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Abstract

In this paper, we study the Aleksandrov-Fenchel inequalities for quermassintegrals on a class
of non-convex domains. Our proof uses optimal transport maps as a tool to relate curvature
quantities of different orders defined on the boundary of the domain.

1 Introduction

In this paper, we study the classical Aleksandrov-Fenchel inequalities for quermassintegrals on con-
vex domains and extend these inequalities to a class of non-convex domains on the Euclidean space.
We obtain a family of geometric inequalities, each relating some nonlinear curvature quantities of
different order on the boundary of the domain.

Let Ω in Rn+1 be a bounded convex set. We denote the m dimensional Hausdorff measure in
Rn+1 by Hm. Consider the set

Ω + tB := {x+ ty|x ∈ Ω, y ∈ B}

for t > 0, the volume of which, by a theorem of Minkowski [25], is an n + 1 degree polynomial in
t, whose expansion is given by

Vol(Ω + tB) = Hn+1(Ω + tB) =

n+1∑
m=0

Cm
n+1Wm(Ω)tm.

Where Wm(Ω) for m = 0, ..., n+1 are coefficients determined by the set Ω, and Cm
n+1 =

(n+1)!
m!(n+1−m)! .

The m-th quermassintegral Vm is defined as a multiple of the coefficient Wn+1−m(Ω).

Vm(Ω) :=
ωm

ωn+1
Wn+1−m(Ω). (1)

Clearly, for arbitrary domain Ω, Vn+1(Ω) = Hn+1(Ω).
If Ω has smooth boundary (denoted by M), the quermassintegrals can also be represented as

the integrals of invariants of the second fundamental form: Let Lij be the second fundamental form
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on M , and let σk(L) with k = 0, ..., n be the k-th elementary symmetric function of the eigenvalues
of L. (Define σ0(λ) = 1.) Then

Vn+1−m(Ω) :=
(n+ 1−m)!(m− 1)!

(n+ 1)!

ωn+1−m

ωn+1

∫
M

σm−1(L)dµM , (2)

for m = 1, ..., n + 1. From the above definition, one can see that V0(Ω) = 1, and Vn(Ω) =
ωn

(n+1)ωn+1
Hn(∂Ω), where Hn(∂Ω) is the area of the boundary ∂Ω. From this definition, as a

consequence of the Aleksandrov-Fenchel inequalities [1], [2], one obtains the following family of
inequalities: if Ω is a convex domain in Rn+1 with smooth boundary, then for 0 ≤ l ≤ n,(

Vl+1(Ω)

Vl+1(B)

) 1
l+1

≤
(
Vl(Ω)

Vl(B)

) 1
l

, (3)

(3) is equivalent to (∫
M

σm−1(L)dµM

) 1
n−m+1

≤ C

(∫
M

σm(L)dµM

) 1
n−m

, (4)

for m = n − l, 1 ≤ m ≤ n. And here C = C(k, n) denotes the constant which is obtained when
M is the n-sphere and the inequality becomes an equality. When m = 0, (3) is the well-known
isoperimetric inequality

Hn+1(Ω)
n

n+1 ≤
ω

1
n+1

n+1

n+ 1
Hn(∂Ω).

The inequalities (3) for convex domains were originally proved using the theory of Minkowski’s
mixed volume. The original argument in establishing the inequalities in [1], [2] depends strongly on
the assumption that the domains dealt with are convex. Since then there have been many different
methods to establish these inequalities for convex domains, some without involving the notion of
Minkowski’s mixed volume (the reader is referred to the book of Hörmander [17] for the subject).
In this article, we will study the inequalities for a class of non-convex domains which we will specify
below.

The class of domains that we will consider in this paper is the class of k-convex domains defined
as follows:

Definition 1.1. For Ω ⊂ Rn+1, we say the boundary M := ∂Ω is k-convex if the second funda-
mental form Lij(x) ∈ Γ+

k for all x ∈ M , where Γ+
k denotes the Garding’s cone

Γ+
k := {A ∈ Mn×n| σm(A) > 0,∀ 1 ≤ m ≤ k}. (5)

We remark that with this notation, n-convex is convex in the usual sense, and 1-convex is
sometimes referred to as mean convex.

In [15], Guan-Li had applied a fully nonlinear flow to study the inequality (4) for m-convex
domains. Namely, one evolves the hypersurface M := ∂Ω ⊂ Rn+1 along the flow

X⃗t =
σm−1

σm
(L)ν, (6)
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where ν is the unit outer normal of the hypersurface M . The key observation made in [15] is that
the ratio (∫

M σm−1(L)dµM

) 1
n−m+1(∫

M σm(L)dµM

) 1
n−m

(7)

is monotonically increasing along the flow (6). Therefore if the solution of the flow (6) exists
for all time t > 0 and converges to a round sphere (or up to a rescaling), then one obtains the
sharp inequality (4) as a consequence. This type of strategy works for some classes of domains,
for example it works for the class of convex domains. In the special case when m = 1, (6) is
the inverse mean curvature flow, which has been extensively studied in the literature, for example
by Evans-Spruck [12], and by Huisken-Ilmanen [20]. We remark that in this special case, under
the additional assumption that the domain Ω is outward minimizing, Huisken has proved that the
sharp inequality (4) holds. Another class of domains in which this strategy works is when Ω is
star-shaped and strictly k-convex. In this case, Gerhardt [14] and Urbas [30] have independently
proved that the flow (6) exists for all t and converges to the round sphere. This enables Guan-Li
to establish the following result:

Theorem 1.2. [15] Suppose Ω is a smooth star-shaped domain in Rn+1 with k-convex boundary,
then the inequality (4) is valid for all 1 ≤ m ≤ k; with the equality holds if and only if Ω is a ball.

We remark in general, without further assumptions on the domain, one anticipates that singu-
larities develop along the flow (6). Hence the flow does not exist for all time.

We would also like to mention that for k-convex domains, a special case of the sharp inequality
(3) between Vn+1 and Vn−k was established by Trudinger. (See Section 3 in [29]).

Our main result in this paper is to establish the inequalities of Aleksandrov-Fenchel type at
level k for (k + 1)-convex domains.

Theorem 1.3. For k = 2, ..., n−1, if M is (k+1)-convex, then there exists a constant C depending
only on n and k, such that for 1 ≤ m ≤ k(∫

M
σm−1(L)dµM

) 1
n−m+1

≤ C

(∫
M

σm(L)dµM

) 1
n−m

.

If k = n, then the inequality holds when M is n-convex. If k = 1, then the inequality holds when
M is 1-convex.

Our proof of the above result uses method of optimal transport. The idea to prove geometric
inequalities by constructing maps between the domain and the ball was first explored by M. Gro-
mov, (see for example page 47 on [11]). In particular his method was used to prove the classical
isoperimetric inequality for domains in Rn. Later in the literature, there are many other geometric
inequalities which were established or reproved by exploring properties of maps which are optimal
transport maps in special settings. This includes the work of R. McCann [24] on the Brunn-
Minkowski inequality, and that of S. Alesker, S. Dar and V. Milman [3] on an Aleksandrov-Fenchel
type inequality. In a more recent paper, D. Cordero-Erausquin, B. Nazaret and C. Villani [33] have
used the optimal transport map to establish a case of the sharp Sobolev inequalities on Rn. Most
recently, P. Castillon [9] gave a reproof of the Michael-Simon inequality on submanifolds of the
Euclidean space using methods of optimal transport. In this paper, we will adopt the strategy of
the proof of Castillon to a nonlinear setting to prove our main theorem above.

We now recall Michael-Simon inequality:
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Theorem 1.4. [26] Let i : Mn → RN be an isometric immersion (N > n). Let U be an open
subset of M . For a nonnegative function u ∈ C∞

c (U), there exists a constant C, such that(∫
M

u
n

n−1dµM

)n−1
n

≤ C

∫
M

|H⃗| · u+ |∇u|dvM . (8)

In the special case when we take u ≡ 1, Michael-Simon inequality gives an inequality between
the area of the boundary and the integral of its mean curvature. Thus a natural generalization is
to establish inequalities similar to (8) between fully nonlinear curvature quantities σm−1(L) and
σm(L).

Motivated by the same line of ideas, in a subsequent paper, we will establish a family of
generalized Michael-Simon inequalities for codimension 1 hypersurfaces M .

Theorem 1.5. Let i : Mn → Rn+1 be an isometric immersion. Let U be an open subset of M and
u ∈ C∞

c (U) be a nonnegative function. For k = 2, ..., n−1, if M is (k+1)-convex, then there exists
a constant C depending only on n and k, such that for 1 ≤ m ≤ k(∫

M
σm−1(L)u

n−m+1
n−m dµM

) n−m
n−m+1

≤ C

∫
M
(σm(L)u+ σm−1(L)|∇u|+, ...,+|∇mu|)dµM .

If k = n, then the inequality holds when M is n-convex. If k = 1, then the inequality holds when
M is 1-convex. (k = 1 case is a corollary of the Michael-Simon inequality.)

There are three main ingredients in the proof of our main theorem (Theorem 1.3). The first
is that we have applied the theory of optimal transport to relate the curvature terms σk(L) for
different k via suitable mass transport equations. The second ingredient is that we have related
the quantity of σk(L) defined on the boundary of the domain via the Gauss-Codazzi equation to
the curvature terms of the induced metric defined on the boundary of the domain. The third
ingredient is that we have applied the structure equations and Garding’s inequality in analyzing
the fully nonlinear terms σk(L).

The organization of this paper is as follows. In Section 2, we will review some basic properties
of k-th elementary symmetric function σk(λ). In particular, we highlight those inequalities which
are verified by applying Garding’s theory of hyperbolic polynomials. In this section, we will also
review some well-known facts of optimal transport maps which will be used in the rest of the paper.

In Section 3 of the paper, assuming the main technical proposition (Proposition 3.1), we finish
the proof of our main theorem. The proof follows the outline similar to that in the paper by P.
Castillon, but to deal with the fully nonlinear quantities of the curvature, we explore the concavity
properties of the elementary symmetric functions σk(A) for matrix A in the Garding’s cone. Another
difficulty we face is that for non-convex domains, the Hessian of the convex potential of the optimal
transport map only exists in general in the Alexandrov sense, which is sufficient for the purpose of
studying the Laplacian of the potential function as in the work of Castillon; but it is not clear how
to define the notion of σk of the Hessian of the potential function in this generalized setting. To
overcome this difficulty, we have first applied the regularity results of the optimal maps established
earlier by L. Caffarelli ([5], [6], [7]) for convex domains and then applied an approximation argument
to finish the proof of the desired inequalities.

We then establish Proposition 3.1 in the remaining sections of the paper. To illustrate the
complicated induction steps in the proof, we first present the proof of the proposition for the
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special case k = 2 in Section 4 (where only the size of the optimal map is relevant), and the special
case k = 3 in Section 5 (where the convexity property of the map plays a crucial role). Finally, in
Section 6 we prove Proposition 3.1 for all integers k by a multi-layer inductive argument.

An expository version of this article, where more background of the subject was provided and
the main ideas of the proof were outlined, has been published as the lecture notes of the Riemann
International School of Mathematics in Verbania, Italy, 2010. ([10])

We remark that in view of the result of Guan-Li ([15]), the most natural assumption in the
statement of our theorem should be that the domain is k-convex instead of k+1-convex; but at the
moment, our proof relies heavily on the extra one level of convexity property of the domain. We
also remark that the proof we present here does not yield any sharp constants for the inequalities.

The authors would like to thank Professor Fengbo Hang for stimulating discussions on the
subject.

2 Preliminaries

2.1 Γ+
k cone

In this subsection, we will describe some properties of σk function and its associated convex cone.

2.1.1 Definitions and Concavity

Definition 2.1. The k-th elementary symmetric function for λ = (λ1, ..., λn) ∈ Rn is

σk(λ) :=
∑

i1<...<ik

λi1 · · ·λik .

The elementary symmetric functions are special cases of hyperbolic polynomials introduced by
Garding [13], which enjoy the following properties in their associated positive cones.

Definition 2.2.

Γ+
k := {λ ∈ Rn|the connected component of σk(λ) > 0 which contains the identity = (1, ..., 1)}

is called the positive k-cone.
Equivalently,

Γ+
k = {λ ∈ Rn| σ1(λ) > 0, ..., σk(λ) > 0}.

In particular, Γ+
n is the positive cone

{λ ∈ Rn| λ1 > 0, ..., λn > 0},

and Γ+
1 is the half space {λ ∈ Rn|λ1 + · · ·+ λn > 0}. It is also obvious from Definition 2.2 that Γ+

k

is an open convex cone and that
Γ+
n ⊂ Γ+

n−1 · · · ⊂ Γ+
1 .

Applying Garding’s theory of hyperbolic polynomials [13], one concludes that σ
1
k
k (·) is a concave

function in Γ+
k . Thus

σ
1
k
k (λ) + σ

1
k
k (µ)

2
≤ σ

1
k
k

(
λ+ µ

2

)
, (9)
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for λ, µ ∈ Γ+
k . By the homogeneity of σ

1
k
k , one gets from (9) that for λ, µ ∈ Γ+

k

σ
1
k
k (λ) < σ

1
k
k (λ+ µ). (10)

Also, (σk(·)
σl(·) )

1
k−l (k > l) is concave in Γ+

k . Therefore

(
σk(λ)

σl(λ)
)

1
k−l < (

σk(λ+ µ)

σl(λ+ µ)
)

1
k−l , (11)

for λ, µ ∈ Γ+
k .

Definition 2.3. A symmetric matrix A is in Γ̃+
k cone, if its eigenvalues

λ(A) = (λ1(A), ..., λn(A)) ∈ Γ+
k .

Suppose f is a function on Γ+
k . F = f(λ(A)) is the extension of f on Γ̃+

k . Due to a result in

[8], f is concave in Γ+
k implies F is concave in Γ̃+

k . When there is no confusion, we will denote Γ̃+
k

by Γ+
k and σk(λ(A)) by σk(A) for simplicity.

2.1.2 The polarization of σk

Notice that σn(A) = det(A). An equivalent definition of det(A) is

detA =
1

n!
δi1,...,inj1,...,jn

Ai1j1 · · ·Ainjn , (12)

where δi1,...,inj1,...,jn
is the generalized Kronecker delta; it is zero if {i1, ..., ik} ̸= {j1, ..., jk}, equals to 1

(or -1) if (i1, ..., ik) and (j1, ..., jk) differ by an even (or odd) permutation. Inspired by (12), an
equivalent way of writing σk is that

σk(A) :=
1

k!
δi1,...,ikj1,...,jk

Ai1j1 · · ·Aikjk .

The Newton transformation tensor is defined as

[Tk]ij(A1, ..., Ak) :=
1

k!
δi,i1,...,ikj,j1,...,jk

(A1)i1j1 · · · (Ak)ikjk . (13)

Definition 2.4. With the notion of [Tk]ij, one may define the polarization of σk by

Σk(A1, ..., Ak) := A1ij · [Tk−1]ij(A2, ..., Ak) =
1

(k − 1)!
δi1,...,ikj1,...,jk

(A1)i1j1 · · · (Ak)ikjk . (14)

It is called the polarization of σk because if we take A1 = · · · = Ak = A, then Σk(A, ..., A) is equal
to σk(A) up to a constant. Namely,

σk(A) =
1

k
Σk(A, ..., A).

Also, from the right hand side of the definition 2.4, we see that Σk is symmetric and linear in each
component.
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Notation 2.5. When some components are the same, we adopt the notational convention that

Σk(

l︷ ︸︸ ︷
B, ..., B,C, ..., C) := Σk(

l︷ ︸︸ ︷
B, ..., B,

k−l︷ ︸︸ ︷
C, ..., C),

and

[Tk]ij(

l︷ ︸︸ ︷
B, ..., B,C, ..., C) := [Tk]ij(

l︷ ︸︸ ︷
B, ..., B,

k−l︷ ︸︸ ︷
C, ..., C).

Also for simplicity, we denote

[Tk]ij(A) := [Tk]ij(

k︷ ︸︸ ︷
A, ..., A).

Some relations between the Newton transformation tensor Tk and σk are listed below. For any
symmetric matrix A, if we denote the trace by Tr, then

σk(A) =
1

n− k
Tr([Tk]ij)(A), (15)

and

σk+1(A) =
1

k + 1
Tr([Tk]im(A) ·Amj). (16)

On the other hand, one can write [Tk]ij in terms of σk by the formula

[Tk−1]ij(A) =
∂σk(A)

∂Aij
,

and
[Tk]ij(A) = σk(A)δij − [Tk−1]im(A)Amj . (17)

This last formula implies the following fact which we will repeatedly use later in our proof.

Lemma 2.6. Suppose B and C are two symmetric matrices, then

[Tk−1]im(B,C, ..., C)Cmj

=
1

k − 1
Σk(B,C, ..., C)δij −

k

k − 1
[Tk]ij(B,C, ..., C)− 1

k − 1
[Tk−1]im(C, ..., C)Bmj .

(18)

Proof. Since [Tk]ij is multilinear, [Tk]ij(C + ϵB) is a degree k polynomial in ϵ, in which

the coefficient of the term ϵ in [Tk]ij(C + ϵB, ..., C + ϵB)

=k · [Tk]ij(B,C, ..., C).
(19)

Also [Tk]ij(A) = σk(A)δij − [Tk−1]im(A)Amj . Thus when we plug in A = C + ϵB and expand out
the right hand side, we get

the coefficient of the term ϵ in σk(C + ϵB)δij − [Tk−1]im(C + ϵB)(C + ϵB)mj

=Σk(B,C, ..., C)δij − (k − 1)[Tk−1]im(B,C, ..., C)Cmj − [Tk−1]im(C, ..., C)Bmj .
(20)

Therefore

[Tk−1]im(B,C, ..., C)Cmj

=
1

k − 1
Σk(B,C, ..., C)δij −

k

k − 1
[Tk]ij(B,C, ..., C)− 1

k − 1
[Tk−1]im(C, ..., C)Bmj .

(21)
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By a similar argument, one has

Lemma 2.7. Suppose B and C are two symmetric matrices, then

[Tk−1]im(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)Cmj

=
C l
k

kC l
k−1

· Σk(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)δij −

C l
k

C l
k−1

· [Tk]ij(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)

−
C l−1
k−1

C l
k−1

· [Tk−1]im(

l−1︷ ︸︸ ︷
B, ..., B,C, ..., C)Bmj .

(22)

Proof.

C l
k · [Tk]ij(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)

= the coefficient of the term ϵl in [Tk]ij(C + ϵB, ..., C + ϵB)

= the coefficient of the term ϵl in σk(C + ϵB)δij − [Tk−1]im(C + ϵB)(C + ϵB)mj

=
C l
k

k
· Σk(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)δij − C l

k−1 · [Tk−1]im(

l︷ ︸︸ ︷
B, ..., B,C, ..., C)Cmj

−C l−1
k−1 · [Tk−1]im(

l−1︷ ︸︸ ︷
B, ..., B,C, ..., C)Bmj .

(23)

2.1.3 Some algebraic inequalities for elements in Γ+
k cone

Based on Garding’s theory of hyperbolic polynomials [13], we have

(i) if λ ∈ Γ+
k , then

∂σk(λ)

∂λi
> 0, for i = 1, ..., n;

(ii) if A1, ..., Ak ∈ Γ+
k+1, then ([Tk]ij) is a positive matrix, i.e.

[Tk]ij(A1, ..., Ak) > 0;

(iii) if A1, ..., Ak ∈ Γ+
k , then

Σk(A1, ..., Ak) > 0;

(iv) if A−B ∈ Γ+
k and A2, ..., Ak ∈ Γ+

k , then

Σk(B,A1..., Ak) < Σk(A,A2, ..., Ak).

Lastly, for nonnegative symmetric matrix A, we have the well-known Newton-MacLaurin inequality:
(see e.g. [18])

σk+1(A)σk−1(A)

σk+1(Id)σk−1(Id)
≤

σ2
k(A)

σ2
k(Id)

, (24)

where Id is the identity matrix.
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2.2 Optimal transport map and its regularity

Consider the two Polish spaces D1 and D2, with probability measures ω1 and ω2 defined on them
respectively. Given a cost function c : D1 × D2 → R. The problem of Monge consists in finding
a map T : D1 → D2 such that its cost C(T ) :=

∫
D1

c(y1, T (y1))dω1 attains the minimum of the
costs among all the maps that push forward ω1 to ω2. In general, the problem of Monge may have
no solution, however in the special case when D1 and D2 are bounded domains defined on the
Euclidean space with quadratic cost function, Y. Brenier [4] proved an existence and uniqueness
result. More precisely,

Theorem 2.8. Suppose that Di (i=1,2) are bounded domains in Rn with Hn(∂Di) = 0 and that
the cost function is defined by c(y1, y2) := d(y1, y2)

2, where d is the Euclidean distance. Given two
probability measures ω1 := F (y1)dy1, ω2 := G(y2)dy2 defined on D1, D2 respectively. Then there
exists a unique optimal transport map (solution of the problem of Monge) T : spt(F ) → spt(G).
Also T is the gradient of some convex potential function V .

It is obvious that since the optimal map T = ∇V pushes forward F (y1)dy1 to G(y2)dy2, it
satisfies the Monge-Ampère equation in the weak sense.∫

D2

η(y2)G(y2)dy2 =

∫
D1

η(∇V (y1))F (y1)dy1, (25)

for any continuous function η.

In general, the potential function V may not be regular, hence it does not satisfy the Monge-
Ampère equation det(D2

ijV (y1)) =
F (y1)

G(∇V (y1))
in the classical sense. However, under the additional

assumptions on the convexity of Di, as well as on the smoothness of F and G, Caffarelli has
established in his papers [5], [6], [7] the interior and boundary regularity results of such a potential
function V . We now state these results of Caffarelli here as we shall apply them later in the proof
of our main theorem.

Theorem 2.9. [6] If D2 is convex and F , G, 1/F , 1/G are bounded, then V is strictly convex and
C1,β for some β.
If F and G are continuous, then V ∈ W 2,p

loc for every p.
If F and G are Ck,α0, then V ∈ Ck+2,α for any 0 < α < α0.

For the boundary regularity, one needs to assume D1 to be convex as well:

Theorem 2.10. [7] If both Di are C2 and strictly convex, and F , G ∈ Cα are bounded away from
zero and infinity, then the convex potential function V is C2,β up to ∂Di for some β > 0. Both
β and ∥V ∥C2,β depend only on the maximum and minimum diameter of Di and the bounds on F ,
G. Higher regularity of V follows from assumptions on the higher regularity of F and G by the
standard elliptic theory.

From these two theorems, we know that if Di are smooth and strictly convex, and F , G are both
smooth and bounded away from zero and infinity up to the boundary, then the potential function
is smooth up to the boundary as well. For more results on the regularity of optimal transport maps
between manifolds, we refer the readers to [27], [22], [31], etc.
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2.3 Restriction of a convex function to a submanifold

Consider an isometric embedding i : Mn → Rn+1. Let n⃗(x) be the inner unit normal at x ∈ M .
Let ∇ and D2 (resp. ∇̄ and D̄2) be the gradient and the Hessian on M (resp. on Rn+1); let
L⃗(·, ·)(x) = L(·, ·)(x)n⃗(x) be the second fundamental form at x ∈ M . Suppose V̄ : Rn+1 → R is a
smooth function and v = V̄ |M is its restriction to M . Then the Hessian of v with respect to the
metric on M relates to the Hessian of V̄ on the ambient space Rn+1 in the following way: for all
x ∈ M and all ξ, η ∈ TxM ,

D2v(ξ, η)(x) =D̄2V̄ (ξ, η)(x) + ⟨(∇̄V̄ ), L⃗(ξ, η)⟩(x)
=D̄2V̄ (ξ, η)(x) + b(x) · L(ξ, η)(x),

(26)

where b(x) := ⟨(∇̄V̄ ), n⃗⟩(x). We remark in general b(x) changes sign on M . Finally we recall the
well-known Gauss equation and Codazzi equation that are satisfied by the curvature tensors defined
on the embedded submanifold. Denote the curvature tensor of M by Rijkl and the curvature tensor
of the ambient space Rn+1 by R̄ijkl. Then

0 = R̄ijkl = Rijkl − LikLjl + LilLjk, (Gauss equation) (27)

and
Lij,k = Lik,j . (Codazzi equation) (28)

3 Proof of the main theorem

Theorem 1.3 (Main Theorem): Suppose Ω ⊂ Rn+1 is a bounded domain whose boundary ∂Ω is
an n-dimensional closed hypersurface, denoted by M . Let Lij(x) be the 2nd fundamental form at
x ∈ M . Suppose M is (k + 1)-convex when 2 ≤ k ≤ n − 1, i.e. the second fundamental form
Lij ∈ Γ+

k+1; and suppose M is n-convex when k = n. Then for m ≤ k, there exists a constant C
depending only on m and n such that(∫

Mn

σm−1(L)dµM

) 1
n−(m−1)

≤ C

(∫
Mn

σm(L)dµM

) 1
n−m

. (29)

The proof of our main theorem hinges on the following proposition (Proposition 3.1), the proof
of which is the main technical part of this paper.

Proposition 3.1. Let E ⊂ Rn+1 be an n-dimensional linear subspace, and p be the orthogonal
projection from Rn+1 to E. Suppose V : E → R is a C3 convex function that satisfies |∇V | ≤ 1.
Define its extension to Rn+1 by V̄ := V ◦p, and define the restriction of V̄ to the closed hypersurface
M by v. Suppose also that M is (k+ 1)-convex if 2 ≤ k ≤ n− 1, i.e. the second fundamental form
Lij ∈ Γ+

k+1. And suppose that M is n-convex if k = n. Then for each k and each constant a > 1,
there exists a constant C, which depends only on k, n and a, such that∫

M
σk(D

2v + aL)dµM ≤ C

∫
M

σk(L)dµM . (30)

Note that C does not depend on v.
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Our proof of Proposition 3.1 uses a multi-layer induction process and is quite complicated. We
will first illustrate the idea of the proof of the proposition for the (easy) case k = 2 in Section 4,
where the role of Gauss-Codazzi equation plays a central role; then for the case k = 3 in Section 5,
where in addition, the convexity of the Brenier function in the mass transport equation is crucial
in establishing the inequality; finally we will finish the proof for all integers k in Section 6.

In the rest of this section, we will prove our main theorem assuming Proposition 3.1. The first
part of our proof uses techniques of optimal transport maps following the same outline as in the
work of P. Castillon [9]; we will also apply the concavity properties of σk as discussed in Section
2.1.1 of this paper.

Proof of Theorem 1.3. First of all, it is obvious that we only need to prove the inequality for m = k
when M is k + 1-convex, that is we will establish the inequality(∫

Mn

σk−1(L)dµM

) 1
n−(k−1)

≤ C

(∫
Mn

σk(L)dµM

) 1
n−k

. (31)

Let E ⊂ Rn+1 be an n-dimensional linear subspace, p : Rn+1 → E be the orthogonal projection,
and JE be the Jacobian of p. We define

f :=
σk−1(L)J

1
n−k

E∫
M σk−1(L)J

1
n−k

E dµM

. (32)

Note that µ := fdµM is a probability measure on M . So the pushforward measure ω1 := p#µ is a
probability measure on E. It is absolutely continuous with respect to the Lebesgue measure on E
with density F (y1) given by

F (y1) =
∑

x∈p−1(y1)∩Spt(µ)

f(x)

JE(x)
. (33)

Applying Brenier’s theorem, there exists a convex potential V such that ∇V is the solution of
Monge problem on E between (D1, F (y1)dy1) and (D2, G(y2)dy2), where D1 := Spt(p#µ); D2 :=

BE(0, 1) is the unit ball in E; F (y1) is defined as above; and G(y2)dy2 :=
χBE(0,1)

ωn
dy2 is the

normalized Lebesgue measure on BE(0, 1). Since ∇V (Spt(p#µ)) ⊂ BE(0, 1), we have |∇V | ≤ 1 on
D1.

In general, the convex potential V is only a Lipschitz function. But let us suppose V to be C3

for a moment to finish the proof of the theorem. Later, we will present an approximation argument
to justify this assumption. If V is C3, then V satisfies the Monge-Ampère equation

ωnF (y1) = det(D2V (y1))

in the classical sense. Define the extension of V by V̄ := V ◦ p : Rn+1 → R and its restriction to
M by v(x) := V̄ |M (x) = V ◦ p|M (x). Denote the gradient and the Hessian on M by ∇ and D2

respectively. And denote the gradient and the Hessian on Rn+1 by ∇̄ and D̄2 respectively. By (33),
for x ∈ M

ωn
f(x)

JE
≤ ωnF (p(x)) = det(D2V (p(x))). (34)
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By the change of variable formula,

det(D̄2V̄ (x)|TxM ) = J2
E(x)det(D

2V (p(x))).

Thus for x ∈ M
ωnf(x)JE(x) ≤ det(D̄2V̄ (x)|TxM ). (35)

Since D̄2V̄ (x)|TxM is a nonnegative matrix, we take the n− k + 1-th root on both sides of (35).

(ωnf(x)JE(x))
1

n−k+1 ≤
(
det(D̄2V̄ (x)|TxM )

) 1
n−k+1 . (36)

To simplify the notation, from now on we will denote D̄2V̄ (x)|TxM by D̄2V̄ (x).

For each positive constant a > 1, multiplying the previous inequality by
σk−1(D̄

2V̄+(a−1)L)

σk−1(D̄2V̄ )
1

n−k+1
, we

get

(ωnf(x)JE(x))
1

n−k+1 · σk−1(D̄
2V̄ + (a− 1)L)

σk−1(D̄2V̄ )
1

n−k+1

≤
(
det(D̄2V̄ (x))

) 1
n−k+1 · σk−1(D̄

2V̄ + (a− 1)L)

σk−1(D̄2V̄ )
1

n−k+1

.

(37)

Denote the left hand side (resp. right hand side) of this inequality by LHS (resp. RHS). Then

RHS =

(
det(D̄2V̄ )

σk−1(D̄2V̄ )

) 1
n−k+1

σk−1(D̄
2V̄ + (a− 1)L). (38)

Note that for nonnegative symmetric matrix A, we have the well-known Newton-MacLaurin in-
equality: (see e.g. [18])

σk+1(A)σk−1(A)

σk+1(Id)σk−1(Id)
≤

σ2
k(A)

σ2
k(Id)

, (39)

where Id is the identity matrix. This implies that

σk+1(A)σk(Id)

σk(A)σk+1(Id)
(40)

is decreasing in k. Thus

σn(A)

σk−1(A)
=

σn(A)

σn−1(A)
· · · σk(A)

σk−1(A)

≤
n∏

i=k

σk(A)σk−1(Id)σi(Id)

σk−1(A)σk(Id)σi−1(Id)

=Cn,k

(
σk(A)

σk−1(A)

)n−k+1

.

(41)

Therefore (
det(D̄2V̄ )

σk−1(D̄2V̄ )

) 1
n−k+1

≤ C
1

n−k+1

n,k

σk(D̄
2V̄ )

σk−1(D̄2V̄ )
. (42)
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Also (σk(A)
σj(A) )

1
k−j is concave in Γ+

k for j < k. Thus for L ∈ Γ+
k , we have

σk(D̄
2V̄ )

σk−1(D̄2V̄ )
≤ σk(D̄

2V̄ + (a− 1)L)

σk−1(D̄2V̄ + (a− 1)L)
. (43)

Therefore

RHS ≤C
1

n−k+1

n,k

σk(D̄
2V̄ + (a− 1)L)

σk−1(D̄2V̄ + (a− 1)L)
· σk−1(D̄

2V̄ + (a− 1)L)

=C
1

n−k+1

n,k σk(D̄
2V̄ + (a− 1)L).

(44)

Note that D2v(ξ, η) = D̄2V̄ (ξ, η) + b(x) · L(ξ, η) for ξ, η ∈ TxM , where b(x) = ⟨∇̄V̄ (x), n⃗(x)⟩.
Since |∇V (x)| ≤ 1, we know that |∇̄V̄ (x)| ≤ 1, and thus |b(x)| ≤ 1. Therefore by Garding’s

inequality
σk(D̄

2V̄ + (a− 1)L) = σk(D
2v + (a− 1)L+ b(x)L) ≤ σk(D

2v + aL).

Thus

RHS ≤C
1

n−k+1

n,k σk(D
2v + aL). (45)

On the other hand, D̄2V̄ ∈ Γ+
n . Therefore by Garding’s inequality, σk−1(D̄

2V̄ + (a − 1)L) ≥
σk−1((a− 1)L) = (a− 1)k−1σk−1(L). This together with the definition of f(x) in (32) implies that

LHS ≥
(a− 1)(k−1)·(1− 1

n−k+1
)ω

1
n−k+1
n σk−1(L)J

1
n−k

E

(

∫
M

σk−1(L)J
1

n−k

E dµM )
1

n−k+1

. (46)

By integrating LHS and RHS in (37) over M , one obtains

(a− 1)(k−1)·(1− 1
n−k+1

)ω
1

n−k+1
n

∫
M

σk−1(L)J
1

n−k

E dµM

(

∫
M

σk−1(L)J
1

n−k

E dµM )
1

n−k+1

≤C
1

n−k+1

n,k

∫
M

σk(D
2v + aL)dµM .

(47)

Thus(∫
M

σk−1(L)J
1

n−k

E dµM

)1− 1
n−k+1

≤ (a− 1)−(k−1)ω
−1

n−k+1
n C

1
n−k+1

n,k

∫
M

σk(D
2v + aL)dµM . (48)

We now apply Proposition 3.1 to V . Then there is a constant C depending only on k, n and a (not
on V ), such that

∫
M σk(D

2v+ aL)dµM ≤ C
∫
M σk(L)dµM . If we apply the above argument to this

constant a, then (∫
M

σk−1(L)J
1

n−k

E dµM

)1− 1
n−k+1

≤ C̃

∫
M

σk(L)dµM , (49)
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where constant C̃ depends on k, n and a. Fix a = 2. Then C̃ depends only on k and n. To
get the usual A-F inequality (without the weight function JE), one can integrate both sides of
the above inequality on the Grassmannian Gn,n+1 of n-planes in Rn+1. Since the integration of∫
Gn,n+1

J
1

n−k

E dE is invariant in x ∈ M , therefore

(∫
M

σk−1(L)dµM

) 1
n−k+1

≤ C̃

(∫
M

σk(L)dµM

) 1
n−k

, (50)

for another constant, still denoted by C̃. As before, C̃ depends only on k and n. This finishes the
proof of the theorem under the assumption that V is a C3 function.

We will now apply Caffarelli’s regularity results Theorem 2.10. If the density F (y1) is bounded
away from zero and infinity, and also if D1 is a strictly convex domain, then by Caffarelli’s result,
V is a smooth convex potential. We will now describe how to obtain a sequence of smooth maps
∇Vϵ, such that each transports the measure Fϵ(y1)dy1 to

χBE(0,1)

ωn
dy2 on the unit ball, and we let

Fϵ(y1)dy1 approximate to F (y1)dy1. First of all, there exists a constant R > 0, such that D1 is
contained in BE(0, R), the ball centered at the origin with radius R in E. For ϵ > 0, define the
subset Dϵ

1 := {y1 ∈ D1| ϵ ≤ F (y1) ≤ 1/ϵ}. Since F (y1) is integrable on D1 and F (y1) ≥ 0, we know
Dϵ

1 → Spt(F ), as ϵ → 0. One can extend F |Dϵ
1
to Fϵ : BE(0, R) → R, such that ϵ

2 ≤ Fϵ(y1) ≤ 2
ϵ on

BE(0, R), and ∫
BE(0,R)\Dϵ

1

Fϵ(y1)dy1 ≤ ϵ · ωnR
n.

Such an extension exists because ϵ ≤ F |Dϵ
1
≤ 1

ϵ , and V ol(BE(0, R) \Dϵ
1) ≤ V ol(BE(0, R)) ≤ ωnR

n.
Therefore

mϵ :=

∫
BE(0,R)

Fϵ(y1)dy1 =

∫
BE(0,R)\Dϵ

1

Fϵ(y1)dy1 +

∫
Dϵ

1

Fϵ(y1)dy1 ≤ c0ϵ+ 1, (51)

where c0 = ωnR
n. Also

mϵ ≥
∫
Dϵ

1

Fϵ(y1)dy1 → 1, (52)

as ϵ → 0. Hence mϵ → 1, as ϵ → 0. Now for each sufficiently small ϵ, mϵ > 0. Thus Fϵ(y1)
mϵ

dy1

is a probability measure on BE(0, R), such that 0 < ϵ
4 < Fϵ(y1)

mϵ
≤ 4

ϵ on BE(0, R). As before,
Brenier’s theorem implies that there exists a convex potential Vϵ such that ∇Vϵ is the solution of

Monge problem between (BE(0, R),
Fϵ(y1)

mϵ
dy1) and (BE(0, 1),

χBE(0,1)

ωn
dy2). By Theorem 2.10, Vϵ

is a smooth convex potential. Obviously |∇Vϵ(y1)| ≤ 1 for y1 ∈ BE(0, R). Also Vϵ satisfies the

Monge-Ampère equation ωn
Fϵ(y1)

mϵ
= det(D2Vϵ(y1)) in the classical sense. Define the extension of

Vϵ by V̄ϵ := Vϵ ◦ p : Rn+1 → R and its restriction to M by vϵ(x) := V̄ϵ|M (x) = Vϵ ◦ p|M (x). Denote
the gradient and the Hessian on M by ∇ and D2 respectively. And denote the gradient and the
Hessian on Rn+1 by ∇̄ and D̄2 respectively. Note that on p−1(Dϵ

1), F (y1) = Fϵ(y1). This together
with (33) implies that for x ∈ p−1(Dϵ

1)

ωn
f(x)

mϵJE
≤ ωn

F (p(x))

mϵ
= ωn

Fϵ(p(x))

mϵ
= det(D2Vϵ(p(x))). (53)
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Following the same argument that proves (37) for V , we get for x ∈ p−1(Dϵ
1)(

ωn
f(x)JE(x)

mϵ

) 1
n−k+1

· σk−1(D̄
2V̄ϵ + (a− 1)L)

σk−1(D̄2V̄ϵ)
1

n−k+1

≤
(
det(D̄2V̄ϵ(x))

) 1
n−k+1 · σk−1(D̄

2V̄ϵ + (a− 1)L)

σk−1(D̄2V̄ϵ)
1

n−k+1

.

(54)

Denote the left hand side (resp. right hand side) of this inequality by LHSϵ (resp. RHSϵ). Then
by the same techniques as before

RHSϵ ≤C
1

n−k+1

n,k σk(D
2vϵ + aL). (55)

And

LHSϵ ≥
(a− 1)(k−1)·(1− 1

n−k+1
)ω

1
n−k+1
n σk−1(L)J

1
n−k

E

(mϵ

∫
M

σk−1(L)J
1

n−k

E dµM )
1

n−k+1

. (56)

By integrating LHSϵ and RHSϵ in (54) over M ∩ p−1(Dϵ
1), one obtains

(a− 1)(k−1)·(1− 1
n−k+1

)ω
1

n−k+1
n

∫
M∩p−1(Dϵ

1)
σk−1(L)J

1
n−k

E dµM

(mϵ

∫
M

σk−1(L)J
1

n−k

E dµM )
1

n−k+1

≤C
1

n−k+1

n,k

∫
M∩p−1(Dϵ

1)
σk(D

2vϵ + aL)dµM

≤C
1

n−k+1

n,k

∫
M

σk(D
2vϵ + aL)dµM .

(57)

Since Vϵ is smooth (thus C3), we may apply the above argument and Proposition 3.1 to obtain for
each ϵ,

∫
M σk(D

2vϵ + aL)dµM ≤ C
∫
M σk(L)dµM with the constant C depending only on k, n and

a. (Note that C is independent of ϵ.) Fix a = 2. Then C depends only on k and n. Thus∫
M∩p−1(Dϵ

1)
σk−1(L)J

1
n−k

E dµM

(mϵ

∫
M

σk−1(L)J
1

n−k

E dµM )
1

n−k+1

≤ C̃

∫
M

σk(L)dµM , (58)

where C̃ depends on k and n, and does not depend on ϵ. Let ϵ → 0 in this inequality. Since mϵ → 1
and M ∩ p−1(Dϵ

1) → M ∩ p−1(Spt(F )) as ϵ → 0. By (33), M ∩ Spt(f) ⊂ M ∩ p−1(Spt(F )). Thus
we obtain

(

∫
M

σk−1(L)J
1

n−k

E dµM )1−
1

n−k+1 ≤ C̃

∫
M

σk(L)dµM . (59)

Equivalently, ∫
M

σk−1(L)J
1

n−k

E dµM ≤ (C̃

∫
M

σk(L)dµM )
n−k+1
n−k . (60)
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To get the usual A-F inequality (without the weight function JE), we can integrate both sides of
the above inequality on the Grassmannian Gn,n+1 of n-planes in Rn+1. Since the integration of∫
Gn,n+1

J
1

n−k

E dE is invariant in x ∈ M , we have

(

∫
M

σk−1(L)dµM )
1

n−k+1 ≤ C̃(

∫
M

σk(L)dµM )
1

n−k , (61)

for another constant, still denoted by C̃. As before C̃ depends only on k and n. This finishes the
proof of the theorem.

4 k = 2 case of Proposition 3.1

In this section, we are going to prove Proposition 3.1 when k = 2. For this special case, only
|∇V | ≤ 1 property of the Brenier map is relevant. For simplicity, we choose a = 2.

Proof. We first recall that 1
2Σ2(A,A) = σ2(A), thus∫

M
σ2(D

2v + 2L)dµM =

∫
M

1

2
Σ2(D

2v + 2L)dµM

=

∫
M

1

2
[Σ2(D

2v,D2v) + 4Σ2(D
2v, L) + 4Σ2(L,L)]dµM

=

∫
M

σ2(D
2v) + 2Σ2(D

2v, L) + 4σ2(L)dµM

:=I2,2 + 2I2,1 + 4I2,0.

(62)

By the integration by parts formula,

I2,2 :=

∫
M

σ2(D
2v)dµM =

∫
M

viivjj − vijvijdµM =

∫
M

−vi(vjji − vijj)dµM . (63)

If we apply the curvature equation

vijk − vikj = Rmijkvm, (64)

then

I2,2 =

∫
M

viRcmivmdµM , (65)

where Rc is the Ricci curvature tensor of g on M . By the Gauss equation (27), the Ricci curvature
tensor satisfies Rcik = LjjLik − LijLjk. If we diagonalize Lij ∼ diag(λ1, ..., λn), then Rc ∼
diag(λ1(H − λ1), ..., λn(H − λn)). Note that

λi(H − λi) +
∂σ3(L)

∂λi
= σ2(L) (66)
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for each i = 1, ..., n. Also by our assumption L ∈ Γ+
3 , we know that ∂σ3(L)

∂λi
> 0 for each i. Thus

λi(H − λi) < σ2(L) for each i, i.e. Rc < σ2(L) · g. Applying this formula to the inequality (65), we
get

I2,2 ≤
∫
M

σ2(L)|∇v|2dµM ≤
∫
M

σ2(L)dµM , (67)

where |∇v| ≤ 1 because |∇̄V̄ | ≤ 1. Thus

I2,2 ≤
∫
M

σ2(L)dµM . (68)

For the term I2,1, by definition Σ2(D
2v, L) = viiLjj − vijLij . Thus

I2,1 :=

∫
M

Σ2(D
2v, L)dµM

=

∫
M

viiLjj − vijLijdµM

=

∫
M

−viLjj,i + viLij,jdµM .

(69)

Due to the Codazzi equation (28), I2,1 = 0.
Finally,

I2,0 :=

∫
M

σ2(L)dµM . (70)

Hence ∫
M

σ2(D̄
2V̄ |TxM )dµM ≤I2,2 + 2I2,1 + 4I2,0

≤5

∫
M

σ2(L)dµM .

(71)

This finishes the proof of Proposition 3.1 when k = 2.

5 k = 3 case of Proposition 3.1

In this section, we are going to prove Proposition 3.1 when k = 3. The convexity property of V̄
together with the size estimate |∇̄V | ≤ 1 both play a role in this special case of Proposition 3.1. We
still denote D̄2V̄ |TxM by D̄2V̄ in this section. We will begin by proving the following two lemmas.

Lemma 5.1. Suppose v and M satisfy the same conditions as in Proposition 3.1. Then

I3,1 :=

∫
M

Σ3(D
2v, L, L)dµM = 0. (72)

Proof. The proof of the lemma uses the symmetry of Σ3 and the Codazzi equation. It proceeds in
the following way. By definition of I3,1,

I3,1 :=

∫
M

Σ3(D
2v, L, L)dµM =

∫
M

1

2!
vijδ

i,i1,i2
j,j1,j2

Li1j1Li2j2dµM

=

∫
M

−1

2!
viδ

i,i1,i2
j,j1,j2

(Li1j1,jLi2j2 + Li1j1Li2j2,j) dµM .

(73)

17



Since δi,i1,i2j,j1,j2
Li1j1,jLi2j2 = δi,i1,i2j,j1,j2

Li1j1Li2j2,j , we have

I3,1 =

∫
M

−viδ
i,i1,i2
j,j1,j2

Li1j1,jLi2j2dµM . (74)

Also, it is not hard to see that δi,i1,i2j,j1,j2
Li1j1,jLi2j2 = δi,i1,i2j1,j,j2

Li1j,j1Li2j2 , because j and j1 are dummy

variables. Also, δi,i1,i2j1,j,j2
= −δi,i1,i2j,j1,j2

. Therefore

δi,i1,i2j,j1,j2
Li1j1,jLi2j2 =− δi,i1,i2j,j1,j2

Li1j,j1Li2j2

=
1

2
δi,i1,i2j,j1,j2

(Li1j1,j − Li1j,j1)Li2j2 ,
(75)

which implies that

I3,1 =

∫
M

−1

2
viδ

i,i1,i2
j,j1,j2

(Li1j1,j − Li1j,j1)Li2j2dµM = 0, (76)

by the Codazzi equation (28). Thus the lemma holds.

Lemma 5.2. Suppose v and M satisfy the same conditions as in Proposition 3.1. Then

I3,2 :=

∫
M

Σ3(D
2v,D2v, L)dµM ≤

∫
M

σ3(L)dµM . (77)

Proof. We perform the integration by parts to get

I3,2 :=

∫
M

Σ3(D
2v,D2v, L)dµM

=

∫
M

1

2!
vijδ

i,i1,i2
j,j1,j2

vi1j1Li2j2dµM

=

∫
M

−1

2!
viδ

i,i1,i2
j,j1,j2

(vi1j1jLi2j2 + vi1j1Li2j2,j) dµM := A+B.

(78)

By the same argument as in (75) and the curvature equation (64),

A :=

∫
M

−1

2!
viδ

i,i1,i2
j,j1,j2

vi1j1jLi2j2dµM

=

∫
M

−1

4
viδ

i,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)Li2j2dµM

=

∫
M

1

4
viδ

i,i1,i2
j,j1,j2

Rmi1jj1vmLi2j2dµM .

(79)

Using the Gauss equation (27) in (79), we get

A =

∫
M

1

4
vivmδi,i1,i2j,j1,j2

(LmjLi1j1 − Lmj1Li1j)Li2j2dµM

=

∫
M

1

2
vivmδi,i1,i2j,j1,j2

LmjLi1j1Li2j2dµM

=

∫
M
[T2]ij(L,L)LmjvivmdµM .

(80)

18



Now, we use the formula (17) for k = 3, i.e.

[T2]ij(L,L)Lmj = σ3(L)δim − [T3]im(L), (81)

and note that when M ∈ Γ+
4 , [T3]im(L,L, L) ≥ 0. Thus

A =

∫
M

σ3(L)|∇v|2 − [T3]im(L,L, L)vivmdµM

≤
∫
M

σ3(L)dµM .

(82)

Also,

B :=

∫
M

−1

2!
viδ

i,i1,i2
j,j1,j2

vi1j1Li2j2,jdµM

=

∫
M

−1

4
viδ

i,i1,i2
j,j1,j2

vi1j1 (Li2j2,j − Li2j,j2) dµM = 0,

(83)

by the Codazzi equation (28). In conclusion, (82) and (83) imply that

I3,2 = A+B ≤
∫
M

σ3(L)dµM . (84)

This completes the proof of (77).

We now prove Proposition 3.1 for k = 3. Again, for simplicity, we only demonstrate the proof for
a = 2.

Proof. By the polarization formula of σk,∫
M

σ3(D
2v + 2L)dµM =

∫
M

1

3
Σ3(D

2v + 2L,D2v + 2L,D2v + 2L)dµM

=

∫
M

1

3
[Σ3(D

2v,D2v,D2v) + 6Σ3(D
2v,D2v, L) + 12Σ3(D

2v, L, L)

+ 8Σ3(L,L, L)]dµM

=

∫
M

σ3(D
2v) + 2Σ3(D

2v,D2v, L) + 4Σ3(D
2v, L, L) + 8σ3(L)dµM

:=I3,3 + 2I3,2 + 4I3,1 + 8I3,0.

(85)

Note that

I3,0 :=

∫
M

σ3(L)dµM , (86)

and by Lemma 5.1 and Lemma 5.2,

I3,1 = 0. I3,2 ≤
∫
M

σ3(L)dµM .

Now we are going to show

I3,3 ≤
∫
M

σ3(L)dµM .
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First of all,

I3,3 :=

∫
M

σ3(D
2v)dµM

=

∫
M

1

3!
vijδ

i,i1,i2
j,j1,j2

vi1j1vi2j2dµM

=

∫
M

−1

3!
viδ

i,i1,i2
j,j1,j2

(vi1j1jvi2j2 + vi1j1vi2j2j) dµM .

(87)

For the same reason as we present in the proof of (72),

δi,i1,i2j,j1,j2
vi1j1jvi2j2 = δi,i1,i2j,j1,j2

vi1j1vi2j2j .

Thus

I3,3 =

∫
M

−2

3!
viδ

i,i1,i2
j,j1,j2

vi1j1jvi2j2dµM . (88)

Also

δi,i1,i2j,j1,j2
vi1j1jvi2j2 =− δi,i1,i2j,j1,j2

vi1jj1vi2j2

=
1

2
δi,i1,i2j,j1,j2

(vi1j1j − vi1jj1)vi2j2 .
(89)

This together with the curvature equation (64) gives

I3,3 =

∫
M

−1

3!
viδ

i,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)vi2j2dµM

=

∫
M

1

3!
viδ

i,i1,i2
j,j1,j2

Rmi1jj1vmvi2j2dµM .

(90)

By the Gauss equation (27),

I3,3 =

∫
M

1

3!
viδ

i,i1,i2
j,j1,j2

(LmjLi1j1 − Lmj1Li1j)vmvi2j2dµM

=

∫
M

2

3!
vivmδi,i1,i2j,j1,j2

LmjLi1j1vi2j2dµM .

(91)

Note that by (13)

[T2]ij(D
2v, L) =

1

2!
δi,i1,i2j,j1,j2

Li1j1vi2j2 . (92)

Thus

I3,3 =

∫
M

2

3!
vivmδi,i1,i2j,j1,j2

LmjLi1j1vi2j2dµM

=

∫
M

4

3!
vivm[T2]ij(D

2v, L)LmjdµM .

(93)

If we apply Lemma 2.6 to k = 3, B = D2v and C = L, then

[T2]ij(D
2v, L)Lmj =

1

2
Σ3(D

2v, L, L)δim − 3

2
[T3]im(D2v, L, L)− 1

2
[T2]ij(L,L)vmj . (94)
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We can plug it into (93) to get

I3,3 =

∫
M

4

3!
vivm

(
1

2
Σ3(D

2v, L, L)δim − 3

2
[T3]im(D2v, L, L)− 1

2
[T2]ij(L,L)vmj

)
dµM

:=
1

3
I
|∇v|2
3,1 + J

(−1)
3,1 +

1

3
K

(−1)
3,0 .

(95)

To estimate I
|∇v|2
3,1 , we will use |∇v|, |b(x)| ≤ 1. We will also use the fact that Σ3(D̄

2V̄ , L, L) ≥ 0

because D̄2V̄ ≥ 0 and L ∈ Γ+
3 . Therefore if we replace D2v by D̄2V̄ + b(x)L in I

|∇v|2
3,1 , then

I
|∇v|2
3,1 :=

∫
M

|∇v|2Σ3(D
2v, L, L)dµM

=

∫
M

|∇v|2Σ3(D̄
2V̄ + b(x)L,L,L)dµM

≤
∫
M

Σ3(D̄
2V̄ , L, L) + Σ3(L,L, L)dµM

=

∫
M

Σ3(D
2v − b(x)L,L, L) + Σ3(L,L, L)dµM

≤
∫
M

Σ3(D
2v, L, L) + 2Σ3(L,L, L)dµM

=

∫
M

Σ3(D
2v, L, L) + 6σ3(L)dµM .

(96)

By Lemma 5.1, ∫
M

Σ3(D
2v, L, L)dµM = 0.

So

I
|∇v|2
3,1 ≤ 6

∫
M

σ3(L)dµM . (97)

To analyze the term J
(−1)
3,1 , we use D2v = D̄2V̄ + b(x)L to get

J
(−1)
3,1 :=

∫
M

−vivm[T3]im(D2v, L, L)dµM

=

∫
M

−vivm[T3]im(D̄2V̄ , L, L)− vivm[T3]im(L,L,L)b(x)dµM .

(98)

Again D̄2V̄ is positive definite and L ∈ Γ+
4 . Thus [T3]im(D̄2V̄ , L, L) ≥ 0 and [T3]im(L,L, L) ≥ 0.

Also, |∇v| ≤ 1. Therefore

J
(−1)
3,1 ≤

∫
M

Tr([T3]ij)(L,L,L)dµM

=

∫
M
(n− 3)σ3(L)dµM .

(99)
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For the last term 1
3K

(−1)
3,0 ,

1

3
K

(−1)
3,0 :=− 1

3

∫
M

vivm[T2]ij(L,L)vmjdµM

=− 1

3

∫
M

vi[T2]ij(L,L)
1

2
(|∇v|2)jdµM

=
1

6

∫
M

vij [T2]ij(L,L)|∇v|2dµM +
1

6

∫
M

vi([T2]ij(L,L))j |∇v|2dµM .

(100)

Since ([T2]ij(L,L))j = 0, which is shown in the proof of Lemma 5.1,

1

3
K

(−1)
3,0 =

1

6

∫
M

vij [T2]ij(L,L)|∇v|2dµM

=
1

6

∫
M
(D̄2V̄ij + b(x)Lij)[T2]ij(L,L)|∇v|2dµM .

(101)

Now, we can use |∇v| ≤ 1, |b(x)| ≤ 1, as well as D̄2V̄ij ≥ 0 and Lij ∈ Γ+
4 to obtain that

1

3
K

(−1)
3,0 ≤1

6

∫
M

D̄2V̄ij [T2]ij(L,L)dµM +
1

6

∫
M
[T2]ij(L,L)LijdµM . (102)

The second term in the above expression is equal to 1
2

∫
M σ3(L)dµM ; and the first term in the above

expression can be estimated by using D̄2V̄ij = vij − b(x)Lij . More precisely,

1

6

∫
M

D̄2V̄ij [T2]ij(L,L)dµM =
1

6

∫
M

Σ3(L,L,D
2v)− b(x)Σ3(L,L, L)dµM .

By Lemma 5.1,
∫
M Σ3(L,L,D

2v)dµM = 0. Thus

1

6

∫
M

D̄2V̄ij [T2]ij(L,L)dµM =
1

6

∫
M

−b(x)Σ3(L,L, L)dµM ≤ 1

2

∫
M

σ3(L)dµM .

Thus 1
3K

(−1)
3,0 ≤ C

∫
M

σ3(L)dµM .

In conclusion I3,3 = 1
3I

|∇v|2
3,1 + J

(−1)
3,1 + 1

3K
(−1)
3,0 ≤ C

∫
M σ3(L)dµM . This finishes the estimate of

I3,3. And thus∫
M

σ3(D
2v + 2L)dµM = I3,3 + 2I3,2 + 4I3,1 + 8I3,0 ≤ C

∫
M

σ3(L)dµM . (103)

6 General k case of Proposition 3.1

In this section, we are going to prove the following inequality for all integers k.
Proposition 3.1 Let E ⊂ Rn+1 be an n-dimensional linear subspace, and p be the orthogonal
projection from Rn+1 to E. Suppose V : E → R is a C3 convex potential function with |∇V | ≤ 1.
Define the extension of V to Rn+1 by V̄ := V ◦ p. Define the restriction of V̄ to the closed
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hypersurface M by v := V̄ |M . Denote the Hessian of v by D2v or vij. The covariant derivative is
with respect to the metric g of M . Suppose also that M is (k+ 1)-convex if 2 ≤ k ≤ n− 1, i.e. the
second fundamental form Lij ∈ Γ+

k+1. And suppose that M is n-convex if k = n. Then for each k
and each constant a > 1, there exists a constant C, which depends only on k, n and a, such that∫

M
σk(D

2v + aL)dµM ≤ C

∫
M

σk(L)dµM . (104)

Remark 6.1. Note that if k = 1, it is obvious that the inequality is true since
∫
M ∆vdvm = 0. If

k = n, then Γ+
k+1 is not well defined; but one can follow the same argument as below to prove that

if Lij ∈ Γ+
n (i.e. Ω is convex), then

∫
M σn(D

2v + aL)dµM ≤ C
∫
M σn(L)dµM . The only difference

in the argument is that [Tn]ij(A) = 0 for any A. In the following, we will prove the proposition for
the cases k = 2, ..., n− 1.

In Section 4 and 5, we have shown

Ik,m :=

∫
M

Σk(

m︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM ≤ C

∫
M

σk(L)dµM , (105)

for all m ≤ k where k = 2, 3. We now prove (105) for all m ≤ k where k = 2, ..., n − 1. This will
imply Proposition 3.1 for general k. Thus we reduce the problem to prove the following Proposition
6.2.

Proposition 6.2. With the assumptions of Proposition 3.1, for each m ≤ k, where k = 2, ..., n−1,
there exists a constant C depending only on k and n, such that

Ik,m ≤ C

∫
M

σk(L)dµM . (106)

The rest of this section will be devoted to the proof of Proposition 6.2 by an inductive argument.
As we will see in the argument below, the estimate of Ik,m consists of the estimates of three types
of terms–I-type, J-type, K-type. We will handle each type individually using inductive arguments.

Proof. We need two initial inequalities to start the inductive argument since in each induction step
the index jumps down by 2. First of all, when m = 1 the statement is valid. In fact,

Ik,1 :=

∫
M

Σk(D
2v, L, ..., L)dµM = 0. (107)

The proof is the same as that of Lemma 5.1. Thus we omit it here. For m = 2,

Ik,2 :=

∫
M

Σk(D
2v,D2v, L, ..., L)dµM =

∫
M

vij [Tk−1]ij(D
2v, L, ..., L)dµM

=

∫
M

−vj([Tk−1]ij(D
2v, L, ..., L))idµM

=

∫
M

−vjδ
i,i1,...,ik−1

j,j1,...,jk−1
vi1j1iLi2j2 · · ·Lik−1jk−1

dµM .

(108)
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Here all the terms involving the covariant derivative of L disappear because if we exchange the
positions of the dummy indices i and i2, then

δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
vi1j1Li2j2,i · · ·Lik−1jk−1

=δ
i2,i1,i,...,ik−1

j,j1,...,jk−1
vi1j1Lij2,i2 · · ·Lik−1jk−1

=− δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
vi1j1Lij2,i2 · · ·Lik−1jk−1

,
(109)

and thus

δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
vi1j1Li2j2,i · · ·Lik−1jk−1

=
1

2
δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
vi1j1(Li2j2,i − Lij2,i2)Li3j3 · · ·Lik−1jk−1

. (110)

By the Codazzi equation (28), this is equal to 0.
We continue the computation of (108) by an argument similar to that of (110).

Ik,2 =

∫
M

−vj([Tk−1]ij(D
2v, L, ..., L))idµM

=

∫
M

−vjδ
i,i1,...,ik−1

j,j1,j2,...,jk−1
vi1j1iLi2j2 · · ·Lik−1jk−1

dµM

=
1

2

∫
M

−vjδ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
(vi1j1i − vij1i1)Li2j2 · · ·Lik−1jk−1

dµM .

(111)

By the curvature equation (64), it follows that

Ik,2 = −1

2

∫
M

vjδ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
Rmj1i1ivmLi2j2 · · ·Lik−1jk−1

dµM . (112)

Again we can apply the Gauss equation (27),

Ik,2 =
1

2

∫
M

δ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
(LmiLi1j1 − Lmi1Lij1)Li2j2 · · ·Lik−1jk−1

vjvmdµM . (113)

If we change the positions of the dummy indices i and i1, and use the fact that δ
i2,i1,i,...,ik−1

j,j1,j2,...,jk−1
=

−δ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
, then

Ik,2 =
1

2

∫
M

δ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
LmiLi1j1Li2j2 · · ·Lik−1jk−1

vjvm

+ δ
i,i1,i2,...,ik−1

j,j1,j2,...,jk−1
LmiLi1j1Li2j2 · · ·Lik−1jk−1

vjvmdµM

=

∫
M
[Tk−1]ij(L, ..., L)LmivjvmdµM .

(114)

We remark that in (111)-(114), we have proved that

([Tk−1]ij(D
2v, L, ..., L))i = −[Tk−1]ij(L, ..., L)Lmivm. (115)

This formula will be used later in this section as well. Since

[Tk−1]ij(L, ..., L)Lmi = σk(L)δmj − [Tk]mj(L, ..., L),
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we have

Ik,2 =

∫
M
[Tk−1]ij(L, ..., L)LmivjvmdµM

=

∫
M

σk(L)|∇v|2dµM −
∫
M
[Tk]mj(L, ..., L)vjvmdµM .

(116)

Note that |∇v| ≤ 1, so ∫
M

σk(L)|∇v|2dµM ≤
∫
M

σk(L)dµM .

Also, due to the fact that L ∈ Γ+
k+1, [Tk]mj(L, ..., L) ≥ 0. Thus

−
∫
M
[Tk]mj(L, ..., L)vjvmdµM ≤ 0. (117)

Therefore

Ik,2 ≤ C

∫
M

σk(L)dµM . (118)

This finishes the proof of inequality (106) for m = 2. Notice the assumption L ∈ Γ+
k+1 has been

used in the estimate of Ik,2. In the following inductive argument, we will see L ∈ Γ+
k+1 is an essential

assumption to estimate Ik,m for m ≤ k.
To begin the inductive argument, we suppose for m = 1, ..., i0−1 where i0 ≥ 3, the inequality (106)
hold for some constant C depending only on k and n. We will call this assumption the inductive
assumption from now on. With this assumption, we want to prove the statement holds for m = i0.
Namely, there exists a C, such that

Ik,i0 ≤ C

∫
M

σk(L)dµM . (119)

We remark that in the following, constants denoted by C may have different values from line to
line. But all of them depend only on k and n.

To prove the statement for m = i0, we begin by simplifying Ik,i0 .

Ik,i0 :=

∫
M

Σk(

i0︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM

=

∫
M

vij [Tk−1]ij(

i0−1︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM

=

∫
M

−vj([Tk−1]ij(

i0−1︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))idµM

=− (i0 − 1)

∫
M

vjδ
i,i1,...,ik−1

j,j1,...,jk−1
vi1j1ivi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1
dµM ,

(120)
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where all terms involving the covariant derivative of L disappear for exactly the same reason as
stated in (110). Also, similar to (111)-(114), we get

δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
vi1j1ivi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1

=
1

2
δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
(vi1j1i − vij1i1)vi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1

=
1

2
δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
Rmj1i1ivmvi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1

=δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
Lmi1Lij1vmvi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1

=− δ
i,i1,i2,...,ik−1

j,j1,...,jk−1
LmiLi1j1vmvi2j2 · · · vii0−1ji0−1Lii0ji0

· · ·Lik−1jk−1

=− [Tk−1]ij(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivm.

(121)

Here we remark that in (120)-(121), we have proved that

([Tk−1]ij(

i0−1︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i = −(i0 − 1)[Tk−1]ij(

i0−2︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)Lmivm. (122)

Such a formula will be used later in this section as well. Thus

Ik,i0 = (i0 − 1)

∫
M
[Tk−1]ij(

i0−2︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)LmivjvmdµM . (123)

If we apply Lemma 2.7 to (123) with l = i0 − 2, B = D2v and C = L, then we get

Ik,i0 =(i0 − 1)
Ci0−2
k

kCi0−2
k−1

∫
M

Σk(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)|∇v|2dµM

− (i0 − 1)
Ci0−2
k

Ci0−2
k−1

∫
M
[Tk]mj(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vjvmdµM

− (i0 − 1)
Ci0−3
k−1

Ci0−2
k−1

∫
M
[Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmivjvmdµM .

(124)

Define

I
(u)
k,l :=

∫
M

Σk(

l︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)u(x)dµM , (125)

J
(u)
k,l :=

∫
M
[Tk]mj(

l︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vjvmu(x)dµM , (126)

and

K
(u)
k,l :=

∫
M
[Tk−1]ij(

l︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmivjvmu(x)dµM . (127)
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Then by (124),

Ik,i0 = (i0 − 1)
Ci0−2
k

kCi0−2
k−1

· I(|∇v|2)
k,i0−2 + (i0 − 1)

Ci0−2
k

Ci0−2
k−1

· J (−1)
k,i0−2 + (i0 − 1)

Ci0−3
k−1

Ci0−2
k−1

·K(−1)
k,i0−3. (128)

In the following we will call any term that takes the form I
(u)
k,l , J

(u)
k,l , K

(u)
k,l the I-type term, the

J-type term, and the K-type term respectively. In the special case when u = 1, we will denote

I
(1)
k,l , J

(1)
k,l , K

(1)
k,l by Ik,l, Jk,l, Kk,l for simplicity.

In order to prove (106) for Ik,i0 , we need to estimate I
(|∇v|2)
k,i0−2 , J

(−1)
k,i0−2,K

(−1)
k,i0−3 individually.

Claim 1 : There exists a constant C depending only on k and n, such that

I
(|∇v|2)
k,i0−2 ≤ C

∫
M

σk(L)dvM . (129)

Proof. To estimate I
(|∇v|2)
k,i0−2 , we need the following lemma, which we will prove at the end of this

section.

Lemma 6.3. For any bounded function u(x), let us denote maxx∈M |u(x)| by U . Then for any
l ≥ 0 there exist positive constants C0, ..., Cl depending on U , k, n, such that

I
(u)
k,l ≤

l∑
s=0

CsIk,s. (130)

Also, one can choose Cl = U .

We now proceed our argument assuming Lemma 6.3 holds, and apply it to u(x) = |∇v|2, U :=
maxx∈M u(x) = 1 and l = i0 − 2. Then

I
(|∇v|2)
k,i0−2 ≤ Ik,i0−2 +

i0−3∑
s=0

CsIk,s. (131)

As one can see, on the right hand side of the above formula, every term is of the form Ik,j with
0 ≤ j ≤ i0 − 2. Therefore by our inductive assumption,

I
(|∇v|2)
k,i0−2 ≤ C

∫
M

σk(L)dvM , (132)

for some constant C. This finishes the proof of Claim 1.

Remark 6.4. It is obvious that by a similar argument, for any l ≤ i0−1 and any bounded function
u(x) with U := maxx∈M u(x),

I
(u)
k,l ≤ C

∫
M

σk(L)dvM , (133)

for some constant C depending only on U , k, n. Formula (133) will be referred to as the I-type

estimate. Later it will be used in Claim 3 to estimate K
(−1)
k,i0−3.
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Claim 2 :

J
(−1)
k,i0−2 ≤ C

∫
M

σk(L)dvM , (134)

for some constant C. Instead of estimating J
(−1)
k,i0−2, we want to analyze the more general term

J
(u)
k,i0−2 for any bounded function u on M with bounds depending only on k and n. Recall that

J
(u)
k,i0−2 :=

∫
M
[Tk]mj(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vjvmu(x)dµM . (135)

Define U := max
x∈M

|u(x)|.

Proof of Claim 2. To estimate J
(u)
k,i0−2, we write

J
(u)
k,i0−2 :=

∫
M
[Tk]mj(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)u(x)vjvmdµM

=

∫
M

Σk+1(

i0−2︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L, dv ⊗ dv)u(x)dµM

=

∫
M

Σk+1(

i0−2︷ ︸︸ ︷
D̄2V̄ + b(x)L, ..., D̄2V̄ + b(x)L,L, ..., L, dv ⊗ dv)u(x)dµM

=

∫
M

i0−2∑
j=0

Cj
i0−2(b(x))

i0−2−jΣk+1(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L, dv ⊗ dv)u(x)dµM .

(136)

Since L ∈ Γ+
k+1 and D̄2V̄ ≥ 0,

Σk+1(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L, dv ⊗ dv) ≥ 0.
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Also, |b(x)| ≤ 1 and |∇v| ≤ 1. Thus it follows that

J
(u)
k,i0−2 ≤

i0−2∑
j=0

U · Cj
i0−2

∫
M

Σk+1(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L, δij)dµM

=

i0−2∑
j=0

U · Cj
i0−2

∫
M

Tr([Tk]ij)(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)dµM

=

i0−2∑
j=0

n− k

k
· U · Cj

i0−2

∫
M

Σk(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)dµM

=

i0−2∑
j=0

n− k

k
· U · Cj

i0−2

∫
M

Σk(

j︷ ︸︸ ︷
D2v − b(x)L, ...,D2v − b(x)L,L, ..., L)dµM

=

i0−2∑
j=0

∫
M

u
(II)
j (x)Σk(

j︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM .

(137)

Again u
(II)
j (x) (j = 0, ..., i0 − 2) are some bounded functions which we can estimate in terms of U ,

k and n. It follows from Lemma 6.3 that there exists nonnegative constants, still denoted by Cs,
s = 0, ..., i0 − 2, such that

i0−2∑
j=0

∫
M

u
(II)
j (x)Σk(

j︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM ≤

i0−2∑
s=0

CsIk,s. (138)

Thus by (137) and (138)

J
(u)
k,i0−2 ≤

i0−2∑
s=0

CsIk,s. (139)

Again, every term on the right hand side is of the form Ik,s with s ≤ i0 − 2. Thus by our inductive
assumption,

J
(u)
k,i0−2 ≤ C

∫
M

σk(L)dµM . (140)

This finishes the estimate of J
(u)
k,i0−2. It is obvious that J

(−1)
k,i0−2 is a special case of J

(u)
k,i0−2 when

u(x) ≡ −1. Thus (140) holds for J
(−1)
k,i0−2 as well. This concludes the proof of Claim 2.

Remark 6.5. It is obvious that by a similar argument, for any l ≤ i0−1 and any bounded function
u(x) with U := maxx∈M u(x),

J
(u)
k,l ≤ C

∫
M

σk(L)dvM , (141)

for some constant C depending only on U , k, n. Formula (141) will be referred to as J-type

estimate. Later it will be used together with Remark 6.4 to estimate K
(−1)
k,i0−3.
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Claim 3 :

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dvM , (142)

for some constant C.

Proof of Claim 3. If i0 = 3, then it is easy to see that

K
(−1)
k,i0−3 :=−

∫
M
[Tk−1]ij(L, ..., L)vmivjvmdµM

=−
∫
M
[Tk−1]ij(L, ..., L)

1

2
vj(|∇v|2)idµM

=

∫
M
([Tk−1]ij(L, ..., L))i

1

2
vj |∇v|2dµM +

∫
M
[Tk−1]ij(L, ..., L)

1

2
vij |∇v|2dµM .

(143)

Notice that
([Tk−1]ij(L, ..., L))i = 0, (144)

by the same reason as in the proof of Lemma 5.1.
The second term∫

M
[Tk−1]ij(L, ..., L)

1

2
vij |∇v|2dµM =

1

2

∫
M

Σk(D
2v, L, ..., L)|∇v|2dµM =

1

2
I
(|∇v|2)
k,1 , (145)

by the definition of I
(u)
k,l in (125). Thus by the I-type estimate (133) in Remark 6.4, 1

2I
(|∇v|2)
k,1 ≤

C
∫
M σk(L)dµM for some constant C depending only on k and n. ThereforeK

(−1)
k,i0−3 ≤ C

∫
M σk(L)dµM .

If i0 = 4, then

K
(−1)
k,i0−3

:=−
∫
M
[Tk−1]ij(D

2v, L, ..., L)vmivjvmdµM

=−
∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

2
vj(|∇v|2)idµM

=

∫
M
([Tk−1]ij(D

2v, L, ..., L))i
1

2
vj |∇v|2dµM +

∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

2
vij |∇v|2dµM .

(146)

The second term in the last line of (146)∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

2
vij |∇v|2dµM =

1

2

∫
M

Σk(D
2v,D2v, L, ..., L)|∇v|2dµM =

1

2
I
(|∇v|2)
k,2 ,

(147)

by the definition of I
(u)
k,l in (125). Thus by the I-type estimate (133) in Remark 6.4, 1

2I
(|∇v|2)
k,2 ≤

C
∫
M σk(L)dµM , for some constant C. Now we only need to estimate the first term∫

M
([Tk−1]ij(D

2v, L, ..., L))i
1

2
vj |∇v|2dµM
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in the last line of (146).
To estimate

∫
M ([Tk−1]ij(D

2v, L, ..., L))i
1
2vj |∇v|2dµM , notice that

([Tk−1]ij(D
2v, L, ..., L))i = −[Tk−1]ij(L, ..., L)Lilvl

by the argument of (111)-(114). Thus∫
M
([Tk−1]ij(D

2v, L, ..., L))i
1

2
vj |∇v|2dµM = −1

2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|2dµM . (148)

By (17), and the definition of I
(u)
k,l , J

(u)
k,l in (125), (126)

− 1

2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|2dµM

=

∫
M

{−C1Σk(L, ..., L)δjl + C2[Tk]jl(L, ..., L)} vlvj |∇v|2dµM

=

∫
M

−C1Σk(L, ..., L)|∇v|4 + C2[Tk]jl(L, ..., L)vlvj |∇v|2dµM

=− C1I
(|∇v|4)
k,0 + C2J

(|∇v|2)
k,0 ,

(149)

where C1, C2 are positive constants depending only on k and n. Notice |∇v| ≤ 1; thus by (133) in

Remark 6.4 and (141) in Remark 6.5, the I-type term −C1I
(|∇v|4)
k,0 and J-type term C2J

(|∇v|2)
k,0 are

both bounded by C
∫
M σk(L)dµM for some constant C. Thus in (149)

−1

2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|2dµM ≤ C

∫
M

σk(L)dµM .

Plugging it back to (148), we get
∫
M ([Tk−1]ij(D

2v, L, ..., L))ivj |∇v|2dµM ≤ C
∫
M σk(L)dµM . This

completes the estimate of the first term in the last line of (146). Hence K
(−1)
k,1 ≤ C

∫
M σk(L)dµM .

We now begin to prove K
(−1)
k,i0−3 ≤ C

∫
M σk(L)dµM for i0 ≥ 5. It will be shown shortly that the

estimate of K
(−1)
k,i0−3, by induction, reduces to one of the two cases depending on whether i0 is an

odd or even integer.
First of all,

K
(−1)
k,i0−3 :=−

∫
M
[Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)vmivjvmdµM

=−
∫
M
[Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)

1

2
vj(|∇v|2)idµM

=

∫
M
([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i

1

2
vj |∇v|2dµM

+

∫
M
[Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)

1

2
vij |∇v|2dµM

=

∫
M
([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i

1

2
vj |∇v|2dµM +

1

2
I
(|∇v|2)
k,i0−2 ,

(150)
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by integration by parts and the definition of I
(u)
k,l in (125). The I-type estimate (133) in Remark

6.4 implies that 1
2I

(|∇v|2)
k,i0−2 ≤ C

∫
M σk(L)dµM ; thus we only need to estimate the first term in the

last line of (150), namely

∫
M
([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i

1

2
vj |∇v|2dµM . By a similar argument

presented in (120)-(121),

([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i = −(i0 − 3)[Tk−1]ij(

i0−4︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivm.

Thus

∫
M
([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i

1

2
vj |∇v|2dµM

=

∫
M

− i0 − 3

2
[Tk−1]ij(

i0−4︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivmvj |∇v|2dµM .

(151)

By Lemma 2.7,

[Tk−1]ij(

l+1︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmi

=
C l+1
k

kC l+1
k−1

· Σk(

l+1︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)δmj −

C l+1
k

C l+1
k−1

· [Tk]mj(

l+1︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)

−
C l
k−1

C l+1
k−1

[Tk−1]ij(

l︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)vmi

(152)

Let l = i0 − 5, and plug it in (151).

∫
M
([Tk−1]ij(

i0−3︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i

1

2
vj |∇v|2dµM

=

∫
M

− i0 − 3

2
[Tk−1]ij(

i0−4︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivmvj |∇v|2dµM .

=

∫
M

−C1Σk(

i0−4︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)|∇v|4 + C2[Tk]mj(

i0−4︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmvj |∇v|2

+ C3[Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmivmvj |∇v|2dµM ,

=− C1I
(|∇v|4)
k,i0−4 + C2J

(|∇v|2)
k,i0−4 + C3K

(|∇v|2)
k,i0−5 .

(153)

where C1, C2, C3 are constants depending only on k and n. They might have different values from
the ones in (149). From now on, the values of C1, C2, C3 may vary from line to line; but they all
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denote positive constants depending only on k and n. To conclude what we do in (150)-(153), we
get for i0 ≥ 5

K
(−1)
k,i0−3 =

1

2
I
(|∇v|2)
k,i0−2 − C1I

(|∇v|4)
k,i0−4 + C2J

(|∇v|2)
k,i0−4 + C3K

(|∇v|2)
k,i0−5 . (154)

By the I-type estimate (133) and the J-type estimate (141) as well as |∇v| ≤ 1, we know

1

2
I
(|∇v|2)
k,i0−2 ≤ C

∫
M

σk(L)dµM ; −C1I
(|∇v|4)
k,i0−4 ≤ C

∫
M

σk(L)dµM ;

and

C2J
(|∇v|2)
k,i0−4 ≤ C

∫
M

σk(L)dµM .

Therefore

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM + C3K
(|∇v|2)
k,i0−5 . (155)

Recall that we call any term that takes the form of K
(u)
k,l the K-type term. In (155), the index l in

the K-type term drops from i0 − 3 to i0 − 5. Thus (155) is an inductive inequality of the K-type
term, which can be used to decrease the index l. In each step, the index l drops by 2. The induction
will stop when either l = 0 or l = 1. Notice the function u in the K-type term changes from −1 to
|∇v|2; and in the following induction steps, it will change to −|∇v|4, |∇v|6 and so on. Since all of
them are bounded functions (with bounds 1), this change won’t affect the inductive procedure. To
see this, we demonstrate one more step of the induction in the following.

Let us assume i0 ≥ 7. Otherwise, i0 − 5 is either equal to 0 or 1, so the inductive argument
stops. (i0 − 5 is not possible to be a negative integer, since we assumed i0 ≥ 5 previously.) With
this assumption,

K
(|∇v|2)
k,i0−5 :=

∫
M
[Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmivmvj |∇v|2dµM

=

∫
M
[Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)

1

4
vj(|∇v|4)idµM .

(156)

The term on the last line is in the same form as the term on the 2nd line of (150), thus we can
start a similar argument using integration by parts.

K
(|∇v|2)
k,i0−5 =

∫
M
[Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)

1

4
vj(|∇v|4)idµM

=−
∫
M
([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i

1

4
vj |∇v|4dµM

−
∫
M
[Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)

1

4
vij |∇v|4dµM

=−
∫
M
([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i

1

4
vj |∇v|2dµM − 1

4
I
(|∇v|4)
k,i0−4 .

(157)
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Since the I-type estimate (133) in Remark 6.4 implies that −1
4I

(|∇v|4)
k,i0−4 ≤ C

∫
M σk(L)dµM , we only

need to estimate the first term in the last line of (157), namely

−
∫
M
([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i

1

4
vj |∇v|2dµM .

By a similar argument presented in (120)-(121),

([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i = −(i0 − 5)[Tk−1]ij(

i0−6︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivm.

Thus

−
∫
M
([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L))i

1

4
vj |∇v|4dµM

=

∫
M

i0 − 5

2
[Tk−1]ij(

i0−6︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)Lmivmvj |∇v|4dµM .

(158)

By Lemma 2.7,

[Tk−1]ij(

l+1︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmi

=
C l+1
k

kC l+1
k−1

· Σk(

l+1︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)δmj −

C l+1
k

C l+1
k−1

· [Tk]mj(

l+1︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)

−
C l
k−1

C l+1
k−1

[Tk−1]ij(

l︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)vmi

(159)

Let l = i0 − 7, and plug it in (158).

−
∫
M
([Tk−1]ij(

i0−5︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L))i

1

4
vj |∇v|2dµM

=

∫
M

i0 − 5

2
[Tk−1]ij(

i0−6︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)Lmivmvj |∇v|4dµM .

=

∫
M

C1Σk(

i0−6︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)|∇v|6 − C2[Tk]mj(

i0−6︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)vmvj |∇v|4

− C3[Tk−1]ij(

i0−7︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)vmivmvj |∇v|4dµM ,

=C1I
(|∇v|6)
k,i0−6 − C2J

(|∇v|4)
k,i0−6 − C3K

(|∇v|4)
k,i0−7 .

(160)

In this way, we derive

K
(|∇v|2)
k,i0−5 = −1

4
I
(|∇v|4)
k,i0−4 + C1I

(|∇v|6)
k,i0−6 − C2J

(|∇v|4)
k,i0−6 − C3K

(|∇v|4)
k,i0−7 . (161)
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By the I-type estimate (133) and the J-type estimate (141) as well as |∇v| ≤ 1, we know

−1

4
I
(|∇v|4)
k,i0−4 ≤ C

∫
M

σk(L)dµM ; C1I
(|∇v|6)
k,i0−6 ≤ C

∫
M

σk(L)dµM ;

and

−C2J
(|∇v|4)
k,i0−6 ≤ C

∫
M

σk(L)dµM .

Therefore

K
(|∇v|2)
k,i0−5 ≤ C

∫
M

σk(L)dµM + C3K
(−|∇v|4)
k,i0−7 . (162)

(155) together with (162) imply that

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM + C3K
(−|∇v|4)
k,i0−7 . (163)

This finishes the 2nd step of the induction. As we mentioned before, the function u in the K-type
term changes from −1 to |∇v|2 in the first step of the induction; and it changes to −|∇v|4 in the
2nd step of the induction. Since all of them are bounded functions (with bounds 1), this change
won’t affect the induction step. Therefore, we conclude that in the q-th step of the induction, we
will get

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM + C3K
((−1)q+1·|∇v|2q)
k,i0−2q−3 . (164)

The induction stops when q = [i0−3]
2 , where [·] denotes the integer part of a number. If i0 is odd,

then when the induction stops we get

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM + C3K
((−1)

i0−1
2 ·|∇v|i0−3)

k,0 . (165)

If i0 is even, then when the induction stops we get

K
(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM + C3K
((−1)

i0−2
2 ·|∇v|i0−4)

k,1 . (166)

We will prove in the following:

K
(±|∇v|i0−3)
k,0 ≤ C

∫
M

σk(L)dµM , when i0 is odd; (167)

and

K
(±|∇v|i0−4)
k,1 ≤ C

∫
M

σk(L)dµM , when i0 is even. (168)

The proofs of these two inequalities are similar to the the arguments of K−1
k,0, K

(−1)
k,1 respectively,

which we have shown at the beginning of the proof of Claim 3.
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To prove (167) when i0 is odd, we first write

K
(±|∇v|i0−3)
k,0 :=±

∫
M
[Tk−1]ij(L, ..., L)vmivjvm|∇v|i0−3dµM

=±
∫
M
[Tk−1]ij(L, ..., L)

1

i0 − 1
vj(|∇v|i0−1)idµM

=∓
∫
M
([Tk−1]ij(L, ..., L))i

1

i0 − 1
vj |∇v|i0−1dµM

∓
∫
M
[Tk−1]ij(L, ..., L)

1

i0 − 1
vij |∇v|i0−1dµM .

(169)

Notice that
([Tk−1]ij(L, ..., L))i = 0, (170)

by the same reason as in the proof of Lemma 5.1.
So we only need to estimate the term

∓
∫
M
[Tk−1]ij(L, ..., L)

1

i0 − 1
vij |∇v|i0−1dµM

=∓ 1

i0 − 1

∫
M

Σk(D
2v, L, ..., L)|∇v|i0−1dµM = ∓ 1

i0 − 1
I
(|∇v|i0−1)
k,1 ,

(171)

by the definition of I
(u)
k,l in (125). Now by the I-type estimate (133) in Remark 6.4, ∓ 1

i0−1I
(|∇v|i0−1)
k,1 ≤

C
∫
M σk(L)dµM for some constant C depending only on k and n. Therefore K

(±|∇v|i0−3)
k,0 ≤

C
∫
M σk(L)dµM .

To prove (168) when i0 is even, we write

K
(±|∇v|i0−4)
k,1

:=±
∫
M
[Tk−1]ij(D

2v, L, ..., L)vmivjvm|∇v|i0−4dµM

=±
∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

i0 − 2
vj(|∇v|i0−2)idµM

=∓
∫
M
([Tk−1]ij(D

2v, L, ..., L))i
1

i0 − 2
vj |∇v|i0−2dµM

∓
∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

i0 − 2
vij |∇v|i0−2dµM .

(172)

Notice

∓
∫
M
[Tk−1]ij(D

2v, L, ..., L)
1

i0 − 2
vij |∇v|i0−2dµM

=∓ 1

i0 − 2

∫
M

Σk(D
2v,D2v, L, ..., L)|∇v|i0−2dµM = ∓ 1

i0 − 2
I
(|∇v|i0−2)
k,2 ,

(173)

by the definition of I
(u)
k,l in (125). Thus by the I-type estimate (133) in Remark 6.4, ∓ 1

i0−2I
(|∇v|i0−2)
k,2 ≤

C
∫
M σk(L)dµM .Now we only need to estimate the term∓

∫
M ([Tk−1]ij(D

2v, L, ..., L))i
1

i0−2vj |∇v|i0−2dµM
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in (172).
To estimate ∓

∫
M ([Tk−1]ij(D

2v, L, ..., L))i
1

i0−2vj |∇v|i0−2dµM , we use

([Tk−1]ij(D
2v, L, ..., L))i = −[Tk−1]ij(L, ..., L)Lilvl,

which is proved in (111)-(114). Thus

∓
∫
M
([Tk−1]ij(D

2v, L, ..., L))i
1

i0 − 2
vj |∇v|i0−2dµM

=± 1

i0 − 2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|i0−2dµM .

(174)

By (17), and the definition of I
(u)
k,l , J

(u)
k,l in (125), (126)

± 1

i0 − 2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|i0−2dµM

=

∫
M

{±C1Σk(L, ..., L)δjl ∓ C2[Tk]jl(L, ..., L)} vlvj |∇v|i0−2dµM

=

∫
M

±C1Σk(L, ..., L)|∇v|i0 ∓ C2[Tk]jl(L, ..., L)vlvj |∇v|i0−2dµM

=± C1I
(|∇v|i0 )
k,0 ∓ C2J

(|∇v|i0−2)
k,0 ,

(175)

where C1, C2 are positive constants depending only on k and n. Notice |∇v| ≤ 1; thus by

(133) in Remark 6.4 and (141) in Remark 6.5, the I-type term ±C1I
(|∇v|i0 )
k,0 and the J-type term

∓C2J
(|∇v|i0−2)
k,0 are both bounded by C

∫
M σk(L)dµM for some constant C. Thus in (175)

± 1

i0 − 2

∫
M
[Tk−1]ij(L, ..., L)Lilvlvj |∇v|i0−2dµM ≤ C

∫
M

σk(L)dµM .

Plugging it back to (174), we get∓
∫
M ([Tk−1]ij(D

2v, L, ..., L))i
1

i0−2vj |∇v|i0−2dµM ≤ C
∫
M σk(L)dµM .

This completes the estimate of the term ∓
∫
M ([Tk−1]ij(D

2v, L, ..., L))i
1

i0−2vj |∇v|i0−2dµM in (172).

Hence K
(±|∇v|i0−4)
k,1 ≤ C

∫
M σk(L)dµM .

With inequalities (167) and (168), one can conclude that K
(−1)
k,i0−3 ≤ C

∫
M σk(L)dµM . Thus it

finishes of the proof of Claim 3.

By Claim 1, 2, 3,

Ik,i0 =I
(|∇v|2)
k,i0−2 + J

(−1)
k,i0−2 +K

(−1)
k,i0−3 ≤ C

∫
M

σk(L)dµM . (176)

This finishes the inductive argument. Therefore we have proved Proposition 6.2.

We finish this section by giving the proof of Lemma 6.3.

Proof. An easy inductive argument would lead us to the conclusion. When l = 0, the statement is
obviously true. Now suppose this statement holds for l ≤ l0−1 where l0 ≥ 0; we would like to prove
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that it also holds for l = l0. In fact, since D2v = D̄2V̄ + b(x)L and Σk(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L) > 0,

we have

I
(u)
k,l0

:=

∫
M

Σk(

l0︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)u(x)dµM

=

∫
M

Σk(

l0︷ ︸︸ ︷
D̄2V̄ + b(x)L, ..., D̄2V̄ + b(x)L,L, ..., L)u(x)dµM

=

∫
M

Σk(

l0︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)u(x) +

l0−1∑
j=0

Cj
l0
Σk(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)b(x)l0−ju(x)dµM

≤
∫
M

U · Σk(

l0︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)dµM +

∫
M

l0−1∑
j=0

U · Cj
l0
Σk(

j︷ ︸︸ ︷
D̄2V̄ , ..., D̄2V̄ , L, ..., L)dµM

=

∫
M

U · Σk(

l0︷ ︸︸ ︷
D2v − b(x)L, ...,D2v − b(x)L,L, ..., L)dµM

+

∫
M

l0−1∑
j=0

U · Cj
l0
Σk(

j︷ ︸︸ ︷
D2v − b(x)L, ...,D2v − b(x)L,L, ..., L)dµM

=

∫
M

U · Σk(

l0︷ ︸︸ ︷
D2v, ...,D2v, L, ..., L)dµM +

l0−1∑
j=0

∫
M

bj(x)Σk(

j︷ ︸︸ ︷
D2v, ..., D2v, L, ..., L)dµM

=U · Ik,l0 +
l0−1∑
j=0

I
(bj)
k,l ,

(177)

where bj(x) are bounded functions whose estimates only depend on U , k and n. Now we choose

Cl0 = U . Also notice that every term in

l0−1∑
j=0

I
(bj)
k,l falls into the case of our inductive assumption.

Thus there exist nonnegative constants C0, ..., Cl0−1 (together with Cl0 = U), such that

I
(u)
k,l0

≤
l0∑

s=0

CsIk,s. (178)

This concludes the proof of Lemma 6.3.
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Oberflächenbegriffs. Ges, Abh., Leipzig-Berlin 1911, 2, 131-229.

[26] J.H. Michael, L.M. Simon; Sobolev and mean-value inequalities on generalized submanifolds
of Rn, Comm. Pure Appl. Math. 26 (1973), 361-379.

[27] X.N. Ma, N. Trudinger, X.J. Wang; Regularity of potential functions of the optimal trans-
portation problem, Arch. Rational Mech. Anal. 177 (2005), 151-183.

[28] R. Reilly; On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20
(1973), 373-383.

[29] N. Trudinger; Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincarè Anal.
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