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ABSTRACT. We consider the vanishing viscosity limit of the Navier-Stokes equations in a half space,
with Dirichlet boundary conditions. We prove that the inviscid limit holds in the energy norm if the
Navier-Stokes solutions remain bounded in L2

tL
∞
x independently of the kinematic viscosity, and if

they are equicontinuous at x2 = 0. December 26, 2015

1. Introduction

Consider the 2D Navier-Stokes equations

∂tu
NS + uNS · ∇uNS +∇pNS = ν∆uNS (1.1)

∇ · uNS = 0 (1.2)

uNS
1 |∂H = uNS

2 |∂H = 0 (1.3)

with kinematic viscosity ν, in the half space H = {(x1, x2) : x2 > 0}, and the Euler equations

∂tu
E + uE · ∇uE +∇pE = 0 (1.4)

∇ · uE = 0 (1.5)

uE
2|∂H = 0 (1.6)

with asymptotically matching initial conditions

lim
ν→0
‖uNS

0 − uE
0‖L2(H) = 0. (1.7)

We denote by

uE
1|∂H(x1, t) = UE(x1, t)

the trace on ∂H of the Euler tangential flow. We omit ν in the notation for uNS. Throughout this
paper we consider 0 < ν ≤ ν0, and 0 ≤ t ≤ T , where ν0 is an arbitrary fixed kinematic viscosity,
and T is an arbitrary fixed time. We assume that the Euler initial datum is smooth, uE

0 ∈ Hs(H) for
some s > 2, so that there exists an unique Hs smooth solution uE of (1.4)–(1.6) on [0, T ].

This paper establishes sufficient conditions for the family of Navier-Stokes solutions {uNS}ν∈(0,ν0]
to ensure that the inviscid limit holds in the energy norm:

lim
ν→0
‖uNS − uE‖L∞(0,T ;L2(H)) = 0. (1.8)

Our main results are given in Theorems 1.1, 1.3, and 1.4. The main assumptions are the uniform
boundedness of the Navier-Stokes solutions in L2(0, T ;L∞(H)) and their equicontinuity at x2 = 0.
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The conditions imposed imply that the Lagrangian paths originating in a boundary layer, stay
in a proportional boundary layer during the time interval considered. The physical interpretation
of our result is that, as long as there is no separation of the boundary layer, the inviscid limit is
possible.

1.1. Known finite time, inviscid limit results. The question of whether (1.8) holds in the case
of Dirichlet boundary conditions has a rich history. Kato proved in [Kat84] that the inviscid limit
holds in the energy norm if and only if

lim
ν→0

ν

∫ T

0

∫
|x2|≤Cν

|∇uNS(x1, x2, t)|2dx1dx2dt = 0, (1.9)

i.e. that the energy dissipation rate is vanishing in a thin, O(ν), layer near the boundary. Kato’s
criterion was revisited and sharpened by many authors. For instance, in [TW97] and [Wan01] it is
shown that the condition on the full gradient matrix ∇uNS may be replaced by a condition on the
tangential gradient of the Navier-Stokes solution alone, at the cost of considering a thicker boundary
layer, of size δ(ν), where limν→0 δ(ν)/ν = 0. In [Kel07] it is shown that ‖∇uNS‖L2(|x2|≤Cν) may
be replaced by ν−1‖uNS‖L2(|x2|≤Cν) which has the same scaling in the Kato layer. In [Kel08] it is
shown that (1.8) is equivalent to the weak convergence of vorticities

ωNS → ωE − uE
1 µ∂H in (H1(H))∗ (1.10)

where µ∂H is the Dirac measure on ∂H, and (H1)∗ is the dual space to H1 (not H1
0 ). In fact, it is

shown in [BT13] that the weak convergence of vorticity on the boundary

νωNS → 0 in D′([0, T ]× ∂H) (1.11)

is equivalent to (1.8) (see also [Kel08, CKV15] in the case of stronger convergence in (1.11)).
The idea to introduce a boundary layer corrector like Kato’s, which is not based on power series

expansions, and to treat the remainders with energy estimates has proven to be very fruitful. See
for instance: [Mas98] in the case of anisotropic viscosity; [BSJW14, BTW12] in the context of
weak-strong uniqueness; [GN14] for a steady flow on a moving plate; [BN14] for the compressible
Navier-Stokes equations; [LFNLTZ14] for the vanishing α limit of the 2D Euler-α model.

There are three classes of functions for which there exist unconditional inviscid limit results,
that is, theorems whereby conditions imposed solely on initial data guarantee that (1.8) is true for
a time interval independent of viscosity (but possibly depending on initial data). The first class
is that of real analytic initial data in all space variables [SC98b], the second is that of initial data
with vorticity supported at an O(1) distance from the boundary [Mae14], and the third class is
data with certain symmetries or special restrictions [LFMNL08, LFMNLT08, MT08, Kel09]). It
is worth noting that in these three cases the Prandtl expansion of the Navier-Stokes equation is
valid in a boundary layer of thickness

√
ν. Moreover, in all these results, the Kato criteria also

hold [BT13, Kel14]. However, to date, there is no robust connection between the well-posedness of
the Prandtl equations, and the vanishing viscosity limit in the energy norm.

It is known that for a class of initial conditions close to certain shear flows the Prandtl equations
are ill-posed [GVD10, GN11, GVN12] and even that the Prandtl expansion is not valid [Gre00,
GGN14b, GGN14c, GGN14a]. These results do not imply that the inviscid limit in the energy norm
is invalid, but rather just that the Prandtl expansion does not describe the leading order behavior
near the boundary. It would be natural to expect that working in a function space for which the local
existence of the Prandtl equations holds (see, e.g. [Ole66, MW14, AWXY14], [SC98a, LCS03,
KV13], [KMVW14], [GVM13]), there is a greater chance for (1.8) to be true. An instance of such
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a result is given in [CKV15], where a one-sided Kato criterion in terms of the vorticity is obtained,
connecting Oleinik’s monotonicity assumption and the inviscid limit: if

lim
ν→0

∫ T

0

∥∥∥∥(UE(x1, t)

(
ωNS(x1, x2, t) +

δ(νt)

νt

))
−

∥∥∥∥2
L2(|x2|≤νt/δ(νt))

dt = 0 (1.12)

holds, where
∫ T
0 δ(νt)dt → 0 as ν → 0, then (1.8) holds. In particular, if there is no back-flow in

the underlying Euler flow, UE ≥ 0, and the Navier-Stokes vorticity ωNS is larger than−δ(νt)/ν (for
instance if it is non-negative as in Oleinik’s setting) in a boundary layer that is slightly thicker than
Kato’s, then the inviscid limit holds.

In contrast to the works (1.9)–(1.12) mentioned above, the goal of this paper is to establish
sufficient conditions for (1.8) to hold, which do not rely on any assumptions concerning derivatives
of the Navier-Stokes equations. Alternately, we establish conditions which require only L1 uniform
integrability of tangential derivatives near the boundary. Our proofs keep the idea of Kato of build-
ing an ad-hoc boundary layer corrector, but its scaling is dictated by the heat equation in x2 (with
Prandtl scaling). No explicit convergence rates are obtained with our assumptions. The main results
of this paper are:

1.2. Results.

THEOREM 1.1. Assume that there exists a constant CNS > 0 such that

sup
ν∈(0,ν0]

∫ T

0
‖uNS(t)‖2L∞(H)dt ≤ CNSν0 (1.13)

and moreover that the family

{uNS
1 u

NS
2 }ν∈(0,ν0] is equicontinuous at x2 = 0. (1.14)

Then (1.7) implies that the inviscid limit holds in the energy norm.

Specifically, in view of the Dirichlet boundary condition (1.3), by condition (1.14) we mean that
there exists a function

0 ≤ γ(x1, t) ∈ L1
t,x1([0, T ]× R) (1.15)

with the property that for any ε > 0, there exists ρ = ρ(ε) > 0 such that

|uNS
1 (x1, x2, t)u

NS
2 (x1, x2, t)| ≤ εγ(x1, t), for all x2 ∈ (0, ρ], (1.16)

and all (t, x1) ∈ [0, T ]× R, uniformly in ν ∈ (0, ν0].
The quantity in condition (1.13) is natural to consider: it is scale invariant under the Navier-

Stokes isotropic scaling, and it appears in three dimensions as well. The same quantity was used
in [BSJW14] to establish conditional weak-strong uniqueness of weak solutions in Hölder classes.

REMARK 1.2 (Open problem). Removing the equicontinuity assumption (1.14) of uNS
1 u

NS
2 at

the boundary of the domain is a natural and very interesting question.

The L1 integrability (uniform in ν) of one component of∇uNS is related to condition (1.14):

THEOREM 1.3. Assume that (1.13) holds, and that the tangential component of the Navier-
Stokes flow satisfies:

{∂1uNS
1 }ν∈(0,ν0] is uniformly integrable near x2 = 0, (1.17)



4 P. CONSTANTIN, T. ELGINDI, M. IGNATOVA, AND V. VICOL

meaning that for any ε > 0 and any L > 0, there exists ρ = ρ(ε, L) > 0 such that

‖∂1uNS
1 1|x1|≤L,0<x2<ρ‖L2(0,T ;L1(H)) ≤ ε. (1.18)

Then (1.8) holds.

Condition (1.17) requires that the family of measures

µν(dx1 dx2) = |∂1uNS
1 (t, x1, x2)|dx1 dx2

is uniformly absolutely continuous at x2 = 0 with values in L2(0, T ). Note that ∂1uNS
1 vanishes

identically on ∂H, which is not the case for the Navier-Stokes vorticity ωNS = ∂2u
NS
1 − ∂1u

NS
2 ,

which is expected to develop a measure supported on the boundary of the domain in the inviscid
limit [Kel08]. Thus, the vorticity is not expected to be uniformly integrable in L2

tL
1
x. Therefore, in

(1.18) it is important that instead of a uniform integrability condition on ωNS or equivalently ∂2uNS
1 ,

we have only assumed a uniform integrability condition on ∂1uNS
1 . Also, note that (uniform in ν)

higher integrability of the Navier-Stokes vorticity, such as Lp for p > 2 cannot hold unless UE ≡ 0,
as is shown in [Kel14].

A similar result to the one in Theorem 1.3, has been obtained independently in [GKLF+15],
where the authors prove that if ∇uNS is uniformly in ν bounded in L∞(0, T ;L1(Ω)), for a domain
Ω such that the embedding W 1,1(Ω) ⊂ L2 is compact, then the vanishing viscosity limit holds in
L∞(0, T ;L2(Ω)).

We conclude the introduction by noting that a similar proof to that of Theorem 1.1 yields the
following:

THEOREM 1.4. Assume that there exists a function M(t) ≥ 0 such that

sup
ν∈(0,1]

‖uNS(t)‖L∞(H) ≤M(t) with
∫ T

0
M2(t)dt <∞ (1.19)

and that

lim
ν→0

uNS
1 (x1, δ(νt)x2, t)u

NS
2 (x1, δ(νt)x2, t) = 0 (1.20)

holds for a.e. (t, x1, x2) ∈ [0, T ]×H, where δ is an increasing non-negative function such that

lim
ν→0

ν

∫ T

0

1

δ(νt)
= 0. (1.21)

Then (1.8) holds.

Condition (1.21) for the boundary layer thickness δ(νt), emerges for reasons which are similar
to those in [Wan01, Kel14, CKV15].

1.3. Organization of the paper. In Section 2 we lay out the scheme of the proof for the above
mentioned theorems, by identifying the principal error terms in the energy estimate for the corrected
uNS − uE flow. In Section 3 we build a caloric lift of the Euler boundary conditions, augmented by
an O(1) correction at unit scale. In Section 4 we conclude the proof of Theorem 1.1, in Section 5
we give the proof of Theorem 1.3, while in Section 6 we show why Theorem 1.4 holds.
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2. Setup of the Proof of Theorem 1.1

We consider a boundary layer corrector uK (to be constructed precisely later) which for now
obeys three properties

∇ · uK = 0 (2.1)

uK
1 |∂H = −UE (2.2)

uK
2 |∂H = 0. (2.3)

The main difference between the corrector uK we consider, and the one considered in [Kat84], is its
characteristic length scale: we let uK obey a Prandtl

√
νt scaling. Roughly speaking, uK

1 is a lift of
the Euler boundary condition which obeys the heat equation (∂t − ν∂x2x2)uK

1 = 0 to leading order
in ν. In view of (2.1)–(2.3) we then obtain uK

2 from uK
1 as

uK
2 (x1, x2, t) = −

∫ x2

0
∂1u

K
1 (x1, y, t)dy. (2.4)

The function

v = uNS − uE − uK

is divergence free

∇ · v = 0

and obeys Dirichlet boundary conditions

v|∂H = 0.

The equation obeyed by v is

∂tv − ν∆v + v · ∇uE + uNS · ∇v +∇q
= ν∆uE −

(
∂tu

K − ν∆uK + uNS · ∇uK + uK · ∇uE
)

(2.5)

where q = pNS − pE. Multiplying (2.5) with v and integrating by parts, yields

1

2

d

dt
‖v‖2L2 + ν‖∇v‖2L2 ≤ ‖∇uE‖L∞‖v‖2L2 + ν‖∆uE‖L2‖v‖L2

+ T1 + T2 + T3 + T4 + T5 + T6 (2.6)

where we have denoted

T1 = −
∫
H

(∂tu
K − ν∆uK) · v (2.7)

T2 = −
∫
H

(uNS · ∇uE) · uK (2.8)

T3 = −
∫
H

(uK · ∇uE) · v (2.9)

T4 = −
∫
H
uNS
1 u

NS
2 ∂1u

K
2 (2.10)

T5 = −
∫
H

(
(uNS

1 )2 − (uNS
2 )2

)
∂1u

K
1 (2.11)

T6 = −
∫
H
uNS
1 u

NS
2 ∂2u

K
1 (2.12)



6 P. CONSTANTIN, T. ELGINDI, M. IGNATOVA, AND V. VICOL

The corrector uK is designed to eliminate the contribution from T1 to leading order in ν. In turn,
this leads to ‖uK‖L2 + ‖∂1uK‖L2 → 0 as ν → 0, so that the terms T2, T3, and T4 are harmless.
Such is the case if uK is localized in a layer near the boundary, which is vanishing as ν → 0. The
assumptions (1.13)–(1.14) only come into play in showing that T5 and T6 are bounded conveniently.
The next section is devoted to the construction of an uK with these properties, and the conclusion of
the proof is given in Section 4 below.

Throughout the text we shall denote by CE any constant that depends on ‖uE‖L∞(0,T ;Hs(H)).
Various other positive constants shall be denoted by C; these constants do not depend on ν, but
they are allowed to implicitly depend on the fixed length of the time interval T , and on the largest
kinematic viscosity ν0.

3. A pseudo-caloric lift of the boundary conditions

3.1. The tangential component of the lift uK. Let

z = z(x2, t) =
x2√
4νt

be the self-similar variable for the heat equation in x2, with viscosity ν. Let η be a non-negative
bump function such that

supp(η) ∈ [1, 2] and
∫ 2

1
η(r)dr =

1√
π

(3.1)

which in addition obeys that |η′|L∞ + |η′′|L∞ ≤ Cη, for some constant Cη.
We let uK

1 consist of a caloric lift of the Euler boundary conditions, augmented with a localiza-
tion factor at large values of x2. We define

uK
1 (x1, x2, t) = −UE(x1, t)

(
erfc(z(x2, t))−

√
4νt η(x2)

)
(3.2)

where

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

exp(−y2)dy.

The normalization of the mass of η was chosen precisely so that∫ ∞
0

uK
1 (x1, x2, t)dx2 = −UE(x1, t)

∫ ∞
0

(
erfc(z(x2, t))−

√
4νt η(x2)

)
dx2

= −UE(x1, t)
√

4νt

(∫ ∞
0

erfc(z)dz −
∫ ∞
0

η(x2)dx2

)
= 0. (3.3)

Property (3.3) of uK
1 allows the uK

2 defined in (2.4) (see also below) to decay sufficiently fast as
x2 →∞. This decay of uK

2 will be used essentially later on in the proof.
Note that uK

1 is pseudo-localized to scale x2 ≈
√

4νt. Indeed, we have that

‖ erfc(z(x2, t))‖Lpx2 (0,∞) = (4νt)1/(2p)‖1− erf(z)‖Lpz(0,∞)

≤ C(νt)1/(2p)

and

‖∂x2 erfc(z(x2, t))‖Lpx2 (0,∞) = (4νt)1/(2p)−1/2‖∂z erfc(z)‖Lpz(0,∞)

≤ C(νt)1/(2p)−1/2
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for all 1 ≤ p ≤ ∞, where C > 0 is a constant. The above bounds yield

‖uK
1‖Lpx1,x2 (H) ≤ C‖UE(t)‖Lpx1

(
(4νt)1/(2p) + Cη(4νt)

1/2
)
≤ CE(νt)1/(2p) (3.4)

‖∂1uK
1‖Lpx1,x2 (H) ≤ Cη‖∂1UE(t)‖Lpx1 (νt)1/(2p) ≤ CE(νt)1/(2p) (3.5)

‖∂2uK
1‖Lpx1,x2 (H) ≤ Cη‖UE(t)‖Lpx1 (νt)1/(2p)−1/2 ≤ CE(νt)1/(2p)−1/2 (3.6)

‖∂12uK
1‖Lpx1,x2 (H) ≤ Cη‖∂1UE(t)‖Lpx1 (νt)1/(2p)−1/2 ≤ CE(νt)1/(2p)−1/2 (3.7)

for all 1 ≤ p ≤ ∞, where CE > 0 is a constant that depends on the Euler flow, on p, the cutoff
function η, through the constant Cη, on ν0 and T . We emphasize however only the dependence on
the Euler flow.

We moreover have that

∂tu
K
1 − ν∆uK

1 = −
(
∂tU

E(x1, t)− ν∂11UE(x1, t)
) (

erfc(z(x2, t))−
√

4νtη(x2)
)

+ UE(x1, t)(∂t − ν∂22)
(√

4νt η(x2)
)

and thus

‖∂tuK
1 − ν∆uK

1‖L2 ≤ Cη
(
‖∂tUE‖L2 + ν‖∂11UE‖L2

)
(νt)1/4 + Cη‖UE‖L2ν1/2t−1/2

≤ CE

(
(νt)1/4 + ν1/2t−1/2

)
(3.8)

where as before the dependence of all constants on ν0 and T is ignored.

3.2. The normal component of the lift uK. Combining (2.4) with (3.2), we arrive at

uK
2 (x1, x2, t) = ∂1U

E(x1, t)

(∫ x2

0
erfc(z(y, t))dy −

√
4νt

∫ x2

0
η(y)dy

)
=
√

4νt ∂1U
E(x1, t)

(∫ z(x2,t)

0
erfc(z)dz −

∫ x2

0
η(y)dy

)
=:
√

4νt ∂1U
E(x1, t)R(x2, t). (3.9)

An explicit calculation shows that

R(x2, t) =

(
1√
π
−
∫ x2

1
η(y)dy

)
− 1√

π
exp

(
−z(x2, t)2

)
+ z(x2, t) erfc(z(x2, t)).

Moreover, note that in view of the choice of η in (3.1), the first term on the right side of the above
is identically vanishing for all x2 ≥ 2. It is clear that R obeys

R(0, t) = 0 = lim
x2→∞

R(x2, t),

and thus we may hope that R is integrable with respect to x2, which is indeed the case. To see this,
first we note that

‖R(t)‖L∞
x2
≤ 1√

π
.
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Then, we have that

‖R(t)‖L1
x2
≤
∫ 2

0

∣∣∣∣ 1√
π
−
∫ x2

1
η(y)dy

∣∣∣∣ dx2 +
1√
π

∫ ∞
0

exp(−z(x2, t)2) + z(x2, t) erfc(z(x2, t))dx2

≤ Cη +

√
4νt√
π

∫ ∞
0

exp(−z2) + z(1− erf(z))dz

≤ Cη

where the dependence of all constants on ν0 and T is ignored. By interpolation it then follows that

‖R(t)‖Lpx2 ≤ Cη (3.10)

for all 1 ≤ p ≤ ∞. In view of (3.10) and (3.2), we have that the bounds

‖uK
2‖Lpx1,x2 (H) ≤ Cη

√
4νt‖∂1UE‖Lpx1 ≤ CE(νt)1/2 (3.11)

‖∂1uK
2‖Lpx1,x2 (H) ≤ Cη

√
4νt‖∂11UE‖Lpx1 ≤ CE(νt)1/2 (3.12)

hold for 1 ≤ p ≤ ∞, where we have as before suppressed the dependence on Cη and p of the
constant CE .

Lastly, we obtain from (2.4) and (3.9) that

(∂t − ν∆)uK
2 (x1, x2, t) = ν∂12u

K
1 (x1, x2, t)− ν

√
4νt ∂111U

E(x1, t)R(x2, t)

+ ν1/2t−1/2∂1U
E(x1, t)R(x2, t)

+
√

4νt ∂1U
E(x1, t)∂tR(x2, t)

= ν∂12u
K
1 (x1, x2, t)− ν

√
4νt ∂111U

E(x1, t)R(x2, t)

+ ν1/2t−1/2∂1U
E(x1, t)R(x2, t)

− ν1/2t−1/2 ∂1UE(x1, t)z(x2, t) erfc(z(x2, t))

where we have used that

∂tR(x2, t) = − 1

2t
z(x2, t) erfc(z(x2, t)).

Using (3.7) and (3.10) we conclude that

‖(∂t − ν∆)uK
2‖L2

x1,x2
(H) ≤ Cην1/2t−1/2(νt)1/4‖∂1UE(t)‖L2

x1

+ Cην(νt)1/2‖∂111UE‖L2
x1

+ Cην
1/2t−1/2‖∂1UE‖L2

x1

≤ CE

(
ν1/2t−1/2 + (νt)1/2

)
(3.13)

holds.

4. Conclusion of the Proof of Theorem 1.1

Having constructed the corrector function uK, we estimate the terms on the right side of (2.6).
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4.1. Bounds for T1, T2, T3, and T4. Using (3.8) and (3.13) we arrive at

|T1| ≤ ‖v‖L2‖(∂t − ν∆)uK‖L2

≤ CE‖v‖L2

(
ν1/2t−1/2 + (νt)1/4

)
. (4.1)

In order to bound T2 we first estimate

|T2| ≤ ‖∇uE‖L∞‖uK‖L2‖uNS‖L2

≤ ‖∇uE‖L∞‖uK‖L2‖uNS
0 ‖L2

where we have used the L2 energy inequality for the Navier-Stokes solution. Combining the above
with (3.4) and (3.11) we arrive at

|T2| ≤ CE(νt)1/4 (4.2)

since ‖uNS
0 ‖L2 ≤ C(‖uE

0‖L2 + 1), for all ν ≤ ν0, as we assume ‖uNS
0 − uE

0‖L2 → 0 as ν → 0.
Similarly to T2, we may estimate

|T3| ≤ ‖∇uE‖L∞‖uK‖L2‖v‖L2

≤ CE(νt)1/2‖v‖L2 . (4.3)

Then, similarly to T2 we estimate T4. We appeal to the energy inequality for the Navier-Stokes
solution and estimate (3.12), which is valid also for p =∞, to conclude that

|T4| ≤ ‖uNS‖2L2‖∂1uK
2‖L∞

≤ ‖uNS
0 ‖2L2‖∂1uK

2‖L∞

≤ CE(νt)1/2. (4.4)

4.2. Bound for T5. We estimate T5 as

|T5| ≤
∫
H

(
(uNS

1 )2 + (uNS
2 )2

)
|∂1uK

1 |dx1dx2

≤
∫
H

(
(uNS

1 )2 + (uNS
2 )2

)
|∂1UE|

∣∣∣erfc(z(x2, t))−
√

4νt η(x2)
∣∣∣ dx1dx2

≤ ‖uNS(t)‖2L∞‖∂1UE‖L1
x1
‖ erfc(z(x2, t))−

√
4νt η(x2)‖L1

x2

≤ CE(νt)1/2‖uNS(t)‖2L∞ . (4.5)

Using assumption (1.13), it then immediately follows that∫ T

0
|T5(t)|dt ≤ CEν0CNS(νT )1/2 (4.6)

for all ν ∈ (0, ν0].

REMARK 4.1. In order to show that limν→0

∫ T
0 |T5(t)|dt = 0, instead of using (1.13), it would

have been sufficient to assume that

sup
ν∈(0,ν0]

∫ T

0
‖uNS(t)‖L2

x1
Lqx2 (H) <∞

for some q > 2. This follows along the lines of (4.5), by using the energy inequality ‖uNS(t)‖L2 ≤
‖uNS

0 ‖L2 , and estimate (3.5) with p = 2q/(q − 2).



10 P. CONSTANTIN, T. ELGINDI, M. IGNATOVA, AND V. VICOL

4.3. Bound for T6. First we note that by the definition of uK
1 in (3.2) we have

|T6| ≤ (4νt)1/2
∣∣∣∣∫

H
uNS
1 (x1, x2, t)u

NS
2 (x1, x2, t)U

E(x1, t)η
′(x2)dx1dx2

∣∣∣∣
+

∣∣∣∣∫
H
uNS
1 (x1, x2, t)u

NS
2 (x1, x2, t)U

E(x1, t)∂x2 erfc(z(x2, t))dx1dx2

∣∣∣∣
≤ CE(νt)1/2‖uNS‖2L2 + |T6,ν |

≤ CE(νt)1/2 + |T6,ν | (4.7)

where we have used the energy inequality ‖uNS‖L2 ≤ ‖uNS
0 ‖L2 ≤ C(1+‖uE

0‖L2) , and have denoted

T6,ν =

∫
H
uNS
1 (x1, x2, t)u

NS
2 (x1, x2, t)U

E(x1, t)∂x2 erfc(z(x2, t))dx1dx2

= − 1√
πνt

∫
H
uNS
1 (x1, x2, t)u

NS
2 (x1, x2, t)U

E(x1, t) exp(−z(x2, t)2)dx1dx2

= − 2√
π

∫
H
uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy. (4.8)

The goal is now to show that assumptions (1.13)–(1.14) imply

lim
ν→0

∫ T

0
|T6,ν(t)|dt = 0 (4.9)

which yields the desired T6 estimate.
In order to prove (4.9), we fix an ε > 0, arbitrary, which in turn fixes a ρ = ρ(ε) > 0 such that

(1.16) holds. We then have∫ T

0
|T6,ν(t)|dt

≤ 2√
π

∫ T

0

∫
y≥ ρ√

4νt

∣∣∣uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t)
∣∣∣ exp(−y2)dx1dydt

+
2√
π

∫ T

0

∫
y≤ ρ√

4νt

∣∣∣uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t)
∣∣∣ exp(−y2)dx1dydt

≤ 2√
π
‖UE‖L∞(0,T ;L1

x1
(R))

∫ T

0
‖uNS(t)‖2L∞

x1,x2
(H)

(∫
y≥ ρ√

4νt

exp(−y2)dy

)
dt

+
2√
π
‖UE‖L∞(0,T ;L∞

x1
(R))

∫ T

0

∫
y≤ ρ√

4νt

ε γ(x1, t) exp(−y2)dx1dydt

≤ ‖UE‖L∞(0,T ;L1
x1

(R))CNSν0 erfc

(
ρ√
4νT

)
+ ε‖UE‖L∞(0,T ;L∞

x1
(R))‖γ‖L1(0,T ;L1

x1
(R+)) (4.10)

where we have also appealed to (1.13). By passing ν → 0 in (4.10), since ρ and T are fixed, and
erfc(z)→ 0 as z →∞, we arrive at

lim
ν→0

∫ T

0
|T6,ν(t)|dt ≤ ε‖UE‖L∞(0,T ;L∞

x1
(R))‖γ‖L1(0,T ;L1

x1
(R+)). (4.11)

Since γ is independent of ε, and ε > 0 is arbitrary, (4.11) implies (4.9) as desired.
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4.4. Proof of Theorem 1.1. From (2.6), (4.1), (4.2), (4.3), (4.4), (4.5), and (4.7) we conclude
that

d

dt
‖v‖2L2 ≤ CE‖v‖2L2 + CEν

1/2t−1/2‖v‖L2 + CE(νt)1/4 + CE(νt)1/2‖uNS(t)‖2L∞ + T6,ν (4.12)

where as usual CE implicitly depends on ν0 and T . Upon integrating (4.12) in time, using (1.7),
(4.6), and (4.9) we arrive at

lim
ν→0
‖v‖L∞(0,T ;L2(H)) = 0.

The above yields the proof of (1.8) once we recall that uNS − uE = v + uK, and that cf. (3.4) and
(3.11) we have limν→0 ‖uK‖L∞(0,T ;L2(H)) = 0.

5. Proof of Theorem 1.3

The proof follows from the proof of Theorem 1.1, as soon as we manage to establish the limit
(4.9) for the T6 term. Recall that

√
π

2
|T6,ν(t)| =

∣∣∣∣∫
H
uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy
∣∣∣∣ .

Since (1.13) holds, and

‖UE(x1, ·)‖L∞([0,T ])dx1 and exp(−y2)dy

are finite measures on R respectively R+, by Chebyshev’s inequality we have that for any L > 0:∣∣∣∣∣
∫
|y|≥L

uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy

∣∣∣∣∣
≤ ‖uNS(t)‖2L∞

∫
|y|≥L

|UE(x1, t)| exp(−y2)dx1dy

≤ ‖uNS(t)‖2L∞‖UE‖L1
x1
L∞
t

√
π

2
erfc(L) (5.1)

and ∣∣∣∣∣
∫
|x1|≥L

uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy

∣∣∣∣∣
≤ ‖uNS(t)‖2L∞

∫
|x1|≥L

sup
t∈[0,T ]

|UE(x1, t)|dx1

≤ ‖uNS(t)‖2L∞‖UE‖L1
x1
L∞
t

1

L
. (5.2)

Combining (5.1)–(5.2) with (1.13) it follows that for a given ε > 0, there exists a sufficiently large
L = L(ε, CE, CNS, ν0) > 0 such that∫ T

0

∣∣∣∣∣
∫
|y|≥L or |x1|≥L

uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy

∣∣∣∣∣ dt ≤ ε.
(5.3)
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On the other hand, since ∂2uNS
2 = −∂1uNS

1 , by (1.18) we have that∫ T

0

∣∣∣∣∣
∫
|y|≤L and |x1|≤L

uNS
1 (x1,

√
4νty, t)uNS

2 (x1,
√

4νty, t)UE(x1, t) exp(−y2)dx1dy

∣∣∣∣∣ dt ≤
≤ ‖UE‖L∞

t L
∞
x1

∫ T

0
‖uNS

1 (t)‖L∞

∫ L

0
exp(−y2)

∫
|x1|≤L

∫ √4νtL
0

|∂1uNS
1 (x1, x2, t)|dx2dx1dydt

≤ CE

∫ T

0
‖uNS

1 (t)‖L∞‖∂1uNS
1 (t)1|x1|≤L,0<x2<

√
4νtL‖L1(H)dt

≤ CECNSν0‖∂1uNS
1 (t)1|x1|≤L,0<x2<

√
4νtL‖L2(0,T ;L1(H))

≤ ε (5.4)

assuming ν is sufficiently small so that
√

4νtL ≤ ρ(ε, L). Therefore, by adding (5.3) and (5.4) we
have that for a fixed y > 0

lim
ν→0

∫ T

0
|T6,ν(t)|dt ≤ Cε

for any ε > 0, as desired.

6. Proof of Theorem 1.4

The proof follows closely that of Theorem 1.1. To avoid redundancy, here we only point out
the main differences. Moreover, for the sake of simplicity, we first consider the case δ(νt) = 2

√
νt,

which clearly obeys condition (1.21).
Condition (1.19) implies that (1.13) holds. Therefore, it remains to show that (1.19) and (1.20)

imply

lim
ν→0

∫ T

0

∫
H

∣∣∣uNS
2 (x1,

√
4νt x2, t)u

NS
1 (x1,

√
4νt x2, t)U

E(x1, t) exp
(
−x22

)∣∣∣ dx1dx2dt = 0, (6.1)

i.e. that (4.9) holds. Once (6.1) is proven, the theorem follows with the same proof as Theorem 1.1.
For this purpose, notice that the function

A(x1, x2, t) = M2(t)|UE(x1, t)| exp(−x22)

is independent of ν, obeys
A ∈ L1(dtdx1dx2),

since the Euler trace UE is bounded in L∞(0, T ;L1
x1(R)), and we have that∣∣∣uNS

2 (x1,
√

4νt x2, t)u
NS
1 (x1,

√
4νt x2, t)U

E(x1, t) exp
(
−x22

)∣∣∣ ≤ A(x1, x2, t)

for a.e. (x1, x2, t), and all ν ∈ (0, ν0]. Thus, in view of (1.20), which guarantees that

lim
ν→0

∣∣uNS
1 (x1, δ(νt)x2, t)u

NS
2 (x1, δ(νt)x2, t)U

E(x1, t) exp
(
−x22

)∣∣ = 0

we may apply the Dominated Convergence Theorem and conclude that (6.1) holds. This concludes
the proof of the theorem when δ(νt) = 2

√
νt.

To treat the more general case δ(ν) which obeys (1.21), we need to define a different corrector.
For this purpose, we recall cf. [CKV15] that the function

ϕ(x1, x2, t) = (ϕ1(x1, x2, t), ϕ2(x1, x2, t))
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where

ϕ1(x1, x2, t) = −UE(x1, t)
(
e
− x2
δ(νt) − δ(νt)ψ(x2)

)
(6.2)

ϕ2(x1, x2, t) = δ(νt)∂1U
E(x1, t)

((
1−

∫ x2

0
ψ(y)dy

)
− e−

x2
δ(νt)

)
(6.3)

where ψ : [0,∞) → [0,∞) is a C∞0 function supported in [1/2, 4], which is non-negative and has
mass

∫
ψ(z)dz = 1, is divergence free and obeys the boundary conditions (2.2)–(2.3)

ϕ1(x1, 0, t) = −UE(x1, t)

ϕ2(x1, 0, t) = 0.

We then consider the same argument as in the proof of Theorem 1.1, except that uK is replaced by
ϕ. In [CKV15], the bounds

‖ϕ‖Lp(H) + ‖∂tϕ‖Lp(H) + ‖∂1ϕ‖Lp(H) + ‖∂11ϕ‖Lp(H) ≤ CEδ(νt)
1/p

‖∂2ϕ1‖Lp(H) ≤ CEδ(νt)
−1+1/p

‖∂1ϕ2‖Lp(H) ≤ CEδ(νt)

were established. It then follows that the terms T1, . . . , T5 defined in (2.7)–(2.11) obey the estimates

|T1| ≤ CEδ(νt)
1/2‖v‖L2 + CEνδ(νt)

1/2‖v‖L2 +
ν

2
‖∂2v‖2L2 + ν‖v‖2L2 + CE

ν

δ(νt)
(6.4)

|T2| ≤ CEδ(νt)
1/2 (6.5)

|T3| ≤ CEδ(νt)
1/2‖v‖L2 (6.6)

|T4| ≤ CEδ(νt) (6.7)

|T5| ≤M2(t)δ(νt)1/2 (6.8)

where M(t) is as given by condition (1.19). For the term T6 we proceed as above, by appealing to
the Dominated convergence theorem. Condition (1.21) is necessary in order to ensure that the time
integral of the last term on the right side of (6.4) vanishes as ν → 0. The proof now follows. We
omit further details.
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