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ABSTRACT. We consider the convergence in the L2 norm, uniformly in time, of the Navier-Stokes equations
with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the
Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes
vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds. March 30, 2014.

1. Introduction

We consider the two-dimensional Navier-Stokes equation (1.1) for the velocity field u = (u1, u2) and
pressure scalar p, and the two-dimensional Euler equation (1.2) for the velocity field ū = (ū1, ū2) and scalar
pressure p̄

∂tu− ν∆u+ u · ∇u+∇p = 0 (1.1)
∂tū+ ū · ∇ū+∇p̄ = 0 (1.2)

in the half plane H = {x = (x1, x2) ∈ R2 : x2 > 0} with Dirichlet and slip boundary conditions

u|∂H = 0 (1.3)

ū2|∂H = 0 (1.4)

on the Navier-Stokes and Euler solutions respectively. The choice of domain being the half-plane H is made
here for simplicity of the presentation. Indeed, as discussed in Section 4 below, the results in this paper also
hold if the equations are posed in a bounded domain Ω with smooth boundary.

The initial conditions for the Euler and Navier-Stokes equations are taken to be the same, u0 = ū0. We
shall also denote the Navier-Stokes vorticity as

ω = ∂1u2 − ∂2u1,

and by

U = ū1|∂H
the trace of the tangential component of the Euler flow.

Before we describe the results, we comment on scaling. We choose units of length and units of time
associated to this Euler trace so that in the new variables the Euler solution ū becomes O(1). The integral
scale L is given by L = ‖U‖2L∞

t L
2
x
‖U‖−2

L∞
t,x

and the time scale T is chosen to be T = L‖U‖−1
L∞
t,x

. Using
L and T we non-dimensionalize the Euler and Navier-Stokes equations, but for notational convenience we
still refer to the resulting Reynolds number Re = L2T −1ν−1 as ν−1. For the remainder of the paper the
this rescaling is implicitly used, and all quantities involved are dimensionless.
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Since U 6= 0 in general, there is a mismatch between the Navier-Stokes and Euler boundary conditions
leading to the phenomenon of boundary layer separation. Establishing whether

‖u− ū‖2L∞(0,T ;L2(H)) → 0 (1.5)

holds in the inviscid limit ν → 0 is an outstanding physically important problem in fluid dynamics. Here
T > 0 is a fixed ν-independent time. There is a vast literature on the subject of inviscid limits. We refer
the reader for instance to [CW95, CW96] for the case of vortex patches, and to [Kat84, TW97, Mas98,
SC98b, OS99, Wan01, Kel07, Mas07, Kel08, LFMNL08, MT08, Kel09, Mae13, Mae14, GGN14] and
references therein, for inviscid limit results in the case of Dirichlet boundary conditions.

Going back at least to the work of Prandtl [Pra04], based on matched asymptotic expansions, one may
formally argue that as ν → 0 we have

u(x1, x2, t) ≈ ū(x1, x2, t)1{x2>
√
ν} + uP (x1, x2/

√
ν, t)1{x2<

√
ν} +O(

√
ν) (1.6)

where uP is the solution of the Prandtl boundary layer equations. We refer the reader to [Ole66, EE97,
OS99, SC98a, CS00, E00, CLS01, HH03, Gre00, XZ04, GSS09, GVD10, GN10, GVN12, MW12a,
AWXY12, KV13, GVM13, KMVW14] for results regarding the Prandtl boundary layer equations.

The Prandtl solution is believed to describe the creation and the evolution of vorticity in a boundary
layer of thickness

√
ν, which makes the problem of establishing the inviscid limit (1.5) intimately related to

the question of well-posedness for the Prandtl equations.
We emphasize however that up to our knowledge there is currently no abstract result which states that if

the Prandtl equations are well-posed, then the inviscid limit of Navier-Stokes to Euler holds inL∞(0, T ;L2).
This is the main motivation for our paper.

So far the well-posedness of the Prandtl equation has been established in the following settings:
(a) There is no back-flow in the initial velocity field, i.e., U0 > 0, and the initial vorticity is bounded

from below by a strictly positive constant ω0 ≥ σ > 0. This result goes back to Oleinik [Ole66],
and we refer to [MW12a] for an elegant Sobolev energy-based proof.

(b) The initial velocity is real-analytic with respect to both the normal and tangential variables [SC98a].
(c) The initial velocity is real-analytic with respect to only the tangential variable [CLS01, KV13].
(d) The initial vorticity has a single curve of non-degenerate critical points, and it lies in the Gevrey-

class 7/4 with respect to the tangential variable [GVM13].
(e) The initial data is of finite Sobolev smoothness, the vorticity is positive on an open strip (x, y) ∈

I × [0,∞), is negative for (x, y) ∈ IC × [0,∞), and the vorticity is real-analytic with respect to
the x-variable on ∂I × [0,∞) [KMVW14].

However, among the above five settings where the Prandtl equations are known to be locally well-
posed, the inviscid limit is known to hold only in the real-analytic setting (b). This result was established by
Sammartino and Caflisch in [SC98b]; see also [Mae14] for a more recent result on vanishing viscosity limit
in the analytic setting. In particular, up to our knowledge it is not known whether the inviscid limit (1.5)
holds in the Oleinik setting (a), where the solutions have a finite degree of smoothness.

In this paper we prove that the combination of the Oleinik-type condition of no back-flow in the trace
of the Euler flow and of a lower bound for the Navier-Stokes vorticity in a boundary layer, imply that the
inviscid limit holds.

A direct connection between the inviscid limit and the one sided-conditions U ≥ 0 and ω|∂H ≥ 0 is
provided by the following observation.

THEOREM 1.1. Fix T > 0 and s > 2, and consider classical solutions u, ū ∈ L∞(0, T ;Hs) of (1.1)
respectively (1.2) with respective boundary conditions (1.3) and (1.4). Assume that the trace of the Euler
tangential velocity obeysU(x1, t) ≥ 0, and that for all ν > 0 sufficiently small the trace of the Navier-Stokes
vorticity obeys ω|∂H ≥ 0, for all x1 ∈ R and t ∈ [0, T ]. Then

‖u− ū‖2L∞(0,T ;L2(H)) → 0 (1.7)

holds as ν → 0.
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REMARK 1.2. If follows from the proof of the theorem that instead of assuming ω|∂H ≥ 0, we may
assume the much weaker condition

ω|∂H = −∂2u1|∂H ≥ −
Mν(t)

ν
(1.8)

for some positive function Mν which obeys
∫ T

0 Mν(t)dt→ 0 as ν → 0, and obtain that (1.7) holds [Kel14].

Our main result of this paper, Theorem 1.3 below, shows that if in a boundary layer almost as thin as ν
the vorticity is not too negative, then the inviscid limit holds. The size of this boundary layer is related to
the results of Kato [Kat84], which were later extended by Temam and Wang [TW97]. Note however that
our conditions are one-sided, which is in the spirit of Oleinik’s assumptions.

THEOREM 1.3. Fix T > 0, s > 2, and consider classical solutions u, ū ∈ L∞(0, T ;Hs) of (1.1) and
(1.2) respectively with respective boundary conditions (1.3) and (1.4). Let τ(t) = min{t, 1} and let Mν be
a positive function which obeys ∫ T

0
Mν(t)dt→ 0 as ν → 0. (1.9)

Define the boundary layer Γν by

Γν(t) =

{
(x1, x2) ∈ H : 0 < x2 ≤

ντ(t)

C
log

(
C

Mν(t)τ(t)

)}
(1.10)

where C = C(‖ū‖L∞(0,T ;Hs)) > 0 is a sufficiently large fixed positive constant. Assume that there is no
back-flow in the trace of the Euler tangential velocity, i.e.,

U(x1, t) ≥ 0 (1.11)

for all x1 ∈ R and t ∈ [0, T ], and that for all ν sufficiently small the “very negative part” of the Navier-
Stokes vorticity obeys

ν(r−1)/r

∥∥∥∥(ω(x1, x2, t) +
Mν(t)

ν

)
−

∥∥∥∥
Lr(Γν(t))

≤ τ(t)1/rMν(t) (1.12)

for some 1 ≤ r ≤ ∞ and all t ∈ [0, T ], where f− = min{f, 0}. Then the inviscid limit (1.5) holds, with the
rate of convergence

‖u− ū‖2L∞(0,T ;L2) = O
(
νT +

∫ T

0
Mν(t)dt

)
as ν → 0.

Note that the above result may be viewed as a one-sided Kato criterion.

REMARK 1.4. Since on ∂H we have that ∂1u2 = 0, the condition (1.12) on ω can be replaced by the
same condition with ω replaced by −∂2u1.

EXAMPLE 1.5. The shear flow solution (etν∂yyv(y), 0), with v(0) = 0, and v′(y) ≤ 0 for 0 ≤ y ≤ 1
obeys the conditions of Theorem 1.3.

REMARK 1.6. The condition U ≥ 0 can be ensured for anO(1) amount of time if the initial data obeys
e.g. U0 ≥ σ > 0. However it is not clear that if assuming the initial vorticity obeys ω0 ≥ σ > 0 implies that
(1.12) holds for an O(1) time.

REMARK 1.7. We note that Theorem 1.3 also holds in the case of a a bounded domain Ω with smooth
boundary, cf. Theorem 4.1 below. The only difference between the inviscid limit on H and that on Ω is that
for the later case we need to choose a compactly supported boundary layer corrector. This is achieved using
the argument of [TW97]. We refer to Section 4 below for details.

The paper is organized as follows. In Section 2 we give the proof of Theorem 1.1, while in Section 3
we give the proof of Theorem 1.3. Lastly, in Section 4 we give the main ideas for the proof of Theorem 4.1,
our main result in the case of a smooth bounded domain.
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2. Proof of Theorem 1.1

Let v = u−ū, and q = p−p̄ be the velocity and the pressure differences respectively. Then v = (v1, v2)
and q obey the equation

∂tv − ν∆u+ v · ∇ū+ u · ∇v +∇q = 0

with the boundary conditions

v1|∂H = −U, v2|∂H = 0.

and the initial condition

v|t=0 = 0.

The energy identity for the velocity difference then reads

1

2

d

dt
‖v‖2L2 + ν‖∇u‖2L2 = −ν

∫
H

∆u · ū−
∫
H
v · ∇ū v

Using the conditions of the theorem and the given boundary conditions, we get

−ν
∫
H

∆u · ū = ν

∫
H
∇u · ∇ū+ ν

∫
∂H
∂2u1 ū1

= ν

∫
H
∇u · ∇ū− ν

∫
∂H
ω Udx

≤ ν
∫
H
∇u · ∇ū

≤ ν‖∇u‖2L2 +
ν

4
‖∇ū‖2L2 .

We thus obtain

1

2

d

dt
‖v‖2L2 ≤

ν

4
‖∇ū‖2L2 + ‖∇ū‖L∞‖v‖2L2 ≤ Cν + C‖v‖2L2

where C is a constant that is allowed to depend on T and ‖ū‖L∞(0,T ;Hs). Recalling that v(0) = 0, we obtain
from the Grönwall Lemma

‖v(t)‖2L2 ≤ Cνt+ CνeCt ≤ Cνt

which completes the proof. Note that the rate of convergence is O(ν) as ν → 0.
In order to see that Remark 1.2 holds, note that under the condition (1.8) on the boundary vorticity, one

may estimate

−ν
∫
∂H
ωUdx ≤Mν(t)

∫
∂H
Udx ≤ CMν(t)

where in the last inequality we have used a trace inequality. Note moreover that the that the new rate of
convergence is O(ν +

∫ T
0 Mν(t)dt).

3. Proof of Theorem 1.3

In the spirit of [Kat84], the proof is based on constructing a suitable boundary layer corrector ϕ to
account for the mismatch between the Euler and Navier-Stokes boundary conditions. Note however that the
Kato’s corrector ϕ = (ϕ1, ϕ2) is not suitable here due to the change of sign of ϕ1.
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The boundary layer corrector. We fix ψ : [0,∞)→ [0,∞) to be a C∞0 function approximating χ[1,2],
supported in [1/2, 4], which is non-negative and has mass

∫
ψ(z)dz = 1. Recall that τ(t) = min{t, 1}.

For α ∈ (0, 1], to be chosen later, we introduce

ϕ(x1, x2, t) = (ϕ1(x1, x2, t), ϕ2(x1, x2, t))

where

ϕ1(x1, x2, t) = −U(x1, t)
(
e−x2/ατ(t) − ατ(t)ψ(x2)

)
(3.1)

ϕ2(x1, x2, t) = ατ(t)∂1U(x1, t)

((
1−

∫ x2

0
ψ(y)dy

)
− e−x2/ατ(t)

)
(3.2)

and

ϕ(x1, x2, 0) = ϕ0(x1, x2) = 0.

Observe that we have ϕ1 → 0 as x2 →∞ exponentially, and

ϕ1(x1, 0, t) = −U(x1, t)

ϕ2(x1, 0, t) = 0.

In particular, note that

ū+ ϕ = 0 on ∂H.

Equally importantly, the corrector is divergence free

∇ · ϕ = 0

which allows us not to deal with the pressure when performing energy estimates.
Throughout the proof, we shall also use the bounds

‖ϕ1‖Lp ≤ C(ατ)1/p + Cατ ≤ C(ατ)1/p

and

‖∂1ϕ1‖Lp ≤ C(ατ)1/p

‖∂2ϕ1‖Lp ≤ C(ατ)1/p−1

for any 1 ≤ p ≤ ∞, with

‖ϕ2‖Lp ≤ Cατ(1 + (ατ)1/p) ≤ Cατ

‖∂1ϕ2‖Lp ≤ Cατ(1 + (ατ)1/p) ≤ Cατ

since ατ ≤ α ≤ 1. Here and throughout the proof, the constant C is allowed to depend on various norms of
U and ū (which we do not keep track of), but not on norms of u.

Energy equation. As before, define the velocity and pressure differences by

v = u− ū
q = p− p̄.

Subtracting (1.2) from (1.1) we arrive at

∂t(v − ϕ)− ν∆u+ v · ∇ū+ u · ∇v +∇q + ∂tϕ = 0. (3.3)
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Since v − ϕ = u− ū− ϕ = 0 on ∂H, we may multiply (3.3) by v − ϕ and integrate by parts to obtain

1

2

d

dt
‖v − ϕ‖2L2 + ν‖∇u‖2L2

= ν

∫
∇u∇ϕ−

∫
u∇ϕu

+

(
ν

∫
∇u∇ū−

∫
(v − ϕ)∇ū(v − ϕ)−

∫
ϕ∇ū(v − ϕ) +

∫
u∇ϕū−

∫
∂tϕ(v − ϕ)

)
= I1 + I2 +R (3.4)

where we used −
∫
v∇ū(v − ϕ) = −

∫
(v − ϕ)∇ū(v − ϕ) −

∫
ϕ∇ū(v − ϕ) and −

∫
u∇v(v − ϕ) =

−
∫
u∇ϕ(v−ϕ) = −

∫
u∇ϕ(u− ū). The terms I1 and I2 give the main contributions, while the R term is

in some sense a remainder term. The assumptions on the sign of U and on the very negative part of ω come
into play when bounding I1.

Estimate for I1. We decompose I1 as

I1 = ν

∫
∇u∇ϕ = ν

∫
∂2u1∂2ϕ1 +

∑
(i,j) 6=(1,2)

ν

∫
∂iuj∂iϕj = I11 + I12.

In order to estimate I12, we consider the three possible combinations of (i, j) 6= (1, 2). We have

ν

∫
∂1u1∂1ϕ1 ≤

ν

4
‖∂1u1‖2L2 + ν‖∂1ϕ1‖2L2 ≤

ν

4
‖∂1u1‖2L2 + Cν(ατ)

ν

∫
∂1u2∂1ϕ2 ≤

ν

4
‖∂1u2‖2L2 + ν‖∂1ϕ2‖2L2 ≤

ν

4
‖∂1u2‖2L2 + Cν(ατ)2

ν

∫
∂2u2∂2ϕ2 ≤

ν

4
‖∂2u2‖2L2 + ν‖∂2ϕ2‖2L2 ≤

ν

4
‖∂2u2‖2L2 + Cν(ατ)

for some sufficiently large C, which shows that

I12 ≤
ν

4
‖∇u‖2L2 + Cν(ατ). (3.5)

The main contribution to I1 comes from the term I11, which we bound next. Let β be the thickness of
the boundary layer where the assumption on the very negative part of ω = ∂1u2− ∂2u1 is imposed. That is,
for some β ∈ (α, 1/4] and M > 0, to be specified below, we use the bound

ω(x1, x2, t) ≥ −
M

ν
+ ω̃(x1, x2, t), (x1, x2) ∈ Γβ = R× (0, β), t ∈ [0, T ], (3.6)

where we have denoted

ω̃(x1, x2, t) = min

{
ω(x1, x2, t) +

M

ν
, 0

}
≤ 0.

Next, we decompose

I11 = ν

∫
H
∂2u1∂2ϕ1 = −ν

∫
Γβ

ω∂2ϕ1 − ν
∫

ΓCβ

ω∂2ϕ1 + ν

∫
H
∂1u2∂2ϕ1

= I111 + I112 + I113.

The assumptions (1.11) and (3.6) are only be used to estimate I111. By construction of the corrector in
(3.1)–(3.2), we have the explicit formula

∂2ϕ1(x1, x2, t) =
1

ατ
U(x1, t)e

−x2/ατ − ατU(x1, t)ψ
′(x2) (3.7)
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for all (x1, x2) ∈ H and t ∈ [0, T ]. In view of the no-back flow condition U ≥ 0 of (1.11) and the bound
(3.6) on ω in Γβ , for any r ∈ [1,∞] we have the estimate

I111 = − ν

ατ

∫
Γβ

ω(x1, x2, t)U(x1, t)e
−x2/ατdx1dx2

+ νατ

∫
Γβ

ω(x1, x2, t)U(x1, t)ψ
′(x2)dx1dx2

≤ M

ατ

∫
x2<β

U(x1, t)e
−x2/ατdx1dx2 +

ν

ατ

∫
x2<β

(−ω̃(x1, x2, t))U(x1, t)e
−x2/ατdx1dx2

+ νατ

∫
x2<β

ω(x1, x2, t)U(x1, t)ψ
′(x2)dx1dx2

≤ CM(1− e−β/ατ ) +
Cν

ατ
‖ω̃‖Lr(Γβ)

(
(r − 1)ατ

r
(1− e−rβ/(r−1)ατ )

)(r−1)/r

+ Cνατ‖∇u‖L2

≤ ν

12
‖∇u‖2L2 + CM + Cν(ατ)−1/r‖ω̃‖Lr(Γβ) + Cν(ατ)2 (3.8)

for a sufficiently large C. For the outer layer term I112 we have

I112 = −ν
∫
x2>β

ω(x1, x2, t)U(x1, t)

(
1

ατ
e−x2/ατ − ατψ′(x2)

)
dx1dx2

≤ Cνe
−β/ατ

(ατ)1/2
‖∇u‖L2 + νατ‖∇u‖L2

≤ ν

12
‖∇u‖2L2 + C

ν

ατ
e−2β/ατ + Cν(ατ)2. (3.9)

Lastly, for I113 we integrate by parts once in x2 by using that ∂1u2 = 0 on ∂H, use that∇·u = 0 on H, and
then integrate by parts in x1 to obtain

I113 = ν

∫
∂1u2∂2ϕ1 = −ν

∫
∂12u2ϕ1 = ν

∫
∂11u1ϕ1

= −ν
∫
∂1u1∂1ϕ1 ≤

ν

12
‖∇u‖2L2 + Cν(ατ). (3.10)

Combining (3.8), (3.9), and (3.10), we arrive at

I11 ≤
ν

4
‖∇u‖2L2 + CM + Cν(ατ)−1/r‖ω̃‖Lr(Γβ) + C

ν

ατ
e−2β/ατ + Cν(ατ). (3.11)

We summarize (3.5) and (3.11) as

I1 ≤
ν

2
‖∇u‖2L2 + CM + Cν(ατ)−1/r‖ω̃‖Lr(Γβ) + C

ν

ατ
e−2β/ατ + Cν(ατ) (3.12)

for a suitable constant C which may depend on norms of U and ū.

Estimate for I2. In order to treat I2, we use ∂2ϕ2 = −∂1ϕ1 and decompose

I2 = −
∫
u2∂2ϕ1u1 −

∫
u1∂1ϕ2u2 +

∫
(u2

2 − u2
1)∂1ϕ1 = I21 + I22 + I23.

We note that upon integration, we have that for any j ∈ {1, 2}∫ ∞
0

uj(x1, x2)2e−x2/ατdx2 = 2ατ

∫ ∞
0

uj(x1, x2)∂2uj(x1, x2)e−x2/ατdx2

≤ Cατ
(∫ ∞

0
uj(x1, x2)2e−x2/ατdx2

)1/2

‖∂2uje
−x2/ατ‖L2
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and thus

‖uje−x2/2ατ‖L2 ≤ Cατ‖∂2uj‖L2 .

Using the above estimate we obtain

I21 = − 1

ατ

∫
u2U(x1, t)e

−x2/ατu1 + ατ

∫
u2U(x1, t)ψ

′(x2)u1

≤ C

ατ
‖u1e

−x2/2ατ‖L2‖u2e
−x2/2ατ‖L2 + Cατ‖u1‖L2‖u2‖L2

≤ Cατ‖∇u‖2L2 + Cατ‖u‖2L2

≤ Cατ‖∇u‖2L2 + Cατ

due to the energy inequality

‖u‖L2 ≤ ‖u0‖L2 = ‖ū0‖L2 ≤ C
which is a viscosity-independent bound. Similarly,

I22 ≤ ‖u‖2L2‖∂1ϕ2‖L∞ ≤ Cατ
and

I23 ≤ C(ατ)2‖∇u‖2L2 + Cατ.

Using that ατ ≤ 1, we arrive at

I2 ≤ Cατ‖∇u‖2L2 + Cατ (3.13)

where as usual, the constant C is allowed to depend on the Euler flow.

Estimate for the remainder terms R. Using∫
u∇ϕū = −

∫
u∇ūϕ = −

∫
(v − ϕ)∇ūϕ−

∫
ϕ∇ūϕ−

∫
ū∇ūϕ,

we may rewrite the remainder term as

R = ν

∫
∇u∇ū−

∫
(v − ϕ)∇ū(v − ϕ)−

∫
ϕ∇ū(v − ϕ)

−
∫

(v − ϕ)∇ūϕ−
∫
ϕ∇ūϕ−

∫
ū∇ūϕ−

∫
∂tϕ(v − ϕ)

=: R1 +R2 +R3 +R4 +R5 +R6 +R7.

Using the available bounds on the corrector ϕ, we have the bounds

R1 ≤ ν‖∇u‖L2‖∇ū‖L2 ≤
ν

4
‖∇u‖2L2 + Cν

R2 ≤ ‖v − ϕ‖2L2‖∇ū‖L∞ ≤ C‖v − ϕ‖2L2

R3 ≤ ‖ϕ‖L2‖∇ū‖L∞‖v − ϕ‖L2 ≤ C(ατ)1/2‖v − ϕ‖L2 ≤ C‖v − ϕ‖2L2 + Cατ

R4 ≤ ‖v − ϕ‖L2‖∇ū‖L∞‖ϕ‖L2 ≤ C‖v − ϕ‖2L2 + Cατ

R5 ≤ ‖ϕ‖2L2‖∇ū‖L∞ ≤ Cατ
R6 ≤ C‖ϕ‖L1 ≤ Cατ

R7 ≤ ‖∂tϕ‖L2‖v − ϕ‖L2 ≤ C((ατ)1/2 + α)‖v − ϕ‖L2 ≤ C‖v − ϕ‖2L2 + C((ατ) + α2)

which may be summarized as

R ≤ ν

4
‖∇u‖2L2 + C‖v − ϕ‖2L2 + Cν + Cα2 + Cατ (3.14)

and again, C depends on various norms of U and ū.
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Conclusion of the proof. Combining (3.4), with (3.12), (3.13), and (3.14), we thus arrive at the bound

1

2

d

dt
‖v − ϕ‖2L2 +

(ν
4
− Cατ

)
‖∇u‖2L2

≤ C‖v − ϕ‖2L2 + Cν + Cα2 + Cατ + CM + C
ν

ατ
e−2β/ατ + Cν(ατ)−1/r‖ω̃‖Lr(Γβ) (3.15)

for all ν ≤ 1. To conclude the proof, we first choose

α =
ν

C
(3.16)

for a sufficiently large C, since τ(t) ≤ 1, we obtain from (3.15) that

1

2

d

dt
‖v − ϕ‖2L2 ≤ C‖v − ϕ‖2L2 + Cν + CM + Cτ−1e−2Cβ/ντ + Cν(r−1)/rτ−1/r‖ω̃‖Lr(Γβ) (3.17)

for ν ≤ 1. Next, per our assumption (1.10), define the boundary layer thickness by

β =
ντ

2C
log

(
1

Mτ

)
where α is given by (3.16), and obtain from assumption (3.17) that

1

2

d

dt
‖v − ϕ‖2L2 ≤ C‖v − ϕ‖2L2 + Cν + CM (3.18)

Since

‖v0 − ϕ0‖2L2 = ‖ϕ0‖2L2 = 0

the Grönwall inequality applied to (3.18) yields

‖u(t)− ū(t)‖2L2 ≤ ‖ϕ(t)‖2L2 + ‖v(t)− ϕ(t)‖2L2

≤ Cντ(t) + CTeCT
(
νt+

∫ t

0
M(s)ds

)
(3.19)

for all t ∈ [0, T ]. The assumption (1.9) yields that the right side of (3.19) converges to 0 as ν → 0, uniformly
in t ∈ [0, T ], which concludes the proof.

4. Curved domains

In this section, we show that Theorem 1.3 holds also in the case of a bounded domain Ω with a smooth
boundary and with an outer normal n.

THEOREM 4.1. Fix T > 0 and s > 2, and consider classical solutions u, ū ∈ L∞(0, T ;Hs) of (1.1)
respectively (1.2) in Ω with respective boundary conditions u|∂Ω = 0 and ū ·n|∂Ω = 0. LetMν be a positive
function such that ∫ T

0
Mν(t)dt→ 0 as ν → 0, (4.1)

and define the boundary layer

Γν(t) =

{
x ∈ Ω : 0 < dist(x, ∂Ω) ≤ νmin{t, 1}

C
log

(
C

Mν(t) min{t, 1}

)}
(4.2)

where C = C(‖ū‖L∞(0,T ;Hs)) > 0 is a sufficiently large fixed constant. Assume that the trace of the Euler
tangential velocity (cf. (4.6) below) is nonnegative and that for all ν > 0 sufficiently small the Navier-Stokes
vorticity obeys

ν(r−1)/r

∥∥∥∥min

{
ω(·, t) +

Mν(t)

ν
, 0

}∥∥∥∥
Lr(Γν(t))

≤Mν(t) min{t, 1}1/r (4.3)
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for some 1 ≤ r ≤ ∞ and all t ∈ [0, T ]. Then the inviscid limit (1.5) holds as ν → 0, with a rate of
convergence proportional to νT +

∫ T
0 Mν(t)dt.

PROOF. We follow the notation and ideas from [TW97]. Note however that we need to modify the
corrector since the one in (3.1)–(3.2) is not compactly supported.

As in [TW97], let (ξ1, ξ2) denote the orthogonal coordinate system defined in a sufficiently small neigh-
borhood of the boundary {

x = (x1, x2) ∈ R2 : dist(x, ∂Ω) ≤ δ
}

(4.4)
where δ > 0. Here ξ2 denotes the distance to the boundary ∂Ω. For simplicity of notation, we assume that
∂Ω consists of the connected smooth Jordan curve—the modification to the general case of finitely many
Jordan curves can be done similarly. Then we may use the notation from [TW97, Bat70]; in particular,

dx1dx2 = h(ξ1, ξ2)dξ2
1 + dξ2

2 . (4.5)

Denote by e1(ξ1, ξ2) and e2(ξ1, ξ2) the local basis in the directions of ξ1 and ξ2 respectively. Also, write

U(ξ1, t) = ū(ξ1, 0, t) · e2(ξ1, 0) (4.6)

for the trace of the Euler flow ū. Let η(y) ∈ C∞0 (R, [0, 1]) denote the function which equals 1 in a neigh-
borhood of (−∞,−δ] ∪ [δ,∞), and let ψ ∈ C∞0 (R, [0, 1]) be a function supported in the interval (δ/2, δ)
such that

∫
ψ = 1. Then define the corrector

ϕ(ξ1, ξ2, t) = curlψ(ξ1, ξ2, t) (4.7)

where

ψ(ξ1, ξ2, t) = −U(ξ1, t)

∫ ξ2

0
exp

(
− y

ατ

)
η(y) dy + γ(t)U(ξ1, t)

∫ ξ2

0
ψ(y) dy. (4.8)

The parameter γ = γ(t) is chosen so that ψ vanishes on [δ,∞). Using
∫
ψ = 1, this holds if

γ(t) =

∫ δ

0
exp

(
− y

ατ

)
η(y) dy. (4.9)

Note that γ does not depend on (ξ1, ξ2) and that we have

γ(t) = ατ(t) +O((ατ)3). (4.10)

From [Bat70], recall the formulas

div u =
1

h

∂u1

∂ξ1
+

1

h

∂

∂ξ2
(hu2) (4.11)

and

curl f =
∂f

∂ξ2
e1 −

1

h

∂

∂ξ1
(hf)e2 (4.12)

for every vector function u and scalar function f respectively. Thus we have

ϕ1 = −U(ξ1, t) exp

(
− ξ2

ατ
η(ξ2)

)
+ γU(ξ1, t)ψ(ξ2) (4.13)

and

ϕ2 =
1

h

∂

∂ξ1
(hU)

∫ ξ2

0
exp

(
− y

ατ

)
η(y) dy − γ

h

∂

∂ξ1
(hU)

∫ ξ2

0
ψ(y) dy. (4.14)

As in the previous sections, we have
1

2

d

dt
‖v − ϕ‖2L2 + ν‖∇u‖2L2 = I1 + I2 +R (4.15)

where

I1 = ν

∫
∇u∇ϕ (4.16)
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and

I2 = −
∫
u∇ϕu (4.17)

with

R = ν

∫
∇u∇ū−

∫
(v − ϕ)∇ū(v − ϕ)−

∫
ϕ∇ū(v − ϕ)

−
∫

(v − ϕ)∇ūϕ−
∫
ϕ∇ūϕ−

∫
ū∇ūϕ−

∫
∂tϕ(v − ϕ). (4.18)

Here, we treat the term

I1 = ν

∫
∇u∇ϕ = ν

∫ (
1

h

∂u1

∂ξ1
e1 +

∂u1

∂ξ2
e2

)(
1

h

∂ϕ1

∂ξ1
e1 +

∂ϕ1

∂ξ2
e2

)
h dξ1dξ2

+ ν

(
1

h

∂u2

∂ξ1
e1 +

∂u2

∂ξ2
e2

)(
1

h

∂ϕ2

∂ξ1
e1 +

∂ϕ2

∂ξ2
e2

)
h dξ1dξ2. (4.19)

while the rest are estimated similarly to [TW97]. We write the far right side of (4.19) as I11 + I12 where

I11 = ν

∫
∂u1

∂ξ2

∂ϕ1

∂ξ2
h (4.20)

and I12 is the sum of the other three terms. Then

I11 = ν

∫
∂(hu1)

∂ξ2

∂ϕ1

∂ξ2
− ν

∫
u1
∂h

∂ξ2

∂ϕ1

∂ξ2

− ν
∫
ξ2<β

ω
∂ϕ1

∂ξ2
− ν

∫
ξ2≥β

ω
∂ϕ1

∂ξ2
+ ν

∫
∂u2

∂ξ1

∂ϕ1

∂ξ2
− ν

∫
u1
∂h

∂ξ2

∂ϕ1

∂ξ2

= I111 + I112 + I113 + I114 (4.21)

where

ω =
∂u2

∂ξ1
− ∂(hu1)

∂ξ2
(4.22)

is the vorticity. The terms I111 and I112 are estimated the same way as in the flat case. For the third term
I113, we integrate by parts and obtain

I113 = ν

∫
∂u2

∂ξ1

∂ϕ1

∂ξ2
= −ν

∫
∂2u2

∂ξ1∂ξ2
ϕ1 = ν

∫
∂u2

∂ξ2

∂ϕ1

∂ξ1
. (4.23)

In the last step we used that ∂u2/∂ξ2 vanishes on the boundary, which holds since

∂u2

∂ξ2
= div u− u2

1

h

∂h

∂ξ2
− 1

h

∂u1

∂ξ1
. (4.24)

The rest of the terms are treated analogously as in the flat case, and we obtain

I1 ≤
ν

2
‖∇u‖2L2 + CM + Cν(ατ)−1/r‖min{ω +Mν−1, 0}‖Lr(Γβ) + C

ν

ατ
e−2β/ατ + Cν(ατ). (4.25)

The terms I2 and R are estimated as in the flat case (see also [TW97]), and we thus omit further details. �
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