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§1. Introduction and Statement of Theorem

In this paper, we prove an uniqueness theorem for a n-th order elliptic equation

on the standard n-sphere Sn. The problem arises naturally from the point of view of

conformal geometry. The method we use is the method of moving planes originated

in Alexandrov [A] and Gidas-Ni-Nirenberg [G-N-N].

On the unit sphere S2 with standard metric g0, when one makes a conformal

change of the metric g = e2wg0, the Gaussian curvature K = K(g) satisfies the

differential equation

(1.1) ∆w + Ke2w = 1

on S2 where ∆ denotes the Laplacian operator with respect to the metric g0 on S2.

When K ≡ 1 on (1.1), as a result of the Cartan-Hadamard theorem, we have

e2wg0 is the pull back of the standard metric through some conformal transformation

ϕ (i.e. g is isometric to g0) or equivalently w = 1
2 log |Jϕ|, where Jϕ denotes the

Jacobian of the transformation ϕ.

In [C-L], Chen and Li studied the corresponding equation of (1. 1) on R
2 with

K ≡ 1, and they proved, using the method of moving plane, the stronger result
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that when u is a smooth function defined on R
2 satisfying

(1.2) −∆u = e2u on R
2

with
∫

R2 e2udx < ∞, then u(x) is symmetric with respect to some point x0 ∈ R
2

and there exists some λ > 0, so that u(x) = log 2λ
λ2+|x−x0|2

on R
2. There is an

alternative argument of Chanillo-Kiessling ([C-K]) for this uniqueness result via a

strict isoperimetric inequality.

When n ≥ 3, a natural generalization of the Gaussian-curvature equation (1.1)

above is the scalar curvature equation under conformal change of metric. On

(Sn, g0), denote g = u
4

n−2 g0 the conformal change of metric of g0, where u is a

positive function, then the scalar curvature R = R(g) of the metric is determined

by the following differential equation

(1.3) cn∆u + Ru
n+2

n−2 = R0u

where cn = 4(n−1)
n−2 , R0 = n(n − 1). When R = R0, a uniqueness result established

by Obata [O] again states that this happens if the metric g is isometric to g0 or

equivalently u = |Jϕ|
n−2

2n for some conformal transformation ϕ of Sn. In [C-G-S]

Caffarelli-Gidas-Spruck studied the corresponding equation of (1.3) on R
n:

(1.4) −∆u = n(n − 2)u
n+2

n−2 , u > 0 on R
n .

They classified all solutions of (1.4), via the method of moving plane, as u(x) =

2λ
λ2+|x−x0|2

for some x0 ∈ R
n, λ > 0.

In this paper, we study another set of equations which are also natural gener-

alization of the equation (1.1). To state our result, we first recall the notion of

conformal covariant operators.

On a general compact manifold M with metric g, a metrically defined operator

A is said to be conformally covariant if under the conformal change in metric gw =

e2wg, the pair of corresponding operators Aw and A are related by

Aw(ϕ) = e−bwA(eawϕ)
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for all ϕ ∈ C∞(M). Basic examples of such operators are: when n = 2, A =

the Laplace operator ∆, then a = 0; b = 2; when n ≥ 3, L = −cn∆ + R, then

a = n−2
2

, b = n+2
2

. It turns out on compact 4-manifold, an interesting 4th-order

operator was discovered by Paneitz [P]:

P4ϕ = ∆2ϕ + δ

(

2

3
Rg − 2Ric

)

dϕ

where δ denotes the divergence, d the differential, and Ric the Ricci tensor of the

metric g. Under the conformal change gw = e2wg, P4 undergoes the transformation

(P4)w = e−4wP4 (i.e. a = 0, b = 4). On general compact manifold of dimension n,

the existence of such an operator Pn with (Pn)w = e−nwPn for even dimensional

manifold is verified in [G-J-M-S]. However, it is only explicitly known for the Eu-

clidean space R
n with standard metric (Pn = (−∆)n/2) and hence for the sphere

Sn with standard metric g0. The explicit formula for Pn on Sn has appeared in

Branson [B-1] and Beckner [Be] as follows:

(1.5)







For n even Pn =
∏

n−2

2

k=0 (−∆ + k(n − k − 1)),

For n odd Pn =
(

−∆ +
(

n−1
2

)2
)1/2

∏

n−3

2

k=0 (−∆ + k(n − k − 1)).

On general compact manifolds, it turns out in the cases when the dimension of

the manifold is 3 or 4, there exist some natural curvature invariant Qn of order n

which, under conformal change of metric gw = e2wg, is related to Pnw satisfying

the following differential equation:

(1.6) −Pnw + (Qn)wenw = (Qn)0 on M .

The reader is referred to articles [C-Y] for a study of the equation (1.6) in the case

n = 4, to [C-Q-1-1] and [C-Q-2-2] for the existence of an operator P3 and a curvature

invariant Q3 satisfying equation (1.6) defined on boundaries of 4-manifolds. And

to [B-1] and the survey article [C] for a discussion of general properties of Paneitz

operators.

On (Sn, g0), when the metric gw is isometric to the standard metric, then (Qn)w =

(Qn)0 = (n − 1)! . In this case, equation (1.6) becomes

(1.7) −Pnw + (n − 1)!enw = (n − 1)! on Sn
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In this paper, we will establish the following uniqueness result for solutions of

equation (1.7).

Theorem 1.1. On (Sn, g0), all smooth solution of the equation (1.7) are of the

form e2wg0 = ϕ∗(g0) for some conformal transformation ϕ of Sn; i.e. w = 1
n log |Jϕ|

for the transformation ϕ.

We reformulate the equation (1.7) on R
n. For each point ξ ∈ Sn, denote x its

corresponding point under the sterographic projection π from Sn to R
n, sending the

north pole on Sn to ∞; i.e. Suppose ξ = (ξ1, ξ2, . . . , ξn+1) is a point ∈ Sn ⊂ R
n+1,

x = (x1, . . . , xn) ∈ R
n, then ξi = 2xi

|+|x|2
for 1 ≤ i ≤ n; ξn+1 = 1−|x|2

1+|x|2
. Suppose w is

a smooth function on Sn, denote ϕ(x) = log 2
1+|x|2 = log |Jπ−1 |, u(x) = ϕ(x)+w(ξ).

Since the Paneitz operator Pn is the pull back under π of the operator (−∆)n/2 on

R
n ([c.f. B-2, Theorem 3.3 ]), w satisfies the equation (1.6) on Sn if and only if u

satisfies the corresponding equation

(1.8) (−∆)n/2u = (n − 1)!enu on R
n .

Thus Theorem 1.1 above is equivalent to the following result:

Theorem 1.2. On R
n, suppose u is a smooth function satisfies the equation (1.8).

Suppose in addition that

u(x) = log
2

1 + |x|2
+ w(ξ(x))

for some smooth function w defined on Sn, then u(x) is symmetric w.r.t. some

point x0 ∈ R
n, and there exists some λ > 0 so that

(1.9) u(x) = log
2λ

λ2 + |x − x0|2
for all x ∈ R

n .

We remark that, in the case when w is a minimal solution of the functional with

Euler-Lagrange equation (1.7), the result in Theorem 1.1 is a consequence of some

sharp Sobolev type inequalities of Milin-Lebedev when n = 1, Moser [M] and Onofri

[On] when n = 2 and Beckner [Be] for general n. The reader is also referred to [C]
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for a general discussion of relation between sharp inequalities and equations of type

(1.7).

We would like also to acknowledge that during the course of preparation of the pa-

per, above theorem was independently proved by C.S. Lin [L] and X. Xu [Xu] when

n = 4 for functions satisfying equation (1.8) under some less restrictive growth con-

ditions at infinity which are analytic in nature. In general, it remains open whether

there exists some natural geometric conditions under which functions satisfying

equation (1.8) are necessarily of the form (1.9).

We organize the paper as follows. In section 2, we describe briefly the method

of moving plane and some main ideas of our proof. In Section 3, we establish some

technical lemmas; mainly to establish a form of Hopf’s Lemma for the pseudo-

differential operator (−∆)1/2 and to extend some technical facts in [C-G-S] to the

operator (−∆)1/2. In Section 4, we prove Theorem 1.2.

The authors greatly benefited from many discussions with Lihe Wang about the

method of moving planes. We would like also to thank L. Caffarelli for some helpful

suggestion which lead us to prove the theorem for the case when n is odd.

§2. Method of Moving Plane

We describe briefly the method of moving plane. First we recall a fundamental

result of Gidas-Ni-Nirenberg established by using the method.

Theorem 2.1. [G-N-N] Suppose u is a positive C2 function satisfying

(2.1)

{

−∆u = f(u) on B

u = 0 on ∂B

in the unit ball B in R
n and f is a Lipschitz function. Then u(x) = u(|x|) is a

radial symmetric decreasing function in r = |x| for all x ∈ B.

To set up the proof in [G-N-N] of above theorem we introduce the following

notations. For each point x ∈ R
n, denote x = (x1, x

′) where x1 ∈ R, x′ ∈ R
n−1.

5



For each real number λ, denote

Σλ = {x = (x1, x
′) | x1 < λ} ,

Tλ = {x = (x1, x
′) | x1 = λ} ,

xλ = (2λ − x1, x
′) the reflection point of x w.r.t. Tλ .

Define

wλ(x) = u(x) − u(xλ) ≡ u(x) − uλ(x) .

Suppose u satisfies equation (2.1), the idea of moving plane is to prove that wλ(x) ≥

0 on Σλ for all 0 ≤ λ ≤ 1 and actually wλ=0 ≡ 0. This is achieved via maximum

principle and Hopf’s boundary lemma to the function u. Thus u(x1, x
′) = u(−x1, x

′)

for x ∈ B. Since one can repeat this argument for any hyper-plane passing through

the origin of the ball B, one establishes that u is radially symmetric w.r.t. to the

origin.

If one attempts to generalize above argument to higher order elliptic equation

such as (−∆)2u = f(u) with suitable boundary conditions, one quickly realizes that,

due to a lack of maximum principle for higher order elliptic equation, such result

in general cannot be expected to hold. Nevertheless, it turns out that for a special

class of Lipschitz functions f ; namely for functions f satisfying f(0) ≥ 0 with f

monotonically increasing, e.g. f(u) = eu, one can modify the argument in [G-N-N].

The key observation is that for each f , if (−∆)2u = f(u) then

(2.2) (−∆)2wλ(x) = f(u) − f(uλ) = c(x)wλ(x)

where c(x) is some positive function whose value at x is in between f(u(x)) and

f(uλ(x)). From (2.2) one then concludes that wλ(x) ≥ 0 on Σλ if and only if

(−∆)2wλ ≥ 0 on
∑

λ. Since wλ(x) = (−∆)wλ(x) = 0 for x ∈ Tλ, wλ(x) ≥ 0 on
∑

λ

also happens if and if (−∆)wλ(x) ≥ 0 on Σλ. This suggests that one should apply

the maximum principle and Hopf’s lemma to the function (−∆)wλ to generalize

result in [G-N-N] to higher order elliptic operators like (−∆)2.

In Section 4 below, we prove Theorem 1.2 by applying this argument to the

function (−∆)m−1wλ(x) where m = [n+1
2 ]. In the case when n is even (n = 2m),
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one can then apply directly some technical lemmas (Lemma 3.3 and Lemma 3.4

quoted below in our paper) in [C-G-S] to the method of moving planes to finish

the proof of Theorem 1.2. In the case when n is odd (n = 2m − 1), we establish

a form of Hopf’s lemma (Lemma 3.7 below ) for the pseudo-differential operators

(−∆)1/2, and also modify the proof of Lemma 3.4 to a version adapted to the

operator (−∆)1/2, then finish the proof of Theorem 1.2.

§3. Preliminary Lemmas

Suppose u(x) = ϕ(x) + w(ξ(x)), where ϕ(x) = log 2
1+|x|2 and w(ξ) is a smooth

function defined on Sn, as in the statement of Theorem 1.2. We write m = [n+1
2

],

i.e. n = 2m when n is even, n = 2m−1 when n is odd; and let v(x) = (−∆)m−1u(x).

The following give some preliminary estimates for v(x) near ∞:

Lemma 3.1.

lim
|x|→∞

u(x) = −∞(a)

lim
|x|→∞

eu(x) = O(
1

|x|2n
)(b)

|∇(k)ϕ(x)| = O(
1

|x|k
) = |∇(k)u(x)| as |x| → ∞(c)

|∇(k)w(x)| = O(
1

|x|k+1
) as |x| → ∞.(d)

Proof. All statements follow from direct computation. (d) follows inductively from

the chain rule and the relation ∂ξi

∂xj
=

2δij

1+|x|2 −
4xixj

(1+|x|2)2 .

We then derive the following ”harmonic asymptotic expansion” at ∞ as in [C-

G-S].

Lemma 3.2. v has a harmonic asymptotic expansion at ∞:

v(x) =
a0

|x|2(m−1)
+

∑

i

aixi

|x|2m
+ O(

1

|x|2m
), a0 > 0,(i)

vxi
= − 2(m − 1)a0

xi

|x|2m
+ O(

1

|x|2m
),(ii)

vxixj
=O(

1

|x|2m
).(iii)
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Proof. Breaking up (−∆)m−1u(x) = (−∆)m−1ϕ(x)+(−∆)m−1w(ξ(x)). We easily

verify by direct computation that (−∆)m−1ϕ(x) has a harmonic asymptotic expan-

sion at ∞ of the form above with a0 > 0 and ai = 0 for i = 1, ..., n. To check that

(∆)m−1w(ξ(x)) does not contribute to the leading order terms, we use the inversion

coordinates yi = xi

|x|2 as smooth coordinates for a neighborhood of ∞. We have

∂xi
w =

∑

α

∂yα
(w(ξ(y))(

δαi

|x|2
−

2xαxi

|x|4
),

and

∆xw(x) =
∑

α,β

∂yα
∂yβ

w(ξ(y))(
δαi

|x|2
−

2xαxi

|x|4
)(

δβi

|x|2
−

2xβxi

|x|4
) + ∇yw ·

(−2n + 4)x

|x|4
.

Hence, iterating the operator ∆x m − 1 times, we see that (∆)m−1w(ξ(x)) will

contribute at most a term of the form aixi

|x|2m which comes from applying (−∆)m−2

to the second factor in the second term above. The remaining terms are all of order

at most 1
|x|2m .

The following two lemmas are Lemma 2.3 and special case of Lemma 2.4 in

[C-G-S], where
∑

λ, xλ are defined as in Section 2.

Lemma 3.3. Let v be a function in a neighborhood of infinity satisfying the as-

ymptotic expansion (3.1). Then there exists large positive constants λ̄, R̄ such that

if λ ≥ λ̄,

v(x) > v(xλ) for x ∈ Σλ, |x| > R̄ .

We remark that although above lemma was proved for the case when 2(m−1) =

n − 2 with n ≥ 3 (i.e. when n is even in our case) in [C-G-S], the same proof also

works for any m ≥ 2. Actually the same proof also works when n = 2 with m = 1,

or n = 1 (with m = 1) also with the leading term in the asymptotic behavior in

(3.1) replaced by log 1
|x| .

A second remark is that for the case when n is even, v = (−∆)m−1u is a super-

harmonic function on R
n satisfying −∆v = eu; with lim|x|→∞ v(x) = 0; hence v is

positive.
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Lemma 3.4. Let v be a positive solution of −∆v = F (x) where v has a harmonic

asymptotic expansion (3.1) at ∞. Suppose that for x ∈ Σλ0
(i.e. x1 < λ0) we have

v(x) ≥ v(xλ0
) ∀x ∈ Σλ0

(a)

v(x) 6≡ v(xλ0
)

F (x) ≥ F (xλ0
) ∀x ∈ Σλ0

(b)

Then there exists some ε > 0, R1 > 0 such that

(i) vx1
< 0 on |x1 − λ0| < ε, |x| > R1

(ii) v(x1, x
′) > v(2λ− x1, x

′) for all x ∈ Σλ for all λ with λ− λ0 suitably small

multiple of ε with λ0 − x1 > 1
2
ε > λ0 − λ.

We will now state the version of classical Hopf’s boundary lemma for later ref-

erence.

Lemma 3.5. Suppose h satifies ∆h + ch ≤ 0 and h ≥ 0 in a domain Ω of R
n

with smooth boundary. Then

(a) if h vanishes at some point in Ω, then h ≡ 0 in Ω.

(b) if h 6≡ 0 in Ω, then the exterior normal derivative

∂h
∂n < 0 on the boundary of Ω.

We begin to deal with the case when n = 2m−1 is odd. In this case, (−∆)n/2 =

(−∆)1/2 ◦ (−∆)m−1. We first remark that the pseudo-differential operator (−∆)1/2

can be identified as the Dirichlet-Neumann operator on L2(Rn). That is, for each

h ∈ L2(Rn), denote h̃ its harmonic extension to the upper half-space R
n+1
+ =

{(x, t) | x ∈ R
n, t > 0}, i.e.

h̃(x, t) =

∫

Rn

Pt(y)h(x − y)dy

where Pt(y) =
∫

Rn e−2πix·ye−2π|x|tdx denotes the Poisson kernel of R
n+1
+ . One sees

easily that ((−∆)1/2h)∧(x) = (2π|x|)ĥ(0) = (− ∂
∂t h̃)∧(x, 0) where ∧ denotes the

Fourier transform on R
n. Thus (−∆)1/2 = ∂

∂n , the Dirichlet-Neumann operator.
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Lemma 3.6. On R
n, (n ≥ 3), suppose h, f are smooth functions with h ∈ L2(Rn),

f ∈ L1(Rn) with f(x) = O( 1
|x|α ), for some α > n/2 as |x| → ∞ satisfying

(−∆)1/2h = f on R
n then

(3.2) h(x) = ((−∆)−1/2f)(x) = cn

∫

Rn

1

|x − y|n−1
f(y)dy

for all x ∈ R
n where cn = 2Γ((n−1)/2)

πn/2 .

Proof. Call k(x) the expression on the right hand side of the formula (3.2), then

under our assumptions on f , one can easily check that k ∈ L2(Rn). Formula (3.2)

then follows from the fact that ( 1
|x|n−1 )∧ = 1

cn
|x|−1 in the sense of distribution (c.f.

for example Stein [S], P. 117), by taking Fourier transform on both side of (3.2).

The following is a version of Hopf’s Lemma for the operator (−∆)1/2 which we

shall use later in our proof.

Lemma 3.7. Suppose (−∆)1/2h = f with h, f satisfying the same assumption as

in Lemma 3.5. Also that for some λ ∈ R, f(x) = −f(xλ) for all x ∈ R
n and f ≥ 0

on Σλ. Then h ≥ 0 on Σλ, ∂h
∂x1

|Tλ
≤ 0 and

(3.3) h(x) =
cn

4

∫

y∈Σλ

(

1

|x − y|n−1
−

1

|x − yλ|n−1

)

f(y)dy

Furthermore strict inequalities hold h > 0 on Σλ and ∂h
∂x1

> 0 on Tλ unless h ≡ 0.

Proof. Let G(x, y) = cn

|x−y|n−1 denote the fundamental solution for (−∆)1/2. Then

G(x, y) ≥ G(x, yλ) for x, y ∈ Σλ. It follows from our assumption that f(y) =

−f(yλ) for all y ∈ R
n, and the integral formula (3.2) that

h(x) =
1

2

∫

Rn

(G(x, y) − G(x, yλ))f(y)dy

=
1

4

∫

y∈Σλ

(G(x, y)− G(x, yλ))f(y)dy.

¿From this formula it follows that if f(y) ≥ 0 for all y ∈ Σλ then h ≥ 0 for all

x ∈ Σλ; also h > 0 unless f ≡ 0. And

∂

∂x1
h(x) |x∈Tλ

=
1

2

∫

y∈Σλ

(

∂

∂x1
G(x, y) |x∈Tλ

)

f(y)dy

= −
cn(n − 1)

2

∫

y∈Σλ

(λ − y1)

|x − y|n+1
f(y)dy < 0 .
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We remark in the case n = 1, statements in Lemma 3.6 and Lemma 3.7 also

hold for the fundamental solution G(x, y) = 1
2π ln 1

|x−y| This can be verified directly

using Fourier transform as in the proof above, or as in the proof of Lemma 4.8 in

[C-Y].

Lemma 3.8. Suppose (−∆)1/2v = F (x) where F ∈ L1(Rn) and F (x) = O( 1
|x|α ),

for some α > n/2, n ≥ 3. Suppose v and F satisfying the same hypothesis (a) and

(b) as in the statement of Lemma 3.4, then the same conclusions as in Lemma 3.4.

hold.

Proof. This is a modification of the proof of Lemma 2.4 in [C-G-S] adopted to

our setting. Let h(x) = v(x) − v(xλ0
) for x ∈ Σλ0

. Then by the estimates in

Lemma 2.1, v, h ∈ L2(Rn). Thus we may apply Lemma 3.7 to the function h and

f(x) = F (x) − F (xλ0
) and conclude that

h(x) =
cn

4

∫

y∈Σλ0

(

1

|x − y|n−1
−

1

|x − yλ0
|n−1

)

f(y)dy(3.4)

=
cn

4

∫

y∈Σλ0

(

1

|x − y|n−1
−

1

|xλ0
− y|n−1

)

f(y)dy

We claim that there exists some constant c > 0 so small that

(3.5) h(x) >
c(λ0 − x1)

|x|n+1
for x ∈ Σλ0

and |x| sufficiently large .

(3.5) is an easy consequence of the integral formula (3.4) as follows: For x, y ∈ Σλ0
,

we have

1

|x − y|n−1
−

1

|xλ0
− y|n−1

≥ c1
|xλ0

− y|2 − |x − y|2

|xλ0
− y|n+1

= c1
4(λ0 − x1)(λ0 − y1)

|xλ0
− y|n+1

for some dimensional constant c1. Hence for x ∈ Σλ0

h(x) ≥ c2

∫

y∈Σλ0

(λ0 − x1)(λ0 − y1)

|xλ0
− y|n+1

f(y)dy

≥ c2(λ0 − x1)

∫

λ0−y1≥1
|xλ0

−y|≤2|x|

f(y)

|xλ0
− y|n+1

dy

≥ c
λ0 − x1

|x|n+1
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for x ∈ Σλ0
, |x| large where c2 is again a dimensional constant and c is a constant

close to c2

∫

λ0−y1≥1
f(y)dy when |x| is sufficiently large. Thus (3.5) holds.

Once (3.5) is established, we may apply the same argument as in the proof of

Lemma 2.4 in [C-G-S] to establish Lemma 3.7.

We again remark that statement of Lemma 3.8 holds for n = 1 also.

§4. Proof of Theorem 1.2

We will show that there exists some λ0 so that wλ0
≡ 0. Since the same argument

applies after any rotation of the coordinate system, we conclude that there exists

some point x0 ∈ R
n with respect to which u is radial symmetric. The result then

follows from the uniqueness of the O.D.E. solution u = u(|x − x0|) = u(r) for

equation (1.8).

For a given function u, let v = (−∆)m−1u be defined as before. We will establish

wλ0
≡ 0 in two steps.

Step 1. There exists some positive λ1, if λ ≥ λ1, then wλ(x) ≥ 0 for all x ∈ Σλ.

Choose R̄, and λ̄ as in the statement of Lemma 3.3, then for λ ≥ λ̄, x ∈ Σλ

and |x| ≥ R̄, we have v(x) > v(xλ). Since v is a positive function according to

elliptic theory for the case n is even or via formula (3.2) in Lemma 3.6 when n is

odd and n ≥ 3, and in either cases we have lim|x|→∞ v(x) = 0, we may choose λ1

sufficiently large so that if λ ≥ λ1, then v(x) > v(xλ) for all x ∈ Σλ. In the special

case when n = 1, then v ≡ u, we can modify above argument using the expression

that u(x) = log 2
1+|x|2

+ ω(ξ(x)) for some bounded function ω to draw the same

conclusion for v.

Once we have v(x) > v(xλ) for x ∈ Σλ, since (−∆)k(wλ)(x) = 0 for all x ∈ Tλ

the boundary of Σλ, for all 0 ≤ k ≤ m− 1, Step 1 follows by applying the maximal

principle of the Laplacian iteratively.

Step 2. Let λ0 be the smallest value λ so that wλ ≥ 0 on Σλ, for each λ ≥ λ0. We

claim:

(i) For λ > λ0, we have wλ(x) > 0 for x ∈ Tλ and ∂
∂x1

v(x) < 0 for x ∈ Σλ.

(ii) wλ0
≡ 0 for x ∈ Σλ0

.
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To establish (i), we notice that for λ ≥ λ0

(a) wλ(x) ≥ 0 for x ∈ Σλ for all λ ≥ λ0 hence ∂
∂x1

u(x) ≤ 0 for x ∈ Tλ0

(b) wλ(x) ≥ 0 on Σλ, hence (−∆)n/2wλ ≥ 0 on Σλ by equation (1.8). Denote

hλ(x) = v(x) − v(xλ). Then in the case n = 2m we have hλ = 0 on Tλ and

(−∆)hλ ≥ 0 on Σλ hence hλ ≥ 0 on Σλ which in turn implies that ∂
∂x1

v(x) ≤ 0 for

all x ∈ Tλ. In the case n = 2m − 1 is odd, we can draw the same conclusion by

applying Lemma 3.7 to the function h = hλ and f = enu(x) − enu(xλ).

(c) Since hλ = (−∆)m−1wλ(x) ≥ 0 on Σλ, in the cases m ≥ 2 we may apply

maximal principle to wλ(x) and conclude that either wλ(x) > 0 or wλ(x) ≡ 0 on

Σλ, and the later happens if and only if ∂
∂x1

wλ = 2 ∂u
∂x1

= 0 for some point x ∈ Tλ.

(d) Applying similar argument as in (b), using Lemma 3.5 and Lemma 3.7 re-

spectively for n even and odd cases, we conclude that either hλ > 0 or hλ(x) ≡ 0

on Σλ and the later happens if and only if ∂v
∂x1

(x) = 1
2

∂
∂x1

hλ(x) = 0 for some point

x ∈ Tλ.

We now prove claim (i) in Step 2.

We already know that for λ ≥ λ0, wλ(x) ≥ 0 on Σλ. Suppose for some λ > λ0

say λ = λ0 + δ we have wλ0+δ(x) = 0 for some x ∈ Σλ, hence wλ0+δ(x) ≡ 0. It

follows that u(λ0, x
′) = u(λ0 + 2δ, x′) and hence ∂u

∂x1
(λ0 + 2δ, x′) = 0, and hence

wlambda0+2δ ≡ 0. ¿From this, inductively we may conclude u(x) = u(x + 2kδ) for

all k ≥ 1 hence u(x) = u(∞) = −∞ for all x ∈ Σλ which is a clear contradiction.

Thus wλ(x) > 0 for all x ∈ Σλ, λ > λ0.

¿From this point on, we may apply the equation (1.8) and repeat the same

argument as in the previous paragraph using instead facts in (b), (d) to the function

hλ = v(x) − v(xλ) to conclude that hλ(x) > 0 for all x ∈ Σλ. We can then apply

either Lemma 3.5 or 3.7 to establish claim (i).

To prove claim (ii), if we assume the contrary, then by our argument above we

have

(4.1) hλ0
(x) > 0 on Σλ0

and
∂

∂x1
hλ0

< 0 on Tλ0
.

On the other hand by our definition of λ0, there exists a increasing sequence

of λk, λk → λ0 and xk ∈ Σλk
so that wλk

(xk) < 0. Apply equation (1.8), we
13



conclude that there exists points yk ∈ Σλk
with hλk

(yk) < 0 and in particular

hλk
(zk) = miny∈Σλk

hλk
(y) < 0. We choose R̄ and ε as in the statement of Lemma

3.4 and Lemma 3.8 respectively for the case n is even or n odd, to conclude that

when k is sufficient large so that when λ0 − λk < 1
4ε, then we have |zk| < R̄ for k

large. Thus some subsequence of zk converges to some point z0 ∈ Σλ0
∪ Tλ0

, which

satisfies

(4.2) hλ0
(z0) ≤ 0 and ∇hλ0

(z0) = 0

This contradicts (4.1), and we thus established claim (ii) and finished the proof of

Theorem 1.2.

References

[A] A. D. Alexandrov; “Uniqueness theorems for surfaces in the large”, V. Vest-
nik Leningrad Univ. Mat. Mekh. Astronom. 13, (1958) no. 19, pp 5-8;
Amer. Math. Soc. Transl. ser. 2, 21, 1962, pp 412-416.

[Be] W. Beckner; “Sharp Sobolev inequalities on the sphere and the Moser-
Trudinger inequality”, Annals of Math., 138 (1993),pp 213-242.

[B-1] T.Branson; “Group representations arsing from Lorentz conformal geome-
try”, JFA, 74, (1987), pp 199-293.

[B-2] T.Branson; “Sharp Inequality, the Functional Determinant and the Com-
plementary series”, TAMS, 347 (1995), pp 3671-3742.

[C-G-L] L. Caffarelli, B. Gidas and J. Spruck; “ Asymptotic symmetry and local
behavior of semi-liner equations with critical Sobolev growth”” Comm. Pure
Appl. Math. 42 (1989), pp 271-289.

[C] S-Y. A. Chang; “ On a fourth order differential operator –the Paneitz
operator–in conformal geometry”, preprint, to appear in the Proceedings
Conference for the 70th birthday of A.P. Calderon.

[C-K] S. Chanillo and M. K.-H. Kiessling: “Conformally invariant systems of non-
linear PDEs of Liouville type”. preprint

[C-Q-1] S-Y. A. Chang and J. Qing; “The functional determinants on 4-manifolds
with boundary I - the formula,”, preprint 1995, to appear in JFA.

[C-Q-2] S-Y. A. Chang and J. Qing; “The functional determinants on 4-manifolds
with boundary II.” preprint, 1995, to appear in JFA.

14



[C-Y] S-Y. A. Chang and P. C. Yang; “Extremal Metrics of zeta Functional De-
terminants on 4-Manifolds, ” Annals of Math. 142(1995), pp 171-212.

[C-L] W. Chen and C. Li; “ Classification of solutions of some non-linear elliptic
equations”, Duke Math. J. 63, no. 3, (1991), pp 615-622.

[G-N-N] B.Gidas, N.W.Ni and L.Nirenberg; “Symmetry and related properties via
the Maximum Principle”, Comm. Math. Phys. 68 (3) 1979, pp 209-243.

[G-J-M-L] C. R. Graham, R. Jenne, L. Mason, and G. Sparling; “Conformally invariant
powers of the Laplacian, I: existence”, J. London. Math. Soc. (2) 46, (1992),
pp 557-565.

[L] C.-S. Lin: “ A classification of solutions of a conformally invariant fourth
order equation in Rn ”, preprint 1996.

[M] J. Moser; “A Sharp form of an inequality by N. Trudinger”, Indian Math.
J., 20, (1971), pp 1077-1091.

[Ob] M. Obata; ”Certain conditions for a Riemannian manifold to be isometric
with a sphere”, Jour. Math. Society of Japan,14, (1962), pp333-340.

[On] E. Onofri; “On the positivity of the effective action in a theory of random
surfaces” Commun. Math. Phys., vol 86, (1982), pp 321-326.

[P] S. Paneitz; “A quartic conformally covariant differential operator for arbi-
trary pseudo-Riemannian manifolds”, Preprint, 1983.

[St] E.Stein; ” Singular integrals and differentiability properties of functions”,
Princeton University press, 1970.

[X] X.Xu; “ Classification of solutions of certain fourth order nonlinear elliptic
equations in R4”, preprint 1996.

Address of the authors:

Sun-Yung A. Chang, Department of Mathematics, University of California, Los
Ange les, CA 90095-1555

Paul C. Yang, Department of Mathematics, University of Southern California,
Los Angeles, CA 90089

15


