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1. Preface

These are the lecture notes based on a course which the first named author has
given at the second congress organized by the Riemann International School of
Mathematics in Verbania, Italy from September 26 to October 1, 2010.

The topic of the school is Nonlinear Analysis and Nonlinear PDE, with Louis
Nirenberg served as the Director of the school for the year. The first named author
has greatly enjoyed the lectures given by the participants and the warm hospitality
of the organizers. The lectures she gave were mostly based on the ongoing joint work
of her with Yi Wang, which have since been written up in [9] and [10].

In these notes we will mainly describe the work in [9]. We will do so by providing
more backgrounds and also by adding some new material in section 3 as examples
in which these inequalities fail.

These notes are organized as follows: In section 2, we describe the classical
Aleksandrov-Fenchel inequalities for convex domains and describe the Question we
are interested in–how to extend these inequalities to classes of non-convex domains?
In section 3, we discuss examples which indicate why one can not expect to adopt
the proof of the original Aleksandrov-Fenchel inequalities for convex domains to this
class of non-convex domains. This part of the work is motivated by some recent work
of De Lellis-Topping [13] on the almost Schur inequality, and also the subsequent
interpretation by Ge-Wang [16] of their work. In section 4, we summarize some
known results related to the Question and describe a new approach to a special
case of the Question–namely the recent work of Castillon [8] applying the method
of optimal transport to give a reproof of the Michael-Simon inequality. In section 5,
we describe how to generalize the proof of Castillon to give a partial answer to the
Question we are interested in, we will provide more background of the subject, and
outline the proof of the main result in [9].

The research of the first author is partially supported by NSF grant DMS-0758601.
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2. Background

The Aleksandrov-Fenchel inequalities ([1], [2]) for the quermassintegrals for convex
domains are fundamental inequalities in classical geometry. For a bounded smooth,
convex domain A ⊂ Rn+1, and B the unit ball in Rn+1, Minkowski considered the
volume expansion of the set A + tB with the expansion

V ol(A + tB) =
n+1∑
k=0

Vn+1−k(A)tk (1)

Thus
When k = 0, Vn+1(A) = volume of A.

When k = 1, Vn(A) = surface area of the boundary of A .
(2)

There are several equivalent expressions of the Minkowski’s (n + 1 − k)−volume or
the quermassintegral, Vn+1−k(A). One of them is the following. Denote M = ∂A.
Let

κ(x) = (κ1(x), κ2(x), ....κn(x))

be the principal curvatures at x ∈ M , and let σk(λ) denote the k-th elementary
symmetric function of λ = (λ1, λ2, . . . λn) i.e. σ0 = 1 and

σk(λ) =
∑

i1<i2<···<ik

λi1λi2 ...λik .

Thus

σ1(κ) =
n∑

i=1

κi = H the mean curvature of the boundary of A

σ2(κ) =
∑
i<j

κiκj

(3)

We now introduce a new notation. Denote by L = LM the second fundamental
form on the boundary of A. Then the principal curvatures on the boundary of A are
the eigenvalues of L. Thus

σk(κ(x)) = σk(L(x))

for all x ∈ M , where σk(L) is the k-th elementary symmetric function of the eigen-
values of L.

Then for k ≥ 1,

Vn+1−k(A) = C(n, k)
∫

M
σk−1(L)dµM (4)

for some constant C(n, k) = 1
n+1−k , where dµM denotes the surface measure on M .

A special case of the classical Aleksandrov-Fenchel inequality for a convex do-
main A is:

Vn+1−k(A)Vn−1−k(A) ≤ (Vn−k(A))2. (5)
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As we will see in the argument in section 3, this inequality implies the following
inequality

(Vn+1−k(A))
1

n+1−k ≤ C(n, k)(Vn−k(A))
1

n−k , (6)
where C(n, k) is a constant depending only on n, k and is only achieved when A is
a ball. An equivalent way of writing (6) is:

(
∫

M
σk−1(L)dµM )

1
n−(k−1) ≤ C(n, k)(

∫
M

σk(L)dµM )
1

n−k , ((∗)k)

where C(n, k) again denotes a constant depending only on n, k and is only achieved
when A is a ball.

We remark that when k = 0, (∗)0 is interpreted as the classical isoperimetric
inequality

Vol(A)
1

n+1 ≤ C̄n|∂A|
1
n

which holds for all bounded domains A in Rn+1.

The Question we are interested in these notes is: Does (∗)k hold for a class of
domains which are less restrictive than the convex domains?

First we recall some known results of this question. We start with a definition.
Definition We call a domain A ⊂ Rn+1 a k-convex domain if σi(L(x)) > 0 for

1 ≤ i ≤ k for all x ∈ ∂A. In this case, we say the second fundamental form L of M
is in the positive k-cone, denoted by L ∈ Γk

+; or we sometimes use the language
that M = ∂A is k-convex.

Theorem 2.1. (Guan-Li [18]) Suppose A is a smooth star-shaped domain in Rn+1

with k-convex boundary, then the inequality (∗)m is valid for all 1 ≤ m ≤ k; with
the equality holds if and only if A is a ball.

The main idea in the proof of the theorem above is to apply a fully nonlinear
flow to study the inequality (∗)k for k-convex domains. Namely, one evolves the
hypersurface M := ∂A ⊂ Rn+1 along the flow

~Xt =
σk−1

σk
(L)~n, (7)

where ~n is the unit outer normal of hypersurface M .
In earlier articles Gerhardt [17] and Urbas [28] have independently proved that

the flow (7) exists for all t and converges to the round sphere when either A is a
convex domain or A is a k-convex domain AND star-shaped.

The key observation made in [18] is that the ratio(∫
M σk−1(L)dµM

) 1
n−k+1(∫

M σk(L)dµM

) 1
n−k

(8)

is monotonically increasing along the flow (7). Therefore if the solution of the flow
(7) exists for all t > 0 and converges to a round sphere (or up to a rescaling), one
can establish the inequality (∗)k.
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We remark that the flow (7) when k = 1 is the inverse mean curvature flow
studied earlier by Evans-Spruck [14], Huisken-Illmanen [20] and others.

We would also like to mention that a special case of a sharp inequality between
Vn+1 and Vn−k was established by Trudinger for k-convex domains. (See section 3
in [27].)

Another result which is related to a special case of the inequality (∗)k for k = 1
is the Michael-Simon inequality.

Theorem 2.2. (Michael-Simon [24]) Let i : Mn → RN be an isometric immersion
(N > n). Let U be an open subset of M . For a nonnegative function u ∈ C∞

c (U),
there exists a constant C = Cn, such that(∫

M
u

n
n−1 dvM

)n−1
n

≤ C

∫
M

(|H|u + |∇u|)dvM , (9)

where H is the mean curvature vector of the immersion.

In the special case, when we take A ⊂ Rn+1 and M = ∂A, then H = H~n, ~n the
outward normal of the domain and H the mean curvature on the boundary of A,
and take U ≡ 1, we get

Corollary 2.3. There is a dimensional constant C = C(n), so that

|∂A|
n−1

n ≤ C

∫
∂A

Hdµ.

or equivalently:

|∂A|
1
n ≤ C(

∫
∂A

Hdµ)
1

n−1 . (10)

We remark that it is an open question what is the best constant in inequality
(10). Huisken has indicated that when the domain is “outward minimizing” in the
sense as is defined in his earlier work with Illmanen [20], the inequality is sharp with
the constant as in the case when A is the ball.

The main result in A. Chang and Y. Wang [9] is the following, which we will
call Main Theorem in these notes.

Theorem 2.4. Let us denote M = ∂A. For k = 2, ..., n − 1, if A is a (k + 1)-convex
domain, then there exists a constant C depending only on n and m, such that for
1 ≤ m ≤ k, (∫

M
σm−1(L)dµM

) 1
n−m+1

≤ C

(∫
M

σm(L)dµM

) 1
n−m

.

If k = n, then the inequality holds when A is n-convex. If k = 1, then the inequality
holds when A is 1-convex.

From now now we will denote the m-th inequality in above theorem (∗∗)m, thus
(∗∗)k denotes the inequality(∫

M
σk−1(L)dµM

) 1
n−k+1

≤ C

(∫
M

σk(L)dµM

) 1
n−k

. ((∗∗)k)
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for some constant C = C(n, k)
We remark the method of proof in the theorem above actually extends to prove

a generalized class of Michael-Simon inequalities:

Theorem 2.5. Denote M = ∂A for some bounded domain A in Rn+1. Suppose U is
an open subset of M and u ∈ C∞

c (U) is a nonnegative function. For k = 2, ..., n− 1,
if A is a (k + 1)-convex domain, then there exists a constant C depending only on n
and m, such that for 1 ≤ m ≤ k(∫

M
σm−1(L)u

n−m+1
n−m dµM

) n−m
n−m+1

≤ C

∫
M

(σm(L)u+σm−1(L)|∇u|+, ...,+|∇mu|)dµM .

If k = n, then the inequality is true when A is an n-convex domain. If k = 1, then
the inequality holds when A is a 1-convex domain. (k = 1 case is a corollary of the
Michael-Simon inequality.)

For the rest of the notes, we will describe the proof of the Main Theorem.

3. The classical Aleksandrov-Fenchel inequality

In this section, we are going to discuss the classical Aleksandrov-Fenchel inequalities
for convex domains A, and derive as a consequence the sharp inequality (∗)k. We
will then proceed to explain why one cannot use the same proof to obtain (∗)k for
k-convex domains. In fact, we will construct examples of k-convex domains such
that the Aleksandrov-Fenchel inequality (at level k) is not valid when k = 2.

Let A1,..., An+1 be convex domains. By a result of Minkowski [23] the volume
of the linear combination of A1,..., An+1 with nonnegative coefficients λ1, ..., λn+1 is
a homogeneous polynomial of degree n + 1 with respect to λ1, ..., λn+1:

V (
n+1∑
i=1

λiAi) =
n+1∑
i1=1

· · ·
n+1∑

in+1=1

V (Ai1 , ..., Ain+1)λi1 · · ·λin+1 , (11)

In this way, one defines the generalized Minkowski mixed volumes V (A1, ..., An+1).
When A1 = · · · = An+1, V (A, ..., A) = V ol(A). When A1 = · · · = An+1−k = A,
Aj = B for j > n + 1 − k,

V (

n+1−k︷ ︸︸ ︷
A, ..., A,

k︷ ︸︸ ︷
B, ..., B) = Cn,k

∫
∂A

σk−1(L)dµ (12)

Aleksandrov-Fenchel inequality is an inequality relating different mixed vol-
umes:

V 2(A1, A2, A3, ..., An+1) ≥ V (A1, A1, A3, ..., An+1)V (A2, A2, A3, ..., An+1). (13)

In the special case when A1 = ... = An−k = A, Aj = B for j > n − k, we obtain

(
∫

∂A
σk(L)dµ)2 ≥ C̄k(

∫
∂A

σk+1(L)dµ)(
∫

∂A
σk−1(L)dµ), ((AF )k)
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where C̄k is the constant that is attained when A is a ball. We will now derive the
inequality (∗)k as a consequence of the string of inequalities ((AF )l) for l ≥ k. To
see this, we first notice that for a convex domain A, σn(L) is the Jacobian of the
Gauss map from A to the unit sphere, hence the integral

∫
∂A σn(L)dµ is a constant

which is equal to the area of the unit sphere. Also, one can prove inductively that

(
∫

∂A
σk(L)dµ)p(l) ≥ (

∫
∂A

σk−l(L)dµ)q(l)(
∫

∂A
σk+1(L)dµ) (14)

for k + 1 ≤ n; and

(
∫

∂A
σk(L)dµ)p(l) ≥ (

∫
∂A

σk+l(L)dµ)q(l)(
∫

∂A
σk−1(L)dµ); (15)

for k + l ≤ n. Here p(l) and q(l) are two positive indices depending only on l. For
example, p(1) = 2, q(1) = 1; p(2) = 3/2, q(2) = 1/2 etc. Thus we have

(
∫

∂A
σk+1(L)dµ)p(n−k−1) ≥ (

∫
∂A

σn(L)dµ)q(n−k−1)(
∫

∂A
σk(L)dµ); (16)

and

(
∫

∂A
σk(L)dµ)2 ≥ (

∫
∂A

σk+1(L)dµ)(
∫

∂A
σk−1(L)dµ). (17)

Taking 1
p(n−k−1) -th power of the inequality (16) into (17), one gets

(
∫

∂A
σk(L)dµ)2−

1
p(n−k−1) ≥(

∫
∂A

σk−1(L)dµ)(
∫

∂A
σn(L)dµ)

q(n−k−1)
p(n−k−1)

≥C(
∫

∂A
σk−1(L)dµ).

(18)

Therefore the inequalities (AF )l for l ≥ k imply (∗)k.
From the above argument, it is natural to consider that whether it would be

possible to prove ((AF )k) for k + 1-convex domains first, then obtain (∗)k for such
domains. In the following we will indicate an example of a 2-convex domain in Rn+1

when n ≥ 4 while the inequality (AF )1 fails.
The construction of the example is inspired by a recent work of De Lellis and

Topping [13], in which they establish an almost Schur theorem on manifolds under
the assumption that Ricci curvature of the manifold being positive; they also went
on to construct a counterexample of their inequality on manifolds of dimensions
bigger than four when the Ricci curvature is not positive. In a later work, Ge and
Wang [16] reformulated the inequality in [13] in terms of an inequality similar to the
(AF )1 inequality above but with the integrand under the integration the σk of the
Schouten tensor on manifolds.

Here we will run a similar program for domains in Rn+1 and for σk of the second
fundamental form of the domains. Following that of [16], we first notice that we can
reformulate inequality

(
∫

∂A
σ0(L)dµ)(

∫
∂A

σ2(L)dµ) ≤ n − 1
2n

(
∫

∂A
σ1(L)dµ)2 (19)
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in an equivalent form as∫
∂A

|H − H̄|2dµ ≤ n

n − 1

∫
∂A

|L̊|dµ2, (20)

where L̊ij = Lij − H
n gij is the traceless part of L. To see this, (20) is equivalent to∫
∂A

H2dµ − |∂A|H̄2 ≤ n

n − 1

∫
∂A

(|L|2 − H2

n
)dµ, (21)

or equivalently

n

n − 1

∫
∂A

(H2 − |L|2)dµ ≤ |∂A|H̄2 =
(
∫
∂A Hdµ)2

|∂A|
. (22)

Since 2(H2 − |L|2) = σ2(L), σ1(L) = H, and σ0 = 1, we have

(
∫

∂A
σ0(L)dµ)(

∫
∂A

σ2(L)dµ) ≤ n − 1
2n

(
∫

∂A
σ1(L)dµ)2, (23)

which is ((AF )1). Therefore to construct a counterexample of (AF )1 is equivalent
to construct a counterexample of (20).

In the following, we present a construction which is motivated by the work of
De Lellis and Müller [12] as well as a recent work of De Lellis and Topping [13].
In Rn+1, denote each point by the coordinate (x, x′) with x ∈ R and x′ ∈ Rn.
Consider a positive even function y = f(x), whose definition will be specified later,
and a family of positive functions fε : R → R given by fε(x) := εf(x

ε ). Let Σε

denote the hypersurface generated by the revolution of fε along the x-axis. Denote
h(y) = f−1(y) the inverse function of f ; then the second fundamental form on
Σ = Σ1 at the point (x, x′) with x′ = (x2, ..., xn+1) is equal to

(gilLlj)(x, x′) = diag(
h′′(y)

(
√

1 + h′2(y)3
,

h′(y)
y
√

1 + h′2(y)
, ...,

h′(y)
y
√

1 + h′2(y)
). (24)

Here y = |x′|. Thus

σ1(L) =
h′′(y)

(1 + h′2(y))3/2
+

(n − 1)h′(y)
y
√

1 + h′2(y)
,

σ2(L) = (
(n − 1)h′′(y)

yh′(y)(1 + h′2(y))
+

(n − 1)(n − 2)
2y2

)
h′2(y)

1 + h′2(y)
.

One can always find a unique function f such that f(0) = 1, σ2(L) = 0, and
σ1(L) > 0. It turns out the unique inverse function of such an f can be explicitly
written as h(y) = ±

∫ y
1

ds√
sn−2−1

. For example, when n = 4, f(x) = cosh−1 x. we
remark by the same computation we have σ1(Lε) > 0 and σ2(Lε) = 0, where Lε is
the second fundamental form on the surface Σε.

Consider a round n-sphere of radius 1 centered at some point in the x-axis
which is tangent to the surface Σε whose intersection with Σε is an (n − 1)-sphere
centered at some point (aε, 0, ..., 0) ∈ Rn+1 with aε > 0; then consider another round
n-sphere of radius 1/2 centered at some point in the negative x-axis and tangent to
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Σε whose intersection with Σε is an (n − 1)-sphere centered at (bε, 0, ..., 0) ∈ Rn+1

with bε < 0.
Consider the domain that is bounded by these two n-spheres together with the

hypersurface Σε in between them. Denote it as our domain Aε. Then ∂Aε consists
of three parts: the part of the sphere lying on the right side of the (n − 1)-sphere
Σε ∩ {x = aε}; the part of the sphere lying on the left side of the (n − 1)-sphere
Σε ∩ {x = bε}; and Σε in between of these two (n − 1)-spheres.

In the following we will show that the inequality (20) is not valid for ∂Aε. First,
we claim that ∂Aε converges to two n-spheres S1 and S2 with radius 1 and 1/2
respectively, and the area of the neck Σε goes to 0.

To see this, by some plane geometry computation coupled with the explicit
formula for f−1, we see that aε satisfies the equation

ε2fn(
aε

ε
) = 1.

Thus, aε = ε · f−1( 1
ε2/n ). Using the explicit formula for f−1 again, one obtains

aε = O(ε log ε), if n = 4; aε = O(ε), if n > 4. Therefore aε → 0 as ε → 0. By a similar
argument we also have bε → 0 as ε → 0. Thus

|Σε| ≤ 2ωn−1[εf(
aε

ε
)]n−1 · max{aε,−|aε|} → 0.

Also the above estimates on aε and εf(aε
ε ) together with the explicit formula

of the second fundamental form (24) imply

lim
ε→0

∫
Σε

|L̊|2dµ = 0, (25)

and ∫
Σε

|H − H̄|2dµ → 0 (26)

for n ≥ 4. Combining (25) together with the fact that L̊ = 0 on the sphere, we get∫
∂Aε

|L̊|2dµ → 0.

On the other hand, since S1 and S2 are spheres with different radius, we obtain from
(26) ∫

∂Aε

|H − H̄|2dµ →
∫

S1∪S2

|H − H̄|2dµ 6= 0.

Thus Aε is a counterexample of the inequality (20).
Notice that although Aε is on the boundary of Γ+

2 cone, one can easily perturb
Aε so that it is in Γ+

2 cone. (More precisely, keep the two n-spheres to be the same
while perturb Σε, such that σ2(L) = δ > 0, σ1(L) = 0 on Σε.) And following a similar
argument as above, inequality (20) does not hold for this class of perturbed domains
in the Γ+

2 cone.
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4. Castillon’s proof of the Michael-Simon inequality

In the following, we will begin to outline a new proof by Castillon ([8]) of the Michael-
Simon inequality ([24]). Before we do so, we will describe the main tool Castillon
has used in his proof–the method of optimal transport.

4.1. Optimal transport map and regularity

Optimal transportation problem is one of the fundamental subject which has been
extensively studied in the literature. The readers are referred to the books of Villani
([29],[30]) for a comprehensive review of the subject. In recent years, the method of
optimal transport has been applied to study various inequalities which includes the
study of Minkowski’s inequality for convex body, Aleksandrov-Fenchel inequality for
convex domains, sharp Sobolev inequalities, etc. for examples by ([22], [3] and [11])
and the list is fast growing. Here we will just mention some basic, elementary fact
of the subject for the purpose of describing the application below in these notes.

Consider two normed spaces X1 and X2, with probability measures µ and ν
defined on them respectively. Given a cost function c : X1 × X2 → R, the problem
of Monge consists in finding a map T : X1 → X2 such that its cost C(T ) :=∫
X1

c(x, Tx)dµ attains the minimum of the costs among all the maps that push
forward µ to ν. In general, the problem of Monge may have no solution, however
in the special case when X1 and X2 are bounded domains defined on the Euclidean
space with quadratic cost function, Brenier ([4]) proved the existence and uniqueness
result. More precisely,

Theorem 4.1. Suppose that Xi = Di (i=1,2) are bounded domains in Rn with |∂Di| =
0 and that the cost function is defined by c(x, y) := d2(x, y), where d is the Euclidean
distance. Given two nonnegative functions F , G defined on D1, D2 respectively with∫
D1

F (x)dx =
∫
D2

G(y)dy = 1. Then there exists a unique optimal transport map
(solution of the problem of Monge) T : D1 → D2. Also T is the gradient of some
convex potential function V .

Since the optimal map T = ∇V pushes forward F (x)dx to G(y)dy, it satisfies
the Monge-Ampère equation in the weak sense.∫

D2

η(y)G(y)dy =
∫

D1

η(∇V (x))F (x)dx, (27)

for any continuous function η.

Thus the potential function V satisfies the Monge-Ampère type equation

F (x) = det(D2
ijV (x))G(∇V (x)) (Optimal transport equation) (28)

for all x ∈ D1 in a weak sense. However, under the additional assumptions on the
convexity of Di, as well as on the smoothness of F and G, Caffarelli has addressed in
his papers ([5], [6], [7]) the regularity problem when the Brenier function V satisfies
the equation (28) in the classical sense. We now state these results of Caffarelli here
as we shall apply them later in the proof of our main theorem.
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Theorem 4.2. ([6]) If D2 is a convex domain and F , G, 1/F , 1/G are bounded, then
V is strictly convex and C1,β for some β.
If F and G are Ck,α0, then V ∈ Ck+2,α for any 0 < α < α0.

For the boundary regularity, one needs to assume D1 to be convex as well:

Theorem 4.3. ([7]) If both Di are C2 and strictly convex, and F , G ∈ Cα are
bounded away from zero and infinity, then the convex potential function V is C2,β

up to ∂Di for some β > 0. Both β and ‖V ‖C2,β depend only on the maximum and
minimum diameter of Di and the bounds on F , G. Higher regularity of V follows
from assumptions on the higher regularity of F and G by the standard elliptic theory.

From these two theorems, we know that if Di are smooth and strictly convex,
and F , G are both smooth and bounded away from zero and infinity up to the
boundary, then the potential function is smooth up to the boundary as well. For
more results on the regularity of optimal transport maps between manifolds, we
refer the readers to [25], [21], [29], etc.

4.2. Restriction of convex functions to submanifolds

Consider an isometric embedding i : Mn → Rn+1. Let ~n(ξ) be the outer unit normal
at ξ ∈ M . Let ∇ and D2 (resp. ∇̄ and D̄2) be the gradient and Hessian on M (resp.
on Rn+1); let ~L(·, ·)(ξ) = L(·, ·)(ξ)~n(ξ) be the second fundamental form at ξ ∈ M .
Suppose V̄ : Rn+1 → R is a smooth function and v = V̄ |M is its restriction to M .
Then the Hessian of v with respect to the metric on M relates to the Hessian of V̄
on the ambient space Rn+1 in the following way: for all ξ ∈ M and all α, β ∈ TξM ,

D2v(α, β)(ξ) =D̄2V̄ (α, β)(ξ) − 〈(∇̄V̄ ), ~L(α, β)〉(ξ)
=D̄2V̄ (α, β)(ξ) + b(ξ) · L(α, β)(ξ),

(Structure equation) (29)

where b(ξ) := −〈(∇̄V̄ ), ~n〉(ξ). We remark in general the function b(ξ) changes sign
on M .

Finally we recall the well known Gauss equation and Codazzi equation that are
satisfied by the curvature tensors defined on the embedded submanifolds. Denote
the curvature tensor of M by Rijkl and the curvature tensor of the ambient space
Rn+1 by R̄ijkl. Then

0 = R̄ijkl = Rijkl − LjlLik + LilLjk, (Gauss equation) (30)

and
Lij,k = Lik,j . (Codazzi equation) (31)

4.3. Outline of Castillon’s proof

We now outline the proof of Castillon ([8]) of the Michael-Simon inequality for the
special case when the submanifold M = ∂Ω is the boundary of a simply connected
bounded domain Ω ⊂ Rn+1.
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Assuming M is 1-convex with its mean curvature H > 0, we will show that

(
∫

M
u

n
n−1 dµM )

n−1
n ≤ C

∫
M

(|∇u| + uH)dµM (32)

for all positive smooth function u defined on M and for some dimensional constant
C.

Wherein the notation above we recall dµM is the surface measure induced on
M by the plane Euclidean measure on Ω.

Now given a positive function f defined on M so that µ =: fdµM is a proba-
bility measure on M , and fixed an n dimensional linear subspace E in Rn+1, denote
pE : Rn+1 → E the orthogonal projection, Then the pushforward measure pE#µ is a
probability measure on E. It is absolutely continuous with respect to the Lebesgue
measure on E with density F (x) given by

F (x) =
∑

ξ∈pE
−1(x)∩Spt(µ)

f(ξ)
JE(ξ)

, (33)

where JE is the Jacobian of the map pE .
Applying Brenier’s theorem, there exists a convex potential V such that ∇V is

the solution of Monge problem on E between (DE , F (x)dx) and (BE(0, 1),
χBE(0,1)

ωn
dy),

where DE := Spt(pE#µ) and BE(0, 1) is the unit ball in E.
χBE(0,1)

ωn
dy is the nor-

malized Lebesgue measure on BE(0, 1). Since ∇V (Spt(pE#µ)) ⊂ BE(0, 1), we have
|∇V | ≤ 1 on DE .

In general, the convex potential V is only a Lipschitz function, let us ASSUME
V is C3 for a moment to finish the proof of the theorem. If V is C3, then V satisfies
the Structure equation of the Monge-Ampère type:

ωnF (x) = det(D2V (x)) (34)

in the classical sense. Define the extension of V by V̄ := V ◦ p : Rn+1 → R and its
restriction to M by v(ξ) := V̄ |M (ξ) = V ◦ p|M (ξ). Denote the gradient and Hessian
on M by ∇ and D2 respectively, and denote the gradient and Hessian on Rn+1 by
∇̄ and D̄2 respectively. By (33), (34), for ξ ∈ M

ωn
f(ξ)
JE

≤ ωnF (p(ξ)) = det(D2V (pE(ξ))). (35)

By the change of variable formula,

det(D̄2V̄ (ξ)|TξM ) = J2
E(ξ)det(D2V (pE(ξ))).

Thus for ξ ∈ M we have:

ωnf(ξ)JE(ξ) ≤ det(D̄2V̄ (ξ)|TξM ). (36)

Since D̄2V̄ (ξ)|TξM is a nonnegative matrix, we take the n-th root on both
sides of (36), and apply the inequality between the geometric and arithmetic mean
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followed by the Structure equation (29) to obtain

(ωnf(ξ)JE(ξ))
1
n ≤

(
det(D̄2V̄ (ξ)|TξM )

) 1
n

. ≤ 1
n

(∆̄V̄ (ξ))

=
1
n

∆v + 〈∇̄V̄ , H ~n〉.

(37)

For any positive function u defined on M , we then choose f to be the function

u
n

n−1∫
M u

n
n−1 dµM

,

multiply the equation (37) by u and integrate it over M , to obtain

(
∫

M
JE

1
n u

n
n−1 dµM )

n−1
n

≤ C(
∫

M
((−∆v)u + Hu)dµM

≤ C

∫
M

(|∇u| + Hu)dµM .

(38)

We remark that in the work of Castillon, as the Brenier potential function V
is only Lipschitz, the Laplacian of V and v in the Structure equation (29) are only
satisfied in the “Aleksandrov sense”. Castillon has rigirously justified the step of
integration by part in the proof of (38) above. As we will describe below, in the
proof of our Main Theorem, we have overcome this difficulty by an approximation
process using the regularity results of Caffarelli’s Theorem 4.2 and Theorem 4.3 on
the optimal transport map.

To finish the proof, we then integrate both sides of the inequality (38) above

on the Grassmannian Gn,n+1 of n-planes in Rn+1, since integration of
∫
Gn,n+1

J
1
n
E dE

is finite and invariant in ξ ∈ M , we obtain the desired inequality (32).

5. Proof of the Main Theorem

In this section, we will outline the proof of the Main Theorem, which we re-state
below:

Theorem 5.1. For k = 2, ..., n− 1, if Ω is a (k + 1)-convex domain, denote M = ∂Ω
then there exists a constant C depending only on n and m, such that for 1 ≤ m ≤ k,(∫

M
σm−1(L)dµM

) 1
n−m+1

≤ C

(∫
M

σm(L)dµM

) 1
n−m

. (39)

If k = n, then the inequality holds when Ω is n-convex. If k = 1, then the inequality
holds when Ω is 1-convex.
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Proof. of Theorem 5.1: It is clear that we only need to prove the inequality for m = k
when M is k + 1-convex, that is we will establish (∗∗)k:(∫

Mn

σk−1(L)dµM

) 1
n−(k−1)

≤ C(n, k)
(∫

Mn

σk(L)dµM

) 1
n−k

. (40)

Let E ⊂ Rn+1 be an n-dimensional linear subspace, and µ := fdµM is a prob-
ability measure on M , following the same steps as in Castillon’s proof outlined in
section 4 before, we reached the position

ωnf(ξ)JE(ξ) ≤ det(D̄2V̄ (ξ)|TξM ). (41)

Since D̄2V̄ (ξ)|TξM is a nonnegative matrix, we take the (n − k + 1)-th root on
both sides of (41).

(ωnf(ξ)JE(ξ))
1

n−k+1 ≤
(
det(D̄2V̄ (ξ)|TξM )

) 1
n−k+1 . (42)

To simplify the notation, from now on we will denote D̄2V̄ (ξ)|TξM by D̄2V̄ (ξ).

For each positive constant a > 1, multiplying the previous inequality by σk−1(D̄2V̄ +(a−1)L)

σk−1(D̄2V̄ )
1

n−k+1
,

we get

(ωnf(ξ)JE(ξ))
1

n−k+1 · σk−1(D̄2V̄ + (a − 1)L)

σk−1(D̄2V̄ )
1

n−k+1

≤
(
det(D̄2V̄ (ξ)

) 1
n−k+1 · σk−1(D̄2V̄ + (a − 1)L)

σk−1(D̄2V̄ )
1

n−k+1

.

(43)

Denote the left hand side (resp. right hand side) of this inequality by LHS (resp.
RHS). Then

RHS =
(

det(D̄2V̄ )
σk−1(D̄2V̄ )

) 1
n−k+1

σk−1(D̄2V̄ + (a − 1)L). (44)

We then apply the concavity properties of (σk(A)
σj(A) )

1
k−j for matrix A ∈ Γ+

k and j < k

to get
RHS / σk(D̄2V̄ + (a − 1)L). (45)

Next we apply the Structure equation (29), and the fact that |∇V (ξ)| ≤ 1 :

RHS / σk(D2v + aL), (46)

where the symbol / means that the inequality holds up to a constant.
We now begin to lower estimate the LHS of (43). To do so, we first observe that

we can apply Garding’s inequality to obtain σk−1(D̄2V̄ + (a − 1)L) ≥ σk−1(D̄2V̄ ).
Therefore,

LHS ≥ (ωnf(ξ)JE(ξ))
1

n−k+1 · (σk−1(D̄2V̄ + (a − 1)L))1−
1

n−k+1 . (47)

We apply Garding’s inequality again to get

σk−1(D̄2V̄ + (a − 1)L)1−
1

(n−k+1) ≥ C(a)σk−1(L)1−
1

(n−k+1) .
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This together with the choice of f as

f :=
σk−1(L)J

1
n−k

E∫
M σk−1(L)J

1
n−k

E dµM

(48)

implies that

LHS ≥(ωnf(ξ)JE(ξ))
1

n−k+1 · C(a)σk−1(L)1−
1

n−k+1

=
Cn,aσk−1(L)JE(ξ)

1
n−k

(
∫

M
σk−1(L)J

1
n−k

E dµM )
1

n−k+1

(49)

By integrating LHS and RHS in (43) over M , we obtain

Cn,a

∫
M

σk−1(L)J
1

n−k

E dµM

(
∫

M
σk−1(L)J

1
n−k

E dµM )
1

n−k+1

≤Cn,k

∫
M

σk(D2v + aL)dµM .

(50)

Thus (∫
M

σk−1(L)J
1

n−k

E dµM

)1− 1
n−k+1

≤ Cn,k,a

∫
M

σk(D2v + aL)dµM . (51)

�

The following Proposition then provides the key step to finish the proof of the
Main theorem.

Proposition 5.2. Let E ⊂ Rn+1 be an n-dimensional linear subspace, and pE be the
orthogonal projection from Rn+1 to E. Suppose V : E → R is a C3 convex function
that satisfies |∇V | ≤ 1. Define its extension to Rn+1 by V̄ : = V ◦pE, and define the
restriction of V̄ to the closed hypersurface M by v. Suppose also that M is (k + 1)-
convex if 2 ≤ k ≤ n − 1, i.e. the second fundamental form Lij ∈ Γ+

k+1 and suppose
that M is n-convex if k = n. Then for each k, there exists a constant a > 1, which
depends only on k and n, such that∫

M
σk(D2v + aL)dµM ≤ C

∫
M

σk(L)dµM , (52)

where the constant C depends on k, n and a.

For the rest of this section, we will describe the proof of Proposition 5.2 for the
special cases k = 2 and k = 3.

In order to describe the proof, we will introduce some new concept–namely the
polarized form of the σk(A) for any n × n matrix A. We will also state some basic
properties of these polarized forms.
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5.1. The polarization of σk

Notice that σn(A) = det(A). An equivalent definition of det(A) is

det A =
1
n!

δi1,...,in
j1,...,jn

Ai1j1 · · ·Ainjn , (53)

where δi1,...,in
j1,...,jn

is the generalized Kronecker delta; it is zero if {i1, ..., ik} 6= {j1, ..., jk},
equals to 1 (or -1) if (i1, ..., ik) and (j1, ..., jk) differ by an even (or odd) permutation.
Inspired by (53), an equivalent way of writing σk is that

σk(A) :=
1
k!

δi1,...,ik
j1,...,jk

Ai1j1 · · ·Aikjk
.

The Newton transformation tensor is defined as

[Tk]ij(A1, ..., Ak) :=
1
k!

δi,i1,...,ik
j,j1,...,jk

(A1)i1j1
· · · (Ak)ikjk

. (54)

Definition 5.3. With the notion of [Tk]ij, one may define the polarization of σk by

Σk(A1, ..., Ak) := A1ij · [Tk−1]ij(A2, ..., Ak) =
1

(k − 1)!
δi1,...,ik
j1,...,jk

(A1)i1j1
· · · (Ak)ikjk

.

(55)

It is called the polarization of σk because if we take A1 = · · · = Ak = A, then
Σk(A, ..., A) is equal to σk(A) up to a constant. Namely,

σk(A) =
1
k
Σk(A, ..., A).

Also, from the right hand side of Definition 5.3, we see that Σk is symmetric and
linear in each component. Also for simplicity, we denote

[Tk]ij(A) := [Tk]ij(

k︷ ︸︸ ︷
A, ..., A).

Some relations between the Newton transformation tensor Tk and σk are listed below.
For any symmetric matrix A, if we denote the trace by Tr, then

σk(A) =
1

n − k
Tr([Tk]ij)(A), (56)

and

σk+1(A) =
1

k + 1
Tr(Aim · [Tk]mj(A)). (57)

On the other hand, one can write [Tk]ij in terms of σk by the formula

[Tk−1]ij(A) =
∂σk(A)
∂Aij

,

and
[Tk]ij(A) = σk(A)δij − [Tk−1]im(A)Amj . (58)

We now list some algebraic properties for matrix A in Γk
+ cone which can be

found for example in [26]:
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(i) if A = (aij) in Γ+
k , then

[Tk−1]ij =
∂σk(A)

∂aij
> 0,

(ii) if A1, ..., Ak ∈ Γ+
k+1, then ([Tk]ij) is a positive matrix, i.e.

[Tk]ij(A1, ..., Ak) > 0;

(iii) if A1, ..., Ak ∈ Γ+
k , then

Σk(A1, ..., Ak) > 0;

(iv) if A − B ∈ Γ+
k and A2, ..., Ak ∈ Γ+

k , then

Σk(B, A2..., Ak) < Σk(A,A2, ..., Ak).

5.2. Proof of k = 2 case of the proposition

In this section, we are going to prove Proposition 5.2 for the special case k = 2. For
this special case, only |∇V | ≤ 1 property of the Brenier map is relevant, and one
can also simply choose a = 2.

Proof. We first recall that 1
2Σ2(A,A) = σ2(A), thus

∫
M

σ2(D2v + aL)dµM =
∫

M

1
2
Σ2(D2v + aL)dµM

=
∫

M

1
2
[Σ2(D2v, D2v) + 2aΣ2(D2v, L) + a2Σ2(L,L)]dµM

=
∫

M
σ2(D2v) + aΣ2(D2v, L) + a2σ2(L)dµM

:=I + a II + a2III.

(59)

By the integration by parts formula,

I :=
∫

M
σ2(D2v)dµM =

∫
M

(viivjj − vijvij)dµM =
∫

M
−vi(vjji − vijj)dµM . (60)

If we apply the curvature equation

vijk − vikj = Rmijkvm. curvature equation (61)

then

I =
∫

M
vi(Rc)mivmdµM , (62)

where Rc is the Ricci curvature tensor of g, g the induced metric (i.e. the sur-
face measure) on M . By the Gauss equation (30), the Ricci curvature tensor satis-
fies (Rc)ik = LjjLik − LijLjk. If we diagonalize Lij ∼ diag(λ1, ..., λn), then Rc ∼
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diag(λ1(H − λ1), ..., λn(H − λn)). Note that

λi(H − λi) +
∂σ3(L)

∂λi
= σ2(L) (63)

for each i = 1, ..., n. Also by our assumption L ∈ Γ+
3 (we remark that this is the

only place in the proof where we have used the property that more than L ∈ Γ+
2 ,

it is in L ∈ Γ+
3 ), thus ∂σ3(L)

∂λi
> 0 for each i by the Garding’s inequality. Thus by

(63), λi(H −λi) < σ2(L) for each i, i.e. Rc < σ2(L) · g. Applying this formula to the
inequality (62), we get

I ≤
∫

M
σ2(L)|∇v|2dµM ≤

∫
M

σ2(L)dµM , (64)

where |∇v| ≤ 1 because |∇̄V̄ | ≤ 1. Thus

I ≤
∫

M
σ2(L)dµM . (65)

For the term II, by definition Σ2(D2v, L) = viiLjj − vijLij . Thus

II :=
∫

M
Σ2(D2v, L)dµM

=
∫

M
(viiLjj − vijLij)dµM

=
∫

M
(−viLjj,i + viLij,j)dµM = 0,

(66)

due to the Codazzi equation (31).
Finally,

III :=
∫

M
σ2(L)dµM . (67)

Hence from (59), we get∫
M

σ2(D2v + aL)dµM ≤C(a)
∫

M
σ2(L)dµM . (68)

This finishes the proof of Proposition 5.2 when k = 2. Note that in this case, (52)
holds for any constant a > 1. �

5.3. k = 3 case of the proposition

In this section, we will prove Proposition 5.2 when k = 3. We will see that in this
case convexity property of V̄ together with the size estimate |∇̄V | ≤ 1 both play a
role in the proof. Again we denote D̄2V̄ |TξM by D̄2V̄ .
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First we use the polarized form of σ3(D2v + aL) and expand it into four parts

3
∫

M
σ3(D2v + aL) =

∫
M

Σ3(D2v + aL,D2v + aL,D2v + aL)

= 3a2

∫
M

Σ3(D2v, L, L) + 3a

∫
M

Σ3(D2v,D2v, L)

+
∫

M
Σ3(D2v,D2v, D2v) + a3

∫
M

Σ3(L,L,L)

= 3a2I + 3aII + III + a3IV.

(69)

We will begin the estimates of each of I, IIandIII by proving the following
three lemmas.

Lemma 5.4. Suppose v and M satisfy the same conditions as in Proposition 5.2,
then ∫

M
Σ3(D2v, L, L)dµM = 0. (70)

Proof.

I =
∫

M
Σ3(D2v, L, L)dµM =

∫
M

1
2!

vijδ
i,i1,i2
j,j1,j2

Li1j1Li2j2dµM

=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

(Li1j1,jLi2j2 + Li1j1Li2j2,j) dµM .

(71)

Since δi,i1,i2
j,j1,j2

Li1j1,jLi2j2 = δi,i1,i2
j,j1,j2

Li1j1Li2j2,j , we have∫
M

Σ3(D2v, L, L)dµM =
∫

M
−viδ

i,i1,i2
j,j1,j2

Li1j1,jLi2j2dµM . (72)

Also, since δi,i1,i2
j,j1,j2

Li1j1,jLi2j2 = δi,i1,i2
j1,j,j2

Li1j,j1Li2j2 , and by definition, δi,i1,i2
j1,j,j2

= −δi,i1,i2
j,j1,j2

,
we have

δi,i1,i2
j,j1,j2

Li1j1,jLi2j2 = − δi,i1,i2
j,j1,j2

Li1j,j1Li2j2

=
1
2
δi,i1,i2
j,j1,j2

(Li1j1,j − Li1j,j1)Li2j2 ,
(73)

which in turn implies that∫
M

Σ3(D2v, L, L)dµM =
∫

M
−1

2
viδ

i,i1,i2
j,j1,j2

(Li1j1,j − Li1j,j1)Li2j2dµM = 0 (74)

by the Codazzi equation (31). �

Lemma 5.5. Suppose v and M satisfy the same conditions as in Proposition 5.2.
Then

II =
∫

M
Σ3(D2v,D2v, L)dvM ≤

∫
M

σ3(L)dµM . (75)
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Proof. We perform the integration by parts to get

II =
∫

M
Σ3(D2v, D2v, L)dµM

=
∫

M

1
2!

vijδ
i,i1,i2
j,j1,j2

vi1j1Li2j2dµM

=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

(vi1j1jLi2j2 + vi1j1Li2j2,j) dµM := IIa + IIb.

(76)

By the same argument as in (73) and the curvature equation vijk − vikj = Rmijkvm,

IIa :=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

vi1j1jLi2j2dµM

=
∫

M

−1
4

viδ
i,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)Li2j2dµM

=
∫

M

1
4
viδ

i,i1,i2
j,j1,j2

Rmi1jj1vmLi2j2dµM .

(77)

Using the Gauss equation (30) in (77), we get

IIa =
∫

M

1
4
vivmδi,i1,i2

j,j1,j2
(LmjLi1j1 − Lmj1Li1j)Li2j2dµM

=
∫

M

1
2
vivmδi,i1,i2

j,j1,j2
LmjLi1j1Li2j2dµM

=
∫

M
[T2]ij(L,L)LmjvivmdµM .

(78)

Now, we use the formula (58) for k = 3, i.e.∫
M

Σ3(D2v, D2v, L)dµM

=
∫

M

1
2!

vijδ
i,i1,i2
j,j1,j2

vi1j1Li2j2dµM

=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

((vi1j1jLi2j2 + vi1j1Li2j2,j) dµM := IIa + IIb.

(79)

By the same argument as in (73) and the curvature equation vijk − vikj = Rmijkvm,

IIa :=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

vi1j1jLi2j2dµM

=
∫

M

−1
4

viδ
i,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)Li2j2dµM

=
∫

M

1
4
viδ

i,i1,i2
j,j1,j2

Rmi1jj1vmLi2j2dµM .

(80)
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Apply the Gauss equation (30) to (80), we get

IIa =
∫

M

1
4
vivmδi,i1,i2

j,j1,j2
(LmjLi1j1 − Lmj1Li1j)Li2j2dµM

=
∫

M

1
2
vivmδi,i1,i2

j,j1,j2
LmjLi1j1Li2j2dµM

=
∫

M
[T2]ij(L,L)LmjvivmdµM .

(81)

Now, we use the formula (58) for k = 3, i.e.

[T2]ij(L,L)Lmj = σ3(L)δim − [T3]im(L), (82)

and note that when M ∈ Γ+
4 , [T3]im(L,L, L) ≥ 0. Thus

IIa =
∫

M
σ3(L)|∇v|2 − [T3]im(L,L,L)vivmdµM

≤
∫

M
σ3(L)dµM .

(83)

Also,

IIb :=
∫

M

−1
2!

viδ
i,i1,i2
j,j1,j2

vi1j1Li2j2,jdµM

=
∫

M

−1
4

viδ
i,i1,i2
j,j1,j2

vi1j1 (Li2j2,j − Li2j,j2) dµM = 0,

(84)

by the Codazzi equation (31). In conclusion, (83) and (84) imply that

II =
∫

M
Σ3(D2v,D2v, L)dµM = IIa + IIb ≤

∫
M

σ3(L)dµM . (85)

This completes the proof of (75). �

Lemma 5.6. Suppose v and M satisfy the same conditions as in Proposition 5.2.
Then

III =
∫

M
Σ3(D2v,D2v, D2)dµM ≤ C(n)

∫
M

σ3(L)dvM . (86)

Proof.

1
3
III :=

∫
M

σ3(D2v)dµM

=
∫

M

1
3!

vijδ
i,i1,i2
j,j1,j2

vi1j1vi2j2dµM

=
∫

M

−1
3!

viδ
i,i1,i2
j,j1,j2

(vi1j1jvi2j2 + vi1j1vi2j2j) dµM .

(87)

For the same reason as we present in the proof of Lemma 5.4,

δi,i1,i2
j,j1,j2

vi1j1jvi2j2 = δi,i1,i2
j,j1,j2

vi1j1vi2j2j .
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Thus
1
3
III =

∫
M

−2
3!

viδ
i,i1,i2
j,j1,j2

vi1j1jvi2j2dµM . (88)

Also

δi,i1,i2
j,j1,j2

vi1j1jvi2j2 = − δi,i1,i2
j,j1,j2

vi1jj1vi2j2

=
1
2
δi,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)vi2j2 .
(89)

This together with the curvature equation (61) gives

1
3
III =

∫
M

−1
3!

viδ
i,i1,i2
j,j1,j2

(vi1j1j − vi1jj1)vi2j2dµM

=
∫

M

1
3!

viδ
i,i1,i2
j,j1,j2

Rmi1jj1vmvi2j2dµM .

(90)

By the Gauss equation (30),

1
3
III =

∫
M

1
3!

viδ
i,i1,i2
j,j1,j2

(LmjLi1j1 − Lmj1Li1j)vmvi2j2dµM

=
∫

M

2
3!

vivmδi,i1,i2
j,j1,j2

LmjLi1j1vi2j2dµM .

(91)

We now recall by the definition of Newton transformation tensor (54)

[T2]ij(D2v, L) =
1
2!

δi,i1,i2
j,j1,j2

Li1j1vi2j2 . (92)

Thus
1
3
III =

∫
M

2
3!

vivmδi,i1,i2
j,j1,j2

LmjLi1j1vi2j2dµM

=
∫

M

2
3!

vivmδi,i1,i2
j,j1,j2

LmjLi1j1vi2j2dµM

=
∫

M

4
3!

vivm[T2]ij(D2v, L)LmjdµM .

(93)

Using the inductive formula (58)

[T2]ij(D2v, L)Lmj =
1
2
Σ3(D2v, L, L)δim − 3

2
[T3]im(D2v, L, L) − 1

2
[T2]ij(L,L)vmj ,

(94)

in (93), we get

1
3
III =

∫
M

4
3!

vivm

(
1
2
Σ3(D2v, L, L)δim − 3

2
[T3]im(D2v, L, L) − 1

2
[T2]ij(L,L)vmj

)
dµM

:=IIIa + IIIb + IIIc.

(95)

To estimate IIIa, we will use properties that |∇v|, |b(x)| ≤ 1. We will also use
the fact that Σ3(D̄2V̄ , L, L) ≥ 0 since D̄2V̄ ≥ 0 and L ∈ Γ+

3 . Therefore if we replace
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D2v by D̄2V̄ + b(x)L in IIIa, then

IIIa :=
∫

M

2
3!
|∇v|2Σ3(D2v, L, L)dµM

=
∫

M

2
3!
|∇v|2Σ3(D̄2V̄ + b(x)L,L,L)dµM

≤ 2
3!

∫
M

(Σ3(D̄2V̄ , L, L) + Σ3(L,L, L))dµM

=
2
3!

∫
M

(Σ3(D2v − b(x)L,L, L) + Σ3(L,L, L))dµM

≤ 2
3!

∫
M

(Σ3(D2v, L, L) + 2Σ3(L,L, L))dµM

=
2
3!

∫
M

(Σ3(D2v, L, L) + 6σ3(L))dµM .

(96)

By Lemma 5.4, ∫
M

Σ3(D2v, L, L)dµM = 0.

So

IIIa ≤ 2
∫

M
σ3(L)dµM . (97)

This finishes the estimate of IIIa.
To analyze the term IIIb, we use D2v = D̄2V̄ + b(x)L to get

IIIb :=
∫

M
−vivm[T3]im(D2v, L, L)dµM

=
∫

M
(−vivm[T3]im(D̄2V̄ , L, L) − vivm[T3]im(L,L, L)b(x))dµM .

(98)

Again D̄2V̄ is positive definite and L ∈ Γ+
4 (again, this is the only place we

have used the property that L ∈ Γ+
4 instead of being in Γ+

3 in the proof), thus
[T3]im(D̄2V̄ , L, L) ≥ 0 and [T3]im(L,L,L) ≥ 0. Also, |∇v| ≤ 1. Therefore

IIIb ≤
∫

M
Tr([T3]ij)(L,L, L)dµM

=
∫

M
(n − 3)σ3(L)dµM .

(99)

For the last term IIIc,

IIIc := −1
3

∫
M

vivm[T2]ij(L, L)(D̄2
mjV̄ + b(x)Lmj)dµM . (100)

Notice that vivmD̄2
mjV̄ ≥ 0. Thus [T2]ij(L,L)D̄2

mj V̄ vivm ≥ 0. This together with
the formula (58)

[T2]ij(L,L)Lmj = σ3(L)δim − [T3]im(L) (101)
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implies that

IIIc ≤− 1
3

∫
M

vivm[T2]ij(L, L)Lmjb(x)dµM

≤− 1
3

∫
M

b(x)(σ3(L)δim − [T3]im(L,L, L))vivmdµM

= − 1
3

∫
M

(b(x)σ3(L)|∇v|2 − b(x)[T3]im(L, L,L)vivm)dµM

≤1
3

∫
M

σ3(L)dvM +
1
3

∫
M

Tr([T3]ij)(L)dµM .

(102)

Using (56) we get

IIIc ≤
n − 2

3

∫
M

σ3(L)dµM . (103)

In conclusion III = IIIa + IIIb + IIIc /
∫
M σ3(L)dµM . This finishes the proof

of Lemma 5.6. �

Combining our estimates of I, II, III and IV to (69), we have established the
inequality in Proposition 5.2 for the case k = 3.

The proof of Proposition 5.2 for general k follows a complicated multi-layer
inductive process, we will not present the proof here and instead refer the interested
readers to the proof of the result in the paper ([9]).

5.4. Regularity of the function V

As Proposition 5.2, hence our main theorem is proved under the assumption that
the potential function V is C3 (thus we can integrate by part freely in the proof
of the inequalities (∗∗)k), now we still need to justify this assumption. The key
observation is that the constant C(n, k) in the inequalities (∗∗)k which we have
established is an a priori constant depending only on n, k and a and independent of
the estimate of the smoothness of V (beyond the estimate that |∇V | ≤ 1 and the
fact that V is a convex function), thus we can apply an approximation process to
construct a sequence of C3 functions Vε which satisfy the conditions in Caffarelli’s
regularity results Theorem 4.2 and Theorem 4.3; and thus we can apply the method
of the proof above to establish inequalities (∗∗)k to a sequence of corresponding
approximate domains and functions, we then let ε tend to zero to establish our
result. In the following we will describe this process in more details.

If the density F (x) is bounded away from zero and infinity, and also if Ω is
a strictly convex domain, then for each n-linear space E, DE = pE(Ω) is convex,
and by Caffarelli’s result, V = VE is a smooth convex potential. In general (when
Ω is not necessarily convex), we now describe an approximation process to obtain a
sequence of smooth convex potentials Vε.

For each fixed n-plane E, we first observe that there exists a constant R > 0,
such that DE = pE(Ω) is contained in BE(0, R), the ball centered at the origin with
radius R in E. For each ε > 0, define the subset Dε := {x ∈ DE |ε ≤ F (x) ≤ 1/ε}.
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Since F is integrable on DE and F ≥ 0, we know Dε → Spt(F ), as ε → 0. One can
extend F |Dε to Fε : BE(0, R) → R, such that ε

2 ≤ Fε(y) ≤ 2
ε on BE(0, R), and∫

BE(0,R)\Dε

Fε(y)dy ≤ 2ε · ωnRn.

Such an extension exists because ε ≤ F |Dε ≤ 1
ε , and V ol(BE(0, R) \ Dε) ≤

V ol(BE(0, R)) ≤ ωnRn. Therefore

mε :=
∫

BE(0,R)
Fε(x)dx =

∫
BE(0,R)\Dε

Fε(x)dx +
∫

Dε

Fε(x)dx ≤ c0ε + 1, (104)

where c0 = 2ωnRn. Also

mε ≥
∫

Dε

Fε(x)dx → 1, (105)

as ε → 0. Hence mε → 1, as ε → 0. Now for each sufficiently small ε, mε > 0.
Thus Fε(x)

mε
dx is a probability measure on BE(0, R), such that 0 < ε

4 < Fε(x)
mε

≤ 4
ε on

BE(0, R). As before, Brenier’s theorem implies that there exists a convex potential

Vε such that ∇Vε is the solution of Monge problem between (BE(0, R),
Fε(x)
mε

dx) and

(BE(0, 1),
χBE(0,1)

ωn
dx). By Theorem 4.3, Vε is a smooth convex potential. Obviously

|∇Vε(x)| ≤ 1 for x ∈ BE(0, R). Also Vε satisfies the optimal tranport equation

ωn
Fε(x)
mε

= det(D2Vε(x)) in the classical sense. We now apply the procedure we

have described in the proof above to obtain the sequences of functions vε and to
apply Proposition 5.2 to establish the inequality for each ε,∫

M
σk(D2vε + aL)dµM ≤ C

∫
M

σk(L)dµM

with some constant C depending only on k and n and independent of ε.
Since mε → 1 and M ∩ p−1(Dε) → M ∩ p−1(Spt(F )) as ε → 0. Also by (33),

M ∩ Spt(f) ⊂ M ∩ p−1(Spt(F )), we can let ε tend to zero and integrate over all E
in the Grassmannian Gn,n+1 to establish the inequality (∗∗)k and to finish the proof
of the theorem.

6. Concluding Remarks

It is obvious that the result reported in these lecture notes is a work in progress. It
left open many questions in this research area. Chiefly among them are the questions
if the assumption of k + 1-convexity of the domain is a necessary condition for the
inequality (∗∗)k to hold or if k-convexity is enough? Also is the best constant C in the
inequality (∗∗)k the same as the sharp constant C̄ as in (∗)k and only obtained when
the domain is a ball? All these problems are open as of this date. The authors would
also like to point out that it would be interesting to study the Minkowski’s mixed
volume on Riemannian manifolds and to study the class of generalized isoperimetric
inequalities of the type like (∗∗)k on domains of such manifolds. In general, the
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classical work of Minkowski, Aleksandrov-Fenchel etc. is a rich area of research. One
feels that the connection of their work to curvatures, non-linear analysis and other
concepts in modern geometry is waiting to be further explored.
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