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Abstract

In this paper we derive kinematic relations for quantities involving the rate
of strain tensor and the Hessian of the pressure for solutions of the 3D Euler
equations and the 2D Boussinesq equations. Using these kinematic relations, we
prove new blow up criteria and obtain conditions for the absence of type I sin-
gularity for these equations. We obtain both global and localized versions of the
results. Some of the new blow up criteria and type I conditions improve previous
results of [3].

AMS Subject Classification Number: 35Q31, 76B03
keywords: Euler equations, Boussinesq equations, kinematic relations, blow up
criterion, type I singularity

1 The 3D Euler equations

1.1 Introduction and main results

We consider the homogeneous incompressible Euler equations on R3 × [0, T ).

(E)

{
ut + u · ∇u = −∇p,
∇ · u = 0, u(x, 0) = u0(x)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the fluid velocity and p = p(x, t) is the
scalar pressure. We denote the initial velocity by u0(x) = u(x, 0) where x ∈ R3. For
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the Cauchy problem of the system (E) with u0 ∈ W 2,q(R3), q > 3, ∇ · u0 = 0, there
exists a local in time well-posedness result [11], but the question of the finite time blow
up is a wide open problem. See e.g. [14, 7, 8, 9] and the references therein for detailed
discussions of the problem. For important partial results we refer [1, 10]. See also
[12, 13] and references therein for related numerical works.

We associate to a solution (u, p) of the Euler system (E) the R3×3-valued functions
S = (Sij) and P = (Pij), where

Sij =
1

2
(∂iuj + ∂jui), Pij = ∂i∂jp.

For the vorticity ω = ∇× u we define the direction vectors

ξ = ω/|ω|, ζ = Sξ/|Sξ|,

and the scalar functions
α = Sijξiξj, ρ = Pijξiξj,

where we used the convention of summing over repeated indices. In the case ω(x, t) = 0
we set α(x, t) = ρ(x, t) = 0. These quantities have been introduced previously [9, 14, 2].
Note that ξ is the vorticity direction vector, while ζ is the vorticity stretching direction
vector. Below we also use the notations [f ]+ = max{f, 0} and [f ]− = max{−f, 0}.

Theorem 1.1 Let (u, p) ∈ C1(R3×(0, T )) be a solution of the Euler equation (E) with
u ∈ C([0, T );W 2,q(R3)), for some q > 3. Suppose the following holds. Either

(i) ∫ T

0

exp

(∫ t

0

∫ s

0

‖[ζ · Pξ]−(τ)‖L∞dτds

)
dt < +∞, (1.1)

or ∫ T

0

exp

(∫ t

0

∫ s

0

‖[|Sξ|2 − 2α2 − ρ]+(τ)‖L∞dτds

)
dt < +∞,

then lim supt→T ‖u(t)‖W 2,q < +∞.

(ii) If either
lim sup
t→T

(T − t)2‖[ζ · Pξ]−(t)‖L∞ < 1, (1.2)

or
lim sup
t→T

(T − t)2‖[|Sξ|2 − 2α2 − ρ]+(t)‖L∞ < 1, (1.3)

then lim supt→T ‖u(t)‖W 2,q < +∞.

Remark 1.1 In [3] we obtained the above theorem with [ζ · Pξ]− replaced by |P |,
which is the matrix norm of the Hessian of the pressure. Since |[ζ · Pξ]−| ≤ |P | the
above( and the localized version below) improve the results of Theorem 1.1 of [3]. Fur-
thermore, the above theorem implies that the dynamical changes of the signs of the
scalar quantities ζ · Pξ and |Sξ|2 − 2α2 − ρ are important in the phenomena of blow
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up/regularity.

The following is a localized version of the above theorem.

Theorem 1.2 Let (u, p) ∈ C1(B(x0, r) × (T − r, T )) be a solution to (E) with u ∈
C([T − r, T );W 2,q(B(x0, r))) ∩ L∞(T − r, T ;L2(B(x0, r))) for some q ∈ (3,∞). We
suppose ∫ T

T−r
‖u(t)‖L∞(B(x0,r))dt < +∞,

and the following holds. Either

(i) ∫ T

T−r
exp

(∫ t

0

∫ s

0

‖[ζ · Pξ]−(τ)‖L∞(B(x0,r))dτds

)
dt < +∞,

or ∫ T

T−r
exp

(∫ t

T−r

∫ s

T−r
‖[|Sξ|2 − 2α2 − ρ]+(τ)‖L∞(B(x0,r))dτds

)
dt < +∞.

Then for all ε ∈ (0, r) lim supt↗T ‖u(t)‖W 2,q(B(x0,ε)) < +∞.

(ii) If (1.2) holds, and if either

lim sup
t→T

(T − t)2‖[ζ · Pξ]−(t)‖L∞(B(x0,r)) < 1, (1.4)

or
lim sup
t→T

(T − t)2‖[|Sξ|2 − 2α2 − ρ]+(t)‖L∞(B(x0,r)) < 1, (1.5)

then for all ε ∈ (0, r) lim supt↗T ‖u(t)‖W 2,q(B(x0,ε)) < +∞.

1.2 Kinematic relations

We use the particle trajectory mapping a 7→ X(a, t) from R3 into R3 generated by
u = u(x, t), which means the solution of the ordinary differential equation,

∂X(a, t)

∂t
= u(X(a, t), t) on (0, T ),

X(a, 0) = a ∈ R3.

The material derivative of f = f(x, t) is defined by

Dtf := ∂tf + u · ∇f.

We note that (Dtf)(X(a, t), t) = ∂
∂t
{f(X(a, t), t)} .
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Proposition 1.1 Let (u, p) be a solution of (E), which belongs to C1(R3× (0, T )). We
use the above notations. Then, the followings hold true on R3 × (0, T ).

Dt|Sω| = −ζ · Pω, (1.6)

D2
t log |ω| = |Sξ|2 − 2α2 − ρ, (1.7)

(Dt|ω|)2 + (|Dtξ||ω|)2 = |Sω|2, (1.8)

(Dt|Sω|)2 + (|Dtζ||Sω|)2 = |Pω|2, (1.9)

(1.10)

Remark 1.2 Applying the inequality, a1 + · · ·+ an ≤
√
n(a21 + · · ·+ a2n) to equations

(1.8), (1.9) and (1.14) respectively, we obtain the following differential inequalities with
the coefficients consisting of derivatives of the direction fields ξ and ζ,

Dt|ω|+ |Dtξ||ω| ≤
√

2|Sω|, (1.11)

Dt|Sω|+ |Dtζ||Sω| ≤
√

2|Pω|, (1.12)

Dt|Sω|+ |Dtζ|Dt|ω|+ |Dtζ||Dtξ||ω| ≤
√

3|Pω|. (1.13)

For an implication of (1.11) combined with (1.12), in particular, see Remark 1.3 below.

Proof of Proposition 1.1 Taking the gradient of (E), we find

Dt∇u = −(∇u)2 − P. (1.14)

We observe the decomposition of the matrix,

∇u = S + Ω, where Ωij =
1

2
(∂iuj − ∂jui) =

1

2
εijkωk.

Here, εijk is the totally skew-symmetric tensor with normalization ε123 = 1. Taking the
skew symmetric part of (1.14), we obtain the vorticity equations

Dtω = ω · ∇u = Sω, (1.15)

where we used the fact ωj∂jui = ωjSji +
1
2
εjikωjωk = ωjSji. Taking the symmetric part

of (1.14), on the other hand, we find

DtS = −S2 +
1

4
(|ω|2I − ω ⊗ ω)− P. (1.16)

Contracting (1.15) with ω, and dividing the both sides by |ω|2, we have

Dt|ω| = α|ω|. (1.17)

From (1.15) and (1.17) we derive

Dtξ =
Dtω

|ω|
− ωDt|ω|

|ω|2
= Sξ − αξ. (1.18)
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Applying Dt to (1.15), using (1.16), we find

D2
tω = (DtS)ω + SDtω = −S2ω − Pω + S2ω

= −Pω, (1.19)

which was the key kinematic relation used in [3]. Multiplying (1.19) by Dtω = Sω
from the left, we obtain

|Dtω|Dt|Dtω| =
1

2
Dt|Dtω|2 = Dtω ·D2

tω = −Sω · Pω,

Dividing the both sides by |Dtω| = |Sω|, we find

Dt|Dtω| = Dt|Sω| = −ζ · Pω, (1.20)

and (1.6) is proved. Now we prove (1.7). Observing ξ ·Dtξ = 0, we compute

D2
t |ω| = Dt{ξ ·Dt(|ω|ξ)} = Dtξ ·Dtω + ξ ·D2

tω

= (S − αI)ξ · Sω − ξ · Pω =
(
|Sξ|2 − α2 − ρ

)
|ω|. (1.21)

We divide (1.21) by |ω|, then using (1.17), we deduce

|Sξ|2 − α2 − ρ =
D2
t |ω|
|ω|

= Dt

(
Dt|ω|
|ω|

)
+

(Dt|ω|)2

|ω|2
= D2

t log |ω|+ α2.

The formula (1.7) is proved. Taking the square of (1.18), and multiplying it by |ω|2,
we have

|Sω|2 = α2|ω|2 + |Dtξ|2|ω|2 = (Dt|ω|)2 + |Dtξ|2|ω|2, (1.22)

and, (1.8) is proved. To show (1.9) we compute, using (1.19) and (1.20),

Dtζ =
D2
tω

|Dtω|
− DtωDt (|Dtω|)

|Dtω|2
= − Pω

|Sω|
+
Sω(ζ · Pξ)|ω|
|Sω|2

=
−Pξ + (ζ · Pξ)ζ

|Sξ|
.

Because Dtζ is perependicular to ζ, in view of the fact that ζ has unit length, this
yields an orthogonal decomposition of Pξ,

Pξ = (ζ · Pξ)ζ − |Sξ|Dtζ = (ζ · Pξ)ζ +
(Dtζ · Pξ)
|Dtζ|2

Dtζ, (1.23)

which implies
Dtζ

|Dtζ|
· Pξ = −|Sξ||Dtζ|. (1.24)

The decomposition (1.23), combined with (1.20) and (1.24), implies by the Pythagoras
theorem

|Pω|2 = (ζ · Pω)2 +

(
Dtζ

|Dtζ|
· Pω

)2

= (Dt|Sω|)2 + |Dtζ|2|Sω|2. (1.25)

The inequality (1.9) follows from this immediately. Substituting (1.22) into (1.25), we
have (1.10). �
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1.3 Proofs of the main theorems

In order to prove Theorem 1.1 we shall use the following lemma.

Lemma 1.1 Let α = α(t) be a non-decreasing function, and β = β(t) ≥ 0 on [a, b].

(i) Suppose y = y(t) satisfies

y(t) ≤ α(t) +

∫ t

a

β(τ)y(τ)dτ ∀t ∈ [a, b].

Then, for all t ∈ (a, b] we have

y(t) ≤ α(t) exp

(∫ t

a

β(τ)dτ

)
.

(ii) We assume furthermore y(t) ≥ 0 on [a, b]. Suppose

y(t) ≤ α(t) +

∫ t

a

∫ s

a

β(τ)y(τ)dτds ∀t ∈ [a, b].

Then, for all t ∈ (a, b] we have

y(t) ≤ α(t) exp

(∫ t

a

∫ s

a

β(τ)dτds

)
.

Proof In the case (i) from the well-known Gronwall inequality and the assumption of
non-decreasing property of α we have

y(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(τ)dτ

)
ds ≤ α(t) + α(t)

∫ t

a

β(s) exp

(∫ t

s

β(τ)dτ

)
ds

= α(t)− α(t)

∫ t

a

d

ds

{
exp

(∫ t

s

β(τ)dτ

)}
ds = α(t) exp

(∫ t

a

β(τ)dτ

)
.

For the case (ii) we observe

y(t) ≤ α(t) +

∫ t

a

∫ s

0

β(τ)y(τ)dτds ≤ α(t) +

∫ t

a

sup
a<τ<s

y(τ)

∫ s

a

β(τ)dτds.

Since the function t 7→ α(t) +
∫ t
a

supa<τ<s y(τ)
∫ s
a
β(τ)dτds is non-decreasing on [a, b],

setting h(t) =
∫ t
a
β(s)ds and Y (t) = supa<τ<t y(τ), we have

Y (t) ≤ α(t) +

∫ t

a

Y (s)h(s)ds.

Applying (i), we obatin

y(t) ≤ Y (t) ≤ α(t) exp

(∫ t

a

h(s)ds

)
= α(t) exp

(∫ t

a

∫ s

a

β(τ)dτds

)
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for all t ∈ [a, b]. �

Proof of Theorem 1.1 and Theorem 1.2 We integrate (1.6) along the trajectory
for t ∈ [0, s] to find

∂

∂s
|ω(X(a, s), s)| ≤

∣∣∣∣ ∂∂sω(X(a, s), s)

∣∣∣∣ = |(Dsω)(X(a, s), s)| = |Sω(X(a, s), s)|

= |S0(a)ω0(a)| −
∫ s

0

(ζ · Pξ)(X(a, τ), τ)|ω(X(a, τ), τ |dτ,

from which, after integrating with respect to s over [0, t], we have

|ω(X(a, t), t)| ≤ |ω0(a)|+ |S0(a)ω0(a)|t+
∫ t

0

∫ s

0

[ζ ·Pξ]−(X(a, τ), τ)|ω(X(a, τ), τ)|dτds.

Applying Lemma 2.1(ii) to solve this differential inequality, we find

|ω(X(a, t), t)| ≤ (|ω0(a)|+ |S0(a)ω0(a)|t)×

× exp

(∫ t

0

∫ s

0

[ζ · Pξ]−(X(a, τ), τ)dτds

)
. (1.26)

Taking the supremum over a ∈ R3, and integrating it with respect to t over [0, T ], we
find ∫ T

0

‖ω(t)‖L∞dt ≤ (‖ω0‖L∞ + ‖S0ω0‖L∞T )×

×
∫ T

0

exp

(∫ t

0

∫ s

0

‖[ζ · Pξ]−(τ)‖L∞dτds

)
dt. (1.27)

Integrating (1.7) twice with respect to the time variable over [0, s], we hvae

|ω(X(a, t), t)| = |ω0(a)| exp

(∫ t

0

∫ s

0

[|Sξ|2 − 2α2 − ρ]+(X(a, τ), τ)dτds

)
, (1.28)

and therefore∫ T

0

‖ω(t)‖L∞dt ≤ ‖ω0‖L∞

∫ T

0

exp

(∫ t

0

∫ s

0

‖[|Sξ|2 − 2α2 − ρ]+(τ)‖L∞dτds

)
dt.

Applying the well-known Beale-Kato-Majda criterion [1] to (1.27) and (1.28), we obtain
the desired conclusion of Theorem 1.1(i). The argument of proof of Theorem 1.1(ii),
using the result of (i) is the similar to [3], and we ommit it here.

The proof of Theorem 1.2, using the key pointwise estimates of the vorticity along
the trajectories, (1.26) and (1.27) is similar to the corresponding ones in [3], and we
do not repeat it here. �
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Remark 1.3 The linear differential inequalities (1.11) and (1.12) along the trajectory
can be solved as

|ω(X(a, t), t)| ≤ |ω0(a)|e−
∫ t
0 |Dtξ(X(a,s),s)|ds

+
√

2

∫ t

0

|Sω(X(a, s), s)|e−
∫ t
s |Dτ ξ(X(a,τ),τ)|dτds, (1.29)

and

|Sω(X(a, t), t)| ≤ |S0ω0(a)|e−
∫ t
0 |Dtζ(X(a,s),s)|ds

+
√

2

∫ t

0

|Pξ(X(a, s), s)||ω(X(a, s), s)|e−
∫ t
s |Dτ ζ(X(a,τ),τ)|dτds (1.30)

respectively. Parenthetically one can also use (1.10) to deduce

Dt|Sω|+ |Dtζ||Dtξ||ω| ≤
√

2|Pω|,

and then

|Sω(X(a, t), t)| ≤ |S0ω0(a)|e−
∫ t
0 |Dtζ(X(a,s),s)||Dtξ(X(a,s),s)|ds

+
√

2

∫ t

0

|Pξ(X(a, s), s)||ω(X(a, s), s)|e−
∫ t
s |Dτ ζ(X(a,τ),τ)||Dτ ξ(X(a,τ),τ)|dτds

instead of (1.30). Inserting (1.30) into (1.29), we find

|ω(X(a, t), t)| ≤ |ω0(a)|+
√

2|S0(a)ω0(a)|
∫ t

0

e−
∫ s
0 |Dτ ζ|dτe−

∫ t
s |Dτ ξ|dτds

+ 2

∫ t

0

∫ s

0

|Pξ(X(a, σ), σ)||ω(X(a, σ), σ)|e−
∫ s
σ |Dτ ζ|dτe−

∫ t
s |Dτ ξ|dτdσds (1.31)

Applying Lemma 1.1 to (1.31), we obtain

|ω(X(a, t), t)| ≤
(
|ω0(a)|+

√
2|S0(a)ω0(a)|t

)
×

× exp

(
2

∫ t

0

∫ s

0

|Pξ(X(a, σ), σ)|e−
∫ s
σ |Dτ ζ(X(a,τ),τ)|dτe−

∫ t
s |Dτ ξ(X(a,τ),τ)|dτdσds

)
.

(1.32)

Since the quantities expressing the magnitudes of the changes of the two direction
vectors Dtξ and Dtζ contribute to the integral in the right hand side of (1.32) through

factors like e−
∫ t
s |Dτ ξ(X(a,τ),τ)|dτ , they appear to have a desingularizing effect for the

vorticity. We do not know, however a way to exploit this effect in the blow up criterion
and the absence of the type I blow up. If we ignore the factor e−

∫ t
s |Dτ ξ(X(a,τ),τ)|dτ in

(1.32), taking supremum over a ∈ R3, and integrating over t ∈ [0, T ] then we have an
estimate ∫ T

0

‖ω(t)‖L∞dt ≤
(
‖ω0‖L∞ +

√
2‖S0ω0‖L∞T

)
×

×
∫ T

0

exp

(
2

∫ t

0

∫ s

0

‖Pξ(τ)‖L∞dτds

)
dt

which yields a blow up criterion weaker than (1.1).
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2 The 2D Boussinesq equations

Here we are concerned with the homogeneous incompressible Boussinesq equation on
R2.

(B)


ut + u · ∇u = −∇p+ θe2,

θt + u · ∇θ = 0,

∇ · u = 0,

where u(x, t) = (u1(x, t), u2(x, t)) is the fluid velocity and p = p(x, t) is the pressure,
and θ = θ(x, t) is the temperature. Let u0(x) = u(x, 0), θ0(x, 0) be the initial data of the
system (B). The local well-posedness for the Boussinesq system for (u0, θ0) ∈ W 2,q(R2),
q > 2, is well-known(see e.g.[4]), but the question of finite time blow up is a wide open
problem similarly to the case of the 3D Euler equations. It is also well-known that
there exists a strong similarity between (B) and the axisymmetric solution of the 3D
Euler equations(see e.g.[14]).

For a solution (u, p, θ) of the system (B) let us introduce the R2×2-valued functions
U = (∂iuj) and P = (∂i∂jp). For the vector filed ∇⊥θ = (−∂2θ, ∂1θ) we define the
direction vectors

ξ = ∇⊥θ/|∇⊥θ|, ζ = U∇⊥θ/|U∇⊥θ|,

and the scalar functions
α = ξ · Uξ, ρ = ξ · Pξ.

Theorem 2.1 Let (u, p) ∈ C1(R2 × (0, T )) be a solution of the Boussinesq equation
(B) with u ∈ C([0, T );W 2,q(R2)), for some q > 2. Suppose the following holds. Either

(i) ∫ T

0

(T − t) exp

(∫ t

0

∫ s

0

‖[ζ · Pξ]−(τ)‖L∞dτds

)
dt < +∞, (2.1)

or ∫ T

0

(T − t) exp

(∫ t

0

∫ s

0

‖[|Uξ|2 − 2α2 − ρ]+(τ)‖L∞dτds

)
dt < +∞, (2.2)

then lim supt→T ‖u(t)‖W 2,q < +∞.

(ii) If either
lim sup
t→T

(T − t)2‖[ζ · Pξ]−(t)‖L∞ < 2, (2.3)

or
lim sup
t→T

(T − t)2‖[|Uξ|2 − 2α2 − ρ]+(t)‖L∞ < 2, (2.4)

then lim supt→T ‖u(t)‖W 2,q < +∞.

Remark 2.1 Note the relaxed smallness condition of for the nonexistence of type I
blow up in (2.3) and (2.4) compared to (1.2) and (1.3) respectively in the case of 3D Eu-
ler equations. This is due to the extra factor, (T − t) in (2.1) and (2.2), which originate
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from the non blow up criterion,
∫ T
0

(T −t)‖∇⊥θ(t)‖L∞dt < +∞ in [5, Theorem 1.2 (ii)].

The following is a localized version of the above theorem.

Theorem 2.2 Let (u, p) ∈ C1(B(x0, r) × (T − r, T )) be a solution to (E) with u ∈
C([T − r, T );W 2,q(B(x0, r))) ∩ L∞(T − r, T ;L2(B(x0, r))) for some q ∈ (2,∞). Let us
assume ∫ T

T−r
‖u(t)‖L∞(B(x0,r))dt < +∞.

If either

(i) ∫ T

T−r
(T − t) exp

(∫ t

0

∫ s

0

‖[ζ · Pξ]−(τ)‖L∞(B(x0,r))dτds

)
dt < +∞, (2.5)

or∫ T

T−r
(T − t) exp

(∫ t

T−r

∫ s

T−r
‖[|Uξ|2 − 2α2 − ρ]+(τ)‖L∞(B(x0,r))dτds

)
dt < +∞,

(2.6)
then for all ε ∈ (0, r) lim supt↗T ‖u(t)‖W 2,q(B(x0,ε)) < +∞.

(ii) If either
lim sup
t→T

(T − t)2‖[ζ · Pξ]−(t)‖L∞(B(x0,r)) < 2, (2.7)

or
lim sup
t→T

(T − t)2‖[|Uξ|2 − 2α2 − ρ]+(t)‖L∞(B(x0,r)) < 2, (2.8)

then for all ε ∈ (0, r) lim supt↗T ‖u(t)‖W 2,q(B(x0,ε)) < +∞.

Remark 2.2 Similarly to Remark 2.1 we also note here relaxed smallness condition
of for the nonexistence of type I blow up in (2.7) and (2.8) compared to (1.4) and (1.5)
respectively. This is due to the extra factor, (T − t) in (2.5) and (2.6), which are from

the local version of the non blow up criterion,
∫ T
0

(T − t)‖∇⊥θ(t)‖L∞(B(x0,r))dt < +∞
in [6, Theorem 2.1].

2.1 Kinematic relations

Proposition 2.1 Let (u, p, θ) be a solution of (B), which belongs to C1(R2 × (0, T )).
We use the above notations. Then, the followings hold true on R2 × (0, T ).

Dt|U∇⊥θ| = −ζ · P∇⊥θ, (2.9)

D2
t log |∇⊥θ| = |Uξ|2 − 2α2 − ρ, (2.10)

(Dt|∇⊥θ|)2 + (|Dtξ||∇⊥θ|)2 = |U∇⊥θ|2, (2.11)

(Dt|U∇⊥θ|)2 + (|Dtζ||U∇⊥θ|)2 = |P∇⊥θ|2, (2.12)

(Dt|U∇⊥θ|)2 + (|Dtζ|Dt|∇⊥θ|)2 + (|Dtζ||Dtξ||∇⊥θ|)2 = |P∇⊥θ|2. (2.13)
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Remark 2.1 Although the above results look similar to those in Proposition 1.1 we
have essentially different features because we do not use the symmetric part of U and
because there exists no relation between ∇⊥θ and the skew symmetric part of U .

Proof of Proposition 2.1 Taking ∇ on the first equation of (B), we find

DtU + U2 = −P +∇(θe2), (2.14)

Taking ∇⊥ on the second equation of (B),

Dt∇⊥θ = U∇⊥θ. (2.15)

Let us compute

D2
t∇⊥θ = DtU∇⊥θ + UDt∇⊥θ

= −U2∇⊥θ − P∇⊥θ + U2∇⊥θ +∇⊥θ · ∇(θe2)

= −P∇⊥θ, (2.16)

where we used the fact
∇⊥θ · ∇(θe2) = 0. (2.17)

We multiply (2.16) by Dt∇⊥θ to have

|Dt∇⊥θ|Dt|Dt∇⊥θ| =
1

2
Dt

(
|Dt∇⊥θ|2

)
= Dt∇⊥θ ·D2

t∇⊥θ

= −U∇⊥θ · P∇⊥θ.

Dividing the both sides by |Dt∇⊥θ| = |U∇⊥θ|, we find

Dt|Dt∇⊥θ| = Dt|U∇⊥θ| = −ζ · Pξ|∇⊥θ|,

and (2.9) is proved. Multiplying (2.15) by ∇⊥θ, we deduce

Dt|∇⊥θ| = α|∇⊥θ|. (2.18)

Using (2.15) and (2.18), we compute

Dtξ =
Dt∇⊥θ
|∇⊥θ|

− ∇
⊥θDt|∇⊥θ|
|∇⊥θ|2

= Uξ − αξ. (2.19)

This can be viewed as an orthogonal decomposition of Uξ,

Uξ = αξ +Dtξ = αξ +
Dtξ · Uξ
|Dtξ|2

Dtξ,

which shows

Dtξ · Uξ = |Dtξ|2 = |Uξ|2 − α2 = |Uξ|2 − (Dt|∇⊥θ|)2

|∇⊥θ|2
. (2.20)
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Multiplying the both sides of (2.20) by |∇⊥θ|2, the formula (2.11) follows immediately.
Using (2.14) and (2.19), we compute

D2
t log |∇⊥θ| = Dtα = Dt(ξ · Uξ)

= Dtξ · Uξ + ξ ·DtUξ + ξ · UDtξ

= (Uξ − αξ) · Uξ + ξ · (−U2 − P )ξ + ξ · U(Uξ − αξ)
= |Uξ|2 − 2α2 − ρ,

where we used ξ · ∇(θe2) = 0, which follows from (2.17). The formula (2.10) is proved.
Using (2.16) and (2.9), we compute

Dtζ =
D2
t∇⊥θ

|Dt∇⊥θ|
−
Dt∇⊥θDt

(
|Dt∇⊥θ|

)
|Dt∇⊥θ|2

= − P∇⊥θ
|U∇⊥θ|

+
U∇⊥θ(ζ · Pξ)|∇⊥θ|

|U∇⊥θ|2

=
−Pξ + (ζ · Pξ)ζ

|Uξ|
. (2.21)

The formula (2.21) yields an orthogonal decomposition of Pξ,

Pξ = (ζ · Pξ)ζ − |Uξ|Dtζ = (ζ · Pξ)ζ +
(Dtζ · Pξ)
|Dtζ|2

Dtζ, (2.22)

which implies
Dtζ

|Dtζ|
· Pξ = −|Uξ||Dtζ|. (2.23)

The decomposition (2.22) also implies by the Pythagoras theorem, and then using (2.9)
and (2.23),

|P∇⊥θ|2 = (ζ · P∇⊥θ)2 +

(
Dtζ

|Dtζ|
· P∇⊥θ

)2

= (Dt|U∇⊥θ|)2 + |Dtζ|2|U∇⊥θ|2,

which verifies (2.12). Inserting the expression of |U∇⊥θ|2 in (2.12) into (2.13), we
obtain (2.14). �

2.2 Proof of the main results

Proof of Theorem 2.1 and Theorem 2.2 The proof is similar to the case of 3D
Euler equations. The main difference is that here we start from the kinematic relations
of the Boussinesq equations in Proposition 2.1. Integrating (2.9) along the trajectory
for t ∈ [0, s], we obtain

∂

∂s
|∇⊥θ(X(a, s), s)| ≤

∣∣∣∣ ∂∂s∇⊥θ(X(a, s), s)

∣∣∣∣ = |(Ds∇⊥θ)(X(a, s), s)| = |U∇⊥θ(X(a, s), s)|

= |S0(a)ω0(a)| −
∫ s

0

(ζ · Pξ)(X(a, τ), τ)|ω(X(a, τ), τ |dτ.
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After integrating this again with respect to s over [0, t], we find

|∇⊥θ(X(a, t), t)| ≤ |∇⊥θ0(a)|+ |∇⊥θ0(a) · ∇u0(a)|t

+

∫ t

0

∫ s

0

[ζ · Pξ]−(X(a, τ), τ)|∇⊥θ(X(a, τ), τ)|dτds.

Thanks to Lemma 2.1(ii) we find

|∇⊥θ(X(a, t), t)| ≤ (|∇⊥θ0(a)|+ |∇⊥θ0 · ∇u0(a)(a)|t)×

× exp

(∫ t

0

∫ s

0

[ζ · Pξ]−(X(a, τ), τ)dτds

)
. (2.24)

Taking the supremum over a ∈ R2, and integrating it with respect to t over [0, T ] after
multiplying by T − t, we find∫ T

0

(T − t)‖∇⊥θ(t)‖L∞dt ≤ (‖∇⊥θ0(a‖L∞ + ‖∇⊥θ0 · ∇u0‖L∞T )×

×
∫ T

0

(T − t) exp

(∫ t

0

∫ s

0

‖[ζ · Pξ(τ)]−‖L∞dτds

)
dt. (2.25)

Integrating (2.10) twice with respect to the time variable over [0, s], we hvae

|∇⊥θ(X(a, t), t)| ≤ |∇⊥θ0(a)| exp

(∫ t

0

∫ s

0

[|Uξ|2 − 2α2 − ρ]+(X(a, τ), τ)dτds

)
,

(2.26)
and from which we also deduce∫ T

0

(T − t)‖∇⊥θ(t)‖L∞dt ≤ ‖∇⊥θ0‖L∞×

×
∫ T

0

(T − t) exp

(∫ t

0

∫ s

0

‖[|Uξ|2 − 2α2 − ρ]+(τ)‖L∞dτds

)
dt. (2.27)

Applying the blow up criterion of [5, Theorem 1.2 (ii)] to (2.25) and (2.27), we obtain
the desired conclusion of Theorem 2.1(i). The proof of Theorem 2.1(ii), using the result
of (i) is the similar to the one in [3].

The proof of Theorem 2.2, using the key estimates (2.24) and (2.26) is also similar
to the corresponding ones in [3]. The essential point here is that we apply the local
version of the blow up criterion [6, Theorem 2.1]. �
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