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Abstract

In this note, we study the connection between the fractional Laplacian operator that appeared in the recent
work of Caffarelli and Silvestre and a class of conformally covariant operators in conformal geometry.
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1. Introduction

In recent years, there has been independent study of fractional order operators by two differ-
ent group of mathematicians. On one hand, there are extensive works that study properties of
fractional Laplacian operators as non-local operators together with applications to free-boundary
value problems and non-local minimal surfaces—by Caffarelli and Silvestre [6], and many oth-
ers (see the related articles [5,7,4,9]); on the other hand, there is the work of Graham and
Zworski [17] (see also [20,12,26], for instance), that study a general class of conformally co-
variant operators (Pγ ), parameterized by a real number γ and defined on the boundary of a
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conformally compact Einstein manifold, and which includes the fractional Laplacian opera-
tors as a special case when the boundary is the Euclidean space setting as boundary of the
hyperbolic space. In this note, we will clarify the connection between the work of these two
groups.

This paper is organized as follows: in Section 2 of the paper we will briefly describe the work
of Graham and Zworski [17] and the notion of the fractional Paneitz operator Pγ .

In Section 3, we will illustrate in Theorem 3.1 that in the case when the fractional Laplacian
operator (−�)γ is defined on the Euclidean space Rn and γ ∈ (0,1), the operator agrees with
Pγ on the hyperbolic space. This is done by applying the extension theorem of Caffarelli and
Silvestre [6] on a characterization of the fractional Laplacian operator (−�)γ . We then extend the
work of Caffarelli and Silvestre [6] and the identification to Pγ as (−�)γ on Rn for more general
exponents γ ∈ (0, n

2 ). To achieve this, we first show in Theorem 3.2 that there are two different
ways to define Pγ operator when γ > 1, one can define it through the scattering matrix as in
the original work of Graham and Zworski, or one can define it through an iterated process based
on the work of Caffarelli and Silvestre; and two definitions agree (the relationship is illustrated
in the claim (3.16) in the proof of Theorem 3.2 and Eqs. (3.22) and (3.23)). Finally, we apply
Theorem 3.2 to generalize the extension theorem of Caffarelli and Silvestre from γ ∈ (0,1) to
γ ∈ (0, n

2 ) (this is Theorem 3.3).
In Section 4 of the paper, we will discuss the extension theorem in the general setting of

conformally compact Einstein manifolds. One point we make is that by choosing a suitable
defining function (in Lemma 4.5) which is related to the eigenfunctions of Laplacian of the
Einstein metric, Eq. (4.15) of the extension theorem on a general conformally compact Einstein
manifold (Theorem 4.7) is the same as the extension theorem on hyperbolic space studied in
Section 3; it is a pure divergence equation, degenerate elliptic, with a weight in the Muckenhoupt
class A2.

Finally, in Section 5, we will discuss the extension theorem on a general asymptotically hy-
perbolic manifold; where the boundary manifold may not be the totally geodesic boundary of an
asymptotically hyperbolic space. In particular, it provides a natural way to define the conformal
fractional Laplacian on the boundary of any compact manifold, and a related fractional order
curvature Qγ . In this case, it is interesting to see that the statement of extension theorem (Theo-
rem 5.1) breaks down at γ = 1

2 and at γ > 1
2 . In particular, there is an extra term in the expression

of P 1
2

which is the mean curvature of the boundary manifold. This dichotomy has already ap-
peared in other settings (Caffarelli and Souganidis [7], for instance), and illustrates the fact that
when γ ∈ (0, 1

2 ), the operator presents a stronger non-local behavior than when γ ∈ ( 1
2 ,1).

The authors wish that the results in this paper will lead to extension of the works of Caffarelli
and others on fractional free boundary value problems and fractional mean curvature surfaces to
general manifold settings. In particular, we pose the question of finding the relationship between
the fractional order mean curvature very recently defined (see Caffarelli et al. [4], Caffarelli and
Valdinoci [8]), and our notion of Qγ curvature coming from the fractional Paneitz operator. This
seems to be a very interesting open question.

2. Background

First we review the connection between scattering theory on conformally compact Einstein
manifolds and conformally invariant objects on their boundaries at infinity. The main references
are Graham and Zworski [17] and Fefferman and Graham [11].



Author's personal copy

1412 S.-Y.A. Chang, M.d.M. González / Advances in Mathematics 226 (2011) 1410–1432

Let M be a compact manifold of dimension n with a metric ĝ. Let X̄n+1 be a compact mani-
fold of dimension n + 1 with boundary M , and denote by X the interior of X̄. A function ρ is a
defining function of ∂X in X if

ρ > 0 in X, ρ = 0 on ∂X, dρ �= 0 on ∂X.

We say that g+ is a conformally compact (c.c.) metric on X with conformal infinity (M, [ĝ]) if
there exists a defining function ρ such that the manifold (X̄, ḡ) is compact for ḡ = ρ2g+, and
ḡ|M ∈ [ĝ]. If, in addition (Xn+1, g+) is a conformally compact manifold and Ric[g+] = −ng+,
then we call (Xn+1, g+) a conformally compact Einstein manifold.

Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g+) and a repre-
sentative ĝ in [ĝ] on the conformal infinity M , there is a uniquely defining function ρ such that,
on M × (0, δ) in X, g+ has the normal form g+ = ρ−2(dρ2 + gρ) where gρ is a one-parameter
family of metrics on M satisfying gρ |M = ĝ. Moreover, gρ has an asymptotic expansion which
contains only even powers of ρ, at least up to degree n.

It is well known (cf. Mazzeo and Melrose [22], Graham and Zworski [17]) that, given f ∈
C∞(M) and s ∈ C, the eigenvalue problem

−�g+u − s(n − s)u = 0, in X (2.1)

has a solution of the form

u = Fρn−s + Hρs, F,H ∈ C∞(X), F |ρ=0 = f, (2.2)

for all s ∈ C unless s(n − s) belongs to the pure point spectrum of −�g+ . Now, the scattering
operator on M is defined as S(s)f = H |M , it is a meromorphic family of pseudo-differential
operators in Re(s) > n/2. The values s = n/2, n/2 + 1, n/2 + 2, . . . are simple poles of finite
rank, these are known as the trivial poles; S(s) may have other poles, however, for the rest of the
paper we assume that we are not in those exceptional cases.

We define the conformally covariant fractional powers of the Laplacian as follows: for s =
n
2 + γ , γ ∈ (0, n

2 ), γ /∈ N, we set

Pγ

[
g+, ĝ

] := dγ S

(
n

2
+ γ

)
, dγ = 22γ Γ (γ )

Γ (−γ )
. (2.3)

With this choice of multiplicative factor, the principal symbol of Pγ is exactly the principal
symbol of the fractional Laplacian (−�ĝ)

γ , precisely, |ξ |2γ . We thus have that Pγ ∈ (−�ĝ)
γ +

Ψγ−1, where we denote by Ψm to be the set of pseudo-differential operators on M of order m.
The operators Pγ [g+, ĝ] satisfy an important conformal covariance property (see [17]). In-

deed, for a conformal change of metric

ĝv = v
4

n−2γ ĝ, v > 0, (2.4)

we have that

Pγ

[
g+, ĝv

]
φ = v

− n+2γ
n−2γ Pγ

[
g+, ĝ

]
(vφ), (2.5)

for all smooth functions φ.
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We define the Qγ curvature of the metric associated to the functional Pγ , to be

Qγ

[
g+, ĝ

] := Pγ

[
g+, ĝ

]
(1). (2.6)

In particular, for a change of metric as (2.4), we obtain the equation for the Qγ curvature:

Pγ

[
g+, ĝ

]
(v) = v

n+2γ
n−2γ Qγ

[
g+, ĝv

]
.

When γ is an integer, say γ = k, k ∈ N, a careful study of the poles of S(s) allows to define Pk .
Indeed,

Ress=n/2+kS(s) = ckPk, ck = (−1)k
[
22kk!(k − 1)!]−1

.

These are the conformally invariant powers of the Laplacian constructed in the classical GJMS
paper by Graham et al. [15], or Fefferman and Graham [11], that are local operators, and satisfy

Pk = (−�)k + lower order terms.

In particular, when k = 1 we have the conformal Laplacian,

P1 = −� + n − 2

4(n − 1)
R,

and when k = 2, the Paneitz operator (cf. [24])

P2 = (−�)2 + δ(anRg + bnRic)d + n − 4

2
Q2.

Finally, we note that another realization of the conformal fractional powers of the Laplacian
was given by Peterson in [25], through an analytic continuation argument from the differential
operators Pk .

3. The extension problem on hyperbolic space

Given γ ∈ R, the fractional Laplacian on Rn, denoted as (−�x)
γ , for a function f : Rn → R

is defined as a pseudo-differential operator by

̂(−�x)γ f (ξ) = |ξ |2γ f̂ (ξ),

i.e., its principal symbol is |ξ |2γ . It can also be written as the singular integral (suitably regular-
ized)

(−�x)
γ f (x) = Cn,γ

∫
Rn

f (x) − f (ξ)

|x − ξ |n+2γ
dξ.
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Caffarelli and Silvestre have developed in [6] an equivalent definition, in the case γ ∈ (0,1),
using an extension problem to the upper half-space Rn+1+ . For a function f : Rn → R, we con-
struct the extension U : Rn × [0,+∞) → R, U = U(x,y), as the solution of the equation

⎧⎨
⎩

�xU + a

y
∂yU + ∂yyU = 0, x ∈ Rn, y ∈ [0,+∞),

U(x,0) = f (x), x ∈ Rn,

(3.1)

where

γ = 1 − a

2
.

Note that Eq. (3.1) can be written as a divergence equation

div
(
ya∇U

) = 0 in Rn+1+ ,

which is degenerate elliptic. Then the fractional Laplacian of f can be computed as

(−�x)
γ f = dγ

2γ
lim
y→0

ya∂yU, (3.2)

where the constant dγ is defined in (2.3). We are indeed looking at a non-local Dirichlet to
Neumann operator. To finish, just note that the Poisson kernel for the fractional Laplacian (−�)γ

in Rn is

Kγ (x, y) = cn,γ

y1−a

(|x|2 + |y|2) n+1−a
2

,

and thus U = Kγ ∗x f .
The main observation we make in this section is that, in the case M = Rn and X = Rn+1+

with coordinates x ∈ Rn, y > 0, endowed the hyperbolic metric gH = dy2+|dx|2
y2 , the scattering

operator is nothing but the Caffarelli–Silvestre extension problem for the fractional Laplacian
when γ ∈ (0,1). After that, we give the generalization of the result by Caffarelli and Silvestre
for other exponents γ ∈ (0, n

2 )\N. For simplicity, we write Pγ := Pγ [gH, |dx|2], where |dx|2 is
the Euclidean metric on Rn.

Theorem 3.1. Fix γ ∈ (0,1) and f a smooth function defined on Rn. If U is a solution of
the extension problem (3.1), then u = yn−sU is a solution of the eigenvalue problem (2.1) for
s = n/2 + γ , and moreover,

Pγ f = dγ

2γ
lim
y→0

(
ya∂yU

) = (−�x)
γ , (3.3)

where a = 1 − 2γ , Pγ := Pγ [gH, |dx|2], and the constant dγ is defined in (2.3).
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Proof. Fix f on Rn and let u be a solution of the scattering problem

−�Hu − s(n − s)u = 0 in X. (3.4)

We know that u can be written as

u = yn−sF + ysH, (3.5)

where F |y=0 = f and S(s)f = h for h = H |y=0. Moreover,

F(x, y) = f (x) + f2(x)y2 + o
(
y2) and H(x,y) = h(x) + h2(x)y2 + o

(
y2). (3.6)

On the other hand, the conformal Laplacian operator for a Riemannian metric g in a manifold
X of dimension N = n + 1 is defined as

Lg = −�g + N − 2

4(N − 1)
Rg.

For the hyperbolic metric, RgH = −n(n + 1), so that

LgH = −�gH − n2 − 1

4
. (3.7)

Then, from (3.4) we can compute

0 = −�gHu − s(n − s)u = LgHu +
(

γ 2 − 1

4

)
u

= y
n+3

2 Lgeq

(
y− n+1

2 u
) +

(
γ 2 − 1

4

)
u, (3.8)

where in the last equality we have used the conformal covariant property of the conformal Lapla-
cian for the change of metric geq = y2gH:

LgH(ψ) = y
n+3

2 Lgeq

(
y− n−1

2 ψ
)
. (3.9)

Next, we change u = yn−sU , and note that

Lgeq = −� = −�x − ∂yy, (3.10)

so it follows that

Lgeq

(
y

n+1
2 −sU

)

= −y
n+1

2 −s

[
�xU + ∂yyU + a

y
∂yU +

(
n + 1

2
− s

)(
n + 1

2
− s − 1

)
U

y2

]
. (3.11)
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Substituting (3.11) into (3.8), we observe that with the choice of s = n
2 + γ and a = 1 − 2γ we

arrive at

�xU + ∂yyU + a

y
∂yU = 0,

as we wished.
For the second part of the lemma, note that

Pγ f = dγ S

(
n

2
+ γ

)
= dγ h, (3.12)

where h is given in (3.6). On the other hand, we also have that

U = ys−nu = F + y2s−nH,

and thus, looking at the orders of y in (3.6), we can conclude that the limit

lim
y→0

ya∂yU (3.13)

exists and equals h times the constant 2γ . The lemma is proven by comparing (3.13) together
with (3.12), with the Caffarelli and Silvestre construction for the fractional Laplacian as given
in (3.2). �

The next step is to generalize Theorem 3.1 to other non-integer exponents γ . To do this, we
will first establish in Theorem 3.2 below that there are two ways to define the operator Pγ when
γ > 1, and the two definitions agree. We will then apply Theorem 3.1 generalize Theorem 3.1
to γ > 1.

The first way to define Pγ is the original definition of Graham and Zworski [17], that is
to define it using scattering matrix; thus when γ > 1, Pγ f agrees with a higher order term
in the power series expansion of the solution of a second order equation (e.g. Eq. (3.23)); the
other is to define it by iterating the work of Caffarelli and Silvestre resulting in a PDE of or-
der higher than 2, one can represent Pγ f0 as a lower order term in the power series expansion
of the solution of this PDE (e.g. Eq. (3.22)); we will show that the two definitions agree (see
claim (3.16)).

First, fixed γ ∈ (0, n
2 )\N, if γ = m + γ0, for m = [γ ] ∈ N, γ0 ∈ (0,1), we can define the

fractional Laplacian on Rn inductively as

(−�x)
γ = (−�x)

γ0 ◦ (−�x)
m. (3.14)

We have:

Theorem 3.2. For any γ ∈ (0, n
2 )\N, we have that

Pγ

[
gH, |dx|2] = (−�x)

γ ,

where the fractional conformal Laplacian Pγ on Rn is defined as in (2.3).
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Proof. The proof is by induction on m. We set up the following notation:

γj = γ − (m − j) for j = 0, . . . ,m. Note that j < γj < j + 1, γm = γ,

sj = n

2
+ γj ,

aj = 1 − 2γj .

For each j = 0, . . . ,m, we set fj := (−�x)
m−j f . Then the eigenvalue problem

−�gHusj − sj (n − sj )uj = 0, in Hn+1,

has a unique solution uj = Fjy
n−sj +Hjy

sj satisfying Fj |y=0 = fj . Set hj = Hj |y=0. Then the
scattering operator is simply

Pγj
fj = dγj

S(sj )fj = hj .

We set Uj := yn−sj uj . The same computation as in the proof of Theorem 3.1 gives that Uj is a
solution of

�Uj + aj

y
∂yUj = 0. (3.15)

On the other hand, since γ0 ∈ (0,1), Theorem 3.1 applied to U0 implies that

h0 = 1

2γ0
lim
y→0

(
ya0∂yU0

)
,

and this limit is well defined.
We already know from Theorem 3.1 that Pγ0 = (−�x)

γ0 . On the other hand, by construction
f0 = (−�x)

mf . Now we claim that

Pγ0f0 = Pγ f, (3.16)

or equivalently, because of the definition of Pγ as in (2.3),

dγ0h0 = dγ hm. (3.17)

The proof of the theorem will be completed if we show claim (3.16).
We claim first that

�Um = − am

1 + am

Um−1 in Rn+1+ . (3.18)

Indeed, as mentioned above in (3.15), Um is a solution of

�Um + am

y
∂yUm = 0. (3.19)
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Differentiating above expression with respect to y, we obtain

�(∂yUm) − am

y2
∂yUm + am

y
∂yyUm = 0. (3.20)

And taking the Laplacian of (3.19),

�2Um + am

(
1

y
�x(∂yUm) + 1

y3
∂yUm − 2

y2
∂yyUm + 1

y
∂yyyUm

)
= 0. (3.21)

Substitute (3.20) into (3.21) and take into account that am = am−1 − 2. This proves that

�2Um + am−1

y
∂y(�Um) = 0. (3.22)

Next, note from (3.15) that the function Um−1 solves the equation

�Um−1 + am−1

y
∂yUm−1 = 0. (3.23)

Thus we see from (3.22) and (3.23) that �Um and Um−1 satisfy the same equation in Rn+1+ . Let
us compare now the boundary values. First of all, by hypothesis,

Um−1|y=0 = −�xf. (3.24)

On the other hand, we claim that

�Um|y=0 = am

1 + am

�xf. (3.25)

The proof of this fact is a simple computation: we know that Um = Fm + y2sm−nHm where
Fm = f + bmy2 + O(y3) and Hm = hm + O(y2). Then we can compute

�Um|y=0 = �xf + 2bm (3.26)

and 1
y
∂yUm|y=0 = 2bm. From (3.19) we must have

bm = �xf

2(−1 − am)
.

Eq. (3.26) implies then

�Um|y=0 = am

1 + am

�xf.

We have shown from (3.24) and (3.25) that �Um and Um−1 have the same boundary values
(modulo a multiplicative constant). Since, as we have mentioned, they satisfy the same second
order elliptic equation, they must coincide in the whole Rn+1+ . This is,

�Um = − am

1 + am

Um−1, (3.27)

as claimed in (3.27).
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Now we are ready to complete the proof of the theorem. From (3.27) and (3.19) we conclude
that

Um−1 = 1 + am

y
(∂yUm). (3.28)

We look at the asymptotic expansions for Um and Um−1:

Um = Fm + y2sm−nHm, Fm = fm + O
(
y2), Hm = hm + O

(
y2),

so that

1

y
∂yUm = 1

y
∂yFm + (2sm − n)y2sm−n−2Hm + y2sm−n

[
1

y
∂yHm

]
,

while

Um−1 = Fm−1 + y2sm−1−nHm−1, Fm−1 = fm−1 + O
(
y2), Hm−1 = hm−1 + O

(
y2).

Since we have the relation (3.28), comparing the coefficients of the term y2sm−n−2 = y2sm−1−n

we obtain that

(2sm − n)(1 + am)hm = hm−1,

which is

(2γm)hm = hm−1. (3.29)

We set

Am = 2mγm . . . γ1, if m > 0, A0 = 1,

and

cm =
m∏

j=1

(aj + 1) if m > 0, c0 = 1, (3.30)

which will be necessary later. Applying (3.29) inductively we arrive at

Amcmhm = h0. (3.31)

But because

cmAm = dγ

dγ0

,

then we have actually shown (3.17) and the theorem is proved. �
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Moreover, we have the following characterization for Pγ := Pγ [gH, |dx|2] as a Dirichlet-to-
Neumann operator, thus generalizing the result of Caffarelli and Silvestre for exponents γ ∈
(0, n

2 )\N not necessarily less than one:

Theorem 3.3. Fix γ ∈ (0, n
2 )\N, a = 1 − 2γ . Let f a smooth function defined on Rn, and let

U = U(x,y) be the solution of the boundary value problem

⎧⎨
⎩

�xU + a

y
∂yU + ∂yyU = 0 in Rn+1+ ,

U(x,0) = f (x) for all x ∈ Rn.

Then function u := yn−sU is the solution of the Poisson equation on the hyperbolic space Hn+1

⎧⎪⎨
⎪⎩

−�gHu − s(n − s)u = 0 in Hn+1,

u = Fyn−s + Hys,

F (x,0) = f (x).

And, the following limit exists and we have the equality

Pγ f = dγ

2γ0
A−1

m lim
y→0

ya0∂y

[
y−1∂y

(
y−1∂y

(
. . . y−1∂yU

))]
, (3.32)

where we are taking m + 1 derivatives in the above expression, and the constant is given by

Am = 2m(γ − 1) . . . (γ − m + 1). (3.33)

We are using the notation m = [γ ] ∈ N, γ0 = γ −m, a0 = 1−2γ0, and the constant dγ as defined
in (2.3).

Proof. We keep the same notation as in the previous theorem. In this construction, U is pre-
cisely Um.

We would like to show first that

h0 = cm

2γ0
lim
y→0

ya0

m+1 derivatives︷ ︸︸ ︷
∂y

[
y−1∂y

(
y−1 . . .

(
y−1∂yUm

))]
, (3.34)

where the constant cm is defined in (3.30), and Pγ0f0 = h0. The proof goes by induction on m.
The case m = 0 is precisely the conclusion of Theorem 3.1. Assume that it is true for m − 1, i.e.,

h0 = cm−1

2γ0
lim
y→0

ya0

m derivatives︷ ︸︸ ︷
∂y

[
y−1∂y

(
y−1 . . .

(
y−1∂yUm−1

))]
. (3.35)

Now substitute (3.28) in (3.35) and use that cm = cm−1(1 + am). We immediately obtain (3.34).
Next, we recall relation (3.31) between hm and h0. The definition of the operator Pγ f = dγ hm

and (3.34) complete the proof of the theorem. �
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4. The extension problem on c.c. Einstein manifolds

We fix γ ∈ (0, n
2 )\N. In this section we discuss the generalization of Theorems 3.1, 3.2 and 3.3

from hyperbolic space to any conformally compact Einstein manifold (X,g+).
First we write the extension problem analogous to (3.1) in a conformally compact Einstein

metric. The resulting problem (4.2) is still of divergence-type, degenerate elliptic, and with a
weight in the Muckenhoupt class A2 (cf. [23]), but some lower order terms appear—they depend
on the underlying geometry. This is the content of Lemma 4.1.

Next, we point out in Lemma 4.5 that, by choosing a suitable defining function ρ∗, which is
related to the eigenfunction of the Laplacian of the Einstein metric, Eq. (4.15) of the extension
theorem on general conformal compact Einstein manifolds is the same as the extension theorem
on hyperbolic space studied in Section 3, of pure divergence form.

Finally, in Theorems 4.7 and 4.8, we show how the extension problem with respect to this
new defining function allows to compute the fractional Paneitz operator Pγ .

Lemma 4.1. Let (X,g+) be any conformally compact Einstein manifold with boundary M . For
any defining function ρ of M in X, not necessarily geodesic, the equation

−�g+u − s(n − s)u = 0 in
(
X,g+)

, (4.1)

is equivalent to

−div
(
ρa∇U

) + E(ρ)U = 0 in (X, ḡ), (4.2)

where

ḡ = ρ2g+, U = ρs−nu

and the derivatives in (4.2) are taken with respect to the metric ḡ. The lower order term is given
by

E(ρ) = −�ḡ

(
ρ

a
2
)
ρ

a
2 +

(
γ 2 − 1

4

)
ρ−2+a + n − 1

4n
Rḡρ

a, (4.3)

or writing everything back in the metric g+,

E(ρ) = −�g+
(
ρ

n−1+a
2

)
ρ

−n−3+a
2 −

(
n2

4
− γ 2

)
ρ−2+a. (4.4)

Here we denote s = n
2 + γ , a = 1 − 2γ .

Remark 4.2. For the model case X = Rn+1+ , M = Rn, g+ = dy2+|dx|2
y2 , with the defining function

y > 0, ḡ = dy2 + |dx|2, it automatically follows from (4.3) that

E(y) ≡ 0.
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Proof. Note that (4.1) is equivalent to

Lg+u +
(

γ 2 − 1

4

)
u = 0, (4.5)

using the fact that for an Einstein metric g+,

Lg+ = −�g+ − n2 − 1

4
.

On the other hand, the invariance of the conformal Laplacian reads:

Lg+(φ) = ρ
n+3

2 Lḡ

(
ρ− n−1

2 φ
)

for the change of metric ḡ = ρ2g+. Thus, writing everything in terms of ḡ and the new function
U = ρs−nu, then (4.5) is just

Lḡ

(
ρ

a
2 U

) +
(

γ 2 − 1

4

)
ρ−2+ a

2 U = 0. (4.6)

Next, it is a straightforward computation to check that:

ρ
a
2 �ḡ

(
ρ

a
2 U

) = divḡ

(
ρa∇ḡU

) + �ḡ

(
ρ

a
2
)
ρ

a
2 U.

Substituting the above expression into (4.6) gives the desired result (4.2). �
Let (X,g+) be a conformally compact Einstein metric with boundary (M, [ĝ]). Then,

Lemma 2.1 in [14] gives that, fixed a metric ĝ on the boundary M , there exists a unique defining
function y in X such that in the neighborhood M × (0, δ), the metric splits as

g+ = dy2 + gy

y2
, (4.7)

where gy is a one-parameter family of metrics on M with gy |y=0 = ĝ. Moreover,

gy = g(0) + g(2)

2
y2 + · · · (4.8)

only contains even terms up to order n. We write

g(0) := ĝ, g(1) := ∂ygy |y=0 = 0, g(2) := ∂yygy |y=0. (4.9)

Set ḡ = y2g+ and

Ψ := ∂y log det(gy) =
∑
i,j

g
ij
y ∂y(gy)ij . (4.10)
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Note that

Ψ0 := 1

2n
Ψ |y=0 = 1

2n
traceĝ

(
g(1)

)

is the mean curvature of M as hypersurface of (X, ḡ), which is zero by (4.9).
Lemma 4.1 is true for any defining function independent of the behavior near the boundary.

However, in the specific case that we have the splitting (4.7), then we can have a more explicit
expression for the lower order terms E(ρ):

Theorem 4.3. If the defining function (denoted by y in the following) is chosen such that metric
splits as (4.7) in a neighborhood M × (0, δ), then

E(y) = −n + 1 + a

4
Ψya−1 = n − 1 − a

4n
Rḡy

a in M × (0, δ).

And, in particular,

lim
y→0

E(y)

ya
= −n + 1 + a

4
traceg(0) g

(2).

Moreover, formula (3.32) for the calculation of the conformal fractional Laplacian is still true,
i.e.,

Pγ

[
g+, ĝ

]
f = dγ

2γ0
A−1

m lim
y→0

ya0∂y

[
y−1∂y

(
y−1∂y

(
. . . y−1∂yU

))]
,

where are m+ 1 derivatives in the formula above, and U is the solution of the extension problem

{−div
(
ya∇U

) + E(y)U = 0 in (X, ḡ),

U = f on M; (4.11)

here the derivatives are taken with respect to the metric ḡ = y2g+, and the constants are
M = [γ ], γ0 = γ − m, a0 = 1 − 2γ0, Am is given in (3.33) and dγ in (2.3).

Proof. The first assertion is a straightforward calculation from (4.3): we know that near {y = 0},
the metric ḡ can be split as ḡ = dy2 + gy . Then

�ḡ = ∂yy + 1

2
Ψ ∂y + �gy

for Ψ as given in (4.10). Moreover, for the conformal change g+ = y−2ḡ, we can write the scalar
curvature equation

−�ḡ

(
y− N−2

2
) + cNRḡy

− N−2
2 = cN

(
y− N−2

2
)N+2

N−2 Rg+ , cN = N − 2

4(N − 1)
, N = n + 1.

Since Rg+ = −N(N − 1) we quickly obtain that

Rḡ = −nΨy−1.
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With all these ingredients, computing all the terms in (4.3), we can show that near M ,

E(y) = −n + 1 + a

4
Ψya−1 = n − 1 − a

4n
Rḡy

a.

Now we compute the asymptotic behavior of E(y) when y → 0. Note that for (even) Poincaré
metrics, we have the expansion (4.8), and thus,

lim
y→0

E(y)

ya
= −n + 1 + a

4
traceg(0) g

(2). �
Remark 4.4. Before we continue, we remind the reader of how to compute the Qγ [g+, ĝ] cur-
vature, as defined in (2.6), for γ ∈ (0, n

2 )\N, s = n
2 + γ . We set f ≡ 1, and find the solution to

the Poisson problem −�g+v − s(n − s)v = 0 such that

v = Fyn−s + Hys, F |y=0 = 1, H |y=0 = h.

Then,

Qγ

[
g+, ĝ

] = dγ h.

Next, we show that it is possible to find a special defining function satisfying that the zero-th
order term E(ρ) in Eq. (4.2) vanishes so that the extension problem is a pure divergence equation
similar to the Euclidean one (3.1) studied in Section 3. We recover the conformal powers of the
Laplacian as the Dirichlet-to-Neumann operator from Theorem 3.1 (or Theorems 3.2, 3.3), plus
a curvature term.

Lemma 4.5. Let (X,g+) be a conformally compact Einstein manifold with conformal infinity
(M, [ĝ]). Fixed a metric ĝ on M , assume that y is the defining function on X such that on a

neighborhood M × (0, δ), the metric splits as g+ = dy2+gy

y2 , where gy is a one-parameter family

of metrics on M with gy |y=0 = ĝ, and Taylor expansion (4.8). For each γ ∈ (0,1), there exists
another ( positive) defining function ρ∗ on M × (0, δ), satisfying ρ∗ = y + O(y2γ+1), and such
that for the term E defined in (4.3) we have

E
(
ρ∗) ≡ 0.

Moreover, the metric g∗ = (ρ∗)2g+ satisfies g∗|y=0 = ĝ and has asymptotic expansion

g∗ = (
dρ∗)2[1 + O

((
ρ∗)2γ )] + ĝ

[
1 + O

((
ρ∗)2γ )]

. (4.12)

Proof. We solve the eigenvalue problem (2.1) with Dirichlet condition (2.2) given by f ≡ 1, and
s = n

2 + γ . The solution can be written as v = yn−sF + ysH for

F = 1 + O
(
y2), H = h + O

(
y2).

We set

ρ∗ := v1/(n−s); (4.13)
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we emphasize that ρ∗ is chosen as a power of the eigenfunction of �g+ at s = n
2 + γ . We check

now that this ρ∗ satisfies all the properties stated in the lemma.
First note that v solves the equation −�g+v − s(n − s)v = 0. This quickly implies the van-

ishing of E(ρ∗) if we use the equivalent formula (4.4). Next, the asymptotic behavior of ρ∗ is
precisely

ρ∗(y) = y

[
1 + 1

n − s
hy2γ + O

(
y2)]. (4.14)

Moreover, because of Remark 4.4, we precisely have dγ h = Qγ [g+, ĝ]. On the other hand,
the asymptotic expansion (4.12) for g∗ can be easily checked from (4.14) and the asymptotic
behavior of ḡ = dy2 + gy(x), gy = ĝ + O(y2).

Lemma 4.6. The ρ∗ constructed in the previous lemma can be defined in the whole X and it is
indeed positive and smooth.

Proof. A summary of properties for degenerate elliptic equations, necessary to deal with (4.1)
or (4.2) can be found in González and Qing [13]. The classical reference on degenerate elliptic
equations with Muckenhoupt weights is Fabes et al. [10], while Cabré and Sire [3] have retaken
the study in relation to fractional Laplacians on Euclidean space.

Note that v is strictly positive in the whole X, thanks to the maximum principle and unique-
ness for Eq. (4.1). This shows that ρ∗ is an acceptable defining function on the whole X. �
Theorem 4.7. Assume the same hypothesis as in Lemma 4.5. Fix γ ∈ (0,1) and let ρ∗ be the
special defining function constructed in Lemma 4.5. For each smooth function f on M , let U

solve the extension problem

{−div
((

ρ∗)a∇U
) = 0 in

(
X,g∗),

U = f on M,
(4.15)

where the derivatives are taken with respect to the metric g∗ = (ρ∗)2g+. Then

Pγ

[
g+, ĝ

]
f = dγ

2γ
lim

ρ∗→0

(
ρ∗)a

∂ρ∗U + f Qγ

[
g+, ĝ

]
. (4.16)

The fractional order curvature Qγ [g+, ĝ] is defined in Remark 4.4.

Proof. We set up the same notation as in the previous results. On one hand, in order to compute
the scattering operator with Dirichlet data f we need to consider the equation

−�g+u − s(n − s)u = 0 in
(
X,g+)

. (4.17)

There exists a solution u = yn−sF + ysH with F = f + 0(y2), H = h + O(y2). Then Pγ f :=
Pγ [g+, ĝ]f is defined as Pγ f = dγ h.
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On the other hand, the Qγ curvature can be computed as indicated in Remark 4.4. Let v be
the solution of the Poisson equation (4.17), but with Dirichlet identically f̃ ≡ 1. It can be written
as

v = yn−s F̃ + ysH̃ with F̃ = 1 + 0
(
y2), H̃ = h̃ + O

(
y2).

Then Qγ := Pγ 1 = dγ h̃. In addition, ρ∗ = v1/(n−s).
Now we claim that U := (ρ∗)s−nu satisfies (4.15). First, Lemma 4.1 applied to the defining

function ρ∗ gives that U is a solution of (4.2). Second, for our special choice of defining function,
E(ρ∗) = 0 thanks to Lemma 4.5. Finally, note that by construction,

U = u

v
= F + y2s−nH

F̃ + y2s−nH̃
.

In particular, U |y=0 = f . This shows that U is a solution of (4.15), as claimed.
Next, let us compute ∂yU . It is easy to check that

lim
y→0

ya∂yU = (2γ )h − 2γf h̃,

and (4.16) follows. This completes the proof of Theorem 4.7. �
Before we state the next result, we need to introduce some notations: for any smooth func-

tion w, we denote w = OE(1) if the function w has only even terms in the expansion (up to
order n), i.e.,

w = w0 + w1y
2 + w2y

4 + · · · .
We also define the operator B := y−1∂y . We claim that for any k = 1,2, . . . , it is true that:

1. If w = OE(1), then also Bkw = OE(1).
2. If w = hylOE(1) for some function h = h(x) and l ∈ N, then

Bkw = l(l − 2) . . .
(
l − 2(k − 1)

)
yl−2kh + O

(
yl−2k+1)

and

∂yB
kw = l(l − 2) . . .

(
l − 2(k − 1)

)
(l − 2k)yl−2k−1h + O

(
yl−2k

)
.

We show now that Theorem 4.7 is still valid for any exponent γ ∈ (0, n
2 )\N, thus generalizing

Theorem 3.3 on hyperbolic space to any conformally compact Einstein manifold:

Theorem 4.8. Fix s = n
2 +γ for γ ∈ (0, n

2 )\N. Set γ = m+γ0, m = [γ ], γ0 ∈ (0,1), a = 1−2γ .
In the hypothesis of Theorem 4.7, let U be a solution of (4.15). Then

Pγ

[
g+, ĝ

]
f = dγ

2γ0
A−1

m

[
lim

ρ∗→0

(
ρ∗)a0∂ρ∗BmU

]
+ f Qγ

[
g+, ĝ

]
,

where a0 = 1 − 2γ0 and Am is given in (3.33).
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Proof. Let us compute

Lim := lim
y→0

ya0∂y

(
BmU

)

for U = (ρ∗)s−nu. As before, we can write

U = F + y2s−nH

F̃ + y2s−nH̃
=: V

W
,

where

F = f + y2OE(1), F̃ = 1 + y2OE(1), H = h + y2OE(1), H̃ = h̃ + y2OE(1).

We apply the product formula

Bm
(
V W−1) =

m∑
k=0

cm,k

(
BkV

)(
Bm−k

(
W−1)).

From this sum, only the terms k = 0, k = m are important, since the rest are of higher order in y.
Note that the term k = m is just

(
BmV

)
W−1 = (2s − n)(2s − n − 2) . . .

(
2s − n − 2(m − 1)

)
y2s−n−2m

[
h + y2OE(1)

]
+ OE(1) + h.o.t.

so that

∂y

[(
BmV

)
W−1] = O(y) + 2γ0Amy2γ0−1h + h.o.t.

On the other hand, for the k = 0 term we observe that

Bm
(
W−1) = −Bm(W)/W 2 + h.o.t.,

and thus

∂y

[
V Bm

(
W−1)] = −y2γ0−12γ0Amh̃f + h.o.t.

Consequently

Lim = 2γ0Amh − 2γ0Amh̃f = 2γ0Am

dγ

[Pγ f − f Pγ 1],

and the proof of the proposition is completed after taking into account that Pγ 1 = Qγ . �
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5. The general case

Given a compact manifold X̄ with boundary M , and a smooth metric ḡ on X̄, there exists
an asymptotically hyperbolic metric with constant scalar curvature in the interior X, in the same
conformal class of ḡ. This is the well known singular Yamabe problem, that has been well un-
derstood in a series of papers. We should cite Aviles and MacOwen [2], Mazzeo [21], Andersson
et al. [1], in the case of negative constant scalar curvature.

We remark now that the construction of scattering operator S(s) can be generalized to man-
ifolds which are not Einstein, but just asymptotically hyperbolic (cf. Mazzeo and Melrose [22]
for most of the values of the parameter s, and Guillarmou [18] for a closer look at the remain-
ing poles). In this section we try to understand how many of the results in the previous sections
generalize to a compact manifold with boundary (X̄, ḡ), not necessarily conformally compact
Einstein. For the rest of the section, γ ∈ (0,1).

The case γ = 1
2 was studied by Gillarmou and Guillopé [19]. They considered the scattering

operator of asymptotically hyperbolic manifold, and its relation to mean curvature. Note that
γ = 1

2 is a splitting point for the behavior of Pγ , as we will see in Theorem 5.1.
Let (X̄, ḡ) be a smooth (n + 1)-dimensional compact manifold with boundary Mn = ∂X. As

we have mentioned above, there exists an asymptotically hyperbolic metric g+ in the interior
X, conformal to ḡ, and that has negative constant scalar curvature Rg+ = −n(n + 1). Moreover,
g+ has a very specific polyhomogeneous expansion. More precisely, let ρ be a geodesic boundary
defining function of (∂X̄, ḡ), i.e.,

ḡ = dρ2 + ḡρ

for some one-parameter family of metrics ḡρ on M , then we have that

g+ = ḡ(1 + ρα + ρnβ)

ρ2
, (5.1)

where α ∈ C∞(X̄), β ∈ C∞(X) and β has a polyhomogeneous expansion

β(ρ, x) =
∞∑
i=0

Ni∑
j=0

βijρ
i(logρ)j (5.2)

near the boundary, Ni ∈ N∪ {0} and βij ∈ C∞(X̄). Here we note that the log terms do not appear
in the first terms of the expansion, and they can be ignore in our setting, because γ ∈ (0,1) and
we will not need such high orders. We define

1

ρ̂2
:= 1 + ρα + ρnβ

ρ2
, (5.3)

so that (5.1) is rewritten as

g+ = ḡ

ρ̂2
. (5.4)
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On the other hand, note that ḡρ may not only have even terms in its expansion. However, by
the work of Graham and Lee [16], fixed the boundary metric ĝ := ḡρ |ρ=0 = ḡ|M , we can find a
boundary defining function y = ρ + O(ρ2) such that

g+ = dy2 + gy

y2
(5.5)

near M , where gy is a one-parameter family of metrics on M such that gy |y=0 = ĝ, with the
regularity of ρα + ρnβ . The main property of gy is that, if we make the expansion

gy = g(0) + g(1)y + O
(
y2),

then

g(0) = ĝ, traceg(0) g
(1) = 0. (5.6)

We set g̃ = dy2 + gy so that

g+ = g̃

y2
. (5.7)

The scattering operator for (X,g+) is computed as follows: first, solve the Poisson equation
−�g+u − s(n − s)u = 0. For each f ∈ C∞(M), there exists a solution of the form

u = yn−sF + ysH, F = f + O
(
y2), H = h + O(y). (5.8)

Then, for s = n
2 + γ , we define the conformal fractional Laplacian in this setting as

Pγ

[
g+, ĝ

]
f = dγ h. (5.9)

In our case, we do have some log terms in the expansion (5.2). However, they do appear at
order n, and consequently, they do not change the first terms in the asymptotic expansion for u.

We write

ρ̂ = y
(
1 + yφ + O

(
y2)) (5.10)

for some φ ∈ C∞(∂X) which will be made precise later. Because the metrics (5.4) and (5.7) are
equal, we can write y2ḡ = ρ̂2g̃. Then, restricting to the tangential direction, we get that

(
1 + 2yφ + O

(
y2))gy = ḡρ . (5.11)

We write the Taylor expansions for gy and ḡρ in the variable y, taking into account that ρ =
y + O(y2):

gy = g(0) + g(1)y + O
(
y2), g(0) = ĝ, g(1) = 0,

ḡρ = ḡ(0) + ḡ(1)y + O
(
y2), ḡ(0) = ĝ, (5.12)
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then looking at the orders of y in (5.11), we obtain

g(1) + φĝ = ḡ(1).

Taking trace above with respect to ĝ, and using (5.6), we are able to find a formula for φ. Indeed,

φ = − 1

2n
traceĝ

(
ḡ(1)

)
. (5.13)

This is nothing but the mean curvature of ∂X as a boundary of the (n+ 1)-manifold (X̄, ḡ), with
a minus sign. We denote it by

Ψ0 := 1

2n
traceĝ

(
ḡ(1)

)
. (5.14)

We have shown from (5.10) and (5.13) that

ρ̂ = y
(
1 − Ψ0y + O

(
y2)). (5.15)

We will need at a later section the relation between ρ and y, so we indicate it here. First, from
(5.3) we know that

ρ = ρ̂

(
1 + α

2
ρ̂ + O

(
ρ̂2)). (5.16)

If we substitute (5.15), then

ρ = y

[
1 +

(
−Ψ0 + α

2

)
y + O

(
y2)]. (5.17)

In the following, we show in what cases Lemma 4.1 for the calculation of Pγ [g+, ĝ] is still
true:

Theorem 5.1. Let (X̄, ḡ) be a smooth, (n + 1)-dimensional smooth, compact manifold with
boundary, and let ĝ be the restriction of the metric ḡ to the boundary M := ∂X. Let ρ be a
geodesic boundary defining function. Then there exists an asymptotically hyperbolic metric g+
on X of the form (5.1), with respect to which the conformal fractional Laplacian Pγ [g+, ĝ] can
be defined as (5.9), and it can be computed through the following extension problem: for each
smooth given function f on M , consider

{−div
(
ρa∇U

) + E(ρ) = 0 in (X̄, ḡ),

U = f on M,
(5.18)

where the derivatives are taken with respect to the original metric ḡ. Then, there exists a unique
solution U and moreover:
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1. For γ ∈ (0, 1
2 ),

Pγ

[
g+, ĝ

]
f = dγ

2γ
lim
ρ→0

ρa∂ρU. (5.19)

2. For γ = 1
2 , we have an extra term

P 1
2

[
g+, ĝ

]
f = lim

ρ→0
∂ρU +

(
n

2
− 1

2

)
Ψ0f,

where Ψ0 is the mean curvature of M as defined in (5.14).
3. If γ ∈ ( 1

2 ,1), the limit in the right hand side of (5.19) exists if and only if the mean curvature
Ψ0 of the boundary ∂X in (X̄, ḡ) vanishes identically, in which case, (5.19) holds too.

Proof. We follow the notations in the previous paragraphs. It is possible to find an asymptot-
ically hyperbolic metric g+ on X, of the form (5.1). We define the new functions ρ̂ as (5.3),
and y satisfying (5.5). Then we have seen that it is possible to define the scattering operator
for the metric (X,g+), as follows: let u be the solution of the eigenvalue problem −�g+u −
s(n − s)u = 0, with given data f . Its asymptotic expansion is given in (5.8), u = yn−sF + ysH ,
Fy=0 = f , H |y=0 = h, while the scattering operator is just Pγ = dγ h.

Second, Lemma 4.1 applied to the defining function ρ̂ shows that

U := ρ̂s−nu

is the solution of (5.18), since ḡ = ρ̂2g+.
Next, we have shown in (5.15) that

ρ̂ = y
(
1 − yΨ0 + O

(
y2)),

so that we can expand U as

U = [
f − (s − n)Ψ0y + O

(
y2)] + y2s−n

[
h + O(y)

]
.

Then

ya∂yU = −(s − n)Ψ0fya + (2s − n)h + o(1). (5.20)

Now we take the limit above when y → 0. It is clear that the limit exists if and only if a � 0,
unless Ψ0 = 0. In particular, if γ < 1

2 , then

lim
y→0

ya∂yU = (2s − n)h,

as desired. For the case γ = 1
2 , just note that d 1

2
= −1. �

Remark 5.2. The second conclusion of Theorem 5.1, i.e., the case γ = 1
2 , was shown by Guil-

larmou and Guillopé in [19].
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