# OPTIMAL TRANSPORTATION ON THE HEMISPHERE 

SUN-YUNG ALICE CHANG, JIAKUN LIU, AND PAUL YANG


#### Abstract

In this paper, we study the optimal transportation on the hemisphere, with the cost function $c(x, y)=\frac{1}{2} d^{2}(x, y)$, where $d$ is the Riemannian distance of the round sphere. The potential function satisfies a Monge-Ampère type equation with natural boundary condition. We obtain the a priori oblique estimate without using any uniform convexity of domains, and in particular for two dimensional case, we obtain the boundary $C^{2}$ estimate. Our proof does not depend on the smoothness of densities, which is new even for standard Monge-Ampère equations and optimal transportation on Euclidean spaces.


## 1. Introduction

Let $\mathbb{S}^{n}$ be the $n$-dimensional unit sphere equipped with the standard round metric $g$ and geodesic distance $d$. Denote the northern hemisphere to be $\mathbb{S}_{+}^{n}:=\mathbb{S}^{n} \cap\left\{x_{n+1} \geq 0\right\}$. Let $c(x, y)=\frac{1}{2} d^{2}(x, y)$ be the cost function, $f, g$ be two positive densities on $\mathbb{S}_{+}^{n}$, bounded from above and below, and satisfy

$$
\begin{equation*}
\int_{\mathbb{S}_{+}^{n}} f=\int_{\mathbb{S}_{+}^{n}} g . \tag{1.1}
\end{equation*}
$$

In this paper, we study the optimal transportation from $\left(\mathbb{S}_{+}^{n}, f\right)$ to $\left(\mathbb{S}_{+}^{n}, g\right)$ and obtain the a priori oblique and boundary estimates without using uniform $c$-convexity of domain and smoothness of densities, which are, however, key ingredients in the standard cases.

Let's briefly recall that in optimal transportation $(\Omega, f) \rightarrow\left(\Omega^{*}, g\right), f, g>0$ satisfying $\int_{\Omega} f=\int_{\Omega^{*}} g$, where $\Omega, \Omega^{*}$ are the initial and target domains, the optimal mapping $T_{u}$ is determined by the potential function $u$,

$$
\begin{equation*}
D u(x)=-D_{x} c\left(x, T_{u}(x)\right) \tag{1.2}
\end{equation*}
$$

for a.e. $x \in \Omega$, where the cost function $c$ satisfies conditions (A0)-(A1) in Section 2, and the functions $u, v$ are called potential functions as $(u, v)$ is a maximiser of

$$
\sup \{I(\phi, \psi):(\phi, \psi) \in K\}
$$

Date: April 11, 2013.
2000 Mathematics Subject Classification. 35J60, 35B45; 49Q20, 28C99.
Key words and phrases. Optimal transportation, obliqueness, Monge-Ampère equation.
(c)2013 by the authors. All rights reserved.
where

$$
\begin{aligned}
& I(\phi, \psi)=\int_{\Omega} f(x) \phi(x)+\int_{\Omega^{*}} g(y) \psi(y) \\
& K=\left\{(\phi, \psi) \in C(\Omega) \times C\left(\Omega^{*}\right): \phi(x)+\psi(y) \geq-c(x, y)\right\} .
\end{aligned}
$$

When $u$ is smooth, it solves a Monge-Ampère type equation

$$
\begin{equation*}
\operatorname{det}\left[D^{2} u+D_{x}^{2} c\right]=\left|\operatorname{det} D_{x y}^{2} c\right| \frac{f}{g \circ T_{u}} \quad \text { in } \Omega, \tag{1.3}
\end{equation*}
$$

with a natural boundary condition

$$
\begin{equation*}
T_{u}(\Omega)=\Omega^{*} . \tag{1.4}
\end{equation*}
$$

In the Euclidean case, when $\Omega, \Omega^{*}$ are two bounded domains in $\mathbb{R}^{n}$, the global regularity of (1.3)-(1.4) is obtained in [13] by assuming that $\Omega, \Omega^{*}$ are uniformly $c$-convex with respect to each other and the densities $f, g$ are correspondingly smooth. The uniform $c$-convexity of $\Omega$ with respect to $\Omega^{*}$ means that the image $c_{y}(\cdot, y)(\Omega)$ is uniformly convex in the usual sense for each $y \in \Omega^{*}$, while analogously $\Omega^{*}$ is uniformly $c$-convex with respect to $\Omega$, if the image $c_{x}(x, \cdot)\left(\Omega^{*}\right)$ is uniformly convex for each $x$ in $\Omega$.

In the special case $c(x, y)=-x \cdot y$, the $c$-convexity is equivalent to the usual convexity, and (1.3) reduces to the standard Monge-Ampère equation with the boundary condition of prescribing the image of gradient mapping,

$$
\left\{\begin{array}{l}
\operatorname{det} D^{2} u=h(x, D u) \quad \text { in } \Omega,  \tag{1.5}\\
D u(\Omega)=\Omega^{*} .
\end{array}\right.
$$

The boundary problem (1.5) has been extensively studied by many mathematicians, for example, see [2, 3, 15] and references therein. A crucial assumption in those work is the uniform convexity of domains $\Omega$ and $\Omega^{*}$.

Note that when $c(x, y)=-x \cdot y,(1.2)$ implies that $T_{u}=D u$ for a convex potential $u$. In our case $c=d^{2} / 2$, where $d$ is the geodesic distance on $\left(\mathbb{S}^{n}, g\right)$. From the result of [12], the optimal mapping can be expressed by the exponential mapping

$$
T_{u}(x)=\exp _{x}\left(\nabla_{g} u(x)\right),
$$

where $\nabla_{g}$ denotes the gradient with respect to the round metric $g$ on $\mathbb{S}^{n}$, and $u$ is a $c$ convex potential. For $\Omega, \Omega^{*} \subset \mathbb{S}^{n}, \Omega$ is uniformly $c$-convex with respect to $\Omega^{*}$ is equivalent to $\exp _{y}^{-1}(\Omega)$ is uniformly convex in $\mathbb{R}^{n}$ for each $y \in \Omega^{*}$, while analogously $\Omega^{*}$ is uniformly $c$-convex with respect to $\Omega$ if $\exp _{x}^{-1}\left(\Omega^{*}\right)$ is uniformly convex for each $x$ in $\Omega$. However, this is not the case when $\Omega=\Omega^{*}=\mathbb{S}_{+}^{n}$, as pick $y_{0} \in \mathbb{S}_{+}^{n} \cap\left\{x_{n}=0\right\}$,

$$
\exp _{y_{0}}^{-1}(\Omega)=\left\{z \in \mathbb{R}^{n}: z \in B_{\pi}(0) \cap\left\{z_{n} \geq 0\right\} \text { or }|z|=\pi\right\}
$$

which is even not connected. One can see that for $\Omega=\Omega^{*}=\mathbb{S}_{\varepsilon}^{n}:=\mathbb{S}^{n} \cap\left\{x_{n+1} \geq \varepsilon\right\}$, they are uniformly $c$-convex to each other for any positive constant $\varepsilon>0$. Therefore, the hemisphere $\mathbb{S}_{+}^{n}$ is a critical case in the above sense.

From here on, we use $X=\left(X_{1}, \cdots, X_{n}, X_{n+1}\right)$ to represent a point on $\mathbb{S}_{+}^{n}$, while $x=$ $\left(x_{1}, \cdots, x_{n}\right)$ represents a point in $\mathbb{R}^{n}$. We use the stereographic projection from the south pole to transform $\mathbb{S}_{+}^{n}$ into $\Pi\left(\mathbb{S}_{+}^{n}\right)=B_{1}(0) \subset \mathbb{R}^{n}$ by $x=\Pi(X)$ and

$$
\begin{equation*}
X=\Pi^{-1}(x)=\left(\frac{2 x_{1}}{1+|x|^{2}}, \cdots, \frac{2 x_{n}}{1+|x|^{2}}, \frac{1-|x|^{2}}{1+|x|^{2}}\right) \tag{1.6}
\end{equation*}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right) \in B_{1}(0)$.
Utilising the ambient Euclidean geometry of $\mathbb{R}^{n+1}$, it is an elementary calculation that

$$
\begin{equation*}
d(X, Y)=\arccos (X \cdot Y) \tag{1.7}
\end{equation*}
$$

for $X, Y \in \mathbb{S}^{n}$ and $d$ the geodesic distance. Under the stereographic projection $\Pi$, one has the optimal transportation from $\Omega=B_{1}(0)$ to $\Omega^{*}=B_{1}(0)$ with the cost function

$$
\begin{align*}
\bar{c}(x, y) & =c\left(\Pi^{-1}(x), \Pi^{-1}(y)\right) \\
& =\frac{1}{2}\left(\arccos \left(\frac{4(x \cdot y)}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)}+\frac{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)}\right)\right)^{2} \tag{1.8}
\end{align*}
$$

for $x, y \in B_{1}(0)$. Correspondingly, the potential $u$ and the optimal mapping $T$ will become

$$
\begin{equation*}
\bar{u}(x)=u \circ \Pi^{-1}(x) \quad \text { and } \quad \bar{T}(x)=\Pi \circ T \circ \Pi^{-1}(x), \quad \text { for } x \in B_{1}(0) \tag{1.9}
\end{equation*}
$$

The convexity with respect to $\bar{c}$ is inherited from that of $c$, namely $\bar{u}$ is $\bar{c}$-convex if and only if $u$ is $c$-convex; a domain $E \subset B_{1}(0)$ is $\bar{c}$-convex with respect to $E^{*} \subset B_{1}(0)$ if and only if $\Pi^{-1}(E)$ is $c$-convex with respect to $\Pi^{-1}\left(E^{*}\right)$.

As pointed out, due to the lack of convexity, the standard techniques in dealing with (1.5) are not applicable to (1.3)-(1.4) with the cost function given by (1.8). In this paper, we use an elementary and non-trivial method to establish the a priori oblique and boundary estimates. Our main result is the following:

Theorem 1.1. Assume that the density functions $f, g$ satisfies 1.1 and there exists a constant $\lambda>0$ such that $\lambda^{-1}<f, g<\lambda$. Then we have the a priori estimate

$$
\begin{equation*}
\sum_{i, k=1}^{n}-y_{i} c^{i, k} x_{k} \geq c_{0} \tag{1.10}
\end{equation*}
$$

for all $x \in \Omega$ and $y=T(x)$, where $c_{0}>0$ is a constant depending only on $\lambda$.
Moreover, when $n=2$, we have the a priori boundary estimate

$$
\begin{equation*}
\sup _{\partial \Omega}\left|D^{2} u\right| \leq C \tag{1.11}
\end{equation*}
$$

for some constant $C>0$ depending only on $\lambda$.

The restriction $n=2$ is unsatisfactory but it is needed due to a technical reason. On the other hand, to derive the boundary estimate 1.11 , usually one need a differentiability of the inhomogeneous term, but here we only need the boundedness. This paper is organised
as follows: In Section 2, we introduce some preliminary notations and results. In Section 3 , we prove the oblique estimate 1.10 , where our approach makes no use of uniform convexity nor duality argument. In Section 4 , we prove the boundary $C^{2}$ estimate (1.11) in the two-dimensional case.

## 2. Preliminaries

First, let's recall some basic notions of optimal transportation on a Riemannian manifold $\mathcal{M}$ with a distance-squared cost function $c(x, y)=\frac{1}{2} d^{2}(x, y)$.

Definition 2.1. Let $\mathcal{M}$ be a compact Riemannian manifold and $d(\cdot, \cdot)$ be its Riemannian distance function. The $c$-transform $u^{c}$ of a function $u: \mathcal{M} \rightarrow \mathbb{R}$ is defined for all $x \in \mathcal{M}$ by

$$
\begin{equation*}
u^{c}(x)=\sup _{y \in \mathcal{M}}\left\{-\frac{d^{2}(x, y)}{2}-u(y)\right\} \tag{2.1}
\end{equation*}
$$

The function $u$ is said to be $c$-convex if $\left(u^{c}\right)^{c}=u$.

For a $c$-convex function $u$, for any point $x_{0} \in \mathcal{M}$, by the above definition there exists $y \in \mathcal{M}$ such that

$$
u(x) \geq-\frac{d^{2}(x, y)}{2}-u^{c}(y)
$$

for all $x \in \mathcal{M}$ with equality holds at $x=x_{0}$. The function $\varphi(\cdot)=-\frac{d^{2}(\cdot, y)}{2}-u^{c}(y)$ is called a $c$-support of $u$ at $x \in \mathcal{M}$. A function $u$ is $c$-convex is equivalent to that for any point $x \in \mathcal{M}$ there exists a $c$-support of $u$ at $x$. Naturally, the potential function $u$ in $(1.2)$ of optimal transportation is $c$-convex.

Definition 2.2. Let $u$ be a $c$-convex function, the $c$-normal mapping $T_{u}$ is defined by

$$
\begin{equation*}
T_{u}\left(x_{0}\right)=\left\{y \in \mathcal{M}: u(x) \geq \frac{d^{2}\left(x_{0}, y\right)}{2}-\frac{d^{2}(x, y)}{2}+u\left(x_{0}\right), \quad \forall x \in \mathcal{M}\right\} \tag{2.2}
\end{equation*}
$$

Note that by duality between $u$ and $u^{c}$, if $y \in T_{u}\left(x_{0}\right)$, we have $u^{c}(y)=-\frac{d^{2}\left(x_{0}, y\right)}{2}-u\left(x_{0}\right)$, and

$$
-D_{x} c\left(x_{0}, y\right) \in \partial u\left(x_{0}\right)
$$

where $\partial u$ is the subgradient of $u$. If $u$ is $C^{1}$ smooth at $x_{0}$, then $T_{u}\left(x_{0}\right)$ is single valued, and is exactly the mapping given by (1.2). In general, $T_{u}(x)$ is single valued for almost all $x \in \mathcal{M}$ as $u$ is $c$-convex and thus twice differentiable almost everywhere by the well-known theorem of Aleksandrov. If $c(x, y)=-x \cdot y$ and $\mathcal{M}$ is Euclidean, then $T_{u}$ is the normal mapping for convex functions.

We may extend the $c$-normal mapping to boundary points. Let $x_{0} \in \partial \mathcal{M}$ be a boundary point, we denote $T_{u}\left(x_{0}\right)=\left\{y \in \mathcal{M}: y=\lim _{k \rightarrow \infty} y_{k}\right\}$, where $y_{k} \in T_{u}\left(x_{k}\right)$ and $\left\{x_{k}\right\}$ is a sequence of interior points of $\mathcal{M}$ such that $x_{k} \rightarrow x_{0}$.

Let $\mathcal{U}$ be a subset of $\mathcal{M} \times \mathcal{M}$, which for simplicity we assume compact. Denote $\pi_{1}, \pi_{2}$ the usual canonical projections. For any $x \in \pi_{1}(\mathcal{U})$, we denote by $\mathcal{U}_{x}$ the set $\mathcal{U} \cap \pi_{1}^{-1}(x)$. Similarly, we can define $\mathcal{U}_{y}=\mathcal{U} \cap \pi_{2}^{-1}(y)$, for any $y \in \pi_{2}(\mathcal{U})$. Let us introduce the following conditions:
(A0) The cost function $c$ belongs to $C^{4}(\mathcal{U})$.
(A1) For any $(x, y) \in \mathcal{U},(p, q) \in D_{x} c(\mathcal{U}) \times D_{y} c(\mathcal{U})$, there exists unique $Y=Y(x, p), X=$ $X(y, q)$, such that $-D_{x} c(x, Y)=p,-D_{y} c(X, y)=q$.
(A2) For any $(x, y) \in \mathcal{U}$, $\operatorname{det} D_{x, y}^{2} c \neq 0$.
We recall the definition of $c$-convexity for domains (see [11]):
Definition 2.3. Let $y \in \pi_{2}(\mathcal{U})$, a subset $\Omega$ of $\pi_{1}\left(\mathcal{U}_{y}\right)$ is $c$-convex (resp. uniformly $c$-convex) with respect to $y$ if the set $\left\{-D_{y} c(x, y), x \in \Omega\right\}$ is a convex (resp. uniformly convex) set of $T_{y} \mathcal{M}$. Whenever $\Omega \times \Omega^{*} \subset \mathcal{U}, \Omega$ is $c$-convex with respect to $\Omega^{*}$ if it is $c$-convex with respect to every $y \in \Omega^{*}$.

Similarly we can define $c^{*}$-convexity of domains by exchanging $x$ and $y$. Without arising any confusion, for simplicity we abuse the notation $c$-convexity to also mean $c^{*}$-convexity by drop the sup-script. When the cost function $c=d^{2} / 2$, we have $D_{x} c(x, y)=\exp _{x}^{-1}(y)$. Therefore, $\Omega^{*} \subset \mathcal{M}$ is $c$-convex (resp. uniformly $c$-convex) with repsect to $x$ is equivalent to $\exp _{x}^{-1}\left(\Omega^{*}\right)$ is convex (resp. uniformly convex).

However, conditions (A0)-(A2) are not satisfied on $\mathbb{S}_{+}^{n} \times \mathbb{S}_{+}^{n}$ due to the singularities on antipodal points. The next lemma shows that for each point $x \in \partial \mathbb{S}_{+}^{n}$, its image under the $c$-normal mapping of a $c$-convex function stays uniformly away from its antipodal point $\hat{x}$. Note that the singularity only occurs on the boundary $\partial \mathbb{S}_{+}^{n}=\mathbb{S}_{+}^{n} \cap\left\{x_{n+1}=0\right\}$ and the antipodal point $\hat{x}=-x$ for $x \in \partial \mathbb{S}_{+}^{n}$.

Lemma 2.1. Let $T=T_{u}$ be the c-normal mapping of a c-convex potential $u$ such that $T_{\#} f=g$. Assume that the densities $f, g$ have positive lower and upper bounds. Then there exists a constant $\delta>0$, such that

$$
\begin{equation*}
d(T(x), \hat{x}) \geq \delta \tag{2.3}
\end{equation*}
$$

for any $x \in \partial \mathbb{S}_{+}^{n}$.
Proof. The proof essentially follows from [4], where the measures and transport maps are defined on the whole sphere $\mathbb{S}^{n}$ without boundary. We include it here for completeness. Let $x_{0} \in \partial \mathbb{S}_{+}^{n}$ be a boundary point, and $\hat{x}_{0}$ be its antipodal point. We claim that: for almost all $x \in \mathbb{S}_{+}^{n}, x \neq x_{0}$,

$$
\begin{equation*}
d\left(T(x), \hat{x}_{0}\right) \leq 2 \pi \frac{d\left(T\left(x_{0}\right), \hat{x}_{0}\right)}{d\left(x, x_{0}\right)} \tag{2.4}
\end{equation*}
$$

Then denote $D=\left\{x \in \mathbb{S}_{+}^{n}: d\left(x, x_{0}\right) \geq \pi / 2\right\}$, a subset of $\mathbb{S}_{+}^{n}$. From the preceding inequality, we infer that almost all $x \in D$ are sent by $T$ into $B_{\varepsilon}\left(\hat{x}_{0}\right)$, where

$$
\begin{equation*}
\varepsilon=2 \pi \frac{d\left(T\left(x_{0}\right), \hat{x}_{0}\right)}{\pi / 2}=4 d\left(T\left(x_{0}\right), \hat{x}_{0}\right) \tag{2.5}
\end{equation*}
$$

By the measure preserving condition, we then have

$$
\int_{B_{\varepsilon}\left(\hat{x}_{0}\right)} g \geq \int_{D} f
$$

and thus,

$$
d^{n}\left(T\left(x_{0}\right), \hat{x}_{0}\right) \sup g \geq C \inf f
$$

where $C$ is a constant only depending on $n$. Since $x_{0}$ is arbitrary, we conclude that there is a constant $\delta>0$ depending on the lower bound of $f$ and upper bound of $g$ such that 2.3) holds.

Therefore, it suffices to prove the claim (2.4). Fix $x_{0} \in \partial \mathbb{S}_{+}^{n}$ and another point $x \in \mathbb{S}_{+}^{n}$, define the function

$$
F(p)=\frac{1}{2} d^{2}(p, x)-\frac{1}{2} d^{2}\left(p, x_{0}\right)
$$

for $p \in \mathbb{S}_{+}^{n}$. The function $F$ satisfies that [4]

$$
\begin{equation*}
\operatorname{grad}_{p} F(p)=\exp _{p}^{-1}\left(x_{0}\right)-\exp _{p}^{-1}(x) \tag{2.6}
\end{equation*}
$$

where the gradient is defined everywhere except $\hat{x}_{0}$. Since our manifold is $\mathbb{S}_{+}^{n}$, by comparison with the Euclidean case,

$$
\begin{equation*}
\left|\operatorname{grad}_{p} F(p)\right| \geq d\left(x_{0}, x^{\prime}\right) \tag{2.7}
\end{equation*}
$$

Let us consider on $\mathbb{S}_{+}^{n} \backslash\left\{\hat{x}_{0}\right\}$ the normalized steepest descent equation (with arc-length parameter $s$ ):

$$
\dot{p}(s)=-\frac{\operatorname{grad}_{p} F[p(s)]}{\left|\operatorname{grad}_{p} F[p(s)]\right|} .
$$

From (2.7), any solution $p(s)$ satisfies

$$
\frac{d}{d s} F[p(s)]=-\left|\operatorname{grad}_{p} F[p(s)]\right| \leq-d\left(x_{0}, x\right)
$$

It is easy to see that for fixed $\left(x_{0}, x\right)$, the function $F(p)$ attains its infimum at $p=\hat{x}_{0}$. Therefore, starting from $p(0)=p_{0}$, for some $p_{0} \neq \hat{x}_{0}$, the minimum of $p \mapsto F(p)$ is reached by flowing along an integral curve of length $L \geq d\left(p_{0}, \hat{x}_{0}\right)$. Writing

$$
F\left(p_{0}\right)-F\left(\hat{x}_{0}\right)=-\int_{0}^{L} \frac{d}{d s} F[p(s)] d s
$$

we then have

$$
\begin{aligned}
F\left(p_{0}\right)-F\left(\hat{x}_{0}\right) & \geq \int_{0}^{L} d\left(x_{0}, x\right) \\
& \geq d\left(x_{0}, x\right) d\left(p_{0}, \hat{x}_{0}\right)
\end{aligned}
$$

It implies that for $x \neq x_{0}$ and for all $p \in \mathbb{S}_{+}^{n}$,

$$
\begin{equation*}
d\left(p, \hat{x}_{0}\right) \leq \frac{F(p)-F\left(\hat{x}_{0}\right)}{d\left(x_{0}, x\right)} . \tag{2.8}
\end{equation*}
$$

Next, we show that (2.4) follows from (2.8). We know that the mapping $T$ is a.e. $c$ monotone, see for example [1, 4], which implies that for almost all $x_{0} \in \partial \mathbb{S}_{+}^{n}$ and $x \in \mathbb{S}^{n}$,

$$
\frac{1}{2} d^{2}\left(x_{0}, T\left(x_{0}\right)\right)+\frac{1}{2} d^{2}(x, T(x)) \leq \frac{1}{2} d^{2}\left(x_{0}, T(x)\right)+\frac{1}{2} d^{2}\left(x, T\left(x_{0}\right)\right) .
$$

From the definition of function $F$, we get

$$
F[T(x)] \leq F\left[T\left(x_{0}\right)\right] .
$$

Now, setting $p=T(x)$ in (2.8), we have

$$
\begin{aligned}
d\left(\hat{x}_{0}, T(x)\right) & \leq \frac{F(T(x))-F\left(\hat{x}_{0}\right)}{d\left(x_{0}, x\right)} \\
& \leq \frac{F\left(T\left(x_{0}\right)\right)-F\left(\hat{x}_{0}\right)}{d\left(x_{0}, x\right)},
\end{aligned}
$$

hence, since $p \mapsto F(p)$ is $2 \pi$-Lipschitz, we obtain (2.4), namely

$$
d\left(\hat{x}_{0}, T(x)\right) \leq 2 \pi \frac{d\left(T\left(x_{0}\right), x_{0}\right)}{d\left(x_{0}, x\right)},
$$

for almost all $x \in \mathbb{S}_{+}^{n}, x \neq x_{0}$. The proof is finished.
We now recall the definition of the cost-sectional curvature [9], and introduce an additional condition on the cost function $c$, which is crucial for regularity estimates [11:

Definition 2.4. Assume that the cost function $c$ satisfies (A0)-(A2) in $\mathcal{U} \subset \mathcal{M} \times \mathcal{M}$. For every $\left(x_{0}, y_{0}\right) \in \mathcal{U}$, define on $T_{x_{0}} \mathcal{M} \times T_{x_{0}} \mathcal{M}$ a real-valued map

$$
\begin{equation*}
\mathfrak{S}_{c}\left(x_{0}, y_{0}\right)(\xi, \eta)=\left.D_{p_{\eta} p_{\eta} x_{\xi} x_{\xi}}^{4}\left[(x, p) \rightarrow-c\left(x, \exp _{x_{0}}(p)\right)\right]\right|_{x_{0}, p_{0}=-\nabla_{x} c\left(x_{0}, y_{0}\right)} . \tag{2.9}
\end{equation*}
$$

When $\xi, \eta$ are unit orthogonal vectors (with respect to the metric $g$ at $\left.x_{0}\right)$, $\mathfrak{S}_{c}\left(x_{0}, y_{0}\right)(\xi, \eta)$ defines the cost-sectional curvature from $x_{0}$ to $y_{0}$ in directions $(\xi, \eta)$.

In fact, definition (2.9) is equivalent to the following

$$
\begin{equation*}
\mathfrak{S}_{c}\left(x_{0}, y_{0}\right)(\xi, \eta)=\left.D_{t t}^{2} D_{s s}^{2}\left[(t, s) \rightarrow-c\left(\exp _{x_{0}}(t \xi), \exp _{x_{0}}\left(p_{0}+s \eta\right)\right)\right]\right|_{t, s=0} . \tag{2.10}
\end{equation*}
$$

Moreover, the definition of $\mathfrak{S}_{c}\left(x_{0}, y_{0}\right)(\xi, \eta)$ is intrinsic, only depends on the points $\left(x_{0}, y_{0}\right) \in$ $\mathcal{U}$ and vectors $(\xi, \eta)$, but not on the choice of local coordinates around $x_{0}$ or $y_{0},[6,9]$. We are now ready to introduce the condition
(A3) For any $(x, y) \in \mathcal{U}$, and $\xi, \eta \in \mathbb{R}^{n}$ with $\xi \perp \eta$,

$$
\begin{equation*}
\mathfrak{S}_{c}(x, y)(\xi, \eta) \geq c_{0}|\xi|^{2}|\eta|^{2} \tag{2.11}
\end{equation*}
$$

where $c_{0}$ is a positive constant.

It has been verified [10] that the cost function $c=d^{2} / 2$ over $\mathbb{S}^{n}$ satisfies (A3) for any $x, y$ such that $d(x, y)<\pi$. Then under the assumptions of Lemma 2.1, we have

Corollary 2.1. The cost function $c$ satisfies conditions (A0)-(A3) on the graph of $T_{u}$, $\mathcal{G}_{T}:=\left\{\left(x, T_{u}(x)\right): x \in \mathbb{S}_{+}^{n}\right\}$.

Corollary 2.2. Let $u$ be a c-convex potential on $\mathbb{S}_{+}^{n}$. The densities $f$ and $g$ are bounded from above and below. Then there exists a constant $\alpha \in(0,1)$ such that $u \in C^{1, \alpha}\left(\overline{\mathbb{S}_{+}^{n}}\right)$.

Proof. Using the stereographic projection, it suffices to show that $\bar{u} \in C^{1, \alpha}\left(\overline{B_{1}}\right)$ for some constant $\alpha \in(0,1)$, where $\bar{u}$ is given in $(\overline{1.9)}$. By Corollary 2.1, the cost function $\bar{c}$ satisfies (A0)-(A3) on the graph $\mathcal{G}_{\bar{T}}=\left\{(x, \bar{T}(x)): x \in B_{1}(0)\right\}$. The proof then follows from [8] by using a similar argument. The global $C^{1, \alpha}$ regularity was previously obtained by Loeper in [9] for Euclidean domains and in [10] for spheres $\mathbb{S}^{n}$.

Let $x_{0} \in B_{1}$ be an interior point and $N_{r}\left(x_{0}\right):=B_{r}\left(x_{0}\right) \cap \bar{B}_{1}(0)$ be a small neighborhood of $x_{0}$. By Lemma 2.1, for each $y_{0} \in \bar{T}\left(x_{0}\right), N_{r}\left(x_{0}\right)$ is $\bar{c}$-convex with respect to $y_{0}$ when $r>0$ is sufficicently small. Let $\varphi=\bar{c}\left(\cdot, y_{0}\right)+a_{0}$ be a $c$-support of $\bar{u}$ at $x_{0}$, where $a_{0}$ is a constant. Then we can define the sub-level set

$$
S_{h, \bar{u}}^{0}\left(x_{0}\right)=\left\{x \in N_{r}\left(x_{0}\right): \bar{u}(x)<\varphi(x)+h\right\}
$$

for $h>0$ small. Since $\bar{c}$ satisfies $(\mathrm{A} 3), S_{h, \bar{u}}^{0}\left(x_{0}\right)$ is $\bar{c}$-convex with respect to $y_{0}$. Thus by the coordinate transform $x \mapsto D_{y} \bar{c}\left(x, y_{0}\right), S_{h, \bar{u}}^{0}\left(x_{0}\right)$ becomes a convex set. By applying the normalization argument in [8], we can obtain $\bar{u} \in C^{1, \alpha}\left(x_{0}\right)$.

For the boundary regularity, it can be reduced into the interior case since the argument in [8] allows that the initial density $f$ vanishes. But we need to extend the function $\bar{u}$ to a neighborhood of $B_{1}(0)$ by setting

$$
\bar{u}(x)=\sup \left\{-c(x, y)-\bar{u}^{c}(y): y \in B_{1}(0)\right\}
$$

where $\bar{u}^{c}$ is the dual potential function of $\bar{u}$.

## 3. Obliqueness

In this section we focus on the optimal transportation after the stereographic transformation, which is from $\Omega=B_{1}(0)$ to $\Omega^{*}=B_{1}(0)$ with the cost function given in 1.8 . We drop off the bars over the functions $c, u$ for simplicity, so that the potential function $u$ satisfies equation 1.3 with boundary condition 1.4 , where the optimal mapping $T_{u}$ is determined by (1.2). We will prove 1.10 in the following lemma.

Recall that a boundary condition of the form

$$
\begin{equation*}
G(x, u, D u)=0 \quad \text { on } \partial \Omega \tag{3.1}
\end{equation*}
$$

for a second order partial differential equation in a domain $\Omega$ is called oblique, (or degenerate oblique) if

$$
\begin{equation*}
G_{p} \cdot \nu \geq c_{0}>0, \quad(\text { or } \geq 0) \tag{3.2}
\end{equation*}
$$

for all $(x, z, p) \in \partial \Omega \times \mathbb{R} \times \mathbb{R}^{2}$, where $c_{0}$ is a positive constant, $\nu$ denotes the unit outer normal to $\partial \Omega$. Let $\phi(x)=\frac{1}{2}\left(|x|^{2}-1\right)$ and $\phi^{*}(y)=\frac{1}{2}\left(|y|^{2}-1\right)$ be smooth defining functions for $\Omega$ and $\Omega^{*}$, respectively. Then 1.4 can be written as

$$
\begin{array}{ll}
\phi^{*}\left(T_{u}\right)=0 & \text { on } \partial \Omega  \tag{3.3}\\
\phi^{*}\left(T_{u}\right)<0 & \text { near } \partial \Omega
\end{array}
$$

Set $G(x, u, D u):=\phi^{*} \circ T_{u}(x, D u)$. The main estimate in this section is the following
Lemma 3.1. Under the assumptions of Theorem 1.1, the boundary condition (1.4) satisfies a strict obliqueness estimate (3.2).

Proof. Let $u \in C^{2}(\bar{\Omega})$ be an elliptic solution of (1.3)-1.4), and denote $y=T_{u}(x)$. By differentiation, we have

$$
\begin{equation*}
\phi_{k}^{*} D_{i} y_{k} \tau_{i}=0 \quad \text { on } \partial \Omega \tag{3.4}
\end{equation*}
$$

for any unit tangential vector $\tau$ on $\partial \Omega$, and

$$
\begin{equation*}
\phi_{k}^{*} D_{\nu} y_{k} \geq 0 \quad \text { on } \partial \Omega \tag{3.5}
\end{equation*}
$$

where $\nu$ is the outer normal to $\partial \Omega$, whence

$$
\begin{equation*}
\phi_{i}^{*} D_{j} y_{i}=\chi \nu_{j} \tag{3.6}
\end{equation*}
$$

for some $\chi \geq 0$. Consequently, from 1.2 )

$$
\begin{equation*}
-\phi_{i}^{*} c^{i, k} w_{j k}=\chi \nu_{j} \tag{3.7}
\end{equation*}
$$

where $\left\{c^{i, j}\right\}=\left\{c_{i, j}\right\}^{-1}$ and

$$
\begin{equation*}
w_{i j}:=u_{i j}+c_{i j} \tag{3.8}
\end{equation*}
$$

At this point we observe that $\chi>0$ on $\partial \Omega$ since $\left|\nabla \phi^{*}\right| \neq 0$ on $\partial \Omega$ and $\operatorname{det} D T \neq 0$. Using the ellipticity of 1.3 and letting $\left\{w^{i j}\right\}$ denote the inverse matrix of $\left\{w_{i j}\right\}$, we then have

$$
\begin{equation*}
-\phi_{i}^{*} c^{i, k}=\chi w^{j k} \nu_{j} \tag{3.9}
\end{equation*}
$$

Now writing $G(x, p)=\phi^{*} \circ T_{u}(x, p)=\phi^{*}(y)$, by differentiating

$$
\begin{align*}
G_{p_{k}} & =\phi_{i}^{*} D_{p_{k}} y_{i}=-\phi_{i}^{*} c^{i, k} \\
& =\chi w^{j k} \nu_{j} \tag{3.10}
\end{align*}
$$

thus

$$
\begin{align*}
G_{p} \cdot \nu & =\chi w^{i j} \nu_{i} \nu_{j}  \tag{3.11}\\
& >0
\end{align*}
$$

on $\partial \Omega$. Next, we obtain a uniform positive lower bound for $G_{p} \cdot \nu$ as follows. On the boundary $\partial \Omega \times \partial \Omega^{*}$, the unit outer normal $\nu_{i}=x_{i}$ and $\phi_{i}^{*}=y_{i}$, for $i=1, \cdots, n$. From (3.10), we have

$$
\begin{equation*}
G_{p} \cdot \nu=\sum_{i, j=1}^{n}-y_{i} c^{i, j}(x, y) x_{j} \tag{3.12}
\end{equation*}
$$

We claim that for $(x, y) \in \partial \Omega \times \partial \Omega^{*}$, for any $1 \leq i \leq n$

$$
\begin{equation*}
\sum_{j=1}^{n} c_{i, j} y_{j}=-\arccos (x \cdot y) \frac{x_{i}}{\sqrt{1-(x \cdot y)^{2}}} . \tag{3.13}
\end{equation*}
$$

Hence, $\sum_{i=1}^{n} c^{i, j} x_{j}=-\frac{y_{i} \sqrt{1-(x \cdot y)^{2}}}{\arccos (x \cdot y)}$ and then

$$
\begin{equation*}
G_{p} \cdot \nu=\frac{\left|y^{2}\right| \sqrt{1-(x \cdot y)^{2}}}{\arccos (x \cdot y)}=\frac{\sqrt{1-(x \cdot y)^{2}}}{\arccos (x \cdot y)} \tag{3.14}
\end{equation*}
$$

By Lemma 2.1, $1+x \cdot y \geq \varepsilon_{0}$ for some positive constant $\varepsilon_{0}$. Therefore, there exists a constant $c_{0}>0$ such that 3.2 holds. The proof of Lemma 3.1 is completed.

Let us now prove the claim (3.13) at $(x, y) \in \partial B_{1} \times \partial B_{1}$ with the cost function $c$ given in 1.8. Denote

$$
\begin{equation*}
\theta=\frac{4(x \cdot y)}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)}+\frac{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}{\left(1+|x|^{2}\right)\left(1+|y|^{2}\right)} \tag{3.15}
\end{equation*}
$$

the cost function $c(x, y)=\frac{1}{2} \arccos 2 \theta$. By differentiating, the first order derivatives are

$$
\begin{equation*}
c_{i}=\frac{\partial c}{\partial x_{i}}=-\frac{\arccos \theta}{\sqrt{1-\theta^{2}}} \frac{1}{1+|y|^{2}}\left(\frac{4 y_{i}}{1+|x|^{2}}-\frac{8(x \cdot y) x_{i}}{\left(1+|x|^{2}\right)^{2}}-\frac{4 x_{i}\left(1-|y|^{2}\right)}{\left(1+|x|^{2}\right)^{2}}\right) \tag{3.16}
\end{equation*}
$$

for all $i=1, \cdots, n$.
At $(x, y) \in \partial B_{1} \times \partial B_{1},|x|=|y|=1$ and the function $\theta=x \cdot y$, thus

$$
\begin{equation*}
c_{i}=\frac{-\arccos (x \cdot y)}{\sqrt{1-(x \cdot y)^{2}}}\left(y_{i}-(x \cdot y) x_{i}\right) \tag{3.17}
\end{equation*}
$$

Therefore, we obtain the relation $x \cdot D_{x} c=\sum_{i=1}^{n} x_{i} c_{i}=0$. We point this out because it will be used on the boundary estimates in the next section.

By differentiating $\theta$ in (3.15) with respect to $y$ variable, we have

$$
\begin{align*}
\frac{\partial \theta}{\partial y_{i}} & =\frac{1}{1+|x|^{2}}\left(\frac{4 x_{i}}{1+|y|^{2}}-\frac{8(x \cdot y) y_{i}}{\left(1+|y|^{2}\right)^{2}}-\frac{4 y_{i}\left(1-|x|^{2}\right)}{\left(1+|y|^{2}\right)^{2}}\right)  \tag{3.18}\\
& =x_{i}-(x \cdot y) y_{i},
\end{align*}
$$

for all $(x, y) \in \partial B_{1} \times \partial B_{1}$ and $i=1, \cdots, n$. By a further differentiation of 3.16 with respect to $y$ variable, the mixed second order derivatives are

$$
\begin{align*}
c_{i, j}= & \left(\frac{1}{1-\theta^{2}}-\frac{\theta \arccos \theta}{\left(1-\theta^{2}\right)^{3 / 2}}\right) \frac{\partial \theta}{\partial y_{j}} \frac{1}{1+|y|^{2}}\left(\frac{4 y_{i}}{1+|x|^{2}}-\frac{8(x \cdot y) x_{i}}{\left(1+|x|^{2}\right)^{2}}-\frac{4 x_{i}\left(1-|y|^{2}\right)}{\left(1+|x|^{2}\right)^{2}}\right) \\
& +\arccos \theta \frac{1}{\sqrt{1-\theta^{2}}} \frac{2 y_{j}}{\left(1+|y|^{2}\right)^{2}}\left(\frac{4 y_{i}}{1+|x|^{2}}-\frac{8(x \cdot y) x_{i}}{\left(1+|x|^{2}\right)^{2}}-\frac{4 x_{i}\left(1-|y|^{2}\right)}{\left(1+|x|^{2}\right)^{2}}\right)  \tag{3.19}\\
& -\arccos \theta \frac{1}{\sqrt{1-\theta^{2}}} \frac{1}{1+|y|^{2}} \frac{1}{1+|x|^{2}}\left(4 \delta_{i j}-\frac{8 x_{i} x_{j}}{1+|x|^{2}}+\frac{8 x_{i} y_{j}}{1+|x|^{2}}\right) .
\end{align*}
$$

Combining (3.18) with 3.19) and noting that $\theta=x \cdot y,|x|=|y|=1$, we have

$$
\begin{align*}
c_{i, j}= & \left(\frac{1}{1-\theta^{2}}-\frac{\theta \arccos \theta}{\left(1-\theta^{2}\right)^{3 / 2}}\right)\left(x_{j}-(x \cdot y) y_{j}\right)\left(y_{i}-(x \cdot y) x_{i}\right) \\
& +\frac{\arccos \theta}{\sqrt{1-\theta^{2}}}\left(y_{j}\left(y_{i}-(x \cdot y) x_{i}\right)-\left(\delta_{i j}-x_{i} x_{j}+x_{i} y_{j}\right)\right) \tag{3.20}
\end{align*}
$$

Therefore, the sum in 3.13 becomes

$$
\begin{align*}
\sum_{j=1}^{n} c_{i, j} y_{j}= & \left(\frac{1}{1-\theta^{2}}-\frac{\theta \arccos \theta}{\left(1-\theta^{2}\right)^{3 / 2}}\right)(x \cdot y-x \cdot y)\left(y_{i}-(x \cdot y) x_{i}\right) \\
& +\frac{\arccos \theta}{\sqrt{1-\theta^{2}}}\left(\left(y_{i}-(x \cdot y) x_{i}\right)-\left(y_{j}-(x \cdot y) x_{i}+x_{i}\right)\right)  \tag{3.21}\\
= & -\arccos (x \cdot y) \frac{x_{i}}{\sqrt{1-(x \cdot y)^{2}}}
\end{align*}
$$

The claim (3.13) is proved, and thus (3.17) holds and Lemma 3.1 is proved.

## 4. Boundary $C^{2}$ estimate

In this section we prove the boundary $C^{2}$ estimate 1.11 in the two dimensional case. Recall that $\Omega, \Omega^{*}=B_{1}(0)$ and the boundary condition is written as

$$
\begin{equation*}
\phi^{*}\left(T_{u}\right)=0 \quad \text { on } \partial B_{1}(0) \tag{4.1}
\end{equation*}
$$

where $\phi^{*}(y)=\frac{1}{2}\left(|y|^{2}-1\right)$, and $T_{u}=T(\cdot, D u)$ is the optimal mapping.
It is convenient to denote the vector field $\beta=\left(\beta_{1}, \beta_{2}\right)$ where

$$
\begin{equation*}
\beta_{k}:=\frac{\partial \phi^{*}}{\partial p_{k}}=\phi_{i}^{*} D_{p_{k}} y_{i}=-\phi_{i}^{*} c^{i, k} \tag{4.2}
\end{equation*}
$$

Differentiating along any tangential vector field $\tau$ on $\partial B_{1}$, we have

$$
\begin{equation*}
0=\phi_{k}^{*} D_{i} y_{k} \tau_{i}=-\phi_{k}^{*} c^{k, j} w_{j i} \tau_{i}=w_{\tau \beta} \quad \text { on } \partial B_{1} \tag{4.3}
\end{equation*}
$$

Let $\nu$ be the unit outer normal of $\partial B_{1}$, by differentiating

$$
\begin{equation*}
0 \leq \phi_{k}^{*} D_{i} y_{k} \nu_{i}=-\phi_{k}^{*} c^{k, j} w_{j i} \nu_{i}=w_{\nu \beta} \quad \text { on } \partial B_{1} \tag{4.4}
\end{equation*}
$$

Here and below we use the notation $w_{\xi \eta}$ to denote $w_{i j} \xi_{i} \eta_{j}$ even if $\xi$ and $\eta$ are not unit vector fields.

Suppose $w_{\xi \xi}$ takes its maximum over $\partial B_{1}$ and unit vector $\xi$ at $x_{0} \in \partial B_{1}$. Note that we may write $\xi$ in terms of a tangential component $\tau(\xi)$ and a component in the direction of $\beta$, namely

$$
\xi=\tau(\xi)+\frac{\nu \cdot \xi}{\beta \cdot \nu} \beta
$$

where

$$
\tau(\xi)=\xi-(\nu \cdot \xi) \nu-\frac{\nu \cdot \xi}{\beta \cdot \nu} \beta^{T}
$$

and

$$
\beta^{T}=\beta-(\beta \cdot \nu) \nu
$$

Thanks to the oblique estimate in Lemma 3.1, we have

$$
|\tau(\xi)|^{2}=1-\left(1-\frac{\left|\beta^{T}\right|^{2}}{(\beta \cdot \nu)^{2}}\right)(\nu \cdot \xi)^{2}-2(\nu \cdot \xi) \frac{\beta^{T} \cdot \xi}{\beta \cdot \nu} \leq C
$$

Thus,

$$
\begin{align*}
w_{\xi \xi} & =w_{\tau(\xi) \tau(\xi)}+\frac{2 \nu \cdot \xi}{\beta \cdot \nu} w_{\tau \beta}+\frac{(\nu \cdot \xi)^{2}}{(\beta \cdot \nu)^{2}} w_{\beta \beta} \\
& \leq|\tau(\xi)|^{2} w_{\tau_{0} \tau_{0}}+\frac{(\nu \cdot \xi)^{2}}{(\beta \cdot \nu)^{2}} w_{\beta \beta} \tag{4.5}
\end{align*}
$$

Namely, it suffices to control $w_{\tau_{0} \tau_{0}}$ and $w_{\beta \beta}$.
From (3.17) and $1.2, x \cdot D u \equiv 0$ on $\partial B_{1}$. Without loss of generality, we may assume $x_{0}=(0,1)$ and locally $\partial B_{1}$ can be represented by $x_{2}=\rho\left(x_{1}\right)=\sqrt{1-\left|x_{1}\right|^{2}}$. By tangential differentiation at $x_{0}$,

$$
\begin{aligned}
0 & =u_{1}+x_{k} u_{k 1}+\left(u_{2}+x_{k} u_{k 2}\right) \rho^{\prime} \\
0 & =2 u_{11}+x_{k} u_{k 11}+\left(u_{2}+x_{k} u_{k 2}\right) \rho^{\prime \prime} \\
& =2 u_{11}+u_{211}+\left(u_{2}+u_{22}\right)
\end{aligned}
$$

As $e_{1}, e_{2}$ are the unit tangential and outer normal vectors at $x_{0}$, repsectively, we have

$$
\begin{equation*}
u_{\nu 11} \leq O\left(1+w_{i i}\right) \tag{4.6}
\end{equation*}
$$

We now tangentially differentiate the boundary condition $\phi^{*}\left(T_{u}\right)$ twice in the $e_{1}$ direction at $x_{0}$, to obtain

$$
\phi_{i j}^{*} \frac{\partial y_{i}}{\partial x_{1}} \frac{\partial y_{j}}{\partial x_{1}}+\phi_{i}^{*} \frac{\partial^{2} y_{i}}{\partial x_{1}^{2}}+\phi_{i}^{*} \frac{\partial y_{i}}{\partial x_{2}}=0
$$

and thus

$$
\sum_{i}\left(c^{i, k} w_{k 1}\right)^{2}-y_{i} \frac{\partial}{\partial x_{1}}\left(c^{i, k} w_{k 1}\right)-y_{i} c^{i, k} w_{k 2}=0
$$

which implies

$$
\begin{align*}
w_{11}^{2} & \leq y_{i}\left(c_{1,}^{i, k} w_{k 1}+c^{i, k} D_{1} w_{k 1}\right)+w_{\beta 2} \\
& =y_{i} c_{1, k}^{i, k} w_{k 1}+y_{i} c^{i, k}\left(u_{k 11}+c_{k 11,}+c_{k 1, p} c^{p, q} w_{q 1}\right)+w_{\beta 2}  \tag{4.7}\\
& =u_{\beta 11}+O\left(1+w_{i i}\right)
\end{align*}
$$

Let us assume that the maximal double-tangential term $w_{\tau \tau}$ occurs at $x_{0}$ in a tangential direction $e_{1}$, i.e. $w_{11}\left(x_{0}\right)$. Hence, $D_{\tau} w_{11}\left(x_{0}\right)=0$, which gives

$$
\begin{equation*}
u_{\tau 11} \leq O\left(1+w_{i i}\right) \tag{4.8}
\end{equation*}
$$

Therefore, from 4.6) and 4.8

$$
u_{\beta 11} \leq O\left(1+w_{i i}\right)
$$

and by 4.7

$$
w_{11}^{2} \leq O\left(1+w_{i i}\right)
$$

From the fact that $\lambda^{-1}<\operatorname{det} w_{i j}<\lambda$ for some constant $\lambda>0$, we conclude that

$$
\begin{equation*}
w_{11}\left(x_{0}\right) \leq C \tag{4.9}
\end{equation*}
$$

It remains to bound $w_{\beta \beta}\left(x_{0}\right)$. By contradiction, we may assume $w_{\beta \beta}\left(x_{0}\right)$ is arbitrarily large. Note that we can decompose $\nu\left(=e_{2}\right)$ in terms of

$$
\nu=-\frac{1}{\beta \cdot \nu}(\beta-(\beta \cdot \nu) \nu)+\frac{1}{\beta \cdot \nu} \beta
$$

There exists a matrix $A=\left(a_{i j}\right)$ such that at $x_{0}$,

$$
\left[\begin{array}{cc}
1 & 0 \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\tau \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\tau \\
\nu
\end{array}\right]
$$

where $0<a_{22}=\frac{1}{\beta \cdot \nu} \leq C$ by the obliqueness, and thus $\operatorname{det} A \leq C$. From the decomposition,

$$
\begin{aligned}
& w_{11}=w_{\tau \tau}, \quad w_{12}=a_{21} w_{\tau \tau} \\
& w_{22}=a_{22}^{2} w_{\beta \beta}+a_{21}^{2} w_{\tau \tau}
\end{aligned}
$$

Since $\left|a_{21}\right|, w_{\tau \tau}$ are bounded, $w_{22}$ will be arbitrarily large if $w_{\beta \beta}$ is (by assumption).
Next we invoke the dual problem: Let $u^{*}$ denote the $c$-transform of $u$, defined for $y=$ $T_{u}(x) \in \Omega^{*}$ by

$$
u^{*}(y)=-c(x, y)-u(x)
$$

It follows that

$$
\begin{aligned}
D u^{*}(y) & =-c_{y}(x, y) \\
& =-c_{y}\left(T_{u^{*}}^{*}(y), y\right),
\end{aligned}
$$

where

$$
T_{u^{*}}^{*}(y)=\left(T_{u}\right)^{-1}(y)
$$

and the dual equation is

$$
\begin{aligned}
\left|\operatorname{det} D_{y}\left(T_{u^{*}}^{*}\right)\right| & =g(y) / f\left(T_{u^{*}}^{*}\right) \quad \text { in } \Omega^{*} \\
T_{u^{*}}^{*}\left(\Omega^{*}\right) & =\Omega
\end{aligned}
$$

Furthermore, by differentiation at $y=T_{u}(x)$,

$$
\begin{equation*}
w^{i j}(x)=w_{k l}^{*}(y) c^{k, i} c^{l, j}(x, y) \tag{4.10}
\end{equation*}
$$

where $w_{k l}^{*}(y)=u_{y_{k} y_{l}}^{*}(y)+c_{, k l}(x, y)$ and $\left(w^{i j}\right)$ is the inverse of $\left(w_{i j}\right)$. By a similar analysis as for (4.9), we have

$$
\begin{equation*}
w_{\tau^{*} \tau^{*}}^{*}\left(y_{0}\right) \leq C, \tag{4.11}
\end{equation*}
$$

where $y_{0}=T_{u}\left(x_{0}\right)$ and $\tau^{*}$ is the tangential direction at $y_{0}$.
Define

$$
\begin{equation*}
\tilde{\tau}_{k}:=\tau_{i}^{*} c_{i, k}\left(x_{0}, y_{0}\right) \tag{4.12}
\end{equation*}
$$

Then by (4.10) and (4.11) we have

$$
\begin{aligned}
C & \geq w_{i j}^{*} \tau_{i}^{*} \tau_{j}^{*} \\
& =\left(w_{i j}^{*} c^{i, k} c^{j, l}\right) \tilde{\tau}_{k} \tilde{\tau}_{l} \\
& =w^{k l} \tilde{\tau}_{k} \tilde{\tau}_{l} \\
& =w^{11} \tilde{\tau}_{1}^{2}+2 w^{12} \tilde{\tau}_{1} \tilde{\tau}_{2}+w^{22} \tilde{\tau}_{2}^{2}
\end{aligned}
$$

It is easy to see that the last two terms are bounded because of 4.3) and (4.9). If we can show $\tilde{\tau}_{1}^{2} \geq \delta_{0}$ for some constant $\delta_{0}>0$, then we have a contradiction as $w^{11}=w_{22} / \operatorname{det} w_{i j}$ will become arbitrary large (by assumption).

At $\left(x_{0}, y_{0}\right)$, by the obliqueness estimate 1.10

$$
-c^{2,1} y_{1}-c^{2,2} y_{2} \geq c_{0}
$$

where $c_{0}>0$ is constant. This is equivalent to

$$
\frac{1}{\operatorname{det} c_{i, j}}\left(c_{2,1} y_{1}-c_{1,1} y_{2}\right) \geq c_{0}
$$

and

$$
\left(c_{2,1} y_{1}-c_{1,1} y_{2}\right)^{2} \geq c_{0}^{2}\left(\operatorname{det} c_{i, j}\right)^{2}=: \delta_{0}>0
$$

At $y_{0}$, the tangential $\tau^{*}=\left(y_{2},-y_{1}\right)$. From 4.12)

$$
\begin{aligned}
\tilde{\tau}_{1} & =c_{1,1} \tau_{1}^{*}+c_{2,1} \tau_{2}^{*} \\
& =c_{1,1} y_{2}-c_{2,1} y_{1}
\end{aligned}
$$

and thus we obtain

$$
\tilde{\tau}_{1}^{2} \geq \delta_{0}>0
$$

The above contradiction implies that $w_{\beta \beta}(x) \leq C$ for all $x \in \partial B_{1}$. Therefore, by 4.5) we conclude the estimate 1.11 and Theorem 1.1 is proved.

Remark 4.1. By Corollary 2.1, the cost function $c$ satisfies the condition (A3). To obtain the global $C^{2}$ and higher order estimates, we assume furthermore that the densities $f$ and $g$ are $C^{2}$ smooth. From [13], we have the estimate

$$
\begin{equation*}
\sup _{\Omega}\left|D^{2} u\right| \leq C\left(1+\sup _{\partial \Omega}\left|D^{2} u\right|\right), \tag{4.13}
\end{equation*}
$$

and combining with 1.11 we obtain the global $C^{2}$ estimate.
Once the second derivatives are bounded, equations (1.3)-1.4 are uniformly elliptic. This combined with the obliqueness estimate 1.10 yields global $C^{2, \alpha}$ estimates [7]. Moreover, the higher order estimates follow from the theory of linear elliptic equations with oblique boundary conditions [5].

## References

[1] Ambrosio, L. and Pratelli, A., Existence and stability results in the $L^{1}$ theory of optimal transportation, LNM 1813, L.A. Caffarelli and S. Salsa (Eds.), pp. 123-160, 2003.
[2] Caffarelli, L. A., Boundary regularity of maps with convex potentials II, Ann. of Math., 144 (1996), 453-496.
[3] Delanoë, P., Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 8 (1991), 443-457.
[4] Delanoë, P. and Loeper, G., Gradient estimates for potentials of invertible gradient-mappings on the sphere, Calc. Var. PDE., 26 (2006), 297-311.
[5] Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1983.
[6] Kim, Y.-H. and McCann, R. J., Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc., 12 (2010), 1009-1040.
[7] Lieberman, G. and Trudinger, N., Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc., 295 (1986), 509-546.
[8] Liu, J., Hölder regularity of optimal mappings in optimal transportation, Calc. Var. PDE., 34 (2009), 435-451.
[9] Loeper, G., On the regularity of solutions of optimal transportation problems, Acta Math. 202 (2009), 241-283.
[10] Loeper, G., Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna, Arch. Rat. Mech. Anal., 199 (2011), 269-289.
[11] Ma, X. N.; Trudinger, N. S. and Wang, X.-J., Regularity of potential functions of the optimal transportation problem, Arch. Rat. Mech. Anal., 177 (2005), 151-183.
[12] McCann, R. J., Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), 589-608.
[13] Trudinger, N. S. and Wang, X.-J., On the second boundary value problem for Monge-Ampère type equations and optimal transportation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 8 (2009), no. 1, 143-174.
[14] Trudinger, N. S. and Wang, X.-J., On strict convexity and continuous differentiability of potential functions in optimal transportation. Arch. Rat. Mech. Anal., 192 (2009), 403-418.
[15] Urbas, J., On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math. 487 (1997), 115-124.

Department of Mathematics, Princeton University, Fine Hall, Washington Road, PrinceTON, NJ 08544-1000, USA.

E-mail address: chang@math.princeton.edu, yang@math.princeton.edu
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, AUSTRALIA.

E-mail address: jiakunl@uow.edu.au

