the active potential. The method of proof uses the
Bresch-Desjardins entropy and the analysis of the evolution of the active potential. March 9, 2018

1. Introduction

We consider a class of compressible fluid models in one space dimension with periodic boundary conditions:

Op + 0z (up) =0, (1.1)

O(pu) + 0x(pu?) = —0up(p) + Ou(p(p)Oaus) + pf, (1.2)

(p,u)]t=0 = (po, uo) (1.3)
with constitutive laws given by

plp) =cpp’s  plp) =cup®, ¢ #0, ¢ >0. (1.4)

Among these models are the one-dimensional barotropic compressible Navier-Stokes equations. In this
description, p is the mass density, « is the fluid velocity, and p(p), u(p) are the fluid pressure and dynamic
viscosity respectively. These are given by physical equations of state (1.4). For such systems, the specific
heat at constant pressure is positive ¢, > 0 so that p(p) is non-negative. The viscosity is also assumed
non-negative ¢, > 0 but may be degenerate in the sense that it vanishes for p = 0.

Although the eqns. (1.1)—(1.3) describe cases of compressible Navier-Stokes equations, they serve also as
models for a number of other physical systems if the basic variables and constitutive laws are appropriately
defined. For example, a model for viscous incompressible motion of shallow water waves [1, 2] reads

Oth + 0z (uh) =0, (1.5)
8y (hu) + 8, (hu?) + gath — 408, (hdyu) + hf (1.6)
where
e ) and u represent respectively the surface height and fluid velocity,
e g is gravity,
e v > () is the kinematic viscosity,
e f is the external force.

These equations are a special case of equations (1.1)-(1.2) with

2

g
plp) = 5p" and  pu(p) = dvp.
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Equations (1.1)—(1.3) also appear in the theory of drop formation as the slender jet equations [3, 4]:

Oth + w0, h = —%&Cuh, (1.7)
1 x 2 €T

where

h and u represent respectively the neck radius and velocity of the jet,
~ > 0 is the surface tension coefficient,

v > 0 is the kinematic viscosity,

g > 01is gravity.

These equations arise as a reduction of the axisymmetric incompressible Navier-Stokes equations in two
spatial dimensions governing a thin liquid threads with a moving boundary. Via the change of variables
p = h?, equations (1.7)-(1.8) become equations (1.1)-(1.2) with

p(p) = —7vp and  pu(p) = 3vp.
Note that here the “pressure” that appears is non-positive in contrast with the Navier-Stokes descriptions.

In all the settings above, the one-dimensional equations (1.1)-(1.3) are approximate models of the under-
lying physical processes, whose quality may vary depending on the situation. In fact, although multi-
dimensional analogues of (1.1)—(1.3) have been extensively employed in astrophysics [5, 6], they are not
known to arise as an effective description by a controlled hydrodynamic limit and they have the defect that
total energy is not conserved. This makes their interpretation as descriptions of dissipative molecular fluids
evolving as nearly isolated systems dubious and must be considered as inherently approximate. Of course,
they could be valid descriptions of fluid systems in other situations than these, as is the case of the shallow
water and slender jet. Moreover, J. Eggers has argued that the slender jet equations described above become
an exact description asymptotically close to drop pinch—off, justifying the use of the model (1.7), (1.8) in
that context.

Four theorems are proved. The first result, Theorem 1.1, provides a blowup criterion for equations (1.1)-
(1.3) with a wide range of constitutive pressure and viscosity laws (1.4). In what follows, we denote by T
the interval (0, 1] with periodic boundary conditions.

THEOREM 1.1. Assume either

(i) ¢, >0anda> L v#1, v>a—1Lor
7 2 2
(ii) cp<0and%<a§%,'y<1,0<7§a.

Let k > 3 and assume further that
feL?0,T; H*Y(T)) forall T > 0.
If (p,u) is a solution of (1.1)-(1.3) on [0, T*) such that
p e C0,T; H¥(T)), we C(0,T;H*(T)) N L0, T; H**(T)), VT e (0,T") (1.9)

and
inf min p(x,t) > 0,
tel0,T*) z€T p( )
then (p,u) satisfies
sup |lpllpeeo, vy + sup  Nullpeoommry + sup  ull g2 ey < 00 (1.10)
Teo,T%) Tel0,T* Te0,T%)

and can be continued in the class (1.9) past T™*.



Theorem 1.1 says that the only possible way for a singularity to form starting from smooth data is if the
density becomes zero somewhere in the domain. This applies in particular to the viscous shallow water
wave equations (1.5)-(1.6). In the slender jet equations (1.7)-(1.8) which model incompressible fluid drop
formation, this says that singularities can only form at the onset of drop break-off. This answers a conjecture
of P. Constantin recorded in [3].

REMARK 1.2. [7] proved that weak solutions of 1D compressible Navier-Stokes equations with constant
viscosity do not exhibit vacuum states in finite time provided no vacuum states are present initially.

REMARK 1.3. Local well-posedness of (1.1)—(1.3) in the class (1.9) is established in Proposition B.1 of
the Appendix B for arbitrary smooth p(p) and smooth non-negative u(p). This covers the special case of
power law equations of state (1.4) in the entire parameters range in Theorem 1.1. Local existence of strong
solution for 2D shallow water equations can be found in [8, 9]. We also refer to [10, 11] for classical results
regarding equations of compressible viscous and heat-conductive fluids with constant viscosity.

Our next two theorems concern the long-time existence and persistence of regularity. Theorem 1.4 estab-
lishes global existence for arbitrarily large data, within a range of pressure and viscosity of the form (1.4).

THEOREM 1.4. Assume
1
>0, ac (5,1], and v > 2a.

Let k > 3 be an integer and let py and ug belong to H*(T) such that po(x) > 0 for all x € T. Assume
further that

feL?0,T; H*Y(T)) forall T > 0.
Then there exists a unique global solution (p,u) to (1.1)-(1.3) such that
p € C(0,T; H¥(T)), we C(0,T; H*(T)) N L*(0,T; H*1(T))
forall T >0, and p(z,t) > 0 forall (x,t) € T x RY.
This result applies to the viscous shallow water equations (1.5)-(1.6), giving an alternative proof to that of
[12] in which only H! regularity is propagated. Moreover, Theorem 1.4 allows for more singular density

dependence of the viscosity than in [13], which considers the case of @ < % and v > 1. In two dimensions,
global stability of constant solutions to shallow water equations was proved in [14, 15, 16].

For more degenerate viscosity p® allowing o > 1, we prove global existence for a class of large initial data.
THEOREM 1.5. Assume that
1
cp > 0, a>§, vEla,a+1], v#1 (1.11)
and that
fla,t) = f(t) € L*((0,T)) VT >0.
Let k > 4 be an integer and let ug and po belong to H*(T) such that po(z) > 0 for all z € T and

Ozup(z) < z—p,oo(a:)%o‘ VreT. (1.12)
m

Then there exists a unique global solution (p,u) to (1.1)-(1.3) such that
p € CO,T;HNT)), we C(0,T; HYT)) NL*0,T; H*1(T))

forallT >0, and p(x,t) > 0 for all (z,t) € T x RT.
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REMARK 1.6. The unique global solution in Theorem 1.4 satisfies

Opu(z,t) < Lp(x, )’
Cu

for all (x,t) € T x RT. Moreover, the proof provides a lower bound for the minimum of density p, see
(6.11) and (6.14),

=1
0)4= 7 4t (v — )W_a hen v > «,
el pm(0) exp (—ti—i) when v = a.

Our last theorem establishes a bound on the time-averaged maximum density for a certain range of parame-
ters assuming mean zero forcing.

THEOREM 1.7. Assume that (p,w) is a sufficiently smooth solution to the system (1.1)-(1.3) on [0,T).
Assume that

[ =09 (1.13)
for some periodic function g satisfying
g € L*°(0,T*; L°°(T)), and 0,g,01g € L>(0,T*; L>=(T)).
Let us also assume that
a>1/2, yemax{2—a,a}t,a+1], and cp,c, > 0.
Then, we have the following bound

T

;AIWﬁWmmﬁSQ+;@, (1.14)
where Cy and Cy are defined in equation (7.6). In particular, Cy depends only on c,, ¢p, o, 7, ||pol|L1,
1029l oo (0,7510), and ||0¢gl| Lo (0,1;1.00), Whereas Ca depends only on c,, cp, v, @, ||poll L=, palHLoo,
llwollz2, ||Ozpoll 12, and HgHLoo(QT;Loo). Consequently, if T* = oo then

1 T
limSUPT/ [p(s )l oo (mydt < C (1.15)
T—o0 0

where C3 depends only on c,,, cp, @, 7, ||poll 1, [|029]| Lo (0,00;50), and [|0¢gl| Lo (0,00;1.%0)-

Theorem 1.7 applies for the viscous shallow water wave system (1.5),(1.6) for which global existence is
established by Theorem 1.4. The interpretation of the bound (1.15) with h = p is that long-time average of
the maximum surface height remains bounded, showing that, on average, no extreme events can develop.

The proofs are based on use of the Bresch-Desjardins entropy and analysis of the evolution of the active
potential w. This object is the potential in the momentum equation (1.2): its gradient is the force

pDiu = d,w. (1.16)

The potential
w = —p(p) + p(p)ozu.

is unknown and combines the viscous stress with the pressure. As w depends on the unknowns and in turn
determines their evolution, we refer to it as an active potential. Remarkably, w satisfies a forced quadratic
heat equation with linear drift and less degenerate diffusion with the new dissipation term @G%w. The
active potential w contains one derivative of » and no derivative of p. On one hand, energy estimates for
the coupled system of p and w allow us to control all the high Sobolev regularity of p and u as long as
p is positive, leading to the proof of Theorem 1.1. On the other hand, the heat equation for w satisfies a
maximum principle which enables us to obtain global regular solutions for a class of large data when the

viscosity is strongly degenerate as in Theorem 1.5.
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The fact that the active potential solves a nondegenerate evolution with a maximum principle was observed
in [17] in the context of a 1D Hele Shaw model, where it served a similar role. The effective flux used in
[18] is an active potential: there it was used by inverting the elliptic (nondegenerate) equation it solves at

each fixed time.

2. A priori estimates: mass, energy and Bresch-Desjardins’s entropy

Assume that (p, v) is a solution of (1.1)-(1.3) on the time interval [0, 7) such that
peC(0,T;H?, wveC0,T;H*NL*0,T;HY)

forany 7" < T and

= inf minp(z,t) > 0.
£ te[O,T*):ceTp( )

In what follows we denote by M (-, --- ,-) a positive function that is increasing in each argument.
First, from the continuity equation (1.1), total mass is conserved:
oG Ol rery = lleollr (-

We have the following standard energy balance:

LEMMA 2.1 (Energy Balance). Let p > 0, and
1 P p(s
em gl 4ne, wo)=p [ s
p

Then, the balance
d

D o tyde = - / (o) Byl + / Joudz
dt Jr T T

holds for any t € [0,T*).

2.1

(2.2)

(2.3)

2.4)

Using the equation of state for the density (1.4) and recalling that p > 0 is an arbitrary constant that we are

free to fix, we have an explicit formula for 7(p) from (2.3)

p fp_ >1,p=0 or € (0,1), p= )
m(p) = CpP/ §72ds = {17 ! P e =
p cpplog(p)  v=1,p=1

Note that the function 7 satisfies

P (p)
p

LEMMA 2.2. 1. Ify € (1,00) and ¢, > 0, then (p) > 0 and

m(p) =

lellzeoren + (o) DepPlzr o rizry < (e Oz + 120 iz o0l 1) ) exp(2T).

2.Ify € (0,1) and ¢, # 0, then

JEGIE ’7—1‘ [0+ 1y

and there exists a positive constant C = C (7, o, ¢p, ¢,,) such that
||pu2||L°°(O,T;L1) + \|M(P)|3zp|2||Ll(o,T;Ll)

< <||Pou(2)HL1(T) + O(L+ (1 £1Z20.:000)) (1 + ||po||L1(1r))) exp(T).
5
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PROOF. First, using the mass conservation (2.2) we bound

/fpudxé 1/f2p+/1pu2
T
<P / et / Lo 2.9

<1y Iollaey + [ 5o
1.If v € (1,00) and ¢, > 0, then we have 7(p) > 0. It then follows from (2.9) that
[ £oude < U llollin + [ et 2.10
Ignoring the first term on the right hand side of (2.4), then using (2.10) and Gronwall’s lemma we obtain
lellzmrizn < (1l 0)lz + 17120 00yl ]L21 ) ) exp(T). @.11)
Next, we integrate (2.4) in time and use (2.10), (2.11) together with the fact that e(x, ) > 0 to get
11()|02p? [l 20,71y < HleC 01zt + 120 ;o0 10l 1 cry + Tllel| oo 0,71
< (JleC,0)llz + ||f||L2(O,T;Lw)Hpoum) (1+1T) exp(T)

< (e 0las + 1120z, lpolls ) ) exp(2T).
2.Ify € (0,1) then

C
m(p)|ldx < P
/T|<>| %

where we used the fact that p? < max{1, p} together with the mass conservation (1.1). Ignoring the first
term on the right hand side of (2.4) and using (2.12), (2.9) we find

/T;qu(x,t)dxS/T;pou%dx—i-/jrﬂ(po(:r))dw—/Tﬂ(p(m,t))d:c%—/Ot/qrfpu(x,s)dxds

1 ¢ 1
< /T Sp0uddz + Cllpollzsry + 1) + L F O oe ol ) + /0 /T £ o, 5)dads

for some positive constant C' = C'(, «, ¢p, ¢,,). Gronwall’s lemma then yields

)+ 1)da < ‘7(:_,,1 /(po +1)dz (2.12)

Il ey < (lloowdllzam + €U+ 1120 z,0) (L ool igm) ) exp(T). @213)
Again, we integrate (2.4) in time and use (2.9), (2.13), (2.12) to arrive at

(o) 02l 0720 < (lo0Blzagey + €1+ 1 Bosrszoey) (1 + loollzacy) ) exp(@T).

O
If either v € (1,00) and ¢, > 0 ory € (0,1) and ¢, # 0, it follows from (2.5)-(2.8) that
H\/EUHLOO(QT;LQ) < M(E07 HfHLQ(O,T;LOO)a T)7 (2.14)
0 0sullp2(0.r.05) < M(Eo. | Fll20:7,): 7). 215
o1l oo (0,1 Lmax 1,43y < M (Eo, [ fl| z20.1;25), T) (2.16)

where
Eo = |lpoud|lLr(ry + 110811 rry + leoll iem- 2.17)
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LEMMA 2.3 (Bresch-Desjardins’s Entropy [19]). Let

O, 2
5= g‘ +p—pu(p) +7(p). (2.18)

Then, the balance
d
o [ st =~ [ 0.pPu(p) " Pac + [ fotu+ ZL o) (2.19)
T T
holds for any t € [0,T%).

A proof of Lemma 2.3 can be found in [19, 20, 21] and is given for completeness in the appendix. The first
term on the right hand side of (2.19) is negative whenever ¢, > 0 and positive whenever ¢, < 0.

LEMMA 2.4. Define

_1
Ey:= Bo+ 10:(p5 2)llz2(r)- (2.20)
1. Ifcy, > O0and v # 1, 'yZa—%, a > %, then
ol oo 0,500y < M(En, (| fll 2200,1000): T)- (2.21)
2.Ife, <0and 0 <y <o,y <1 a € (5,3], then
1
1ol Lo 0.1 100) < M(EN, ([ fll 20,752 o 1), (2.22)
3. Under the conditions of 1. or 2., we have
1
10xpll oo 0,1:22) < M (B |l 2200,7:0), e 1. (2.23)

REMARK 2.5. The bound for (2.21) is independent of p. This fact will be important in the proof of Theo-
rem 1.4.

PROOF. 1. Since ¢, > 0, the first term on the right hand side of (2.19) is negative, and thus

/ wtdm</fpu+2M( ))d
2 % 255
<= /f pda:+/ p(u+ 2 1(p))-d (2.24)

1 Ozp 2
< S OBl + [ 5ol + “Lu(p)es
When v > 1 we have 7(p) > 0, hence s > 0 and
d 1
G st 0d < SO Il + [ st
Gronwall’s lemma then yields

Isllzorizry < (150, Mzacmy + 113200 190l 21r) ) exp(T). (225)
We combine (2.25) with (2.14) and the fact that

a1
1500, )| zrery < lpougllrery + 110 (py 2)”%2@)- (2.26)
In view of (2.15), this implies

Haaz(l)a%)HLoo(o,T;L2(1r)) < M(Ev, || flle20,1:0%), T) (2.27)
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with
ol
By = Ep+ Haﬂc(Po 2)HL2(’]1‘)

On the other hand, when v € (0, 1) we write

d 1 axp 2 9 1 8xp 2
a P(U‘F?M S / p(z,t)) dx+*||f( )||L00(T)||POHL1(T)+/T20(“‘*‘pQM(P)) dz

[ into)iaa < " JIE 2.28)
T v—1

It follows from Gronwall’s lemma that

where we recall from (2.7)

1 Oy
sup / So(u+ ZLu(p)* (w, t)da
t€[0,T] p

1 Oy 2
< </TQ (u+p—’0 1(p)) ($,0)dx+0(1+||f”%2(0’T;Loo))(l+‘poHL1(T))>exp(T)
< M(E17 HfHLQ(O,T;LOO)aT)'

Combined with (2.14), this implies the bound (2.27) when v € (0, 1).
1

Next, we recall from (2.16) the bound for |[p”|| .1 (). By the assumption that v > « — 5, we obtain

_1
10”72 | Loo 0,701y < C(L+ [|p7 | oo 0,521y Pl oo (0,7521)) < M (Eo, | fll 20,7520, T)-
This combined with (2.27) and Nash’s inequality
_1 —1,2/3 _1.,1/3 _1
10" 2| Loo0,7;22) < Cllp* 2 ||L/oo o1:1) 19z (p" )HL/OO(O,T;L?) + Cllp* 2| oo 0,11
leads to
1
10772 | Loo 0,711y < M(E1 || fll 220,110, T)-

The stated bound (2.21) then follows by Sobolev embedding H' C L.

2. In this case, ¢, < 0 and thus the first term on the right hand side of (2.19) is positive and is equal to

_ c _ _
—YCpCy /1I |p0Fe=3/28, p2dx < —276—” /Tp7 1 (Ju+ cpp® 20,p|* + ]u\Q) dz

c _
=292 [ p77 (s(x,t) — m(p) + plul?) d
C,u, T

Note that (2.24) provides the bound

1 1 Oz
[ fotut Zuto)ds < GO wmlloole + [ gou+ () es

), part 2 of Lemma 2.2 provides a bound for 7(p) and pu?. Moreover, note that
) we have 7(p), s > 0. Using these together with the assumption that v < « we
8
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1
when ¢, < Oand v € (0,1



have

d c o
< / s(z,t)dw < ~292 / 17 (s(a,t) — 7(p) + plul2) da + | F() 2 00l 1y + / s(z, t)da.
dt T Cﬂ T T

1
—27%()7‘“/T(s(:c,t)—7r(p)+pu|2) dz + ||f<t>\|%oomllpollum+/Ts<w,t>dw-

Cu P

(-22Cr+1) [ stete- 2@(1)”& (=0 + ptuf) ez

w P 4

IN

IN

O ) lo0ll L1y
< (=212Cy 1) [ st o+ M(E, |l
B Cu P T ’ ’

+ LF O oo (myllpoll 21y
for t < T'. By Gronwall’s lemma and (2.26), we deduce that

)

\‘DM—‘

Islloiran < M(Es+ IOl Iy 5. T)
< MBI l0amey 5. T):

Combining this with (2.14) gives :

105" )llzeiorz2) < M(B W20z 5. T): (229)
Since o — % € (0, 1], the mass conservation (2.16) implies )

16" % i) < C(L+ ool ). (2.30)
Combined with (2.29), this yields
™~ 2 | zoo 0,751y < M(E1 ([ £l 2(0,1150) ; T)
from which (2.22) follows. :
3. The bound (2.23) follows from (2.21) & (2.27) and (2.22) & (2.29) respectively. ]
3. The active potential

We introduce in this section the ‘active potential w := —p(p) + p(p)d,u. This is a good unknown upon

which much of the anlaysis is based. We first show that w satisfies a forced quadratic heat equation with
linear drift.

PROPOSITION 3.1 (w—equation). Let

w = —p(p) + p(p)Ozu. (3.1)

Then w satisfies

rz
_ (e (p) + 1(p), » P(p)  (pr'(p) + 1(p))
1(p)? " <p 1(

o = p~ ()00 — (u + 1(p) LYo, + (pp'(”) . (”“/(’”( - “(”))pw) w




Moreover, the following balance holds

1 /
4 “|w|?(z, t)dx = —/ 1(p)|Opw|?dx — / <u + £ (p) (%p) woywdz
dt Jy 2 T P

)
P(p (p1'(p) + 1(p)) 2gp — [ (P (O)+1p) 5,
+/ <pu(p 2 p(p)? p<p)> o ds /[r u(p)? 4

~—~

~—

p'(p) _ (p'(p) + 1(p)) > p / 5 fud
+/ < ) MPE p(p) | p(p)wdz + TM(p) . fwdz.
3.3)
PROOF. From the definition of w := —p(p) + p(p)d,u given by (3.1), we compute
Oxw = (02p)(—P'(p) + ' (p)Ozt) + p(p)Ou. (3.4)

Thus, we have

dw = (9ip) (=0 (p) + 1 (p) D) + p(p) 04 Opu
= =0 (up) (=1 (p) + ' (p)Oxu) + 11(p)0pdru
= —pdpu(—p' (p) + 1 (p)Orut) — w(Opw — pu(p)O2u) + p(p)drdpu. (3.5)

The momentum equation (1.2) gives

O = —udyu + p~Loyw+f,
0:0zu = —O0yu0zu — u@%u — a;;”azw + pflafjw + 0. f.

Combining the above results, we find

Orw = —pByu(—p'(p) + 1 (p)Bxtt) — udsw + upt(p)yu
Oy _
— 1(p)(|0sul? + udu) — u(p)p—faxw + 07 1(p)02w + ()0 f

= p~ (p)ow + p(Deuw)p' (p) — (o1’ (p) + 1(p))|Dwu* — (u + u(p)aprf)axw + u(p)0u f

/ ! a;p
= )R+ plo -+ p(p)” ((g)) _lew (Z)(;f(p)) (w4 D) — (-4 ) 2100 + ()0

which, after rearrangement, establishes Eq. (3.2). For the energy, multiplying the equation (3.2) by w yields

O <1|w!2> = &E(M(pp)w%w) - M|8ww|2 — &E(M)wazw — <u + ’ulgg)&rp> WO w

2
p'(p) (o ( (p) + 1p)) 3
= (o -2 o)) o =
s (Y- e (M’(;) s ))p<p>> Py + ()0, fo
Integrating in space yields the balance. U

Let us remark that in (3.2) the new viscosity coefficient is (p 2) which is less degenerate than the original

viscosity ji(p) for the momentum equation. In particular, when u(p) = c,p® with o < 1, o) g not

degenerate when p goes to 0. Energy estimates for the coupled system of p and w will allow us to control all
the high Sobolev regularity of p and w as long as p is positive. This leads to the proof of our continuation
criterion in Theorem 1.1: no singularity occurs before vacuum formation.
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Furthermore, (3.2) can be regarded as a nonlinear heat equation with variable coefficients. Note that the
zero-order term in (3.2) has the form A\p>’~® where A depends only on ¢y and cp. It can be readily seen
that when the zero-order term and the forcing term in (3.2) are nonpositive, w remains nonpositive if it is
nonpositive initially. This fact will be exploited as the key ingredient in proving the existence of global
solutions in Theorem 1.5 when the viscosity is strongly degenerate.

4. Proof of Theorem 1.1

Throughout this section, we suppose that
0<p<p(at) tel0,T7), zeT. 4.1)

and assume either
(i)cp > 0and a > 2,7>a—§,77é1
(i)ep <Oanda € (5,2, 0 <y <o,y < 1.

Under these assumptions, by Lemma 2.4, we have

121l oo (0,500 () < M(E1, || £l 2200, 7,150 ;:T)a 4.2)
and

10zpl oo (0,752(T)) < M(E1, | fll 220,115 ; T). (4.3)
LEMMA 4.1.

w0712y + 0wl z2(0,7:22) + 10l oo (0,7:22) + 102ull £2(0 7. 12)

1 4.4)
< M(E2, | fllz20,1;m1) ;,T),

where Ey = Eq + ||0yuo]| 2.
PROOF. As a consequence of (4.1), (4.2), and (3.3), there exist ¢ := c(Ex, || f||r2( (0.T:L%): 5 ,T) >0
and C':= C(Ev, || fllz20.1,): 5 L T) > 0 such that

d

& [ Sl e,y < —/ 0,0 dx+/(|u|+0|8xp|)|w8 wldz

—|—C</ w[zdx—l—/w[3dx+/\&,;f\2dm+1). 4.5)
T T T

1
/Tlaxwa\dw < loswlpelwllzellullee < Crlldswllzalwlzeullm < - 10xwllZe + CllewllZallul:

We bound

where ('] denotes absolute constants throughout this proof. Next, applying Gagliardo-Nirenberg’s inequality
and Young’s inequality implies

3 1 5
/T\MI dz < [lwlzs < Cr(l0swl|7allwl7z + [wllz2) < o, wl|F: + CHwHLz +Cllwll7e

11
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and

/ |Orwwdypl dz < ||Opw]| 2 [[wl| Lo | Orpll 2
T

1 1
< Cul|dzw|| 2 (|0zw]| pallwll 22 + llwl[2)]|0zp]l 12
3 1
< Cl|Ozw|| pollwl| 72 102pll L2 + CrllOzwll 2wl 2] Oz pll 2
1
< Lloewliz + Clwllz10:pl72 + Cllwllzz | 0zpl 72

Putting together the above bounds, and interpolating, yields the following inequality
1d
2dt

In view of (4.3), we have

1
lwliz + L lI0awlz < CllwlZa(lwlgz + 10:pl72 +1) + Cll0: fIIZ + C. (4.6)

1

T
/0 900 Olad < MCEL oy, T)

Furthermore, using the definition of w together with bounds (4.2) & (2.15), we have

1
Hw||L2(O,T;L2) < M(E17 HfHLQ(O,T;LOO)a ;7T)

The last two displays, together with Gronwall’s lemma applied to (4.6), yields the bound

lwll zoe 0,7:22¢T)) + 102wl L2(0,7522(T))

1

< M(HwOHLZ7C7 C, B, HfHLl(O,T;Hl)7 ) ) < M(E17 HfHLl(OTHl) T)

\b\'—‘

Here, we used the fact that

lwoll72 < 2¢llpoll7% + 2610l 3% |90 | 7--

The above bound can be used to obtain similar estimates for ||9,ul| L (o 1;2) and |02ul| r2(0,1;1.2) directly

from the definition of w (3.1). ]
LEMMA 4.2.
1020l o 0,7:22) + 100wl poo (0,7522) + 05wl 1207, 12)
1 “4.7)
+ 103wl Lo 0,22y + 1050l L2075 02) < M (B, || fl| o751, > 1)

where
B3 = Ey + [|02pollz2 + [|03uo| z2.

PROOF. To prove this lemma, we obtain energy estimates for the mass equation (1.1) and the w-
equation (3.2) simultaneously. The proof proceeds in 4 steps.

Step 1. Let m > 2 be an arbitrary integer. Differentiating equation (1.1) m times, then multiplying the
resulting equation by 07" p and integrating in space we get

2 m m, m
sar Llomel == [ orwannors— [ oro.wors
- [uvazeero— [ (or.wom)ore— [ (o7 poa)ors— [ poriuors.
T T T T
Using the Kato-Ponce commutator estimate [23] and the inequality

1029l o (1) < C|O gHL2(T) < CullOZgllL2(ry Yn >3,
12



we have

1[0, udepll 2 < CllOwull Lo |07 Bupll 2 + COT ul| 12| 0upll oo < CllOF ull 121107 pll 2
and

1[0, PlOatt]| 12 < Cl|0epll L l|OF  Oxull 2 + ClIOT pll 2|0zl Lo < CllOFul| 21103 p| 12
In addition,

/uazé??p@;”p' -1 '/8mu\3;”p2
T 2 |Jr

‘We thus obtain

1
< S 0wl |19 plIZ2 < ClIOF ull 2107 o172

d
1050l < ClOT w2107l T2 + ol oe 105 el 2103 pll 2 (4.8)
Step 2. Recall equation (3.2) with power-law pressure and viscosity

c
dyw = c,p® 102w — (u + cp® 20pp)Opw + c—p (v=2(a+1))p" “w

m
X 2 (4.9)
- C—(oz +1)p “w?® + C—p (v = (a+ 1)) o277 + ¢, p*0s f.
p 0

Differentiating in space, multiplying the resulting equation by 0, w and integrating by parts in x leads to

1d _ _ c -
/ ]8Iw|2:—cu/pa 1\8§w|2+/(u+cupa 28%/))8@;u)8‘,§w+p(’y—2(a+1))/ |0,w|?p7 ™
2dt T T T C,u T

+ 2 (y—a)(y—2a+1) / wp "L wdp
CN T

2

— C—(a + 1)/Tpaw\8xw|2 + Cg(a + 1)/Tw28xw8xppa1
o o
2

+ 2@ -0y (- (a4 1) [0t~ [ ot
m

7
=: —cuApa_1|8§w|2 + ZH]-.

=1

after integrating by parts. By virtue of (4.1) and (4.2), there exists ¢ := c(E1, || f 220,715 %, T) >0

such that
1
on [ oMokl = [ okl
T cJr

Note, under our assumptions p and 1/p are bounded (see (4.1) and (4.2)). Therefore all coefficients involving
L norms of p to some power can be bounded by some constant C' = M (Ex, || f||z2(0,7;1), %, T,7v,a).

The constant may change line by line.

e Estimate for H;:

/T(u + Cupa_Qazp)azwaiw‘ < (10wl 2 100wl 2 ull oo + CllOZw]| 210wl 2 1 Dupll oo

1
Toall0zwlzs + Closwllze [ullf + Cllosw]z2]102p]7:

ot
T

13

e Estimate for Ho:

< CHaacw”%2~




Estimate for Hs:

Awaxwaxpp”"‘l < "™ Moo lwll oo | 0wl 2 | wpll 2

< Cllwll 2| 0swll £21|0zpll 12 + Cl 0wl 7210z pll 2.

Estimate for Hy:
[oeuionup
T

e Estimate for Hs:

/ w20y wdypp @t
T

1

< @HWH%N + C|0pw][ 12

1
< pj\IWIILwllazwlliz

< Cllwll + Cllozwllz..

< 10zw]l g2 |w]|Foo 10z 2

Bl+a
< Clldsw| 2wl 102p]l 2
< Clldew| 2 |wl|72 18201 L2 + CllOxw]32]02pll 2.

Estimate for Hg:

< Cl|0pw|| 2|0z pl| 2-

/ P’ 0pwdp
T

Estimate for H7:

1
< ﬁ”&%w”%2 + C|0x f|7-

/ p20*wd, f
T

Putting together the above estimates gives

d 1
0wl + 5102w,

(4.10)
< C (0zwlZallullzy + 10:wl[72 1020072 + 10swl 72 + 10:w] 72100 £2) + G
with
G = C (Ipll = 10zwl|72 + 1wl 20wl 1210z pll 2 + 0wl 210z pll 2
HlwllF + 10zw]| 2 wl|7210:pll L2 + 102wl 2 |0upll 2 + 102 f1172) -
By virtue of the estimates (4.2), (4.3) and (4.4) we deduce that
1
IGll 1o,y < M (Ea, || fll 220,711 P T).
Step 3. Letting m = 2 in (4.8) and using the embedding H!(T) C L>°(T) we get
d
1920l < CloZullLl10zpl T2 + Cllpll 10z ull 2107 o1l -
Recalling the definition (3.1) w = —c,p” + ¢, p“0ru we have
63 :62 w Cﬁ y—
U x(ic#po‘ + o )
0?2 O wO. 0?2 Oup|?
- B a2 0 M (o + )2
Cup Cup Cup Cup
c c
+E(y = a)dzpp’ T 4 E(y = a)(y —a = D)]0upl*p7 (4.11)

w w
14



Consequently
103ull 2 < C (183wll 2 + |0swll 21| Oz pll oo + [l 1 |0Z0] 2
Hwlzee [0zpll 2 10zl Lo + 1107~ locllOZpll 2 + 116772 oo 10zpll 2 10upl L) -

Therefore, we obtain
d
o2l
< C(107ull 219201172 + ol 03wl 2103l 12 + [l e |10zl 12103 0l 12| 02p | Loc
+ lwll g ol 1920172 + llwllzes |17 102 pll Lo 107 0l 2
+lollai 1030072 + lloll7 102 01172) (4.12)

IN

1
Tocllozwlzs + C (105ull 2102172 + Nollz 19201172 + lpll e l|0swll 21071 72
Hlwllz ol 10201172 + lwllallolz 1020072 + lolla 1020172 + ol 10201172)

1
ol02wle + Flo2pl3:.

IN

with ) )
F= C([lo7ull2 + oIz + ol [10zwll 2

Hlwllgllollgr + lwlla ol + lola + lolF) -
Combining the estimates (4.2), (4.3) and (4.4) yields

1
I E N o,y < M(E2, || £l 20,7501 (1)) ;,T)-

Step 4. Adding (4.12) to (4.10) leads to
d 1
g(H@%pHr‘ﬁ +[|0pw][72) + @H@%wllé < ||0zw|| 72 H +[|0Zpl[72(F + C|8zwl|?2) + G
< (|10swl72 + 1020l 22)(H + F + Clld,w]72) + G

4.13)

with
H = C (ullfn + 19zw][72 + [[0cw] 21 02pll2)
satisfying, in virtue of (4.2), (4.3) and (4.4),

IH| L1 0,1y) < M (B2, | fll 20,111y, = T)-

S

Finally, we integrate (4.13) in time, then apply Gronwall’s lemma, the estimates for £', G and H, and the
estimate (4.4) on ||0zw/| 2o, 1;2) to obtain

1
||a§P”L°<>(0,T;L2) + [|0zwl| Loo (0,7;22) + ;Haiw\\p(o,:r;m)

< M(E2, || fllz20,1;m1), = T 102pol| 2, [|Ozwo | £2)

R I+

S M(E37 HfHLQ(O,T;Hl)v 7T)7

where
B3 = By + (030l 2 + 1|05 uol| 2.
It then follows easily that

1
102ull oo 0,7:22) + 1102l 20 7:12) < M (Es, | f |l r2(0,7:01) ;,T)-

15



LEMMA 4.3. For any k > 2 there exists M}, depending only on k such that
Ha];P”Loo(o,T;L?) + ||a§_1wHL°c 0,7;L2) + |05 w| 2 (0,T;L2)
,T)
(4.14)

+ 105 ull oo (0,7,12) + 105wl 20722y < M (Brgrs 11l 220 1:m05-1)

\b\'—‘

where

Ejy1 = Ex + |05 poll 2 + [ 05uo)| 12

PROOF. The proof proceeds by induction in k. According to Lemma 4.2, (4.14) holds for k =
Assuming that (4.14) holds for k — 1 with k > 3, to obtain it for k we perform H* energy estimate for p and
H*~1 energy estimate for w. This follows along the same lines as that of Lemma 4.2. We first apply (4.8)
with m = k to have

Sl0kolza < Clobul2El3s + ol 08 ull 2010kl .
. - (4.15)
< M (B o ane-2y . 7) (105ul2108p 3+ 105l 21042

By differentiating £ times the formula
1 — —
Opu = —wp ™~ “ 4 cpp”

and using the induction hypothesis together with the fact that £ > 3 we obtain

105 ull g2 < Cll[O%, p~ w2 + Cllp™*Ofwll 2 + 10507 2
< C|dep” “HLoonHHk 1+ Cllp™ | gellwllze + Cllp™ |z 05wl 2 + (10507 | 2
< Clo~lmzllwl gr— + Cllp™ | grlwll s ++Cllp™ s 05wl 2 + 1127~ | g

1
< M (B | Pz 5. D) (105wl 2 + 052 +1).

It then follows from (4.15) that

H p|rL2<M(Ek,\|f||LzOTHH 1) 1080132 (108wl 2 + 1) + 05wl 21050 2 + 1]

(4.16)

\E\H

o |bwl3a + M (B |7 ooz ) 19513 (108l 2 + 1) +1]

\’D\'—‘

_10

where ¢ = c(E1, || f[| 20,7, L)) 5 ,T) > () be a positive number such that

p* > V(z,t) € T x [0,T7).

ol

Next, we differentiate equation (4.9) k— 1 times in x, multiply the resulting equation by Oﬁ_lw and integrate
over T. We estimate successively each resulting term on the right hand side of (4.9).
16



1. The dissipation term:

J e K L
T T
k—2
_ﬁ/flmﬁﬁ—/aﬁij@%wlﬁew
T T =1

k—2
Lok k ¢ a— k—¢
——lloFwliz + Cllogwlize Yy Celldhp®How 105 w2

<
(=1
1 _
< ——lzwlize + Cllogwlzzllpll e (105 w2 + wll2)
1 _
< = llazwlgs + Cllplg (19;~ wliZs + [lw]Z2)

2c

1 1 _
—%Ha’;w\|i2 + M (Ex, £l 20,7 1%2)5 ;,T) (Haf wl|7, + 1).

2. The drift term. We have

a—l
/3’;1(uazw+cupa28xpaxw)8§1w = /Bk 2(u8 w)a w—cu/f)k 2(3 718:510)8!;10
T T -

where we adopted the convention "’ = p when o = 1. Noting that H*~2(T) is an algebra for k& > 3,
we then bound

/ 8!5_1 (u@zw + c“pa_anpwa) aﬁ_lw
T

pa—l
< Cl0kw] g ull pcslfol s + Cl0Ewl g2l 2 o o] pics
0 wlZe + s s + O s e
20c" L H H o —1H H

1 _
L) (j0% i+ 1)

1
S 2700”8!;11}”%2 + M(Ek;7 Hf”L2(0,T;Hk*2),

3. The nonlinearity term:

L/”ak 1 —a 2 ‘ L/mak 2 —a 2 ak

k
< Clo™ w2 llwl| 2 105wl 2

1 _
7”akaL2 + O™z s

| A

Hﬁwm+Mwmmmomﬂ% 7).

\b\r—‘

4. The zero order term:

/35_1@27““)3';_1%0 < Cllp™ g 105wl 2
T

1 _
< M(Ey, £l 20,5 2) ;,T)Hai Lw| 2.

17



5. The forcing term:

[ raunor
T

= ‘ / 052 (p™ 0 f ) O w
T
= C\Ip“\lm 2100 f || -2 0wl 2

H@kaLz + M (Ey, £l 20,75 2) )N

- 20
Putting the estimates 1. through 5. together, we obtain

1d
2dt

\b\'—‘

2 _
—llor w]7s < CHa];wH%?+M(Eka||f||L2(0,T;Hk*2)a T) 105 wl|7

> |+~

1
+ M (Ey, £l 20,75 2) ;7T) (Hf”%{k—l +1).

Combining this with (4.16) and Gronwall’s lemma leads to
19 PHLOO or;02) + ”8k leLoo o,1;L2) T H@ U’HL? (0,T;L2)

< M(H IpOHLQ + Haa]cc_leHL? + ”f”L2(O7T;Hk71) + T) exXp (M(||8§uHL1(O7T;L2) + T))

where we denoted .
M = M (B, | fll 20,7152y = T)

and used the fact that the L2(0, T; H*) norm of u is controlled by M .

‘Q

It follows easily from this that || 0¥ u|| Lo (0,7;12) and [|OF+ | 12(0,7;1,2) can be controlled by the same bound.
This finishes the proof of (4.14). (|
In view of Lemmas 4.1, 4.2 and 4.3 we have proved that
sup |l o rmry + sup ullpeoormsy + sup |l 27 me1)
Te[0,1%) Te[0,7%) T€el0,T*)
1 4.17)
< Mk(”(pmuO)HH’fo’f? HfHL2(0,T*;Hmax{k*1»l})7 ;,T*) <000

for k£ > 1. Appealing to local existence, established by Prop. B.1, the solution can be extended past 7.

5. Proof of Theorem 1.4

We assume here that ¢, > 0 and that o € (%, 1], v > 2a. By Prop. B.1, there exists a positive time 7 such
that problem (1.1)-(1.3) has a unique solution (p, u) on [0, Tp] such that

p e C0,To; HY), we C(0,To; H*) N L*(0, To; H*), k>3, (5.1)
and p > 0 on [0, Tp]. Let T* be the maximal lifetime of the classical solution (p, u), so that, by Thm. 1.1,
inf minp(z,t) = 0. (5.2)

te(0,7*) z€T

We claim that T* = oo. We will argue by contradiction. Let us note that the H* regularity, k& > 3, of (p, )
suffices to justify all the calculations below. Recall from the proof of Lemma 2.3 in Appendix A, that

X =u+cup® 20up, (5.3)
defined also in Eq. (A.4), satisfies

8 X + ud X = ’ycp PN — )+ f = —yzlp%ax + ’yi—p/ﬂ*o‘u +f. (5.4)
Cu " "



By Lemma 2.4 1., we have
1ol oo (0,500 (1)) < M(E1 || fll 220,105, T)- (5.5)
Since v > 2a > a + % for a € (%, 1], combining the above estimate with (2.14), we have
107 ull oo (0,722 (my) < M(E1, ([ fll 220,752y, T)- (5.6)
Note also

Du(p7™u) = (pOru)p ™72 + (7 — a)p" 2 (p™ 2 ) (v/pu1)

Now, estimate (2.27) implies

1(0°~20ap) 20,7 22(m)) < M (B, | fll 20,7100y, T)-
Putting together this, (2.14), (2.15), (5.5), and the assumption that v > 2« we deduce that
102 (0" W)l 20,11 (1)) < M(EL, || fllL2(0,7:100), T)-
which combined with (5.6) yields
107 “ullp20,r w1y < M(E ([ fll 220,100, T)- (.7

Since (5.4) is a transport equation we then have

c _ c _
||X”L°°(O,T;L°°) < (||X0||L°° +’Y*Cp 1p” au”Ll(O,T;L“) + ||f||L1(0,T;L°°)) exp (WC*IDHPV aHLl(O,T;LOO))
iz iz

< M(Ex, || XollLee, [[fll 20,7525, T)-
(5.8)
Recall that X = u + %u(p) = u + ¢,p* 20,p, hence X p7™% = up’~* + ¢,p? 20, p. It then follows
from (5.5), (5.7) and (5.8) that

HP’Y_Q&EPHLQ(O,T;LW) < M(Ex, [ XollLoes 1 £l 20,7509, T)- (5.9)
Using (1.1) and (1.2) we obtain

!/ /
H2P)0sp (pp)awp)&pu = M(pﬂ) agu — p(pgaxp +f= cﬂp“_laiu — cpwﬂ_Q@xp + f. (5.10)

Using the maximum principle (see the argument leading to (6.6) below and a similar argument for the
minimum) and the bound (5.9) gives

o+ (u —

lull oo 0,72y < Mlutollzoe + eyl o7 2 0upllpro,ri) + I Fll Lo,

(5.11)
< M(E, [[(Xo, uo)llzee, [1f 122 (0,500), T)-
From the definition of X and (5.8), this yields
Hampa_lHLoo(o,T;Loo) < M(E1, [[(Xo, wo)l Lo, | fll L2 0,7;200), ) (5.12)
when o« < 1, and
102 I pll e 0.1 100) < MUEL [|(Xo, w0) | zow, 11l 220,100 T) (5.13)

when oo = 1.

When o < 1, the continuity equation implies

O(p* ") = —(a = 1)0r(up)p® 2. (5.14)
19



Integrating this in space and time and using the definition of X leads to

/T o (@, T)dz — / o+ (0= 1)(a —2) / t / (upp®=30,p) (w, 2)dud>
_/ 1d:1:—|— ! (a—2) (—1) / / uc,p® 20pp) (z, z)dadz (5.15)

/ 1dx+C//X2:vzdxdz

Similarly, when o« = 1 we have

/lnp(:n,t)dx < /lnpodzx
T T

Then by virtue of (5.8), (5.11), (5.12), (5.15), Poincaré-Wirtinger’s inequality and Sobolev embedding we
deduce that

valid for 0 < ¢ <T.

t
+0/ /X2(m,z)da:dz, 0<t<T. (5.16)
0o JT

1™~ Wl oe 0,72 < M (B || (Xo,uo) oo, 10§ Iz 1l p2o,r20), T)
ifa<1.

On the other hand, if o = 1, (5.5) combined with with (5.16), Poincaré-Wirtinger’s inequality and Sobolev
embedding, yields

| 111/3||L<><>(0,T;L<><>) < M(En, [[(Xo,uo)||ze, || Inpol| 1, Hf”L?(O,T;LOO)vT)‘

Consequently
inf 1) > F (M (Ey, ||(Xo, oo, || p&t 1 , ooy, T
ol ol ) 2 F (M (Bo. (Ko, o)<, ™ o+ 1 pollus, 11l xorace) 7))
where
1
za-1 ifa<1
F(z) = ’ 5.17
=) {ez ifa=1. ©-17

Therefore,

. —1 *
ool t) = F (M(Eo, | (So.w0) 057 o 18 ol [ F20:rw0)- 7)) > 0

which contradicts (5.2).

6. Proof of Theorem 1.5
Recall the assumption (1.11)

1
¢ >0 and vy€o,a+1]\ {1} and a>g. (6.1)

By Prop. B.1, there exists a positive time 7 such that problem (1.1)-(1.3) has a unique solution (p, u) on
[0, Tp] such that

p€C0,To: HY), ueC(0,To; HY)NL*(0,To; H*Y), k>4, (6.2)
and p > 0 on [0,7p]. Let T be the maximal existence time. We claim that 7* = oco. Assume by
contradiction that 7™ is finite. By Theorem 1.1 we have

f t) =0. 6.3
I3 Rl = 6
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From Lemma 3.1, the w equation (3.2) is

Dw = cup® 02w — (1 + cup®200p)Bpw + L2 (v — 2a + 1)) p7w
Cu
2
c
—cp(a+1)p w® + C—p (v — (a+1)) p*77. (6.4)
m

Note that the assumption f(x,t) = f(¢) was used to have 9, f = 0. It follows from (6.2) and the equation
(6.4) that

we C0,T; H) NL*0,T; HY),  dw e C(0,T;H') c C(T x [0,T])
Thus, w € CY(T x [0,7T]) and thus the function

wpr(t) := max w(x, t) (6.5)
zeT

is Lipschitz continuous on [0, T]. According to the Rademacher theorem, w), is differentiable almost ev-
erywhere on [0, T'|. There exists for each ¢ € [0,7*) a point x; such that

wpr(t) = w(ag, t).
Let ¢t € (0,T) be a point at which w)y is differentiable. We have

wyr(t) = lim wa(t+h) = wn ()

h—0+ h
— lim w(Typ,t+h) — w(z,t)
h—0t h
. w(mg,t+h) —w(x,t)
> hlg(r)1+ W = Oyw(w¢, ).
On the other hand,
. wp(t) —wap(t—h)
t)=1
vl = 1, h
— lim w(ze, t) — w(xi—p,t — h)
h—0+ h
< lim ’lU(.’IJt,t) — ’lU(.’L't,t — h) = 6tw($t,t).
h—0+ h

Thus, w),(t) = Oyw(x,t) if wyy is differentiable at t. We deduce from this and equation (6.4) that for
almost every ¢t € (0,7,

dwnr < A(tywyr + B(t)wi, + C(t) (6.6)
with
Alt) = (7 — 2(c+ 1)) pla)
B(t) = —jﬂ(a 1) pla)
62
C(t) == (y = (@ + 1)) pla) .
"

where we used the facts that 2w (z,t) > 0 and d,w(xs,t) = 0. Note that B(t) < 0. In addition, the
function C' is nonpositive under the conditions (1.11). The condition on the initial data (1.12) is equivalent
to wps(0) < 0. We deduce that
w(t) <0, YVt <T*. 6.7)
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At the point y; where the density attains its minimum value p,,, := p(ys, t), pm satisfies

w _ Cp o Cp ~_
Oypm = —0pu(ye) pm = _7(.%)%1” @ — Lprotl > B el (6.8)
Cu Cu Cu
where we used (6.7). Provided that v # «, this implies the differential inequality

1 Cp

QP = —2. (6.9)
(=) ™" Cu
Since o < 7, we find
Ao < 2(y - a) (6.10)
Cu
which implies
1
pm(t) > (pmm)a—” P2 - a>) Towi<r 6.11)
i
Since ¢, /c;, > 0, this implies that
1
c a—y
inf mi 1) > 0)* 7 +T* L (y— >0 6.12
inf  min p(z,t) > <pm( )4+ . (v a)) (6.12)
which contradicts the assumption (6.3). We conclude that the solution (p, u) is global in time.
On the other hand, when o = v we have
B lnpy > —2 (6.13)
Cu
and thus
pn() > prn(0) exp (—tC”> >0 (6.14)
Cu

which again leads to a contradiction with (6.3).

REMARK 6.1. With a more refined maximum principle argument, one can relax the regularity requirement
of k > 4 which we used to conclude that (6.5) is Lipschitz continuous on [0, 7.

7. Proof of Theorem 1.7

In this section, we give an upper bound for the long-time average maximum density, assuming that the
forcing has zero mean in space. This follows by an application of the Bresch-Desjardins’s entropy and the
following elementary lemma.

LEMMA 7.1. Letm > 3. If k™ € WVY(T) then we have
1
1Pl ooy < 20182 (A" )| 7y + Al L1 () - (7.1)

PROOF OF LEMMA 7.1. Since h € WHL(T) C C°(T), we have h € C°(T). In particular, there exists
a point 2o € T such that |h(x¢)| < ﬂ||h||L1(T). For all z € T we have

w(a) = [0, ())dy+ H" (o)
o
hence
[A(@)[™ < N0h™ (| xemy + [A(@o)[™ < 10(R™) | gy + V2IRIIT o) -
In view of the elementary inequality

(a—l—b)% < 2am +2bn%, a, b, m >0,
2



we thus obtain (7.1). ]

PROOF OF THEOREM 1.7. Recall our assumptions
v € max{2 —a,a},a+1], a>1/2, and cp,c, > 0. (7.2)

Next, by Lemma 2.3, the entropy

2
s=Llu+t p—fu(p) +7(p). (7.3)
satisfies
d
G s == [ 10Pup)™Pas+ [ sotu+ L)z (7.4)
T T

Integrating this in time yields

T
/s(m,T)dx—/s(m,O)dm—l—cpcﬂy/ /pa+7_3|8xp|2dmdt
T T 0 T

T T
= / / fpudzdt + c#/ / fp* 1 0ypdadt.
o Jr o Jr
Using the assumption (1.13) we calculate

/OT/Tfpuda:dt: —/OT/Tg@x(pu)dxdt:/OT/Tgatpdxdt
:/T(gp)(m,T)dx—/T(gp)(:n,O)dm—/OT/Tpatgdxdt_

T
/ fpudxdt] < gl o2z llooll + 18eg 21 07520 10l

This implies

< 2|9l Lo 0,200 [P0l + TN Oegll Lo 0,752) [l o 1
On the other hand, using Cauchy—Schwarz, we have

T T T
1
Cu/ /fpo‘lax,oda:dt‘ cpc,[y/ /pa+73]8mp|2dxdt+0/ /pa'Y“fzdxdt
o Jr 2 o Jr o Jr

1 T _
2Cp0;ﬂ/0 /Tpaﬂ 3|0ppPdadt + CT(1 + ”pﬂ”l)Hf”%OO(O,T;LOO)'

Here, C'is a constant which depends only on ¢, ¢, and y. We have used the assumption (7.2) that - belongs
to the range v € [max{2 — o, a},a+ 1] witha > 1/2tohave 0 < v —y + 1 < 1.

IN

IN

Note that the allowed range of v and « requires that v > 3/2 always. Since, in particular v > 1 we have
m(p) > 0 and s > 0. Thus, putting all together, we obtain the bound

1 T
2cpcl/y/ / p2t17310, p2dadt
o Jr

< 2lg]| e 0 15100 190l + TN o 075 19011 + CT + 9ol 1102 072009 + /T s(z,0)da.
‘We thus obtain

1 T
chcﬂ’y/ /p“+7_3\8mp\2dxdt < MiT + My,
o Jr

where M is a constant which depepds only on c,, ¢, 7> a, |lpoll=, lpg Lo, lluollz2s 110zpollz2s
||g||Loo(07T;Loo), and M, a constant which depends only on ¢, ¢p, v, || pol| 1, ”8tg”Loo(O7T;Loo), 10291l Lo (0,1;1.0)-
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In particular,

T
/ / 10, (p2 @t DY 2dzdt < M3T + Mo,
0 T

o (a1 g F_ _
where M, 92 = M;, fori = 0, 1. Here, we used the fact that o +~v — 1 > 0.

2cpepy

By assumption (7.2) we have that o + v > 2max{l,a} > 2 which implies % < 2. We now apply

Lemma 7.1 with m := 3 (o + v — 1). Use the embedding L*(T) C L'(T), we obtain

T T 1
/0 (-, )| poedt < 2/0 102(p™) || 724t + 4T [| po | L1

Consequently,

T T
/0 (- 0)]|pedt < 2 /0 (19 (o™ 22 + 1)dt + 4Tl poll 11 < 2MsT + My) + 2T + 4T ol 1.

Hence,
1 [T 2
= ol )llzedt < (2Ms + 2+ 4llpollz) + 2 M, 75)
0
and the claim follows, with the definition
C1=2Ms,  Cy:=2M3+2+4|pol - (7.6)
O

Appendix A. Bresch-Desjardins’s entropy

For the sake of completeness we present the proof of Lemma 2.3 which essentially follows from [19, 20, 21].
From the continuity equation (1.1), any smooth £(p) satisfies

0 (p) = 0ip€'(p) = —0u(up)€'(p) = —uds&(p) — p(dzu)€ (p) (A.1)
Using equation (A.1) applied to the function 9,£(p), we find the evolution of pd,£(p)):
9 (p0:&(p)) = —02(pu)9z&(p) + pOrz€(p)
= —0u(pu)02€(p) — POz (uds€(p) + p(Iu)€' (p))
= —02(pu)0:€(p) — pOsudat (p) — pudzE(p) — pdu(p(suw)€' (p)) (A2)
= —0u(pudz€(p)) — pdzudi€(p) — pdu(p(Qxu)€ (p))
= — 02 (puds(p)) — 02 (p* (D)€' (p))-
Then, letting X := u + 9,&(p), combining Eq. (A.2) with the momentum equation (1.2) yields
Ou(pX) = —0u(puX) — 0up(p) + O ((p)Dts) — Du(pH (D)€ () + pF. (A3)
We now choose p%¢’(p) = u(p), so that the final two terms in (A.3) cancel. Thus with this choice,

Oy
X=u+ 72%@) (A4)
and, by (A.3), pX satisfies
D(pX) = ~u(puX) — up(p) + /. (AS5)

Whence, we obtain

0 (pX?) = =0, (puX?) = 2X0,p(p) + 2pf X. (A.6)
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Integrating in space

Oy /
35 [exona = [P g [ |axp|2u<p>pp<0 s+ [ fo(u+ % uip)as
- / pudur(p)ds — [ ooPuto) R0+ [ folu+ “Eu(p)aa

— p)dz — [ 10,
dt fv/lplu

The global balance (2.19) for entropy s := 3 Lo X2 1 7(p) follows.

dx—}—/fp +T“( ))dz.

Appendix B. Local well-posedness
PROPOSITION B.1. Assume that p : RT™ — Rand p : R™ — R* are O functions away from zero. Let pg
and ug belong to H*(T) for an integer k > 1, such that ro := mingct po > 0. Suppose that for all T > 0
f e L*(0,T; H*(T)).
Then, there exists a Ty > 0 depending only on ||(po,wo)|| g (myx v (ry 7o and f, and a unique strong
solution (p, ) to (1.1)-(1.3) on [0, Ty with data (po, ug) such that
p € C(0,To; HX(T)), w € C(0,Ty; H*(T)) N L*(0, Tp; H*T(T))

and p(x,t) > 22 for all (x,t) € T x [0, Tp).

PROOF. Step 0. (Iteration Scheme) We are going to set up an iteration argument and prove that the

iterates converge to the desired solution. Let us first suppose that the initial data pg, ug are smooth, and let
us define 7 := mingcT po.

Let us initialize our scheme as follows:
(po(z,t), uo(z,t)) := (po(x), uo(x)),
p1($, t) = po(aj),

and we define u;(x,t) so that

1 0,
Oruy — (p1)82u = —updyug — —0zp(po) + Maxuo + f,
p1 Po Po (B.1)
U,1|t:0 = uo(ac, 0)
Let now n > 2. Given p,,_1, u,—1, we iteratively define p,, first, and subsequently u,, as follows
atpn + Unflaa:pn = *pnfla:cunfl’ (Bz)
1 15) _
atun - (pn)&% Up = _un—lamun—l - aa:p(pn—l) + Mﬁmun—l + f; (B.3)
Pn Pn—1 Pn—1
(Pn> un)|t=0 = (po, uo). (B.4)

Let £ > 1 be an integer. We let, for ease of notation,
A= [lpollgx + lluoll e
We are going to prove, by induction on n, that there exists 7y > 0 such that the following assertions hold.

Step 1: There exists u; € C°°(T x [0, Tp]) satisfying (B.1) and

[t oo (0,70 %) < 24, / / 6’“*1 1)2dzdt < 8A. (B.5)



Step 2: For n > 2, there exists p, € C°°(T x [0, Tp]) satisfying (B.2), (B.4), and
pnlz,t) > %0 on T x [0, Tp).

Furthermore,
[onll oo (0,10 1%y < 24.
Step 3: There exists u,, € C*°(T x [0, Tp]) satisfying (B.3), (B.4), and

To
[unll oo 0,10:m%) < 24, / / 8’““ »)2dzdt < 8A.

Step 4: The sequence (py,, up) is Cauchy in the space L>(0, Tp; L?) x (L*°(0,To; L?) N L*(0,To; HY)).
Step 5: There exist
u e C(0,Ty; H*) N L2(0, Ty; H*Y)
and
p € C(0,Ty; H")

such that (p, u) is a strong solution to the system (1.1)—(1.2) with initial data (pg, up). In particular,
if £ = 3, said solution is a classical solution.
Step 6: The constructed strong solution is unique.

Let us now turn to the details.

Step 1. This is the base case of the induction. The existence of u; in the conditions follows from the
general theory of linear parabolic equations, using the fact that pg is bounded from below by rg, and that all
functions involved are smooth. The bound (B.5) is obtained exactly as in Step 3, and we omit the details
here.

Step 2. Let n > 2. Let us adopt the following nomenclature:
p:=Pn, N:=pPn-1, UI=1Un, V:="Up-1.

We recall the induction hypotheses:

[Vl oo (o, TO Hk) < 24, 17 oo (0,105 0%) < 24,
To (B.6)
/ / (0¥ o) 2dxdt < 8A, inf inf n(z,t) > o,
t€[0,Tp] €T 2
Existence up to time 7 and smoothness for p,, follow from the method of characteristics.
In what follows, M (-,...,-) will always denote a positive, continuous function increasing in all its argu-

ments. We first notice that, due to the mass equation (B.2) and the maximum principle, for all £ > 1 and
0 <t < T,

inf p(-,t) > inf po — / In(, 8)llzoeds > inf po — M(AWVHIO |22y (BT)
Hence, restricting Tg to be small only as a function of A and ry, we have

£ inf p(z,t) > 2
tel[gTO]a{«relTp(x )2 2

We have therefore recovered the last induction hypothesis in (B.6).

Let us now differentiate the mass equation (B.2) k-times, multiply it by ¥ > p and integrate by parts

;Bt/((?kp )2dx + / ok p o ( va;,,,p / k0 & (n0,v) (B.8)
T



If £ = 1, we obtain
18 2, <C|8? 2 0, B.9
50llplze < CllOzvll2llplze + llpllc2llnll e |0z vl 2, (B.9)

1
50ull02pll T2 < ClOVIIL2N10uplITz + 210pll 2|00l L2000l e + (0wl z2lInllzoe 070] 2. (B.10)

Combining (B.9) and (B.10), integrating and using the induction hypotheses, we obtain, for suitable 7
(depending only on A and )
ol oo (0,10511) < 24. (B.11)

If £ > 2, in addition to previous estimate (B.9), we also have, for the terms appearing in (B.8),

1
[ otootonaa| = |5 [oniokorass [ ok ik o
T 2 Jr T
. (B.12)
< Sl0wvllzellol g + Nl 195, v]ospllLe < Clivllgzllollz + Cllolge vl
Furthermore,
V 0yp 05 (n0:0)| < llpll g m05 T 0l L2 + |l pll g 1105 m] D] 2
L () 1 (B.13)
"’ BN
< Clolle (| (“2) 00l il ol + ol il )
p) [l ||\ 1 L2
Now, due to our assumptions on y and the induction hypothesis, we have
7’ 2 1
H < M(A17")
1(n) || oo
where M depends on y and is an increasing function of its arguments.
Upon summation of (B.9) and (B.8), using (B.9) and (B.13),
! ()2
- pin) \ 2
iathquk < Clloll e llolzp + Cliplellll e lloll s + M (A 75 [Ipll e (77) oyt
L2
We now use the induction hypothesis (B.6) to obtain, for 0 <t < Tp,
) 1
2
O (Il exp (-2C.41) < aCA* + (.7 | (M) g
n
L2

Upon integration, we obtain the following inequality:
Iellze < exp (2CAL) (lipoll e +AC A% + 8AVEM(A,15") )
It is now straightforward to choose Tg, depending only on A and rg, such that the induction hypothesis

1ol Lo (0,10 1%) < 2A
is recovered for p, in case k > 2.

Step 3. We now turn to the estimates on the momentum equation (B.3). Multiplying such equation by « and

integrating by parts yields
1
8t/ u?dx — / Muﬁiudm = / u - Godz, (B.14)
2 Jr T P T
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where G := —v0,v — %Gmp(n) + %”T(’”amv + f. If k£ > 1, this implies

1 p(p) 2 -1
~0 2+/ax dz < M(A, Oy .
5 [ ul| 72 ) (Opu)dz < M(A, v )llplla [|0zull 2 ||ull (B.15)

+ Cllull g2 llollFre + M A, rg Ul el 2 + Il ol lull g+ 1] 22 llll 22)-
Here, we used integration by parts and the following Lemma

LEMMA B.2. Let f be a smooth function away from 0, and k be a positive integer. Let u € H*(T)N L>(T),
and suppose that there exists ro > 0 such that uw > ro on T. Then, there exists an increasing positive and
continuous function M, depending only on f, k such that the following inequality holds:

1f o ull ey < M(HUHLOO(’]]’)vro_l)HUHH’“(’]I‘)' (B.16)

PROOF OF LEMMA B.2. The proof of the lemma follows from Theorem 2.87 in [22], §2.8.2, and a
straightforward cutoff argument. U

REMARK B.3. In what follows, we will always suppress the dependence of M on k and f, since they are
fixed at the beginning of the argument.

Differentiating k-times (k > 1) equation (B.3), multiplying by 0%u, and integrating by parts yields

18t/(8’;u)2dx - /(a’;u)ajg ("(p)agu> dz = —/(ajgﬂu) -Gy dz. (B.17)
2t T p T

Here, we defined

Gj =t (—v@zv - 71]8xp(77) - 811:7(17)

8xv+f>, fork > 1.

When k = 1, the previous display (B.17) implies, upon integration by parts, an application of the Cauchy-
Schwarz inequality, the induction hypotheses, Lemma B.2 and the bounds obtained in Step 2, that
1

1 H(P) 2 \2 P 2
—0 8mu22+/8xu de/de
pOHlOulze w5 f =, (0 T ulp) (B.18)

< M(A,rgY(olz + Iz + Inllz 10avll 2 1070 ] 22 + 1 £]1Z2)-

Integrating (B.18) and, subsequently, (B.15), upon restricting Ty to be sufficiently small only as a function
of A and rq, we have, in case k = 1,

To
]| poo 0,701y < 24, / 'u(pm@gu)zdxdt < 8A.
0

Let’s focus now on the case £ > 2. We have

— /1I (&%u)oF ("(p’))agu> dz

__ /T (O u)oi+! (“(pf’)azu> do + /T (0Fu) ok <am (“;’”) aru> dz

:/Tu(pp)(af“u)de—i—/Ta’;Hu [af,(pp)] (8zu)d$—A(8§+lu)8§1 (395 (lﬁp)) axu) .

(a) (0)
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We estimate the last two terms in the previous display:

1 M(P) k41 \2 / P <[ k (P)] )2
< = [ B2l grrt2qe o | L (of, 22 (9u) ) d
()l < 10/1r p 0z u)de T 1(p) p (Ou) | de
< % / “(pp)(agﬂu)?dHM(A,rgl) Ha;f, fop)] (9p11)
T 2
< % / E)p ) (05 1)2dar (B.19)
T
+AﬂAw€><aﬁm” [Full e + Dl e 012 )
p Lo L2
< % | “(pp) (O 1) 2da + M (A, 150 Jlul v

Here, M is a continuous and increasing function of its arguments. We used the bounds obtained in Step 2,
the Kato—Ponce commutator estimate, the fact that £ > 2 and Lemma B.2 quoted below, applied to the
function @.

Similarly, the following estimate holds true, for k& > 2:

1
B < 1

Again, M is a positive, continuous and increasing function of its arguments.

/T M(pp)(ai““u)?dx + M (Ao ) [ g (B.20)

We now proceed to estimate the terms contained in the RHS of equation (B.17) (the terms named “G”), in
case k > 2:

/ (05 1) - Gy da
T

Due to the bounds on p, we have

1 w(p) k+1, \2 / p 2
< — [ —=(0; " u)’de +5 | —Gidx.
10/1r , ) T u(p) "

14 2 -1 2
——Gide < M (A,r G .
/TM(P) ede < M (A7) Gl

Let us now define two auxiliary functions A (the thermodynamic enthalpy) and ¢ in such a way that

h/(x) _ P (z) C/(x) _ N/;l‘)

)
€T

, forxz > 0.

We now estimate:
105~ (0D 0)||72 < Cllv[l3p 0] 7 < CA
Furthermore,

—1 (9xp(n _
ot (22) 12 < e < DA ),

where we used Lemma B.2, applied to the function h.

Finally, we have, since k > 2,

‘ oh-1 <0xu(n) 533@)
n

< M(A, 7'0_1).
Hence, for the term (G,, we have

/(8I;+1u) -G dx
T

2
LT 10:¢(m)Dav 71 < C (IS x| 00l zoe + [0l 2w 102C (1) o< )

= 11()/M<a§+1“)2d‘”+M(Aﬂ“El)(1 + (£ k) (B.21)
T P
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Putting together estimates (B.14), (B.17), (B.19), (B.20), (B.21), and ignoring the positive integral term in
the LHS, we obtain the inequality

1 _ _
Olullzpe < M (A rg ) llullge + M (A,767) (U4 (1 1)
Using Gronwall’s inequality, upon restricting 7 to be small depending only on A, 7y and f, we deduce that

]l oo 0,159 < 24, (B.22)

We now revisit the same estimates without discarding the positive integral term in the LHS. We obtain, upon
restricting Ty to be smaller, depending only on A and rg and f, that

To
/ / Mi)p)(@]afﬂu)zd:cdt < 8A. (B.23)
0 T

We have therefore recovered the induction hypotheses B.6, and in particular the sequence (py,, ty,) is uni-
formly bounded in L>(0, Tp; H*(T)) x (L°°(0, To; H*(T)) N L2(0, Ty; H*1(T)).

Step 4. We now show that, for some 7}, depending only on A, ry, the sequence (py,, u,) is Cauchy in the
space L>°(0, Tp; L?) x (L*°(0, To; L?) N L2(0, Ty; L?)).
Let’s first consider the equation satisfied by duy, := Upt+1 — Up:

Ou(Suy) — P g2y

) Prn+1 Pn (B.24)
= iaﬂs(ui - ui—l) + 0z (h(pn) — M(pn—1)) + 0:C(pn) Oxtin — 02C(Pr—1) Oxtin_1-

Recall that we defined h and ( so that the following equalities hold true:

Ouh(p) = aif”) (o) = 8‘;)(”)

We now multiply equation (B.24) by du,, and integrate by parts. We have:

/((5un) (—“(p”+1)a§un+1 + ”(p")agun) dz
T

Pn+1 Pn
_ / () P41 52 50 v / (“(”") - “(p”“)> 02y (uy)dz
T Pn+1 T Pn Pn+1

(a) (0)

Note that, due to Step 3, there exists ¢ = ¢(A, 1) such that, up to time 7p, there holds %’z") > ¢ for all
integers ¢ > 0.

Hence, for the term in (a), upon integration by parts,

Lo wlpn
(@) 2 clon ) = 10222 o 01 G

n
1 3
> |0 (G132 = M (A, 5 (6un | 721100 5un) 172 + 6un | 12102 (5un) 12
C _
> 21100 (5un) 72 = M(A, 76 |0un[72.
Here, we used Lemma B.2, the Gagliardo—Nirenberg—Sobolev inequality and the Young inequality.

‘We now estimate

1 1
(b) > =M (A, 15 ) 10pnll 2 10Zunll 22 |6un | 22|l 7
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Let us now turn to the terms appearing in the RHS of (B.24). We define
1
[ 5002 = ) Gun)do + [ (5ua)3u i) ~ hipa-1))do
T T
(©) (@)
+ / (81n) (82 (pn) Dt — OuC(pn1) Outin 1) A
T

(e)

Then, for (c¢), we have, after integration by parts,
1
()] < M(A)[0x(6un) | 2| 0un—1l2 < roc\lf?x@un)lliz + M (A)[[dun—1]]72-

Concerning the term (d), instead,

(d)] =

/T Or (Sun) (h(pn) — h(pu1))de

1 _
< 15210 (0ua) 32 + M(A 15 )10p0-1 3.

Again, we used the fact that, due to the uniform bounds on p,,, h is Lipschitz of constant depending only on
A and .

Finally, concerning (e),

(o) < / (61n) 0 (00) O (Bt 1) d| + / (61n)0 (C(Pn) — C(Pr)) Dty 1dz

< [10unll Lo 192C(pn) || 22|02 (Fun—1) [ 2 +

/T (C(on) — C(pn-1))00(($un)Optin_1)dt

1 1
< M(A,Tal)(H5un|\i2H@x@un)llizHax(5unf1)||m + ”a’fc(&tnfl)HL?HéunHB)

1
+ M (A, 75 ) (10011l 2 10z0unl| 2 10Funl 22 + 10 pn-1] 2 | Sun | 2= | 0Funl 12)

where dp,_1 := pn — pn—1. Putting together the estimates on the momentum equation, we have

1 1
SOtlunl32 + 151195 (6un) 32
< M(A 15 Y (18un 3 + Ndun-1 32 + 19pa-1132)
1 1
o+ MA 15 0pall 2211020 12610 21102 (500
1 1
M, 75 (100100 (510 | 72102 Gt 1) 2 + 102 (Bun-1) 216 1.2)

1
+ M (A, 15 (180 21| 0x0un 12 |0 22 + 10pnll 2 6| o< 102 un | 12)-
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Upon integration between time s = 0 and s = ¢, using Holder’s inequality and the bounds obtained in
Step 1,

1

1
5”(5%)('775)”%2 + r%H@x(éun)lliz(o,t;m)

< M(A,ral)(||5un\|%2(07t;p) + ||5“n71||%2(0,t;L2) + H‘Sp”*”%%&tﬂ))
_ 1 1 1
+ M (A, 7, 1)t4 H‘SPnHLOO(O,t;LQ) ”(Sun||zoo(07t;[,2) |02 (dun) ”22(07,5;L2)

_ 1 1 1
A,rg 1)t4 H(SUHHZoo(Qt;y) |0z (0un) HzQ(O,t;L?) |02(6un—1) HLQ(O,t;LQ)

+ M(
+ M(A, 7582 00 (Gun1)l| 20 412 |50l o 0 1.12) ©.25)
+ M(A,r

+ M(A
+ M(

1
6pn—1ll Lo (0,6502) 0 (Bun) | L2 0,4 2)
1

)
o)t
1,1
0 Jtl10pn—1llpeo(0,6:22)[10x0un |l 204,12
_ 1 1 1
A, To 1)“ ||6pn*1||L°°(O,t;L2)||5un||[2/oo(07t;[12)||81(6un)||22(0’t;L2)

< o 10u(Gun) 3o 2y + M (A 6 VA (100 g1 + 16001 [0+
160110 (0.:22) + 100 (Gun—1) 220 .2))-
Let us now calculate the equation satisfied by differences of p,:
01(0pn) = —unOppn+1 + Un—102pn — PnOzUn + Pp—10pUn—1. (B.26)
Multiplying equation (B.26) by dp,,, we obtain
3000013 = [ (090001 — vrDspn)ca

(a)
- /(5pn>(pnamun - pn—lamun—l)dx-
T
(b)

Considering (a), we have, integrating by parts, using Gagliardo—Nirenberg—Sobolev and Holder’s inequality,

(@)] < ‘ [ G 6ur)0up100 + \ [ oo 00100

1 1 1
< M(A)(10pnll 2 16un—1 11 |0un—11172 + 19pn ]I 22 1107unll 22)-
On the other hand, (b) yields

01 <| [ G200 -1)020,00] +| [ 000,601 102

1
< M(A)([10pnllz2 + 19pn-11172) 107 unll 72 + M (A) 02 (Sun—1)ll 2 [16pnl| -

Putting together the estimates on the mass equation yields

1
SOl3nll3:

+

1 1 1
< M(A)<||5anL2”ax(éunfl)H[QpH‘Sunfl”ﬁ + H5Pnllizllf9§unllig> + M(A)[0pnll 2| dun—1llz2

1
+ M(A)(18pn]172 + 10pn-1172) 1032l 22 + M (A) [0z (Sun—1) 2 16pnl| -
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Upon integration, the previous display yields

S50t 32 < MY 600 Lo 52 |92 Grtn 1) [ g o) [0m 1 B 1
+ M(AYE 0pn 3 (04512 + MA10pn 13 (0.1:12) + 10n 111 0 1:12))
+ M(A)t
+ M(A)t

W

(107 o (0.1:22) + 10Pn—11F 0 (0.6:22))

N

|0z (dun—1) HLQ(O,t;LQ) 16pn, ||L°°(D,t;L2)

1
< M(A)t2 (H5Pn\|ioo(o,t;L2) + 1100 (G-l Z2(0,4.22) + [10Un—1 7000 1:22)

1100113 02 )
Combining now (B.25) and (B.27), we obtain, for suitably small ¢ depending only on A and rq,

1 1 1
ZH(SPRH%OO(OJ;LQ) + ZHéunH%“(O,t;LQ) + T()C”aﬂﬁ(éun)H%Q(O,t;LQ)
_ 1
< M (A, g 5 (102 (Sun—1)lI72(0, 1,12y + 18Un—11F oo 0,122y + 19001100 (0 1:12))-

Upon suitable choice of Tp, this implies that the sequence (p,,, u,,) is Cauchy in the space L>(0, Ty; L?) x
(LOO(O7 TO; L2) N L2(07 TO; Hl))
Step 5. Denote

X™ = L>(0,To; H™) x (L°°(0,Tp; H™) N L*(0, To; H™ 1))
a Banach space with its canonical norm. We have proved in the previous steps that (py,, u,,) is bounded in X*
and Cauchy in X*~1. The latter implies that (py,, u,,) converges to some (p, u) in X*~1. The former implies
that some subsequence (py,,, un; ) converges weak-* to some (s, us) in X k. Since both weak-* convergence
in X* and strong convergence in X*~! imply convergence in the sense of distributions we deduce that
(p,u) = (ps,usx) € X*. It can be easily verified that (p, u) is a strong solution to the system (1.1)—(1.2).
Moreover, since p, — p strongly in L?(0, To; L?) and (p,,) is bounded in L>(0, To; H') it follows by
interpolation that p,, — p strongly in L>(0, Tp; H3/4), and hence in L> (0, Tp; L>). This combined with
the fact that p,, (z,t) > 7 forall (x,t) € T x [0, To] (see Step 2) yields

plx,t) > %0 Y(z,t) € T x [0, Tp).

Step 6. We now establish uniqueness of strong solutions. Consider two solutions (p1, u1) and (p2, u2), such
that

pi € C(0,To; H*(T)), w; € C(0,Ty; H*(T)) N L*(0, To; H*'(T)), fori = 1,2.
and let (0p, 0u) = (p1 — p2,u; — uz). We have
0r0u + Sudpur + ugdpdu = —05((p1) — (p2)) + py ' Ou(p(p1)Ouun) — py ' Oe(u(p2)Opua),  (B.27)
0t0p + O (u1dp + p2ou) = 0, (B.28)
(dp, 0u)lt=0 = (0,0) (B.29)

We now notice that equation (B.27) is the same as equation (B.24), upon formally substituting n = 1 in the
LHS, and n = 2 in the RHS. Similarly, recalling (B.26), we have

8t((spn) = —Un 8a:pn+1 + Up—1 aa:pn _pnarun + pn—laa:un—l .
—.— T e
(a) ®  (a) (®)  (a) (b)

Formally substituting n = 1 in terms (a), and n = 2 in terms (b), we obtain (B.28). It is then straightforward
to see that the same estimates as in Step 4 yield uniqueness of strong solutions. U
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