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0 IntrodutionIn this paper we are onerned with the lassi�ation of entire solutions of an equation inonformal geometry. The result is motivated by the lassial theorem of Obata [O℄ that anymetri onformal to the standard metri on the n-sphere Sn with onstant salar urvature,is isometri to the standard metri. As we will reall in setion 1 below, the main step in theoriginal proof of Obata is the Bianhi identity for the salar urvature: divE = (n�2)2n rR,where E denotes the traeless Rii tensor and R the salar urvature. Obata's result waslater generalized by Ca�arelli-Gidas-Spruk [CGS℄, where instead of onsidering metris onSn, they onsidered metris u 4n�2 jdxj2 onformal to the Eulidean metri jdxj2 on Rn withonstant salar urvature, i.e. u > 0 satis�es the equation��u = n(n� 2)un+2n�2 ; u > 0 on Rn : (0:1)They lassi�ed all solutions of (0.1) via the method of moving planes. Namely, u(x) =( 2��2+jx�x0j2 ) 2n�2 for some x0 2 Rn , � > 0; or equivalently the metri u 4n�2 jdxj2 is isometrito the standard metri on Sn, where points in Rn are identi�ed with points on Sn viastereographi projetion.In this note we will illustrate a method whih redues the proof of the above lassi�ationresult of [CGS℄ to a "tail" term estimate using method of proof in [O℄. We will then indiatethat the estimate an easily be veri�ed when the dimension n is equal to 3. and for n � 4under the additional (strong) assumption that the volume of the metri is �nite. We thenapply the same sheme to lassify entire solution of a fully non-linear equation studied in ([V-1℄, [V-2℄ and [CGY-1℄, [CGY-2℄ ) whih an be viewed as a fully nonlinear generalizationof the Yamabe equation.We now desribe our main result:Given a Riemannian manifold (Mn; g), we denote the Weyl-Shouten tensor Aij = Rij �R2(n�1)gij, where Rij denotes the omponents of the Rii tensor. Viewed as an endomorphismon the tangent bundle, A = Ag has n real eigenvalues, and we let �2(Ag) denote the seondelementary symmetri funtion of the eigenvalues.Theorem 0.1 Let g = v�2jdxj2 be a onformal metri on Rn , n � 4, satisfying�2(Ag) = 18n(n� 1)(n� 2)2: (0:2)If n � 6, assume in addition thatvol(g) = ZRn v�ndx <1: (0:3)Then v = ajxj2+ bixi+  for onstants a; bi; . In partiular, g is obtained by pulling bakto Rn the round metri on Sn.



Theorem 0.1 was proved by Vialovsky [V-2℄ for all elementary symmetri funtions�k(A), but under the (strong) assumption that the metri is de�ned on Sn. This amountsto assuming that the singularity at in�nity is removable. When n = 4 and k = 2 Theorem0.1 is ontained in [CGY-2℄. We reently learned that A. Li and Y. Li have announed aversion of this result whih holds for all k in all dimensions ([LL℄; see also the artile of Guanand Wang [GW℄). However, sine our proof (whih we have obtained a year ago) is quitedi�erent than the one announed in [LL℄, we deided to publish our result. The geometrinature of our argument also allows the possibility that it an be generalized to establish theuniqueness of solutions on general Einstein manifolds, like Obata's result whih inspired it.The note is organized as follows: In setion 1, we desribe Obata's proof and the "tail"term estimate required to modify Obata's proof to obtain the result in [CGS℄. We then provethe tail estimate for dimension n = 3. In setion 2, we establish a onservation law for the�2(A) equation that is analogous to lassial Bianhi identity. In setion 3, we derive the"tail" estimate required for the �2 equation for n = 4; 5 and for n � 6 under the additionalassumption (0.3). Finally in setion 4, we prove the main lassi�ation result Theorem 0.1.
1 Obata's proofIn this setion we will �rst reall the proof a result of Obata ([O℄) that metris de�ned onthe n-sphere with onstant salar urvature and onformal to the standard metri is Einstein,hene isometri to the standard metri on Sn. We will then modify Obata's argument toshow that one an redue the proof of the main result in ([CGS℄, see Theorem 1.1 below) formetris de�ned on Rn to a "tail" term estimate. We then establish the tail term estimatefor the ase n = 3 and under the additional volume bound ondition for the ases n � 4.To this end, suppose g = v�2g0 is a onformal metri on Sn, where g0 is the round metri.Assume that g has onstant salar urvature.To begin, we express the trae-free Rii Tensor E in terms of v;E = �(n� 2)vr2g(v�1) + (n� 2)n v�g(v�1)g: (1:1)Note that the Hessian and Laplaian in (1.1) are with respet to g, not g0. If we pair bothsides of (1.1) with v�1E and integrate over Sn we obtainZSn jEj2v�1dvolg = �(n� 2) ZSn g(E;r2g(v�1))dvolg:Note that the seond term vanishes beause E is trae-free. We apply the divergenetheorem to onlude ZSn jEj2v�1dvolg = (n� 2) ZSn g(ÆE; d(v�1))dvolg:



The ontrated seond Bianhi identity says that divE = (n�2)2n dR, where R is the salarurvature. Sine R is onstant, E is divergene-free. ThusZSn jEj2v�1dvolg = 0: (1:2)The uniqueness result follows, sine (1.2) implies that E � 0, i.e. g is Einstein.We will now modify the argument above to metris de�ned on Rn and prove the followingresult:Theorem 1.1. Let g = v�2jdxj2 be a onformal metri on Rn , n � 3, whose salar urvatureR equals the onstant n(n� 1). Assume in addition that g satis�esZA� jr0vj2v1�ndx . �2; (1:3)where r0 denotes the Eulidean gradient, A� denotes the annulus B(2�) � B(�), and B(�)denotes the Eulidean ball on Rn entered at 0 of radius � > 0.Then v = ajxj2+ bixi+  for onstants a; bi; . In partiular, g is obtained by pulling bakto Rn the round metri on Sn.Proof To begin, �x � > 1 and let � denote a ut-o� funtion supported in B(2�) satisfying� � 1 on B(�), j�i�j . ��1. Following the outline of Obata's argument above, we pair bothsides of (1.1) with v�1E�2 and integrate over Rn to obtainZ g(E;E)v�1�2dvol(g) = � Z (n� 2)g(E;r2g(v�1))�2dvol(g): (1:4)Note that in (1.4) we have used the fat that E is trae-free. Applying Bianhi identitydivE = (n�2)2n dR as before, we obtainZ g(E;E)v�1�2dvol(g) = Z (n� 2)g(ÆE; d(v�1))�2dvol(g)+ Z (n� 2)E(rg(v�1);rg(�2))dvol(g):Sine R = Rg is onstant, E is divergene-free. ThusZ g(E;E)v�1�2dvol(g) = Z (n� 2)E(rg(v�1);rg(�2))dvol(g). Z jEjjrg(v�1)jjrg(�2)jdvol(g)



. Z jEjjrgvjjrg�jv�2�dvol(g):Applying the Shwartz inequality we onludeZ g(E;E)v�1�2dvol(g) . 0B� Zsuppjr�j jg(E;E)jv�1�2dvol(g)1CA12
��Z jrgvj2jrg�j2v�3dvol(g)� 12 : (1:5)We now rewrite the integral on the Rhs of (1.5) in terms of the Eulidean metri, usingthe identities jrgvj2 = v2jrvj2;jrg�j2 = v2jr�j2;dvol(g) = v�ndx:Thus, Z jrgvj2jrg�j2v�3dvol(g) = Z jrvj2jr�j2v1�ndx:Sine jr�j2 . ��2 and supp � � A(�) = fx�Rn j� < jxj < 2�g, we onlude fromassumption (1.3) Z jrgvj2jrg�j2v�3dvol(g) . ��2 ZA� jrvj2v1�ndx <1:Thus ZRn g(E;E)v�1dvol(g) <1: (1:6)In partiular,



Zsuppjr�j g(E;E)v�1dvol(g) = Zsuppjr�j jg(E;E)jv�1dvol(g)! 0 (1:7)as � ! 1. Now ombining (1.7) with (1.5) and the boundedness of the integrals in (1.6),we onlude that Z g(E;E)v�1�2dvol(g)! 0 as �!1;so g(E;E) � 0 on Rn . This implies E � 0. The onlusion of Theorem 1.1 that v is aquadrati polynomial follows easily from the expression of E as in (1.1).We will end this setion by remarking that the assumption (1.3) in the statement ofTheorem 1.1 an be easily established for metris of onstant salar urvature when n = 3,but for n � 4 the same argument only establishes the inequality (1.3) under the additionalassumption that volume of g is �nite. We remark that the volume �niteness assumption isfrequently harmless when the result is applied to the limiting ase of a "blow up" argumentfor metris de�ned on a ompat manifold. We state the result in the following proposition.To simplify the notations, we will hene forth denote r0 by r, �0 by �, et.Proposition 1.2 Let g = v�2dx2 be a onformal metri on Rn . Assume that there existssome positive onstants C0 = C0(n); C1 = C1(n), so thatwhen n = 3 Rg � C0;and when n � 4 8>><>>: 1C1 � Rg � C1ZA� v�ndx� C1where A(�) = fx�Rn ; � � jxj � 2�g, for all � >> 1. Then there is a onstant C2 =C2(C0; C1; n), so that ZA� jrvj2v1�ndx � C2�2 for all � >> 1:To prove the proposition, we begin with a tehnial Lemma whih is a well known result(.f. [KMPS, Lemma 1℄). WeLemma 1.3 Suppose g = v�2ds2 is a onformal metri with R = Rg � C3 � 0, then thereis some onstant C4 so that v(x) � C4jxj2 for all jxj suÆiently large.Proof. Denote g = u 4n�2dx2; i.e. u = v�n�22 , then the salar urvature equation is of thefamiliar form



��u = n� 24(n� 1)R un+2n�2 :This equation is invariant under the Kelvin transform: let us denoteû(x) = 1jxjn�2u� xjxj2� ; R̂(x) = R� xjxj2�then û satis�es ��û = n� 24(n� 1)R̂ûn+2n�2 on Rn � f0g:Sine R̂ � 0, ��û � 0 on Rn�f0g implies that ��û � 0 on Rn in the distribution sense.Hene û is superharmoni near x = 0; thus û(x) � C4 for some C4 for all jxj suÆientlysmall. This is equivalent to the statement that v(x) � C4jxj2 for jxj suÆiently large.We now prove Proposition 1.2.Proof. We �rst reall the salar urvature equation for the metri g = v�2dx2:��v + n2v�1jrvj2 + 12(n� 1)Rv�1 = 0: (1:8)Choose � > 1 and � a ut o� funtion supported with � � 1 on A(�) and with � supportedon B(52�)� B(12�). Multiply the equation (1.8) by v�n+2�4 and integrate by parts, we get(n2 � n+ 2) Z jrvj2v�n+1�4dx + 12(n� 1) Z Rv�n+1�4dx = � Z rv � r�4v�n+2dx: (1:9)n=3 ase: We haveLhs of (1:9) = 12 Z jrvj2v�2�4dx+ 14 Z Rv�2�4dxRhs of (1:9) . 1� �Z jrvj2v�2�4dx� 12 (Z �2dx) 12 ;. 1�(Z jrvj2v�2�4dx) 12� 23 ;whih in turn, under the assumption that R � 0, implies thatZ jrvj2v�2�4dx . � . �2as laimed.



n � 5 ases: We rewrite (1.9) as(n2 � 2) Z jrvj2v�n+1�4dx = 12(n� 1) Z Rv�n+1�4dx + Z rv � r(�4)v�n+2dx: (1:10)Thus under the additional assumptions that there is a positive number that 1C1 � R � C1and RA� v�n � C1, we may apply Lemma 1.3 to obtain from (1.10) thatZ jrvj2v�n+1�4dx . �2 + (Z jrvj2v�n+1�4dx) 12�:Thus ZA� jrvj2v�n+1dx . �2as desired.n=4 ase: The proof is slightly more ompliated. We now mutiply the equation (1.8) byv�n+��4 and integrate by parts, for n = 4 we get(�� 2) Z jrvj2v�5+��4dx+ Z rv � r�4v�4+�dx + 16 Z Rv�5+��4dx = 0: (1:11)We now hoose � = 1 and onlude from (1.11) thatZ jrvj2v�4�4dx = 16 Z Rv�4�4dx+ Z rv � r�4v�3dx. Z Rv�4�4dx+ 1�(Z jrvj2v�4�4dx) 12 (Z v�4�4dx) 14 jsupp�j 14 : (1:12)Thus from our assumption that R � C and Rsupp� v�4dx � C, we onlude from (1.12) thatZ jrvj2v�4�4dx . C:Applying Lemma 1.3, we then onlude thatZ jrvj2v�3�4dx . �2 Z jrvj2v�4�4dx . �2:This �nishes the proof for the ase n = 4, hene the proof of the proposition.



2 A onservation lawIn this setion, we will derive tensor estimates for a tensor whih plays the same role forour �2 equation as the trae-free Rii tensor does in Obata's proof. It turns out that suh atensor has been desribed in four dimensions by Gursky [Gu℄ and in general by Vialovsky[V-3℄.Reall that on a n-dimensional manifold (M; g), we denote the Weyl-Shouten tensor byAij = Rij � 12(n�1)Rgij, where Rij denotes the Rii urvature, and R the salar urvature ofthe metri g. We also denote the seond elementary symmetri funtion of the eigenvaluesof the tensor A by �2(Ag) = 12((TraeA)2 � jAj2).Proposition 2.1 Suppose (M; g) is loally onformally at. De�ne the symmetri two-tensorL by L = 2n�2(Ag)� �1(A)A+ A2: (2:1)Then L satis�es trgL = 0; (2:2)ÆL = �n� 2n � d�2(A): (2:3)Remark Therefore, when �2(Ag) is onstant, L is both trae-free and divergene-free.For the proof, we will need two additional sharp inequalities involving L:Proposition 2.2 Assume �2(A) > 0. Then(i) � g(L;E) � 0; (2:4)with equality if and only if E = 0.(ii) jLj2 � �2(n� 2)n �1(A)g(L;E): (2:5)Proof (i) This follows from [Vi-1, Lemma 23℄. If we de�ne the seond Newton transformationby T2(A) = �2(A)g � �1(A)A+ A2;Then L = T2(A)� (trT2)g = T2(A)� (n� 2)n �2(A)g:Thus, as E is trae-free,



�g(L;E) = �g(L;A)= �g(T2(A)� (n� 2)n �2(A)g; A)= �g(T2(A); A) + (n� 2)n �2(A)�1(A):Now, aording to [Vi,Lemma 23℄, if �2(A) > 0, and �1(A) > 0g(T2(A); A) � (n� 2)n �2(A)�1(A)with equality if and only if E = 0. This implies (2.4).(ii) In terms of the trae-free Rii tensor, we haveA = E + 1n�1(A)g;A2 = E2 + 2n�1(A)E + 1n2�1(A)2g;L = � 1n jEj2g � (n� 2)n �1(A)E + E2:Therefore, jLj2 = jE2j2 � 1n jEj4 � 2(n� 2)n �1(A)trE3 + (n� 2)2n2 �1(A)2jEj2: (2:6)Similarly, �g(L;E) = (n� 2)n �1(A)jEj2 � trE3;or trE3 = g(L;E) + (n� 2)n �1(A)jEj2;where trE3 = Eki EjkEij. Substituting this into (2.6) givesjLj2 = jE2j2 � 1n jEj4 � (n� 2)2n2 �1(A)2jEj2 � 2(n� 2)n �1(A)g(L;E): (2:7)



Lemma 2.3 For an n� n (n � 3) traeless symmetri matrix E, we havejE2j2 � n2 � 3n+ 3n(n� 1) jEj4 (2:8)and equality holds if and only if E is of the formE = 0BBBBB�� � . . . � �(n� 1)�
1CCCCCAProofWe begin by observing that for n = 3, the ratio jE2j2jEj4 is a onstant given by 32�3:3+33(3�1) =12 � n2�3n+3n(n�1) for n > 3.In general we write, for � 2 Rn�1 ,

E� = 0BBBBBB��1 �2 . . . �n�1 � n�1�1 �k
1CCCCCCAView the funtion f(E) = jE2j2 as a smooth funtion on the hypersurfae f��Rn�1jjEj =1g. At the maximum value of f , we �nd a Lagrange multiplier �:�3i + (��k)3 = �(�i + ��k) (2:9)for eah i = 1; 2; :::n� 1, where ��k = n�1�1 �k.The general ase is modeled after the ase n = 4, whih we will �rst onsider in detail.To solve for � in (3.11) we �rst assume that�i + ��k 6= 0 for i = 1; 2; 3: (2:10)Then we �nd, using the ommon value of �,�2i � �i(��k) + (��k)2 = �2j � �j(��k) + (��k)2 for i 6= j:



Thus �1(�2 + �3) = �2(�1 + �3) = �3(�1 + �2):If any of the �i = 0, we �nd f(�) = 12 as in the ase n = 3. When none of �i is zero, we�nd �1 = �2 = �3, f(�) = 712Returning to the assumption (2.10), if for some i say i = 3, we have�3 + ��k = 0;then rewriting (2.9) for i = 1; 2, we �nd�3i � �33 = �(�i � �3):If �1 = �3, we �nd �2 = �3�3. In either ase E is onjugate to the matrixE = 0BB�� � � �3�1CCA :If �1 6= �3 and �2 6= �3, we �nd using the ommon value of �,�2(�2 + �3) = �1(�1 + �3)Hene either �1 = �2, so that �3 = ��1 and f(�) = 14 < 712 ; or �1 + �2 = ��3 = 0,f(�) = 12 � 712 . Thus we have determined the maximum and the minimum value of f(E) indimension four.For n > 4, we apply (2.9) to �nd�3i � ��i = �(��k)� (��k)3 (2:11)As the right hand side is independent of i, we onlude that there are at most threevalues for �i, the roots of the ubi equation (2.11). Thus by relabeling if neessary, we �nd�1 = �2 : : : = �l1 = �1�l+1 = : : : = �l1+l2 = �2�l1+l2+1 = : : : = �l1+l2+l3 = �3where l1 + l2 + l3 = n� 1.



Consider one again the funtionf(E�) = l1�41 + l2�42 + l3�43 + (l1�1 + l2�2 + l3�3)4on the hypersurfae f� 2 R3 jkE�k = 1g. At a maximum we have a Lagrange multiplier �:�3i + (�lk�k)3 = �(�i + �lk�k) i = 1; 2; 3:Assuming that �i + �k�k 6= 0 for all i = 1; 2; 3we �nd �2i � �i(�lk�k) = �2j � �j(�lk�k) for i 6= j: (2:12)Sine the quadrati equation in �i for a given �lk�k has at most two roots, we onludethat there are only two possibly distint values for �i. We may without loss of generalityassume that �1 = : : : = �l1 = �1�l1+1 = : : : = �l2 = �2 (2:13)and l1 + l2 = n� 1. To determine the maximum possible value of the funtionf(E�) = l1�41 + l2�42 + (l1�1 + l2�2)4under the onstraints: l1 + l2 = n� 1l1�21 + l2�22 + (l1�1 + l2�2)2 = 1and �21 � �1(l1�1 + l2�2) = �22 � �2(l1�1 + l2�2):We notie that we may enlarge the onsideration to allow l1 = t and l2 = n � 1 � t torange over 0 � t � n� 1 and �x (�1;�2), viewing f(E�) as a funtion of t, we �ndddt f(E�; t) = �41 � �42 + 4(t�1 + (n� 1� t)�2)3(�1 � �2)= (�1 � �2)(�31 + �21�2 + �1�22 + �32 + 4(t�1 + (n� 1� t)�2)3):d2dt2 f(E�t) = 12(�1 � �2)2(t�1 + (n� 1� t)�2)2 � 0



Hene the maximum is ahieved at t = 0 or t = n � 1. That is either l1 = 0 or l2 = 0and f(E�) = n2�3n+3n(n�2) .Finally we onsider the ase when �i + �k�k 6= 0fails to hold. There are three possibilities: In ase �i + �k�k = 0 for i = 1; 2; 3, we �nd�1 = �2 = �3. In ase �1 + �k�k = 0 for i = 1; 2 then we �nd �1 = �2, so that thereare only two ommon values and the previous onsideration shows f(E�) � n2�3n+3n(n�1) . In theremaining ase, say (1 + l3)�3 = �(l1�1 + l2�2);we �nd f(E�) = l1�41 + l2�42 + (1 + l3)� l1�1 + l2�21 + l3 �4 :Again we enlarge the onsideration for a �xed l3, allow l1 to run between 0 � l1 � n� 1� l3,and l2 = n � 1� l1 � l3. Di�erentiate twie f(E�; l1) with respet to l1, we �nd f is againstritly onvex in l1, hene its maximum value is attained at the end points, that is eitherl1 = 0 or l1 = n � 1 � l3 hene l2 = 0. Thus we are redued to our previous onsiderationwhen there are at most two dinstint eigenvalues and the maximum value of f(E�) is lessthan or equal to n2�3n+3n(n�20 as desired. �Using (2.8), from (2.7) we onludejLj2 � �(n2 � 3n+ 3)n(n� 1) � (n� 1)n(n� 1)� jEj4 � (n� 2)2n2 �1(A)2jEj2�2(n� 2)n �1(A)g(L;E)= (n� 2)2n(n� 1) jEj4 � (n� 2)2n2 �1(A)2jEj2�2(n� 2)n �1(A)g(L;E)= � (n� 2)2n(n� 1) jEj2 ��jEj2 + (n� 1)n �1(A)2��2(n� 2)n �1(A)g(L;E):However, �jEj2 + (n�1)n �1(A)2 = 2�2(A), so (2.5) follows. �



3 Estimates for the tail termIn this setion, we will establish some tehnial results whih will be used in the proof ofthe main theorem in setion four.Proposition 3.1 Let g = v�2jdxj2 be a onformal metri on Rn . Assume that there existssome positive onstants C0 = C0(n); C1 = C1(n), so thatwhen n = 4; 5 �2(Ag) � C0;and when n � 6 8>><>>: 1C1 � �2(Ag)� C1ZA� v�n � C1where A(�) = fx�Rn ; � � jxj � 2�g, for all � >> 1.Then there is a onstant C2 = C2(C0; C1; n), so thatZA� Rjrvj2v1�n � C2�2 for all � >> 1:Proof. Sine �2(Ag) = �2((n� 2)v�1r2ijv � (n� 2)2 v�2jrvj2Æij))we have�2(Ag) = 12v4(n� 2)2�� v�2jr2vj2+ v�2(�v)2� (n� 1)v�3�vjrvj2+ 14n(n� 1)jrvj4v�4	:Using the formula 12�jrvj2 = jr2vj2+ < rv;r�v >;we rewrite the above equation in the form:2�2(Ag)v�n = (n� 2)2��12v2�n�jrvj2 + v2�n < rv;r�v >+v2�n(�v)2 � (n� 1)v1�n�vjrvj2 + 14n(n� 1)v�njrvj4� : (3:1)Fix � >> 1 and let � be a ut-o� funtion supported on B(52�) � B(�2); � � 1 onA(�) = B(2�)�B(�) and jrk�j � Ck��k on B(52�). We multiply both sides of (3.1) by �4v�and integrate over Rn . For the �rst two terms in the right hand side of (3.1), we integrateby parts and arrive at:



Z �4v2+��n�jrvj2 = Z jrvj2�(�4v2+��n)= Z fjrvj2�4�(v2+��n) + 2jrvj2r(v2+��n)r�4 + jrvj2v2+��n��4g= Z (2 + �� n)v1+��n�vjrvj2�4 + Z (2 + �� n)(1 + �� n)v��njrvj4�4+ 2(2 + �� n) Z v1+��nrv � r�4jrvj2 + Z v2+��njrvj2��4Also Z �4v2+��n < rv;r�v >= Z f�v2+��n(�v)2 � (2 + �� n)v1+��njrvj2�v�4 � v2+��nrv � r�4�vgFor the last term in the line above, we integrate by parts again to obtainZ v2+��nrvr�4�v = Z v2+��n�iv�i�4 �k�kv= � Z �k(v2+��n)�iv�i�4�kv � v2+��n�k�iv�i�4�kv � v2+��n�iv�k�i�4�kvg= �(2 + �� n) Z v1+��njrvj2rv � r�4 � Z v2+��nr2�4(rv;rv)� 12 Z v2+��n < rjrvj2;r�4 >= �12(2 + �� n) Z v1+��njrvj2rv � r�4 � Z v2+��nr2�4(rv;rv)+ 12 Z v2+��njrvj2��4Finally we substitute these identities into the left hand side of (3.1), and obtain2(n� 2)2 Z �2(Ag)v��n�4 = (�(n� 1)� 32(2 + �� n)) Z v1+��njrvj2(�v)�4+(14n(n� 1)� 12(2 + �� n)(1 + �� n)) Z v��njrvj4�4�12(2 + �� n) Z v1+��njrvj2rv � r�4 + Z v2+��nr2�4(rv;rv)� Z v2+��njrvj2��4 (3:2)



Reall that when g = v�2jdxj2, the salar urvature of g is given by (1.8)��v + n2v�1jrvj2 + 12(n� 1)Rv�1 = 0:Equivalently, �v = n2 v�1jrvj2 + 12(n� 1)Rv�1:Finally, substituting this into (3.2) gives the identity2(n� 2)2 Z �2(Ag)v��n�4 = a�;n Z v��nRjrvj2�4 + b�;n Z v��njrvj4�4 + T1 + T2 (3:3)where a�;n = 14(n� 1)(n� 4� 3�)b�;n = n(14 + �4 )� 12(2 + �)(1 + �)T1 = �12(2 + �� n) Z v1+��njrvj2rv � r�4T2 = Z v2+��nr2�4 < rv;rv > � Z v2+��n��4jrvj2:Thus jT1j . 1� Z jrvj3�3v1+��n . 1� �Z jrvj4v��n�4� 34 0� Zsupp � v4+��n1A 14 (3:4)jT2j . 1�2 Z jrvj2v2+��n�2 . 1�2 �Z jrvj4v��n�4� 12 0� Zsupp � v4+��n1A 12 (3:5)We make the following hoie of � aording to the dimension n of the manifold.(a) When n = 4 or 5, we hoose � = 1. Notie that for � = 1, a1;n = n�74(n�1) ; b1;n = 12(n� 6).Thus for both n = 4; 5; a1;n < 0; b1;n < 0.n=4 ase: Under the assumption �2(Ag) � C0 > 0, we have Rg � p24pC0 > 0; thusv(x) . �2 for x 2 supp �, and � large by Lemma 1.3. ThusjT1j . 1� �Z jrvj4v�3�4� 34 �Zsupp � v� 14



. � 12 �Z jrvj4v�3�4� 34. � Z jrvj4v�3�4 + C��2:Also jT2j . ��Z jrvj4v�3�4� 12. � Z jrvj4v�3�4 + C��2for any � > 0 and some onstant C� = C(�). Thus if we hoose � � 14(�b1;4), we obtain from(3.3) that Z Rjrvj2v�3�4 . �2Hene ZA(�)Rjrvj2v�3 . �2:n=5 ase: We argue in the same way as in the ase of n = 4; exept thatjT1j . 1� �Z jrvj4v�4�4� 34 � 54. � Z jrvj4v�4�4 + C��Similarly jT2j � 1�2 �Z jrvj4v�4�4� 12 � 52 � � Z jrvj4v�4�4 + C��:Thus ZA(�)Rjrvj2v�4 . � � �2 when � � 1:(b) n � 6 ases. Here we hoose � = 0; notie that for n > 5a0;n = n� 44(n� 1) > 0; b0;n = 14(n� 4) > 0:



Thus for �2(Ag) � C0, we have from (3.3)2C0(n� 2)2 Z v�n�4 � a0;n Z Rjrvj2v�n�4 + b0;n Z jrvj4v�n�4 � jT1j � jT2j; (3:6)while jT1j � 1� �Z jrvj4v�n�4� 34 �Zsupp � v4�n� 14. 1� �Z jrvj4v�n�4� 34 �Zsupp � v�n�n�44n (�n) 1nThus under the additional assumption that RA(�) v�n � C1, for C1 independent of �, we getjT1j . (Z jrvj4v�n�4) 34jT2j . (Z jrvj4v�n�4) 12 :Thus it follows from (3.6) that Z Rjrvj2v�n�4 � C2for some C2 = C(C0; C1; n). We apply Lemma 1.3, to onludeZA(�)Rjrvj2v1�n � Z Rjrvj2v1�n�4 < C2�2:Thus we have �nished the proof of the proposition.As a onsequene of the omputation in the proof of the above proposition, we have:Corollary 3.2 When n = 4, and g = v�2ds2 is a onformal metri on R4 with �2(Ag) �C0 > 0, then vol(g) = RR4 v�4dx . 1C0 .Proof. Fix � > 0 and take � to be a ut o� funtion with � � 1 on B and � � 0 o� B2�.Let � � 0 in the formula (3.3). We observe that a0;4 = b0;4 = 0.Hene 12 Z �2(Ag)v�4�4 = T1 + T2; (3:7)where T1 = Z v�3jrvj2rv � r�4



T2 = Z v�2r2�4(rv;rv)� Z v�2��4jrvj2:We �rst observe that for (3.3) we have when (n = 4)16Rv�2 = v�1�v � 2v�2jrvj2;hene for R = Rg & pC0 > 0, we have2 Z v�2jrvj2�2 � Z v�1�v�2 � Z jrvj2v�2�2 + Z jrvjjv�1jjr�2j:Thus, Z v�2jrvj2�2 � �Z jrvj2�2v�2� 12 � 1� � �2;and hene R v�2jrvj2�2 . �2. We onludejT2j . 1�2 Z v�2jrvj2�2 . onstant. (3:8)We now laim that T1 � 0. To see this we integrate by parts to rewrite T1 asT1 = � Z (�vjrvj2 + 2r2v(rv;rv))v�3�4 + 3 Z jrvj4v�3�4: (3:9)We observe that when n = 4, g = v�2ds2, the omponents of the Rii tensor Ri(g) aregiven by Rij = 2v�1rirjv + v�1�vÆij � 3v�2jrvj2Æij:Moreover, sine �2(Ag) > 0 on Rn , we have R > 0 (e.g. CGY-2, Lemma 3.5) it follows thatRij > 0 (see [CGY1, Lemma 1.2℄). Therefore, rewriting (3.9) in terms of Ri we see thatT1 = Z �Ri(rv;rv)v�2�4 � 0: (3:10)Combine (3.7), (3.8) and (3.10) we haveZB� v�4dx � Z v�4�4 � 1C0 :Letting �!1, we obtain the volume bound of RR4 v�4 as laimed.Remark. In the ase n � 5, the result of above orollary does not hold. That is, thereexist metris g = v�2jdxj2 with Rg > 0 and �2(g) � C0 > 0, while vol(g) is not uniformlybounded. For the ylindrial metri on Sn�1 � R, i.e. v(x) = jxj, we have �2(Ag) =18(n�1)(n�2)2(n�4). Thus, if perturb v(x) by v�(x) = (jxj2+�2) 12 , we have for g� = v�2� ds2that �2(Ag�) � Cn > 0 while vol(g�)! +1 as �! 0 for n � 5.



4 Classifying the entire solutionsIn this setion we prove our main result Theorem 0.1. That is; we provide a lassi�ationof all onformal metris g = v�2jdxj2 on Rn whih satis�es the equation�2(Ag) = 18n(n� 1)(n� 2)2;when n = 4 or 5, or when n � 6 under the additional assumption that the volume of gis �nite. More preisely, all suh solutions are obtained by pulling bak the round metrion the sphere (and its images under the onformal group) by stereographi projetion. Indimension n � 5 we get the same onlusion provided we assume in addition that the volumeis bounded: �2(Ag) = 18n(n� 1)(n� 2)2;vol(g) = ZRn v�ndx <1:Proof To begin, �x � > 1 and let � denote a ut-o� funtion supported in B(2�) satisfying� � 1 on B(�), j�i�j . ��1. As outlined in setion 1 above, we write the formula for thetrae-free Rii tensor E of g in terms of v as in (1.1):E = �(n� 2)vr2g(v�1) + (n� 2)n v�g(v�1)g:Notie that in (1.1), that Hessian and Laplaian are with respet to g, not the Eulideanmetri. Next we pair both sides with v�1�2L to getZ �g(L;E)v�1�2dvol(g) = Z (n� 2)g(L;r2g(v�1))dvol(g): (4:1)Note that in (4.1) we have used the fat that L is trae-free. Applying the divergenetheorem we �ndZ �g(L;E)v�1�2dvol(g) = Z �(n� 2)g(ÆL; d(v�1))�2dvol(g)� Z (n� 2)L(rg(v�1);rg(�2))dvol(g):Sine �2(Ag) is onstant, (2.3) implies that L is divergene-free. ThusZ �g(L;E)v�1�2dvol(g) = Z �(n� 2)L(rg(v�1);rg(�2))dvol(g)



. Z jLjjrg(v�1)jjrg(�2)jdvol(g). Z jLjjrgvjjrg�jv�2�dvol(g):Using inequality (2.5) we onludeZ �g(L;E)v�1�2dvol(g) . Z R 12 jg(L;E)j 12 jrgvjjrg�jv�2�dvol(g):By the Shwartz inequality,Z �g(L;E)v�1�2dvol(g) . 0B� Zsuppjr�j jg(L;E)jv�1�2dvol(g)1CA12
��Z Rjrgvj2jrg�j2v�3dvol(g)�12 : (4:2)By inequality (2,4), �g(L;E) � 0. Also, supp jr�j � supp �, so (4.2) implies0 � Z �g(L;E)v�1�2dvol(g) . Z Rjrgvj2jrg�j2v�3dvol(g): (4:3)We now rewrite the integral on the Rhs of (4.3) in terms of the Eulidean metri, usingthe identities jrgvj2 = v2jrvj2,jrg�j2 = v2jr�j2 and dvol(g) = v�ndx as in the proof ofTheorem 1.1, we getZ Rjrgvj2jrg�j2v�3dvol(g) = Z Rjrvj2jr�j2v1�ndx:Sine jr�j2 . p�2 and supp � � A(�) = fx 2 Rn j� < jxj < 2�g, we onludeZ Rjrgvj2jrg�j2v�3dvol(g) . ��2 Z Rjrvj2v1�ndx; (4:4)and this will suÆe: By Proposition 3.1 the Rhs of (4.4) is bounded independent of �. Thisimplies via (4.3) that



ZRn �g(L;E)v�1dvol(g) <1:In partiular, Zsuppjr�j �g(L;E)v�1dvol(g) = Zsuppjr�j jg(L;E)jv�1dvol(g)! 0 (4:6)as � ! 1. Now ombining (4.6) with (4.3) and the boundedness of the integrals in (4.5),we onlude that Z �g(L;E)v�1�2dvol(g)! 0 as �!1;so �g(L;E) � 0 on Rn . By (2.4) this implies E � 0. The onlusion of Theorem 0.1 follows.
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