Remarks on a Liouville-type theorem for Beltrami flows

Dongho Chae* and Peter Constantin ${ }^{\dagger}$
(*)Department of Mathematics
Chung-Ang University
Seoul 156-756, Republic of Korea
e-mail :dchae@cau.ac.kr
(\dagger Department of Mathematics
Princeton University
Princeton, NJ 08544, USA
e-mail: const@math.princeton.edu

Abstract

We present a simple, short and elementary proof that if v is a Beltrami flow with a finite energy in \mathbb{R}^{3} then $v=0$. In the case of the Beltrami flows satisfying $v \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{3}\right) \cap L^{q}\left(\mathbb{R}^{3}\right)$ with $q \in[2,3)$, or $|v(x)|=O\left(1 /|x|^{1+\varepsilon}\right)$ for some $\varepsilon>0$, we provide a different, simple proof that $v=0$.

AMS Subject Classification Number: 35Q31, 76B03, 76W05
keywords: Euler equations, Beltrami flows, Liouville type theorem

1 Introduction

Ideal homogeneous incompressible inviscid fluid flows are governed by the Euler equations:

$$
(\mathrm{E})\left\{\begin{array}{l}
\frac{\partial v}{\partial t}+(v \cdot \nabla) v=-\nabla p, \quad(x, t) \in \mathbb{R}^{3} \times(0, \infty) \\
\operatorname{div} v=0, \quad(x, t) \in \mathbb{R}^{3} \times(0, \infty)
\end{array}\right.
$$

where $v=\left(v_{1}, \cdots, v_{n}\right), v_{j}=v_{j}(x, t), j=1, \cdots, n, n \geq 2$, is the velocity of the flow, $p=p(x, t)$ is the scalar pressure. Let $R_{j}, j=1, \cdots, n$, denote the Riesz transforms, given by

$$
R_{j}(f)(x)=C_{n} \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(x)} \frac{\left(x_{j}-y_{j}\right) f(y)}{|x-y|^{n+1}} d y, \quad C_{n}=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} .
$$

The pressure in the Euler (and Navier-Stokes) equations is given in terms of the velocity up to addition of a harmonic function by

$$
\begin{equation*}
p=\sum_{j, k=1}^{n} R_{j} R_{k}\left(v_{j} v_{k}\right) \tag{1.1}
\end{equation*}
$$

This is easily seen by taking the divergence of (E). In [2](see also [1]) the following result is obtained.

Theorem 1.1 If (v, p) satisfies (1.1) and $|p|+|v|^{2} \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} v_{j} v_{k} d x=-\delta_{j k} \int_{R^{n}} p d x \tag{1.2}
\end{equation*}
$$

In the next section we present a simple proof of this result using the continuity of the Fourier transform of functions belonging to $L^{1}\left(\mathbb{R}^{n}\right)$. In order to see the implications of the above theorem for Beltrami flows, let us recall that in the stationary case in \mathbb{R}^{3}, the first equations of (E) can be rewritten as

$$
\begin{equation*}
v \times \omega=\nabla\left(p+\frac{1}{2}|v|^{2}\right), \quad \omega=\operatorname{curl} v \tag{1.3}
\end{equation*}
$$

A vector field v is called a Beltrami flow if there exists a function $\lambda=\lambda(x)$ such that

$$
\begin{equation*}
\omega=\lambda v \tag{1.4}
\end{equation*}
$$

Therefore, if v is a Beltrami flow, then the pair (v, p) is a solution of the stationary Euler equations if

$$
\begin{equation*}
p+\frac{1}{2}|v|^{2}=c, \quad c=\text { constant } . \tag{1.5}
\end{equation*}
$$

We call such a solution (v, p) a "Beltrami solution" of the stationary Euler equations. We refer to [3] for a recent interesting result regarding the Beltrami flows. Recently, Nadirashvili proved a Liouville type property of Beltrami flows ([4]). He showed that a Beltrami solution (v, p) satisfying either $v \in L^{q}\left(\mathbb{R}^{3}\right), 2 \leq q \leq 3$, or $|v(x)|=o(1 /|x|)$ is necessarily trivial, $v=0$. In the case of finite energy Beltrami flows we have the following immediate consequence of Theorem 1.1:

Theorem 1.2 Let (v, p) be a Beltrami solution of the stationary Euler equations with the λ given in (1.4). If $v \in L^{2}\left(\mathbb{R}^{3}\right)$, then $v=0$. The same conclusion holds, for instance, if there exists $q \in\left[\frac{6}{5}, \infty\right]$ such that $v \in L^{q}\left(\mathbb{R}^{3}\right)$ and $\lambda \in L^{\frac{6 q}{5 q-6}}\left(\mathbb{R}^{3}\right)$ (if $v \in L^{\frac{6}{5}}\left(\mathbb{R}^{3}\right)$, then we require $\lambda \in L^{\infty}\left(\mathbb{R}^{3}\right)$).

We have also the following result for the cases considered in the paper [4], for which we present a different, simple proof.

Theorem 1.3 Let $v \in L_{l o c}^{\infty}\left(\mathbb{R}^{3}\right)$ be a Beltrami solution of the stationary Euler equations satisfying either $v \in L^{q}\left(\mathbb{R}^{3}\right)$ for some $q \in[2,3)$, or that there exists $\varepsilon>0$ such that $|v(x)|=O\left(1 /|x|^{1+\varepsilon}\right)$ as $|x| \rightarrow \infty$. Then, $v=0$.

2 Proof of the Theorems

We use the notation for the Fourier transform of $f(x)$

$$
\mathcal{F}(f)(\xi)=\widehat{f}(\xi)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} f(x) e^{-i x \cdot \xi} d x
$$

whenever the right hand side is defined. In terms of the Fourier transform the Riesz transform is defined as

$$
\widehat{R_{j}(f)}(\xi)=\frac{i \xi_{j}}{|\xi|}, \quad i=\sqrt{-1}
$$

Proof of Theorem 1.1 Without loss of generality we may restrict ourselves to the stationary case, $v(x, t)=v(x), p(x, t)=p(x)$. By the Fourier transform one has

$$
\begin{equation*}
\hat{p}(\xi)=-\sum_{j, k=1}^{n} \frac{\xi_{j} \xi_{k}}{|\xi|^{2}} \widehat{v_{j} v_{k}}(\xi) \tag{2.1}
\end{equation*}
$$

We note that $\widehat{p}(\xi)$ and $\widehat{v_{j} v_{k}}(\xi), j, k=1, \cdots, n$, are continuous at $\xi=0$ from the hypothesis, $|p|+|v|^{2} \in L^{1}\left(\mathbb{R}^{n}\right)$. Let w be a given constant vector with $|w|=1$. We put $\xi=\rho w$ in (2.1), and pass $\rho \rightarrow 0$ to obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} p d x=-\int_{\mathbb{R}^{n}}(v \cdot w)^{2} d x \tag{2.2}
\end{equation*}
$$

If we plug $w=\mathbf{e}^{j}$ in (2.2), where \mathbf{e}^{j} is the canonical basis of \mathbb{R}^{n} with its components given by $\left(\mathbf{e}^{j}\right)_{k}=\delta_{j k}$, then we have

$$
\int_{\mathbb{R}^{n}} p d x=-\int_{\mathbb{R}^{n}} v_{j}^{2} d x \quad \forall j=1, \cdots, n
$$

On the other hand, for $j \neq k$, if we put $w=\frac{\mathrm{e}^{j}+\mathrm{e}^{k}}{\sqrt{2}}$ in (2.2), we obtain $\int_{\mathbb{R}^{n}} v_{j} v_{k} d x=0$.

Proof of Theorem 1.2 Since (v, p) is a Beltrami solution of stationary Euler equations, we have $p-c=-\frac{1}{2}|v|^{2}:=\tilde{p}$ for some constant c. In the case $v \in L^{2}\left(\mathbb{R}^{3}\right)$ we find that $|v|^{2}+|\tilde{p}| \in L^{1}\left(\mathbb{R}^{3}\right)$, and by Theorem 1.1 we obtain

$$
\int_{\mathbb{R}^{3}} \tilde{p} d x=-\frac{1}{3} \int_{\mathbb{R}^{3}}|v|^{2} d x=-\frac{1}{2} \int_{\mathbb{R}^{3}}|v|^{2} d x,
$$

which implies that $v=0$, and $\tilde{p}=\sum_{j, k=1}^{n} R_{j} R_{k}\left(v_{j} v_{k}\right)=0$. On the other hand, if $v \in L^{q}\left(\mathbb{R}^{3}\right)$ and $\lambda \in L^{\frac{6 q}{5 q-6}}\left(\mathbb{R}^{3}\right)$ with $\frac{6}{5}<q \leq \infty$, or $v \in L^{\frac{6}{5}}\left(\mathbb{R}^{3}\right)$ and $\lambda \in L^{\infty}\left(\mathbb{R}^{3}\right)$, then we estimate

$$
\begin{aligned}
\|v\|_{L^{2}} & \leq C\|\nabla v\|_{L^{\frac{6}{5}}} \leq C\|\omega\|_{L^{\frac{6}{5}}}=C\|\lambda v\|_{L^{\frac{6}{5}}} \\
& \leq C\|\lambda\|_{L^{\frac{6 q}{5 q-6}}}\|v\|_{L^{q}}<\infty,
\end{aligned}
$$

and we reduce to the above case of $v \in L^{2}\left(\mathbb{R}^{3}\right)$.
Proof of Theorem 1.3 We first observe that our hypothesis implies that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}|v|^{2}|x|^{\mu-2} d x<\infty \tag{2.3}
\end{equation*}
$$

for some $\mu \in(1,2)$. Indeed, the case $|v(x)|=O\left(1 /|x|^{1+\varepsilon}\right)$ as $|x| \rightarrow \infty$ is obvious, while in the case $v \in L^{q}\left(\mathbb{R}^{3}\right)$ for some $q \in[2,3)$, we have the following estimate,

$$
\int_{\{|x| \geq 1\}}|v|^{2}|x|^{\mu-2} d x \leq C\|v\|_{L^{q}}^{2}\left(\int_{1}^{\infty} r^{2+\frac{q(\mu-2)}{q-2}} d r\right)^{\frac{q-2}{q}}<\infty
$$

for μ with $1<\mu<\frac{6}{q}-1$. Let us introduce a standard radial cut-off function $\sigma \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\sigma(|x|)= \begin{cases}1 & \text { if }|x|<1 \tag{2.4}\\ 0 & \text { if }|x|>2\end{cases}
$$

and $0 \leq \sigma(x) \leq 1$ for $1<|x|<2$. Then, for each $R>0$, we define $\sigma\left(\frac{|x|}{R}\right):=\sigma_{R}(|x|) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. A Beltrami solution (v, p) with $p=-\frac{1}{2}|v|^{2}+C$ satisfies

$$
\begin{equation*}
\sum_{j, k=1}^{3} \int_{\mathbb{R}^{3}} v_{j} v_{k} \partial_{j} \partial_{k} \varphi d x=\frac{1}{2} \int_{\mathbb{R}^{3}}|v|^{2} \Delta \varphi d x \quad \forall \varphi \in C_{0}^{2}\left(\mathbb{R}^{3}\right) . \tag{2.5}
\end{equation*}
$$

We choose our test function $\varphi(x)=\varphi_{\delta, R}(x)=\left(|x|^{2 \mu}+\delta\right)^{\frac{1}{2}} \sigma_{R}$ for $\delta, R>0$ in (2.5), which is an approximation of $\varphi=|x|^{\mu}$, and passing first $\delta \rightarrow 0$, and then $R \rightarrow \infty$, using continuity of integrals and the dominated convergence theorem, taking (2.3) into account, we obtain easily that

$$
\begin{equation*}
(\mu-1) \int_{\mathbb{R}^{3}}|v|^{2}|x|^{\mu-2} d x=2(\mu-2) \int_{\mathbb{R}^{3}}(v \cdot x)^{2}|x|^{\mu-4} d x \tag{2.6}
\end{equation*}
$$

The fact that $\mu \in(1,2)$ in (2.6) implies $v=0$.

Acknowledgements

DC was partially supported by NRF grants 2006-0093854 and 2009-0083521. PC was partially supported by NSF DMS grants 1209394 and 1265132.

References

[1] L. Brandolese and Y. Meyer, On the instantaneous spreading for the Navier-Stokes system in the whole space, Contr. Optim. Calc. Var., 8, (2002), pp. 273285.
[2] D. Chae, Liouville type theorems for the Euler and the NavierStokes equations, Adv. Math., 228, (2011), pp. 2855-2868.
[3] A. Enciso and D. Peralta-Salas, Knots and links in steady solutions of the Euler equation, Ann. of Math., 2. 175, no. 1 (2012), pp. 345-367.
[4] N. Nadirashvili, Liouville theorem for Beltrami flow, Geom. Funct. Anal., 24, no. 3, pp. 916-921, (2014).

