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Abstract. In this paper, we study the optimal transportation on the hemisphere, with the
cost function c(x, y) = 1

2
d2(x, y), where d is the Riemannian distance of the round sphere.

The potential function satisfies a Monge-Ampère type equation with natural boundary
condition. We obtain the a priori oblique estimate without using any uniform convexity of
domains, and in particular for two dimensional case, we obtain the boundary C2 estimate.
Our proof does not depend on the smoothness of densities, which is new even for standard
Monge-Ampère equations and optimal transportation on Euclidean spaces.

1. Introduction

Let Sn be the n-dimensional unit sphere equipped with the standard round metric g and

geodesic distance d. Denote the northern hemisphere to be Sn+ := Sn ∩ {xn+1 ≥ 0}. Let

c(x, y) = 1
2d

2(x, y) be the cost function, f, g be two positive densities on Sn+, bounded from

above and below, and satisfy

(1.1)

∫
Sn+
f =

∫
Sn+
g.

In this paper, we study the optimal transportation from (Sn+, f) to (Sn+, g) and obtain the

a priori oblique and boundary estimates without using uniform c-convexity of domain and

smoothness of densities, which are, however, key ingredients in the standard cases.

Let’s briefly recall that in optimal transportation (Ω, f) → (Ω∗, g), f, g > 0 satisfying∫
Ω f =

∫
Ω∗ g, where Ω,Ω∗ are the initial and target domains, the optimal mapping Tu is

determined by the potential function u,

(1.2) Du(x) = −Dxc(x, Tu(x))

for a.e. x ∈ Ω, where the cost function c satisfies conditions (A0)–(A1) in Section 2, and

the functions u, v are called potential functions as (u, v) is a maximiser of

sup{I(φ, ψ) : (φ, ψ) ∈ K},
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where

I(φ, ψ) =

∫
Ω
f(x)φ(x) +

∫
Ω∗
g(y)ψ(y),

K = {(φ, ψ) ∈ C(Ω)× C(Ω∗) : φ(x) + ψ(y) ≥ −c(x, y)}.

When u is smooth, it solves a Monge-Ampère type equation

(1.3) det
[
D2u+D2

xc
]

= |detD2
xyc|

f

g ◦ Tu
in Ω,

with a natural boundary condition

(1.4) Tu(Ω) = Ω∗.

In the Euclidean case, when Ω,Ω∗ are two bounded domains in Rn, the global regularity

of (1.3)–(1.4) is obtained in [13] by assuming that Ω,Ω∗ are uniformly c-convex with respect

to each other and the densities f, g are correspondingly smooth. The uniform c-convexity

of Ω with respect to Ω∗ means that the image cy(·, y)(Ω) is uniformly convex in the usual

sense for each y ∈ Ω∗, while analogously Ω∗ is uniformly c-convex with respect to Ω, if the

image cx(x, ·)(Ω∗) is uniformly convex for each x in Ω.

In the special case c(x, y) = −x · y, the c-convexity is equivalent to the usual convexity,

and (1.3) reduces to the standard Monge-Ampère equation with the boundary condition of

prescribing the image of gradient mapping,

(1.5)

{
detD2u = h(x,Du) in Ω,
Du(Ω) = Ω∗.

The boundary problem (1.5) has been extensively studied by many mathematicians, for

example, see [2, 3, 15] and references therein. A crucial assumption in those work is the

uniform convexity of domains Ω and Ω∗.

Note that when c(x, y) = −x · y, (1.2) implies that Tu = Du for a convex potential u. In

our case c = d2/2, where d is the geodesic distance on (Sn, g). From the result of [12], the

optimal mapping can be expressed by the exponential mapping

Tu(x) = expx(∇gu(x)),

where ∇g denotes the gradient with respect to the round metric g on Sn, and u is a c-

convex potential. For Ω,Ω∗ ⊂ Sn, Ω is uniformly c-convex with respect to Ω∗ is equivalent

to exp−1
y (Ω) is uniformly convex in Rn for each y ∈ Ω∗, while analogously Ω∗ is uniformly

c-convex with respect to Ω if exp−1
x (Ω∗) is uniformly convex for each x in Ω. However, this

is not the case when Ω = Ω∗ = Sn+, as pick y0 ∈ Sn+ ∩ {xn = 0},

exp−1
y0 (Ω) = {z ∈ Rn : z ∈ Bπ(0) ∩ {zn ≥ 0} or |z| = π} ,

which is even not connected. One can see that for Ω = Ω∗ = Snε := Sn ∩ {xn+1 ≥ ε},
they are uniformly c-convex to each other for any positive constant ε > 0. Therefore, the

hemisphere Sn+ is a critical case in the above sense.
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From here on, we use X = (X1, · · · , Xn, Xn+1) to represent a point on Sn+, while x =

(x1, · · · , xn) represents a point in Rn. We use the stereographic projection from the south

pole to transform Sn+ into Π(Sn+) = B1(0) ⊂ Rn by x = Π(X) and

(1.6) X = Π−1(x) =

(
2x1

1 + |x|2
, · · · , 2xn

1 + |x|2
,
1− |x|2

1 + |x|2

)
,

where x = (x1, · · · , xn) ∈ B1(0).

Utilising the ambient Euclidean geometry of Rn+1, it is an elementary calculation that

(1.7) d(X,Y ) = arccos(X · Y ),

for X,Y ∈ Sn and d the geodesic distance. Under the stereographic projection Π, one has

the optimal transportation from Ω = B1(0) to Ω∗ = B1(0) with the cost function

c̄(x, y) = c(Π−1(x),Π−1(y))

=
1

2

(
arccos

(
4(x · y)

(1 + |x|2)(1 + |y|2)
+

(1− |x|2)(1− |y|2)

(1 + |x|2)(1 + |y|2)

))2

,
(1.8)

for x, y ∈ B1(0). Correspondingly, the potential u and the optimal mapping T will become

(1.9) ū(x) = u ◦Π−1(x) and T̄ (x) = Π ◦ T ◦Π−1(x), for x ∈ B1(0).

The convexity with respect to c̄ is inherited from that of c, namely ū is c̄-convex if and only

if u is c-convex; a domain E ⊂ B1(0) is c̄-convex with respect to E∗ ⊂ B1(0) if and only if

Π−1(E) is c-convex with respect to Π−1(E∗).

As pointed out, due to the lack of convexity, the standard techniques in dealing with

(1.5) are not applicable to (1.3)–(1.4) with the cost function given by (1.8). In this paper,

we use an elementary and non-trivial method to establish the a priori oblique and boundary

estimates. Our main result is the following:

Theorem 1.1. Assume that the density functions f, g satisfies (1.1) and there exists a

constant λ > 0 such that λ−1 < f, g < λ. Then we have the a priori estimate

(1.10)

n∑
i,k=1

−yici,kxk ≥ c0,

for all x ∈ Ω and y = T (x), where c0 > 0 is a constant depending only on λ.

Moreover, when n = 2, we have the a priori boundary estimate

(1.11) sup
∂Ω
|D2u| ≤ C,

for some constant C > 0 depending only on λ.

The restriction n = 2 is unsatisfactory but it is needed due to a technical reason. On the

other hand, to derive the boundary estimate (1.11), usually one need a differentiability of

the inhomogeneous term, but here we only need the boundedness. This paper is organised
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as follows: In Section 2, we introduce some preliminary notations and results. In Section

3, we prove the oblique estimate (1.10), where our approach makes no use of uniform

convexity nor duality argument. In Section 4, we prove the boundary C2 estimate (1.11) in

the two-dimensional case.

2. Preliminaries

First, let’s recall some basic notions of optimal transportation on a Riemannian manifold

M with a distance-squared cost function c(x, y) = 1
2d

2(x, y).

Definition 2.1. Let M be a compact Riemannian manifold and d(·, ·) be its Riemannian

distance function. The c-transform uc of a function u :M→ R is defined for all x ∈M by

(2.1) uc(x) = sup
y∈M

{
−d

2(x, y)

2
− u(y)

}
.

The function u is said to be c-convex if (uc)c = u.

For a c-convex function u, for any point x0 ∈ M, by the above definition there exists

y ∈M such that

u(x) ≥ −d
2(x, y)

2
− uc(y),

for all x ∈ M with equality holds at x = x0. The function ϕ(·) = −d2(·,y)
2 − uc(y) is called

a c-support of u at x ∈ M. A function u is c-convex is equivalent to that for any point

x ∈ M there exists a c-support of u at x. Naturally, the potential function u in (1.2) of

optimal transportation is c-convex.

Definition 2.2. Let u be a c-convex function, the c-normal mapping Tu is defined by

(2.2) Tu(x0) = {y ∈M : u(x) ≥ d2(x0, y)

2
− d2(x, y)

2
+ u(x0), ∀x ∈M}.

Note that by duality between u and uc, if y ∈ Tu(x0), we have uc(y) = −d2(x0,y)
2 − u(x0),

and

−Dxc(x0, y) ∈ ∂u(x0),

where ∂u is the subgradient of u. If u is C1 smooth at x0, then Tu(x0) is single valued,

and is exactly the mapping given by (1.2). In general, Tu(x) is single valued for almost all

x ∈M as u is c-convex and thus twice differentiable almost everywhere by the well-known

theorem of Aleksandrov. If c(x, y) = −x · y and M is Euclidean, then Tu is the normal

mapping for convex functions.

We may extend the c-normal mapping to boundary points. Let x0 ∈ ∂M be a boundary

point, we denote Tu(x0) = {y ∈ M : y = limk→∞ yk}, where yk ∈ Tu(xk) and {xk} is a

sequence of interior points of M such that xk → x0.
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Let U be a subset of M×M, which for simplicity we assume compact. Denote π1, π2

the usual canonical projections. For any x ∈ π1(U), we denote by Ux the set U ∩ π−1
1 (x).

Similarly, we can define Uy = U ∩π−1
2 (y), for any y ∈ π2(U). Let us introduce the following

conditions:

(A0) The cost function c belongs to C4(U).

(A1) For any (x, y) ∈ U , (p, q) ∈ Dxc(U)×Dyc(U), there exists unique Y = Y (x, p), X =

X(y, q), such that −Dxc(x, Y ) = p,−Dyc(X, y) = q.

(A2) For any (x, y) ∈ U , detD2
x,yc 6= 0.

We recall the definition of c-convexity for domains (see [11]):

Definition 2.3. Let y ∈ π2(U), a subset Ω of π1(Uy) is c-convex (resp. uniformly c-convex)

with respect to y if the set {−Dyc(x, y), x ∈ Ω} is a convex (resp. uniformly convex) set of

TyM. Whenever Ω×Ω∗ ⊂ U , Ω is c-convex with respect to Ω∗ if it is c-convex with respect

to every y ∈ Ω∗.

Similarly we can define c∗-convexity of domains by exchanging x and y. Without arising

any confusion, for simplicity we abuse the notation c-convexity to also mean c∗-convexity

by drop the sup-script. When the cost function c = d2/2, we have Dxc(x, y) = exp−1
x (y).

Therefore, Ω∗ ⊂ M is c-convex (resp. uniformly c-convex) with repsect to x is equivalent

to exp−1
x (Ω∗) is convex (resp. uniformly convex).

However, conditions (A0)–(A2) are not satisfied on Sn+ × Sn+ due to the singularities on

antipodal points. The next lemma shows that for each point x ∈ ∂Sn+, its image under the

c-normal mapping of a c-convex function stays uniformly away from its antipodal point x̂.

Note that the singularity only occurs on the boundary ∂Sn+ = Sn+ ∩ {xn+1 = 0} and the

antipodal point x̂ = −x for x ∈ ∂Sn+.

Lemma 2.1. Let T = Tu be the c-normal mapping of a c-convex potential u such that

T#f = g. Assume that the densities f, g have positive lower and upper bounds. Then there

exists a constant δ > 0, such that

(2.3) d(T (x), x̂) ≥ δ,

for any x ∈ ∂Sn+.

Proof. The proof essentially follows from [4], where the measures and transport maps are

defined on the whole sphere Sn without boundary. We include it here for completeness. Let

x0 ∈ ∂Sn+ be a boundary point, and x̂0 be its antipodal point. We claim that: for almost

all x ∈ Sn+, x 6= x0,

(2.4) d(T (x), x̂0) ≤ 2π
d(T (x0), x̂0)

d(x, x0)
.
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Then denote D = {x ∈ Sn+ : d(x, x0) ≥ π/2}, a subset of Sn+. From the preceding inequality,

we infer that almost all x ∈ D are sent by T into Bε(x̂0), where

(2.5) ε = 2π
d(T (x0), x̂0)

π/2
= 4d(T (x0), x̂0).

By the measure preserving condition, we then have∫
Bε(x̂0)

g ≥
∫
D
f,

and thus,

dn(T (x0), x̂0) sup g ≥ C inf f,

where C is a constant only depending on n. Since x0 is arbitrary, we conclude that there is

a constant δ > 0 depending on the lower bound of f and upper bound of g such that (2.3)

holds.

Therefore, it suffices to prove the claim (2.4). Fix x0 ∈ ∂Sn+ and another point x ∈ Sn+,

define the function

F (p) =
1

2
d2(p, x)− 1

2
d2(p, x0),

for p ∈ Sn+. The function F satisfies that [4]

(2.6) gradpF (p) = exp−1
p (x0)− exp−1

p (x),

where the gradient is defined everywhere except x̂0. Since our manifold is Sn+, by comparison

with the Euclidean case,

(2.7) |gradpF (p)| ≥ d(x0, x
′).

Let us consider on Sn+ \ {x̂0} the normalized steepest descent equation (with arc-length

parameter s):

ṗ(s) = −
gradpF [p(s)]

|gradpF [p(s)]|
.

From (2.7), any solution p(s) satisfies

d

ds
F [p(s)] = −|gradpF [p(s)]| ≤ −d(x0, x).

It is easy to see that for fixed (x0, x), the function F (p) attains its infimum at p = x̂0.

Therefore, starting from p(0) = p0, for some p0 6= x̂0, the minimum of p 7→ F (p) is reached

by flowing along an integral curve of length L ≥ d(p0, x̂0). Writing

F (p0)− F (x̂0) = −
∫ L

0

d

ds
F [p(s)]ds,

we then have

F (p0)− F (x̂0) ≥
∫ L

0
d(x0, x)

≥ d(x0, x)d(p0, x̂0).
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It implies that for x 6= x0 and for all p ∈ Sn+,

(2.8) d(p, x̂0) ≤ F (p)− F (x̂0)

d(x0, x)
.

Next, we show that (2.4) follows from (2.8). We know that the mapping T is a.e. c-

monotone, see for example [1, 4], which implies that for almost all x0 ∈ ∂Sn+ and x ∈ Sn,

1

2
d2(x0, T (x0)) +

1

2
d2(x, T (x)) ≤ 1

2
d2(x0, T (x)) +

1

2
d2(x, T (x0)).

From the definition of function F , we get

F [T (x)] ≤ F [T (x0)].

Now, setting p = T (x) in (2.8), we have

d(x̂0, T (x)) ≤ F (T (x))− F (x̂0)

d(x0, x)

≤ F (T (x0))− F (x̂0)

d(x0, x)
,

hence, since p 7→ F (p) is 2π-Lipschitz, we obtain (2.4), namely

d(x̂0, T (x)) ≤ 2π
d(T (x0), x0)

d(x0, x)
,

for almost all x ∈ Sn+, x 6= x0. The proof is finished. �

We now recall the definition of the cost-sectional curvature [9], and introduce an addi-

tional condition on the cost function c, which is crucial for regularity estimates [11]:

Definition 2.4. Assume that the cost function c satisfies (A0)–(A2) in U ⊂ M×M. For

every (x0, y0) ∈ U , define on Tx0M× Tx0M a real-valued map

(2.9) Sc(x0, y0)(ξ, η) = D4
pηpηxξxξ

[(x, p)→ −c(x, expx0(p))]
∣∣
x0,p0=−∇xc(x0,y0)

.

When ξ, η are unit orthogonal vectors (with respect to the metric g at x0), Sc(x0, y0)(ξ, η)

defines the cost-sectional curvature from x0 to y0 in directions (ξ, η).

In fact, definition (2.9) is equivalent to the following

(2.10) Sc(x0, y0)(ξ, η) = D2
ttD

2
ss [(t, s)→ −c(expx0(tξ), expx0(p0 + sη))]

∣∣
t,s=0

.

Moreover, the definition of Sc(x0, y0)(ξ, η) is intrinsic, only depends on the points (x0, y0) ∈
U and vectors (ξ, η), but not on the choice of local coordinates around x0 or y0, [6, 9]. We

are now ready to introduce the condition

(A3) For any (x, y) ∈ U , and ξ, η ∈ Rn with ξ⊥η,

(2.11) Sc(x, y)(ξ, η) ≥ c0|ξ|2|η|2,

where c0 is a positive constant.
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It has been verified [10] that the cost function c = d2/2 over Sn satisfies (A3) for any x, y

such that d(x, y) < π. Then under the assumptions of Lemma 2.1, we have

Corollary 2.1. The cost function c satisfies conditions (A0)–(A3) on the graph of Tu,

GT :=
{

(x, Tu(x)) : x ∈ Sn+
}

.

Corollary 2.2. Let u be a c-convex potential on Sn+. The densities f and g are bounded

from above and below. Then there exists a constant α ∈ (0, 1) such that u ∈ C1,α(Sn+).

Proof. Using the stereographic projection, it suffices to show that ū ∈ C1,α(B1) for some

constant α ∈ (0, 1), where ū is given in (1.9). By Corollary 2.1, the cost function c̄ satisfies

(A0)–(A3) on the graph GT̄ =
{

(x, T̄ (x)) : x ∈ B1(0)
}

. The proof then follows from [8] by

using a similar argument. The global C1,α regularity was previously obtained by Loeper in

[9] for Euclidean domains and in [10] for spheres Sn.

Let x0 ∈ B1 be an interior point and Nr(x0) := Br(x0)∩B1(0) be a small neighborhood

of x0. By Lemma 2.1, for each y0 ∈ T̄ (x0), Nr(x0) is c̄-convex with respect to y0 when r > 0

is sufficicently small. Let ϕ = c̄(·, y0) + a0 be a c-support of ū at x0, where a0 is a constant.

Then we can define the sub-level set

S0
h,ū(x0) = {x ∈ Nr(x0) : ū(x) < ϕ(x) + h}

for h > 0 small. Since c̄ satisfies (A3), S0
h,ū(x0) is c̄-convex with respect to y0. Thus by

the coordinate transform x 7→ Dy c̄(x, y0), S0
h,ū(x0) becomes a convex set. By applying the

normalization argument in [8], we can obtain ū ∈ C1,α(x0).

For the boundary regularity, it can be reduced into the interior case since the argument

in [8] allows that the initial density f vanishes. But we need to extend the function ū to a

neighborhood of B1(0) by setting

ū(x) = sup{−c(x, y)− ūc(y) : y ∈ B1(0)}

where ūc is the dual potential function of ū. �

3. Obliqueness

In this section we focus on the optimal transportation after the stereographic transforma-

tion, which is from Ω = B1(0) to Ω∗ = B1(0) with the cost function given in (1.8). We drop

off the bars over the functions c, u for simplicity, so that the potential function u satisfies

equation (1.3) with boundary condition (1.4), where the optimal mapping Tu is determined

by (1.2). We will prove (1.10) in the following lemma.

Recall that a boundary condition of the form

(3.1) G(x, u,Du) = 0 on ∂Ω
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for a second order partial differential equation in a domain Ω is called oblique, (or degenerate

oblique) if

(3.2) Gp · ν ≥ c0 > 0, (or ≥ 0)

for all (x, z, p) ∈ ∂Ω × R × R2, where c0 is a positive constant, ν denotes the unit outer

normal to ∂Ω. Let φ(x) = 1
2(|x|2− 1) and φ∗(y) = 1

2(|y|2− 1) be smooth defining functions

for Ω and Ω∗, respectively. Then (1.4) can be written as

φ∗(Tu) = 0 on ∂Ω,(3.3)

φ∗(Tu) < 0 near ∂Ω.

Set G(x, u,Du) := φ∗ ◦ Tu(x,Du). The main estimate in this section is the following

Lemma 3.1. Under the assumptions of Theorem 1.1, the boundary condition (1.4) satisfies

a strict obliqueness estimate (3.2).

Proof. Let u ∈ C2(Ω) be an elliptic solution of (1.3)–(1.4), and denote y = Tu(x). By

differentiation, we have

(3.4) φ∗kDiykτi = 0 on ∂Ω

for any unit tangential vector τ on ∂Ω, and

(3.5) φ∗kDνyk ≥ 0 on ∂Ω

where ν is the outer normal to ∂Ω, whence

(3.6) φ∗iDjyi = χνj

for some χ ≥ 0. Consequently, from (1.2)

(3.7) − φ∗i ci,kwjk = χνj ,

where {ci,j} = {ci,j}−1 and

(3.8) wij := uij + cij .

At this point we observe that χ > 0 on ∂Ω since |∇φ∗| 6= 0 on ∂Ω and detDT 6= 0. Using

the ellipticity of (1.3) and letting {wij} denote the inverse matrix of {wij}, we then have

(3.9) − φ∗i ci,k = χwjkνj .

Now writing G(x, p) = φ∗ ◦ Tu(x, p) = φ∗(y), by differentiating

Gpk = φ∗iDpkyi = −φ∗i ci,k

= χwjkνj ,
(3.10)

thus

Gp · ν = χwijνiνj

> 0,
(3.11)
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on ∂Ω. Next, we obtain a uniform positive lower bound for Gp · ν as follows. On the

boundary ∂Ω × ∂Ω∗, the unit outer normal νi = xi and φ∗i = yi, for i = 1, · · · , n. From

(3.10), we have

(3.12) Gp · ν =

n∑
i,j=1

−yici,j(x, y)xj .

We claim that for (x, y) ∈ ∂Ω× ∂Ω∗, for any 1 ≤ i ≤ n

(3.13)

n∑
j=1

ci,jyj = − arccos(x · y)
xi√

1− (x · y)2
.

Hence,
∑n

i=1 c
i,jxj = −yi

√
1−(x·y)2

arccos(x·y) and then

(3.14) Gp · ν =
|y2|
√

1− (x · y)2

arccos(x · y)
=

√
1− (x · y)2

arccos(x · y)
.

By Lemma 2.1, 1 + x · y ≥ ε0 for some positive constant ε0. Therefore, there exists a

constant c0 > 0 such that (3.2) holds. The proof of Lemma 3.1 is completed.

Let us now prove the claim (3.13) at (x, y) ∈ ∂B1 × ∂B1 with the cost function c given

in (1.8). Denote

(3.15) θ =
4(x · y)

(1 + |x|2)(1 + |y|2)
+

(1− |x|2)(1− |y|2)

(1 + |x|2)(1 + |y|2)
,

the cost function c(x, y) = 1
2 arccos2 θ. By differentiating, the first order derivatives are

(3.16) ci =
∂c

∂xi
= − arccos θ√

1− θ2

1

1 + |y|2

(
4yi

1 + |x|2
− 8(x · y)xi

(1 + |x|2)2
− 4xi(1− |y|2)

(1 + |x|2)2

)
for all i = 1, · · · , n.

At (x, y) ∈ ∂B1 × ∂B1, |x| = |y| = 1 and the function θ = x · y, thus

(3.17) ci =
− arccos(x · y)√

1− (x · y)2
(yi − (x · y)xi) .

Therefore, we obtain the relation x ·Dxc =
∑n

i=1 xici = 0. We point this out because it will

be used on the boundary estimates in the next section.

By differentiating θ in (3.15) with respect to y variable, we have

∂θ

∂yi
=

1

1 + |x|2

(
4xi

1 + |y|2
− 8(x · y)yi

(1 + |y|2)2
− 4yi(1− |x|2)

(1 + |y|2)2

)
= xi − (x · y)yi,

(3.18)
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for all (x, y) ∈ ∂B1 × ∂B1 and i = 1, · · · , n. By a further differentiation of (3.16) with

respect to y variable, the mixed second order derivatives are

ci,j =

(
1

1− θ2
− θ arccos θ

(1− θ2)3/2

)
∂θ

∂yj

1

1 + |y|2

(
4yi

1 + |x|2
− 8(x · y)xi

(1 + |x|2)2
− 4xi(1− |y|2)

(1 + |x|2)2

)
+ arccos θ

1√
1− θ2

2yj
(1 + |y|2)2

(
4yi

1 + |x|2
− 8(x · y)xi

(1 + |x|2)2
− 4xi(1− |y|2)

(1 + |x|2)2

)
(3.19)

− arccos θ
1√

1− θ2

1

1 + |y|2
1

1 + |x|2

(
4δij −

8xixj
1 + |x|2

+
8xiyj

1 + |x|2

)
.

Combining (3.18) with (3.19) and noting that θ = x · y, |x| = |y| = 1, we have

ci,j =

(
1

1− θ2
− θ arccos θ

(1− θ2)3/2

)
(xj − (x · y)yj) (yi − (x · y)xi)

+
arccos θ√

1− θ2
(yj (yi − (x · y)xi)− (δij − xixj + xiyj)) .(3.20)

Therefore, the sum in (3.13) becomes
n∑
j=1

ci,jyj =

(
1

1− θ2
− θ arccos θ

(1− θ2)3/2

)
(x · y − x · y) (yi − (x · y)xi)

+
arccos θ√

1− θ2
((yi − (x · y)xi)− (yj − (x · y)xi + xi))(3.21)

= − arccos(x · y)
xi√

1− (x · y)2
.

The claim (3.13) is proved, and thus (3.17) holds and Lemma 3.1 is proved. �

4. Boundary C2 estimate

In this section we prove the boundary C2 estimate (1.11) in the two dimensional case.

Recall that Ω,Ω∗ = B1(0) and the boundary condition is written as

(4.1) φ∗(Tu) = 0 on ∂B1(0),

where φ∗(y) = 1
2(|y|2 − 1), and Tu = T (·, Du) is the optimal mapping.

It is convenient to denote the vector field β = (β1, β2) where

(4.2) βk :=
∂φ∗

∂pk
= φ∗iDpkyi = −φ∗i ci,k.

Differentiating along any tangential vector field τ on ∂B1, we have

(4.3) 0 = φ∗kDiykτi = −φ∗kck,jwjiτi = wτβ on ∂B1.

Let ν be the unit outer normal of ∂B1, by differentiating

(4.4) 0 ≤ φ∗kDiykνi = −φ∗kck,jwjiνi = wνβ on ∂B1.

Here and below we use the notation wξη to denote wijξiηj even if ξ and η are not unit vector

fields.
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Suppose wξξ takes its maximum over ∂B1 and unit vector ξ at x0 ∈ ∂B1. Note that we

may write ξ in terms of a tangential component τ(ξ) and a component in the direction of

β, namely

ξ = τ(ξ) +
ν · ξ
β · ν

β

where

τ(ξ) = ξ − (ν · ξ)ν − ν · ξ
β · ν

βT

and

βT = β − (β · ν)ν.

Thanks to the oblique estimate in Lemma 3.1, we have

|τ(ξ)|2 = 1−
(

1− |βT |2

(β · ν)2

)
(ν · ξ)2 − 2(ν · ξ)β

T · ξ
β · ν

≤ C.

Thus,

wξξ = wτ(ξ)τ(ξ) +
2ν · ξ
β · ν

wτβ +
(ν · ξ)2

(β · ν)2
wββ

≤ |τ(ξ)|2wτ0τ0 +
(ν · ξ)2

(β · ν)2
wββ ,

(4.5)

Namely, it suffices to control wτ0τ0 and wββ .

From (3.17) and (1.2), x · Du ≡ 0 on ∂B1. Without loss of generality, we may assume

x0 = (0, 1) and locally ∂B1 can be represented by x2 = ρ(x1) =
√

1− |x1|2. By tangential

differentiation at x0,

0 = u1 + xkuk1 + (u2 + xkuk2)ρ′,

0 = 2u11 + xkuk11 + (u2 + xkuk2)ρ′′

= 2u11 + u211 + (u2 + u22).

As e1, e2 are the unit tangential and outer normal vectors at x0, repsectively, we have

(4.6) uν11 ≤ O(1 + wii).

We now tangentially differentiate the boundary condition φ∗(Tu) twice in the e1 direction

at x0, to obtain

φ∗ij
∂yi
∂x1

∂yj
∂x1

+ φ∗i
∂2yi
∂x2

1

+ φ∗i
∂yi
∂x2

= 0,

and thus ∑
i

(
ci,kwk1

)2
− yi

∂

∂x1

(
ci,kwk1

)
− yici,kwk2 = 0,
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which implies

w2
11 ≤ yi

(
ci,k1, wk1 + ci,kD1wk1

)
+ wβ2

= yic
i,k
1, wk1 + yic

i,k(uk11 + ck11, + ck1,pc
p,qwq1) + wβ2

= uβ11 +O(1 + wii).

(4.7)

Let us assume that the maximal double-tangential term wττ occurs at x0 in a tangential

direction e1, i.e. w11(x0). Hence, Dτw11(x0) = 0, which gives

(4.8) uτ11 ≤ O(1 + wii).

Therefore, from (4.6) and (4.8)

uβ11 ≤ O(1 + wii),

and by (4.7)

w2
11 ≤ O(1 + wii).

From the fact that λ−1 < detwij < λ for some constant λ > 0, we conclude that

(4.9) w11(x0) ≤ C.

It remains to bound wββ(x0). By contradiction, we may assume wββ(x0) is arbitrarily

large. Note that we can decompose ν(= e2) in terms of

ν = − 1

β · ν
(β − (β · ν)ν) +

1

β · ν
β.

There exists a matrix A = (aij) such that at x0,[
1 0
a21 a22

] [
τ
β

]
=

[
τ
ν

]
,

where 0 < a22 = 1
β·ν ≤ C by the obliqueness, and thus detA ≤ C. From the decomposition,

w11 = wττ , w12 = a21wττ ,

w22 = a2
22wββ + a2

21wττ .

Since |a21|, wττ are bounded, w22 will be arbitrarily large if wββ is (by assumption).

Next we invoke the dual problem: Let u∗ denote the c-transform of u, defined for y =

Tu(x) ∈ Ω∗ by

u∗(y) = −c(x, y)− u(x).

It follows that

Du∗(y) = −cy(x, y)

= −cy(T ∗u∗(y), y),

where

T ∗u∗(y) = (Tu)−1(y),
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and the dual equation is

|detDy(T
∗
u∗)| = g(y)/f(T ∗u∗) in Ω∗,

T ∗u∗(Ω∗) = Ω.

Furthermore, by differentiation at y = Tu(x),

(4.10) wij(x) = w∗kl(y)ck,icl,j(x, y),

where w∗kl(y) = u∗ykyl(y) + c,kl(x, y) and (wij) is the inverse of (wij). By a similar analysis

as for (4.9), we have

(4.11) w∗τ∗τ∗(y0) ≤ C,

where y0 = Tu(x0) and τ∗ is the tangential direction at y0.

Define

(4.12) τ̃k := τ∗i ci,k(x0, y0).

Then by (4.10) and (4.11) we have

C ≥ w∗ijτ∗i τ∗j
=
(
w∗ijc

i,kcj,l
)
τ̃kτ̃l

= wklτ̃kτ̃l

= w11τ̃2
1 + 2w12τ̃1τ̃2 + w22τ̃2

2 .

It is easy to see that the last two terms are bounded because of (4.3) and (4.9). If we can

show τ̃2
1 ≥ δ0 for some constant δ0 > 0, then we have a contradiction as w11 = w22/detwij

will become arbitrary large (by assumption).

At (x0, y0), by the obliqueness estimate (1.10)

−c2,1y1 − c2,2y2 ≥ c0,

where c0 > 0 is constant. This is equivalent to

1

det ci,j
(c2,1y1 − c1,1y2) ≥ c0,

and

(c2,1y1 − c1,1y2)2 ≥ c2
0(det ci,j)

2 =: δ0 > 0.

At y0, the tangential τ∗ = (y2,−y1). From (4.12)

τ̃1 = c1,1τ
∗
1 + c2,1τ

∗
2

= c1,1y2 − c2,1y1,

and thus we obtain

τ̃2
1 ≥ δ0 > 0.
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The above contradiction implies that wββ(x) ≤ C for all x ∈ ∂B1. Therefore, by (4.5)

we conclude the estimate (1.11) and Theorem 1.1 is proved.

Remark 4.1. By Corollary 2.1, the cost function c satisfies the condition (A3). To obtain

the global C2 and higher order estimates, we assume furthermore that the densities f and

g are C2 smooth. From [13], we have the estimate

(4.13) sup
Ω
|D2u| ≤ C(1 + sup

∂Ω
|D2u|),

and combining with (1.11) we obtain the global C2 estimate.

Once the second derivatives are bounded, equations (1.3)–(1.4) are uniformly elliptic.

This combined with the obliqueness estimate (1.10) yields global C2,α estimates [7]. More-

over, the higher order estimates follow from the theory of linear elliptic equations with

oblique boundary conditions [5].
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