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Abstract. In this paper we study Riemannian manifolds (Mn, g) equipped with
a smooth measure m. In particular, we show that the construction of conformally
covariant operators due to Graham-Jenne-Mason-Sparling can be adapted to this
setting. As a by-product, we define a family of scalar curvatures, one of which
corresponds to Perelman’s scalar curvature function. We also study the variational
problem naturally associated to these curvature/operator pairs.

1. Introduction

This paper draws its inspiration from an observation about the scalar curvature
function introduced by Perelman [Per02], with the goal of illustrating the connection
between conformally covariant operators and the W-functional of Perelman.

Let (Mn, g) be a Riemannian manifold endowed with a smooth measure m, which
we write as

dm = e−fdV ol(g).

The Bakry-Emery Ricci tensor of the Riemannian measure space (Mn, g,m) is

Ricm(g) = Ricm∞(g) = Ric(g) +∇2f.

Although typically attributed to Bakry-Emery [BE85], this tensor was studied much
earlier by Lichnerowicz [Lic70]. Perelman [Per02] introduced a notion of scalar cur-
vature in this setting given by

Rm(g) = Rm
∞(g) = R(g) + 2∆f − |∇f |2.

When the measure m is the canonical Riemannian measure, then f ≡ 0 and the
generalized curvatures agree with their classical counterparts.

From the perspective of conformal geometry, the scalar curvature is naturally con-
sidered in conjunction with the conformal laplacian, the linear second-order operator
which describes how the scalar curvature transforms under a conformal change of
metric. In our conventions, if ĝ = v4/(n−2)g then

R(ĝ) =
4(n− 1)

(n− 2)
v

n+2
n−2Lgv,(1.1)
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where

L = −∆ +
(n− 2)

4(n− 1)
R(g).(1.2)

Moreover, the conformal laplacian is conformally covariant: now writing ĝ = e2wg,

Lĝφ = e−
n+2

2
wLg(e

n−2
2

wφ).(1.3)

The question naturally arises: is there a linear, conformally covariant differential
operator associated to Perelman’s scalar curvature? What are the corresponding
transformation formulas?

The answer to the first question is, somewhat surprisingly, ’yes’: The operator is
given by

Lm
2,∞ = −∆ + 2〈∇f, ·〉+

n+ 2

4
Rm
∞(g)(1.4)

(see Section 4.1). Moreover, if ĝ = v−
4

n+2 g is a conformal metric, then

Rm
∞(ĝ) =

4(n− 1)

(3n− 2)
v−

n−2
n+2Lm

2,∞v.(1.5)

Writing ĝ = e2wg, the operator in (1.4) satisfies the covariance property

(Lm
2,∞)ĝφ = e

n−2
2

w(Lm
2,∞)g(e

−n+2
2

wφ).(1.6)

Note the interesting comparison with the ”bidegree” of the conformal laplacian in
(1.3).

Our first goal in this paper is to put the preceding formulas for Rm
∞ and Lm

2,∞
into a broader context. That is, by adapting the construction of Graham-Jenne-
Mason-Sparling [GJMS92] to Riemannian measure spaces we prove the existence of a
1-parameter family of conformally covariant operators, of which Lm

2,∞ is a particular
example (i.e., α = 2). As a by-product of this construction we define a new family
of scalar curvature functions R(m,α) which generalize Perelman’s scalar curvature.
Thus, for each value of the parameter α, we have a pair (R(m,α),Lm

α ) consisting of a
scalar curvature function and covariant operator. The relationship between curvature
and operator are completely analogous to the case of the scalar curvature/conformal
laplacian detailed above. We remark that the conformally invariant curvatures of
[CGY06] figure in this construction in an important way.

The second goal of this paper is to study the variational problem naturally associ-
ated to this new family (R(m,α),Lm

α ). As we shall see in Section 3, the Euler-Lagrange
equation can be subcritical, critical (as it is for the usual scalar curvature), or even
supercritical, depending on the value of α. In Section 4 we prove existence of ex-
tremals for the Lagrangian in the subcritical case. For the remaining cases existence
seems to be a difficult issue.

In Section 5 we study another special case (α = 1), and formulate a weighted L2-
eigenvalue problem. We then give a characterization of the Yamabe invariant as the
solution of a mini-max problem for this eigenvalue. This result is directly inspired
by Perelman’s work; indeed, the Lagrangian associated to the operator Lm

1 is (up
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to a constant) Perelman’s entropy functional. Why it is that a Lagrangian which
comes from a construction in conformal geometry should coincide with Perelman’s
functional—which characterizes gradient Ricci solitons—is somewhat mysterious. In
some sense, Section 5 brings us full circle: what started with an observation about
Perelman’s scalar curvature brings us via the construction of Graham-Jenne-Mason-
Sparling back to Perelman’s work.

Some material in this paper was announced in [CGY06].

2. Conformally covariant operators on RM-spaces

In this Section we adapt the construction of Fefferman-Graham [FG85] and Graham-
Jenne-Mason-Sparling [GJMS92] to construct families of conformally covariant dif-
ferential operators associated to an RM -space. As we shall see here and in Section 3,
the conformally invariant scalar and Ricci curvatures of [CGY06] arise naturally in
these constructions.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 2. A metrically defined
differential operator A = Ag is said to be conformally covariant of bi-degree (a, b) if
it obeys the following transformation under a conformal change of metric ĝ = e2wg:

Aĝ(ψ) = e−bwAg(e
awψ)(2.1)

for some constants a, b and all ψ ∈ C∞(Mn). For example, when n = 2, Ag = ∆g

is conformally covariant with a = 0 and b = 2. More generally, when n ≥ 3 the

conformal laplacian Ag = Lg = −∆g + (n−2)
4(n−1)

R(g) is conformally covariant with

a = (n− 2)/2 and b = (n+ 2)/2.
In [GJMS92], Graham-Jenne-Mason-Sparling constructed conformally covariant

operators Pk for all positive integers k when n is odd, and for 1 ≤ k ≤ n/2 when
n is even, with a = (n − 2k)/2 and b = (n + 2k)/2. The principal part of Pk is
given by (−∆)k; when k = 1 then P1 is just the conformal laplacian. These operators
were derived from the ambient metric construction of Fefferman-Graham which is
briefly described below. Aside from their intrinsic interest, they have also played a
role in the recent work of Fefferman-Graham [FG02], Fefferman-Hirachi [FH03], and
Graham-Zworksi [GZ03]. Given an RM -space (Mn, g,m), we can modify the method
of [GJMS92] to derive a family of operators Am

g satisfying

ĝ = e2wg =⇒ Am
ĝ (ψ) = e−bwAm

g (eawψ),(2.2)

for some constants a, b and all ψ ∈ C∞(Mn).

Theorem 2.1. Let (Mn, g,m) be an RM-space with n ≥ 3. Let k be a positive
integer; if n is even we assume in addition that 1 ≤ k ≤ n/2. For α ∈ R, denote
βk(α) = (nα− n+ 2k)/2. Then, given any α ∈ R there is an operator Pm

α,k satisfying
(2.2) with a = −βk(α) and b = 2k − βk(α), the leading term of which is given by

Pm
α,k =

(
−∆g + α〈∇f,∇ · 〉)k + · · ·(2.3)
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When α = 0 the operator Pm
α,k coincides with Pk. For k = 1 we have the formula

Pm
α,k(ψ) = −∆gψ + α〈∇f,∇ψ〉+

n− 2− nα

2(n− 2)

(
α∆gf +

nα + n− 2

2(n− 1)
R(g)

)
ψ.(2.4)

As in [GJMS92], our operators are constructed by an inductive algorithm; when
k becomes large the formulas become increasingly complicated. In fact, Graham-
Jenne-Mason-Sparling presented two (equivalent) ways of deriving their operators.
We will briefly describe one of their methods, indicating the modifications necessary
to produce the measure-dependent operators Pm

α,k.

To begin, given a Riemannian manifold (Mn, g), let G ⊂ S2T ∗Mn denote the ray
bundle consisting of metrics in the conformal class of g. Fixing a representative
g ∈ [g] determines a fiber variable t on G, by writing a general point in G in the
form (x, t2g(x)). If {xi} are local coordinates on Mn, the coordinate system (t, xi)
on G extends to a coordinate system (t, xi, ρ) on G̃ = G × (−1, 1), where ρ is a
defining function for G, homogeneous of degree 0 (see [FG85] for details). Using these
coordinates we can define the ambient metric g̃ on G̃ by

g̃ = 2ρdt2 + 2tdt dρ+ t2gij(x, ρ)dx
idxj,(2.5)

where gij(x, 0) = gij(x) is the given representative of [g]. For ρ 6= 0 the Taylor
expansion of gij(x, ρ) is determined by formally solving the Einstein equation

Ric(g̃) = 0.(2.6)

We remark that in the construction of [FG85], when n is even, (2.6) determines the
Taylor coefficient of gij up to the (ρ)

n
2 term; the trace part of gij(∂ρ)

n
2 gij is determined

at ρ = 0 but the trace-free part of (∂ρ)
n
2 gij is not. When n is odd, (2.6) determines

the expansion of all orders. This partially explains the constraint on the order k for
the existence part of the GJMS operator when the dimension n is even.

Let δs : G → G denote the dilations δs(g) = s2g, with s > 0. Functions on G which
are homogeneous of degree β with respect to δs are known as conformal densities of
weight β. Given a density φ of weight β, consider the problem of extending φ to a
harmonic function on G̃ with the same homogeneity. That is, we want to find the
formal power series solution of

∆̃(tβφ) = 0.(2.7)

The operators of [GJMS92] arise as the obstruction to formally solving (2.7) with
β + 1

2
n = k = 1, 2, 3, . . . .

Given an RM -space (Mn, g,m) we can also construct the ambient metric g̃, but
we need to extend the density function f associated to m as well.

Lemma 2.1. Let (Mn, g,m) be a Riemannian measure space with dm = e−fdV ol(g).
Let k be a positive integer; if n is even we assume in addition that 1 ≤ k < n

2
.

Then there is an extension f̃ : G̃ → R with f̃(t, x, ρ) = f(x, ρ) + n log t, such that

f(x, 0) = f(x) for all x ∈Mn, and f̃ satisfies

∆̃f̃ = O(ρk)(2.8)
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near G on G̃.

This Lemma is a special case of Proposition 2.2 in [GJMS92]; see also Lemma 2.1
in [FH03]. In order to make the paper self contained–and to derive specific formulas
for Pm

α,k in (2.4) for the case k = 1–we will outline the proof here.

Proof. We will establish (2.8) by induction on k. Given a function ψ defined on the

ambient space ψ = ψ(t, x, ρ), denote ψ′ = ∂
∂ρ
ψ, ψ′′ = ∂2

∂ρ2ψ. Then

∆̃ψ = t−2{∆gψ + (n− 2)ψ′ − 2ρψ′′ + 2t∂tψ
′ +

1

2
tgijg′ij∂tψ − ρ(log|g|)′ψ′},(2.9)

where g = gij(x, ρ)dxidxj. Thus, for a function f̃(t, x, ρ) = f(x, ρ) + n log t with
f(x, 0) = f(x) we have

t2∆̃f̃ = ∆gf̃ + (n− 2)f ′ − 2ρf ′′ + 2t∂tf
′ +

n

2
gijg′ij − ρ(log|g|)′f ′.(2.10)

To see that f̃ can be chosen to satisfy the equation (2.8) for k = 1 and all n > 2, we
use the identities

g′ij(x, 0) = 2Pij =
2

n− 2
{Rij −

1

2(n− 1)
Rgij}

(log|g|)′|ρ=0 =
1

(n− 1)
R,

(2.11)

where Rij and R are respectively the Ricci and scalar curvature of the metric g.
Substituting these into the formula (2.10), we see that (2.8) for k = 1 is equivalent
to finding f(x, ρ), with

f ′(x, 0) = − 1

n− 2
∆gf(x)− n

2(n− 1)(n− 2)
R,(2.12)

which can easily be done.
To see that (2.8) can be solved for all k with 1 ≤ k < n

2
if n is even and for all k

when n is odd, we apply the same strategy that appears in the construction of the
operators in [GJMS92]. That is, we inductively differentiate ∆̃f̃ exactly (k−1)-times
w.r.t. ρ, then evaluate at ρ = 0. For example, when k = 2, using the identities in
(2.11) and doing some routine calculations we obtain

t2(∆̃f̃)′|ρ=0 = −2P ij∇i∇jf −
1

2(n− 1)
∇jR∇jf(2.13)

+ ∆gf
′ + (n− 4)f ′′ − nP ijPij −

1

(n− 1)
Rf ′.

From (2.13), it is clear that to solve (2.8) for k = 2 and n 6= 4 one only needs to
choose f(x, ρ) with f ′′(x, 0) satisfying

(n− 4)f ′′(x, 0) = 2P ij∇i∇jf(x) +
1

2(n− 1)
∇R∇f(x)(2.14)

−∆gf
′(x, 0) + nP ijPij(x) +

1

(n− 1)
Rf ′(x, 0),
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with f ′(x, 0) satisfying equation (2.12). We refer to [GJMS92] for the proof of the
general k. �

Proof of Theorem 2.1 To derive the operators Pm
α,k we replace (2.7) with

−∆̃(tβφ) + α < ∇̃f̃ , ∇̃φ >= 0,(2.15)

where φ = φ(x, ρ) is any extension of a given function φ defined on M and where f̃
is an extension of f chosen according to Lemma 2.1. The operators Pm

α,k arise as the

obstruction to formally solving (2.15) up to order ρk independent of the extension φ =
φ(x, ρ) of φ. We then find that a suitable choice of β is β = βk(α) = (nα− n+ 2k)/2
for each k ≥ 1 when n is odd, and for 1 ≤ k < n

2
when n is even. As the proof is by

induction on k and very similar to the proof in [GJMS92] we will only give an outline.

Given a smooth function φ̃ = φ(t, x, ρ) defined on the ambient space G̃, we define
the operator

L̃m
α,g̃(φ̃) = −∆̃(φ̃) + α < ∇̃f̃ , ∇̃φ̃ > .(2.16)

Let φ, f ∈ C∞(M) and suppose φ(x, ρ) and f(x, ρ) are smooth extensions defined on

G; i.e., φ(x, 0) = φ(x) and f(x, 0) = f(x). Given β ∈ R, denote φ̃(t, x, ρ) = tβφ(x, ρ)

and f̃(t, x, ρ) = f(x, ρ) + n log t; then

L̃m
αg̃(φ̃) = tβ−2{2ρφ′′ − [2β + (n− 2)− 1

n− 1
ρR− nα]φ′ −∆gφ(2.17)

− 1

2(n− 1)
βRφ+ αβφf ′ + αgij∇iφ∇jf − 2ραφ′f ′}.

Therefore,

t2−βL̃m
α,g̃(φ̃)|ρ=0 = [nα− (n− 2) + 2β]φ′ −∆gφ(2.18)

− 1

2(n− 1)
βRφ+ αβφf ′ + α < ∇gφ,∇gt > .

Consequently, if we choose β = β1(α) so that nα− (n− 2)− 2β = 0, and choose f̃ to
satisfy (2.12) in Lemma 2.1, the operator Pm

α,1 given by

Pm
α,1(φ) = t2−βLm

α,g̃(φ̃)|ρ = 0(2.19)

is well defined and satisfies covariance property

(Pm
α,1)ĝ

(φ) = e(β−2)w(Pm
α,1)g

(e−βwφ)(2.20)

for all functions φ ∈ C∞(M), where ĝ = e2wg. Note in the formula of Pm
α,1ĝ

we should

replace f by f̂ = f + nw. The explicit formula for Pm
α,1 for the choice of f ′ in (2.12)

is given by (2.4).

As before, for general k the idea of the proof is to differentiate the term L̃m
α,g̃(φ̃)

exactly (k − 1)-times w.r.t. ρ and inductively define the operators Pm
α,k in a similar

fashion. We refer to [GJMS92] for details.
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Remarks.
1. The conformally invariant curvatures of [CGY06] can also be defined in terms of

the extension f̃ . For example, Rm
n (g) is given by

Rm
n (g) = −(n− 1)(n− 2)

n2
|∇̃f̃ |2

∣∣∣
Mn
.(2.21)

2. When n is even, the operators of [GJMS92] exist up to k ≤ n
2
, but our con-

struction above only gives the existence of operators for k < n
2

due to the choice

of the extension f̃ in Lemma 2.1. However, when k = 1 the preceding Remark in-
dicates a way of modifying our construction, as follows. First, note that one can
add a multiple of Rm

n (g) to the operator Pm
α,1 and obtain an operator with the same

conformal covariance property. For example, if one adds the term CRm
n (g), with

C = C(α, n) = n2

4(n−1)(n−2)
αβ1(α), then the operator defined by

L̃m
α,1(φ) = Pm

α,1(φ) + C(α, n)Rm
n (g)φ(2.22)

= −∆gφ+ α < ∇gf,∇gφ >

− β1[(1−
nα

2
)

1

2(n− 1)
Rg −

α

2
∆gf +

α

4
|∇gf |2]φ

satisfies the conformal covariance property (2.2), with a = −β1(α) and b = 2−β1(α).
It has the additional advantage that it exists for all n ≥ 2, including n = 2. When
k ≥ 2, it is not yet clear how to modify the operator Pm

α,k. On the other hand,
the existence of m-conformally covariant operators for all k when n is even and for
1 ≤ k ≤ n

2
(when n is odd) follows from an observation of R. Graham. The details

are given in the next Remark.

3. R. Graham pointed out to us another possible construction of conformally covari-
ant operators on RM -spaces, by using the operators Pk of [GJMS92]. Letting

Gm
α,k(φ) = e

αf
2 Pk(e

−αf
2 φ),(2.23)

it is easy to see that these operators satisfy the same conformal covariance as the
operators Pm

α,k in Theorem 2.1. Interestingly, in general Gm
α,k and Pm

α,k do not agree.
For example, when k = 1 they again differ by a multiple Cα,n of Rm

n (g).

3. Properties of the operators

In this section we will discuss some properties of the operators constructed in
Section 2. To simplify the presentation, we will restrict ourselves to a discussion of
the case k = 1.
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As before, (Mn, g, dm) will be an RM -space, and dm = e−fdvg defines the density
function f . Let us denote

Lm
α ψ = Pm

α,k=1ψ

= −∆gψ + α〈∇f,∇ψ〉+
n− 2− nα

2(n− 2)

(
α∆gf +

nα + n− 2

2(n− 1)
R(g)

)
ψ.

(3.1)

We begin by summarizing some elementary properties of the operators Lm
α .

Proposition 3.1. For each α ∈ R,

(i) Lm
α is self-adjoint with respect to the measure

dmα = e−αfdV ol(g).(3.2)

(ii) Suppose ĝ = e2wg is a conformal metric, then

(3.3) (Lm
α )bg(φ) = e(β(α)−2)wLm

α (e−β(α)wφ),

for all φ ∈ C∞(M), where

β(α) =
nα− n+ 2

2
.(3.4)

(iii) Denote v = vα = e−β(α)w. Then

(3.5) (Lm
α )bg(1) = v−γα(Lm

α )g(v),

where

γα =
n+ 2− nα

n− 2− nα
, α 6= n− 2

n
.(3.6)

Proof. The properties (i) − (iii) follow from the properties of the operators Pm
α,k=1

described in Section 2. �

Remarks.

1. The properties of Lm
α listed in Proposition 3.1 are shared by any operator which

differs from Lm
α (g) by a constant multiple of Rm

n (g). In particular, the operators Gm
α

satisfy the same properties.

2. One can interpret equation (3.5) as defining a a scalar curvature associated to the
triple (g,m, α). Let

R(m,α) = R(m,α)(g) =
n− 2− nα

n− 2

(
R(g) +

2α(n− 1)

n− 2 + nα
∆gf

)
.(3.7)

We will refer to R(m,α) as the (g,m, α)-scalar curvature, or just the α-scalar curvature
if the context is clear. Note we can also write

R(m,α)(g) =
4(n− 1)

(n− 2 + nα)
Lm

α (1).(3.8)
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By (3.5) and (3.8), given a conformal metric

ĝ = e2wg = v
4

n−αn−2 g,(3.9)

the α-scalar curvature of ĝ is given by

R(m,α)(ĝ) =
4(n− 1)

(n− 2 + nα)
v−γα(Lm

α )g(v).(3.10)

These formulas define a pair (R(m,α),Lm
α ) generalizing the well known example of

the scalar curvature/conformal laplacian (R,L). Indeed, the pair (R,L) is just
(R(m,0),Lm

0 ), i.e., the case α = 0.

3. It is interesting to note that the semilinear equation (3.10) associated to the
α-scalar curvature can be sub-critical, critical, or super-critical with respect to the
Sobolev imbedding, depending on α. To see this, we note the following apparent
properties of the exponent γα:

(a.) γ0 =
n+ 2

n− 2
, γ1 = −1, γ(n+2)/n = 0.

(b.) lim
α→±∞

γα = 1.

(c.)
d

dα
γα =

4n

(n− 2− nα)2
, α 6= n− 2

n
.

(d.) lim
α→(n−2

n
)−
γα = +∞.

(e.) lim
α→(n−2

n
)+
γα = −∞.

(3.11)

The figure below shows γα as a function of α.
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4. When α = (n− 2)/n one needs to modify the definition of the α-scalar curvature,
since the definition (3.7) gives zero. In addition, one sees from the figure above that
the exponent in equation (3.10) becomes infinite. Using an ansatz due to Branson
known as continuation in the dimension, we can construct an operator Tm to supplant

Lm
(n−2)/n = −∆ +

n− 2

n
〈·,∇f〉,(3.12)

and this permits us to define a scalar curvature Km(g) corresponding to the case
α = (n− 2)/n. Indeed, denote ᾱ = (n− 2)/n, and define

Tm
g φ = lim

α→ᾱ

1

β(α)

[
Lm

α (eβ(α)φ)− Lm
α (1)

]
= lim

α→ᾱ

1

β(α)

[
−∆(eβ(α)φ − 1) + α〈∇((eβ(α)φ − 1),∇f〉

− β

(n− 2)

(
α∆f +

nα + n− 2

2(n− 1)
R

)
(eβ(α)φ − 1)

]
= −∆w +

n− 2

n
〈∇w,∇f〉.
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We also define

Km(g) = lim
α→ᾱ

1

β(α)
Lm

α (1)

= − 1

(n− 1)

(
R(g) +

(n− 1)

n
∆f

)
.

If ĝ = e2wg, then

Tm
ĝ = e−2wTm

g ,(3.13)

in analogy with the laplacian on surfaces. Also, the behavior of Km under a conformal
change is given by

Tm
g w + cnK

m(ĝ)e2w = cnK
m(g),(3.14)

where

cn =
(n− 2)

(n− 1)
.

Note the obvious parallel with the prescribed Gauss curvature equation.

As we observed in Remark 3. above, equation (3.10) can be sub-critical, critical,
or supercritical depending on the value of α. In the next Section we will study the
existence of conformal metrics with constant α-scalar curvature for the sub-critical
case; i.e., −∞ < α < 0 and α > 1.

4. −∞ < α < 0 and α > 1: the sub-critical cases

To introduce the variational problems associated to the operators defined in Section
3 we define the functionals

Em
α [v] =

∫
v Lm

α v dmα(g)

=
〈
v,Lm

α v
〉

L2(dmα)
,

(4.1)

where

dmα(g) = e−αfdV ol(g).

We also define the constraint set

Cα =
{
v ∈ W 1,2(M)

∣∣ v ≥ 0,

∫
vγα+1 dmα(g) = 1

}
.(4.2)

Note that

1 + γα =
2n(α− 1)

n(α− 1) + 2
,(4.3)

which is positive when −∞ < α < 0 or α > 1.
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Consider the variational problem

inf
v∈Cα

Em
α [v].(4.4)

By the identity (3.10) this is equivalent to the following geometric variational problem:
define

R(m,α) : g 7→
∫
R(m,α)(g) dmα(g),(4.5)

Cα([g]) =
{
ĝ = v

4
n−αn−2 g

∣∣ v ∈ C∞(M), v > 0, v ∈ Cα

}
.(4.6)

Then

R(m,α)[ĝ] =
4(n− 1)

(n− 2 + nα)
Em

α [v],(4.7)

where ĝ = v
4

n−αn−2 g. Consequently,

inf
ĝ∈Cα([g])

R(m,α)[ĝ] =
4(n− 1)

(n− 2 + nα)
inf

v∈Cα

Em
α [v], if α <

n− 2

n
,(4.8)

and

sup
ĝ∈Cα([g])

R(m,α)[ĝ] =
4(n− 1)

(n− 2 + nα)
inf

v∈Cα

Em
α [v], if α >

n− 2

n
.(4.9)

Again, when α = 0 we recover the familiar relation between the total scalar curvature
and the Yamabe quotient. Moreover, when α < 0 or α > 1, the exponent in the
definition of the constraint set Cα is subcritical for the Sobolev embedding.

Theorem 4.1. (i) Suppose α ≤ 0 or α > 1. Then

inf
v∈Cα

Em
α [v] > −∞.(4.10)

(ii) If α < 0 or α > 1, then the infimum in (4.10) is attained by a positive function
v = vα ∈ C∞(M) satisfying

Lm
α vα = cvγα(4.11)

for some constant c.

Equivalently, if α < 0 there is a conformal metric ĝ = v
4

n−αn−2
α g ∈ Cα([g]) which

attains the infimum of Rm,α; if α > 1 there is a conformal metric ĝ = v
4

n−αn−2
α g ∈

Cα([g]) which attains the supremum of Rm,α. In both cases, the α-scalar curvature of
ĝ satisfies

R(m,α)(ĝ) = c.

Proof. To verify (4.10), let v ∈ Cα; then

Em
α [v] ≥

∫
|∇v|2 dV ol(g)− C(g, f)

∫
v2 dV ol(g).(4.12)
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Therefore, by the Sobolev imbedding theorem,( ∫
v

2n
n−2 dV ol(g)

)(n−2)/n ≤ C‖v‖W 1,2

≤ C
(
Em

α [v] +

∫
v2 dV ol(g)

)
.

(4.13)

When α ≤ 0, then 1 + γα satisfies

2 < 1 + γα ≤
2n

n− 2
,(4.14)

and by Hölder’s inequality∫
v2 dV ≤

( ∫
v1+γα dV

) 2
1+γα ≤ C.(4.15)

It follows from (4.13) that

Em
α [v] ≥ C‖v‖2

2n
n−2

− C

≥ −C.
(4.16)

If α > 1, then by Hölder’s inequality∫
v2 dV ≤

( ∫
v

2n
n−2 dV

)θ( ∫
v1+γα dV

)1−θ
,(4.17)

where

θ =
n− 2

αn
<
n− 2

n
.(4.18)

Substituting this into (4.13) and using the constraint one verifies that (4.16) also
holds for α > 1.

For existence, we now suppose α < 0 or α > 1, and let {vk} be a minimizing
sequence for Em

α with vk ∈ Cα. We may assume

Em
α [vk] ≤ inf

Cα

Em
α + 1.

By (4.16) we see that

‖vk‖2n/(n−2) ≤ C,

and from (4.12) we conclude that {vk} is bounded in W 1,2. Since

1 + γα <
2n

n− 2

when α < 0 or α > 1, the embedding

W 1,2 ↪→ L1+γα

is compact. Therefore, a subsequence of {vk} will converge weakly in W 1,2, but
strongly in L1+γα , to a minimizer v ∈ Cα. Using the fact that Lm

α is self-adjoint it is
easy to check that a W 1,2-critical point of Em

α subject to the constraint in (4.2) will
satisfy (4.11) weakly. Elliptic regularity implies v ∈ C∞. �
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4.1. α = 2: Perelman’s scalar curvature. The case α = 2 is of particular interest.
Note that

R(m,2)(g) = −(
n+ 2

n− 2
)
(
R(g) +

4(n− 1)

(3n− 2)
∆f

)
.

Recall the definition of the conformally invariant scalar curvature in [CGY06]:

Rm
n (g) = R(g) +

2(n− 1)

n
∆f − (n− 1)(n− 2)

n2
|∇f |2.

When n = ∞, this corresponds formally to the scalar curvature introduced by Perel-
man [Per02]:

Rm
∞(g) = R(g) + 2∆f − |∇f |2.

Comparing these formulas we see that

R(m,2)(g) =
(n+ 2)(n− 1)

(3n− 2)
Rm
∞(g)− n2(n+ 2)

(3n− 2)(n− 2)
Rm

n (g).(4.19)

In particular, if we define the operator

Lm
2,∞ = Lm

2 +
n2(n+ 2)

4(n− 1)(n− 2)
Rm

n (g),(4.20)

then by Remark 1 following Proposition 3.1, Lm
2,∞ enjoys the same conformal covari-

ance properties as Lm
2 . One can check that

Lm
2,∞ = −∆ + 2〈∇·,∇f〉+

n+ 2

4
Rm
∞(g),(4.21)

so that the ”scalar curvature” associated to Lm
2,∞ is a multiple of Perelman’s scalar

curvature. This leads to the following corollary of Theorem 4.1:

Corollary 4.1. Given an RM-space (M, g,m), there is a conformal metric ĝ =

v−
4

n+2 g with

Rm
∞(ĝ) = const.(4.22)

Moreover, v can be realized as the infimum of the functional

Em
2,∞[φ] =

∫
〈φ,Lm

2,∞φ〉 dm2(g)(4.23)

subject to the constraint
∫
φ

2n
n+2 dm2 = 1.

5. The case α = 1: Perelman’s Entropy functional

For the borderline case α = 1, the parameter γ−1 = −1, and the measure m−1 = m.
Also, the 1-scalar curvature is given by

R(m,1)(g) = 2Lm
1 (1) = − 2

n− 2
(∆f +R(g)).(5.1)
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It follows that the functional R(m,1) defined in (4.5) is

R(m,1)[g] =

∫
R(m,1)(g) dm = − 2

n− 2

∫
(R(g) + ∆f) dm

= − 2

n− 2

∫
(R(g) + |∇f |2) dm.

(5.2)

Up to a constant, this is precisely the entropy functional defined by Perelman in §1
of [Per02]. The difficulty in studying the corresponding variational problem (4.4) is
that the constraint set Cα is not well defined when α = 1, since then γ1 = −1 (or,
to be more precise, it does not impose any constraint). In this Section we study a
related eigenvalue problem inspired by Perelman’s work and point out an interesting
connection to the Yamabe invariant.

To begin, let us introduce the modified constraint set

Dm(g) =
{
v ∈ W 1,2(M)

∣∣ v ≥ 0,

∫
v2e−

2
n

f dm = 1
}
.(5.3)

In a slight abuse of notation we will write ĝ = v−2g ∈ Dm(g) whenever v > 0, v ∈
C∞(Mn), and v ∈ Dm(g).

A key property used in our analysis is that the functional Em
1 enjoys a certain

conformal covariance when restricted to Dm. To explain this, let us modify our
notation slightly to emphasize the dependence of Em

1 on the choice of metric, and
write

Em
1 (g)[v] = Em

1 [v]

=
〈
v, (Lm

1 )gv
〉

L2(dm)
.

(5.4)

Lemma 5.1. For all smooth functions ρ > 0, v ∈ W 1,2(Mn), we have

Em
1 (g)[v] = Em

1 (ρ2g)[ρv],(5.5)

v ∈ Dm(g) ⇔ ρv ∈ Dm(ρ2g).(5.6)

Proof. To prove (5.5), we use the covariance of Lm
1 given in Proposition 3.1, (ii): If

ĝ = e2wg, then

(Lm
1 )e2wgφ = e−w(Lm

1 )g(e
−wφ).

Taking ew = ρ, this implies

Em
1 (ρ2g)[ρv] =

∫
〈ρv, (Lm

1 )ρ2g(ρv)〉 dm

=

∫
〈ρv, ρ−1(Lm

1 )g(ρ
−1ρv)〉 dm

=

∫
〈v, (Lm

1 )gv〉 dm

= Em
1 (g)[v].
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To prove (5.6), suppose ρ > 0 is smooth and write

dm = e−fρdV ol(ρ2g),

where fρ = f + n log ρ. Therefore,∫
(ρv)2e−

2
n

f dm =

∫
(ρv)2e−

2
n

(f+n log ρ) dm

=

∫
(ρv)2e−

2
n

fρ dm.

If follows that v ∈ Dm(g) if and only if (ρv) ∈ Dm(ρ2g), as claimed. �

For simplicity we now adopt Perelman’s notation and write

Fm[g] = −(n− 2)

2
R(m,1)[g]

=

∫
(R(g) + ∆f) dm

=

∫
(R(g) + |∇f |2) dm.

(5.7)

It will be convenient if we normalize the measure m to have total mass one; let P
denote the set of all such smooth probability measures on Mn.

Theorem 5.1. Let (Mn, g) be a Riemannian manifold.

(i) For each m ∈ P,

λ(m, [g]) = sup
ĝ∈Dm(g)

Fm[ĝ](5.8)

is attained by some metric σm ∈ [g] satisfying

R(σm) + ∆σmfm = λ(m, [g])e−
2
n

fm ,(5.9)

where fm is the density function of m relative to σm.

(ii) Let Y (Mn, [g]) denote the Yamabe invariant of [g]. Then

λ∗([g]) = inf
m∈P

λ(m, [g]) = Y (Mn, [g]),(5.10)

and the infimum is attained by all Yamabe measures, i.e., measures m ∈ P such that

dm = e−fY dV ol(g),(5.11)

with gY = e−
2
n

fY g a Yamabe metric.

Proof. (i). First, by (4.7) we have

Fm(ĝ) = −(
n− 2

2
)R(m,1)(ĝ)

= −(n− 2)Em
1 (g)(v),
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where ĝ = v−2g. Therefore, the variational problem in (5.8) is equivalent to a weighted
L2-eigenvalue problem for the operator Lm

1 . It follows that there is a function v ∈
C∞(Mn) ∩ Dm(g), v > 0 satisfying the Euler-Lagrange equation

Lm
1 v = µve−

2
n

f ,(5.12)

where

µ = inf
v∈Dm(g)

Em
1 (g)[v]

= − 1

(n− 2)
sup

ĝ∈Dm(g)

Fm[ĝ]

= − 1

(n− 2)
λ(m, [g]).

Using (3.10), equation (5.12) implies the metric σm = v−2g satisfies

R(m,1)(σm) = − 2

(n− 2)
λ(m, [g])v2e−

2
n

f .(5.13)

Since dV ol(σm) = v−ndV ol(g), it follows that fm = f − n log v, hence

v2 = e−
2
n

fme
2
n

f .

Substituting this into (5.13) and using the definition in (5.1) we find

R(σm) + ∆σmfm = −n− 2

2
R(m,1)(σm)

= λ(m, [g])e−
2
n

fm ,

as claimed.

(ii) We will prove part (ii) through a series of claims.

Claim 5.1. For each m ∈ P,

λ∗([g]) ≤ Y (Mn, [g]).(5.14)

Proof. Let gY = ρ2
0g denote a Yamabe metric in [g] and mY = dV ol(gY ) denote the

Yamabe measure associated to gY . We will assume that gY has been normalized to
have unit volume, so that dmY is a probability measure and

R(gY ) = Y (Mn, [g]).(5.15)

By the definitions above,

λ(mY , [g]) = sup
v−2g∈DmY (g)

FmY [v−2g]

= sup
v∈DmY (g)

−(n− 2)EmY
1 (g)[v].



18 SUN-YUNG A. CHANG, MATTHEW J. GURSKY, AND PAUL YANG

By Lemma 5.1,

EmY
1 (g)[v] = EmY

1 (ρ2
0g)[ρ0v]

= EmY
1 (gY )[ρ0v],

and v ∈ DmY (g) ⇔ w = ρ0v ∈ DmY (gY ). Thus,

λ(mY , [g]) = sup
w∈DmY (gY )

−(n− 2)EmY
1 (gY )[w].

Now,

−(n− 2)EmY
1 (gY )[w] =

∫ [
− (n− 2)|∇w|2 + (R(gY ) + ∆fY )w2

]
dm.

Since mY = dV ol(gY ), the density function fY ≡ 0. Therefore,

λ(mY , [g]) = sup
w∈DmY (gY )

−(n− 2)EmY
1 (gY )[w]

= sup
w∈DmY (gY )

∫ [
− (n− 2)|∇w|2 +R(gY )w2

]
dm

≤ sup
w∈DmY (gY )

R(gY )

∫
w2 dmY

= R(gY )

= Y (Mn, [g]).

�

Claim 5.2. As in [CGY06], define the conformally invariant functional

Sm[g] =

∫
Rm

n (g) e
2
n

f dm.(5.16)

Then for each m ∈ P,

λ(m, [g]) ≥ Sm[σm].(5.17)

Proof. Recall from above the definition of Rm
n (g):

Rm
n (g) = R(g) +

2(n− 1)

n
∆f − (n− 1)(n− 2)

n2
|∇f |2.(5.18)

Taking g = σm, and using equation (5.9), we have

Rm
n (σm) =

(n− 2)

n
∆fm −

(n− 1)(n− 2)

n2
|∇fm|2 + λ(m, [g])e−

2
n .

Therefore,

Sm[σm] =

∫ ((n− 2)

n
∆fm −

(n− 1)(n− 2)

n2
|∇fm|2 + λ(m, [g])e−

2
n

)
e

2
n

fm dm

= λ(m, [g])− (n− 2)

n2

∫
|∇fm|2e

2
n

fm dm,
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which implies (5.17). �

Claim 5.3. We have

inf
m∈P

Sm[g] = Y (Mn, [g]),(5.19)

and the infimum is achieved by a measure mY if and only if mY is a Yamabe measure.

Proof. Let m ∈ P with density function f . By (5.16) and (5.18),

Sm[g] =

∫ [
R(g) +

2(n− 1)

n
∆f − (n− 1)(n− 2)

n2
|∇f |2

]
e

2
n

f dm

=

∫ [
R(g) +

(n− 1)(n− 2)

n2
|∇f |2

]
e−

n−2
n

f dV ol(g).

(5.20)

Let gm = e−
2
n

fg; then (5.20) implies that

Sm[g] =

∫
R(gm) dV ol(gm).

Since m is a probability measure, gm has unit volume, and it follows that

inf
m∈P

Sm[g] = inf
gm=e−

2
n f g

∫
R(gm) dV ol(gm)

= Y (Mn, [g]).

�

Combining (5.17) and (5.19), we see that for any m ∈ P ,

λ(m, [g]) ≥ Sm[σm]

≥ inf
m∈P

Sm[g]

= Y (Mn, [g]).

Therefore,

λ∗([g]) ≥ Y (Mn, [g]).

Combining this with (5.14), we arrive at (5.10).
Moreover, it is clear from the proofs of the Claims that any Yamabe measure attains

λ∗([g]).
�
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