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Abstract Prescribing σk curvature equations are fully nonlinear generalizations of
the prescribing Gaussian or scalar curvature equations. For a given a positive func-
tion K to be prescribed on the 4-dimensional round sphere, we obtain asymptotic
profile analysis for potentially blowing up solutions to the σ2 curvature equation with
the given K; and rule out the possibility of blowing up solutions when K satisfies a
non-degeneracy condition. Under the same non-degeneracy condition on K, we also
prove uniform a priori estimates for solutions to a family of σ2 curvature equations
deforming K to a positive constant; and under an additional, natural degree condition
on a finite dimensional map associated with K, we prove the existence of a solution
to the σ2 curvature equation with the given K using a degree argument involving fully
nonlinear elliptic operators to the above deformation.
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1 Description of main results

Our main results in this paper are (potential) blow up profile analysis, a priori esti-
mates and existence of admissible solutions w to the σ2 curvature equation

σ2(g−1 ◦Ag) = K(x), (1)

on S4, where g = e2w(x)gc is a metric conformal to gc, with gc being the canonical
background metric on the round sphere S4, Ag is the the Weyl-Schouten tensor of the
metric g,

Ag =
1

n−2
{Ric− R

2(n−1)
g}

= Agc −
[

∇
2w−dw⊗dw+

1
2
|∇w|2gc

]
,

(2)

and σk(Λ), for any (1,1) tensor Λ on an n−dimensional vector space and k ∈ N,
0≤ k ≤ n, is the k-th elementary symmetric function of the eigenvalues of Λ ; K(x) is
a given function on S4 with some appropriate assumptions, and an admissible solution
is defined to be a C2(M) solution w to (1) such that for all x∈ S4, Ag(x)∈Γ

+
k , namely,

σ j(g−1◦Ag) > 0 for 1≤ j≤ k. Note that σ1(Ag) is simply a positive constant multiple
of the scalar curvature of g, so Ag in the Γ

+
k class is a generalization of the notion

that the scalar curvature Rg of g having a fixed + sign.
Note that, since

σ2(g−1 ◦Ag) = e−4w
σ2(g−1

c ◦Ag),

so (1) is equivalent to

σ2(g−1
c ◦

[
Agc −∇

2w+dw⊗dw− 1
2
|∇w|2gc

]
) = K(x)e4w(x). (3)

It is well known that (3) is elliptic at an admissible solution; and in fact, any
solution w to (3) on S4 is admissible. There have been a large number of papers on
problems related to the σk curvature since the work [36] of Viaclovsky a decade ago.
It is inadequate to do even a short survey of recent work in the introductory remarks
here. We will instead refer the reader to recent surveys [39] by Viaclovsky and [4] by
Chang and Chen.

As alluded to above, a similar problem to (3) for the σ1 curvature was a pre-
decessor to (3). More specifically, if we prescribe a function K(x) on the round n-
dimensional sphere (Sn,gc) to be the scalar curvature of a metric g = e2wgc pointwise
conformal to gc, then w satisfies

2(n−1)∆gcw+(n−1)(n−2)|∇w|2 = Rgc −K(x)e2w. (4)

Similar equation can be formulated for a general manifold. One difference between
(4) and (3) is that (4) is semilinear in w, while (3) is fully nonlinear in w. (4) takes on
the familiar form

2∆gcw = Rgc −K(x)e2w, (5)



3

when n = 2, which is the Nirenberg problem. The n ≥ 3 case of (4) is often written
in terms of a different variable u = e(n−2)w/2, which would render the equation in the
familiar form

−4
n−1
n−2

∆gcu+Rgcu = K(x)u
n+2
n−2 . (6)

The K(x) ≡ const. case of (6) on a general compact manifold is the famous Yamabe
problem. (5) and (6) have attracted enormous attention in the last several decades. A
large collection of phenomena on the possible behavior of solutions to these equa-
tions, and methods and techniques of attacking these problems have been accumu-
lated, which have tremendously enriched our understanding in solving a large class
of nonlinear (elliptic) PDEs, and provided guidance in attacking seemingly unrelated
problems. It is impossible in the space here to provide even a partial list of references.
Please see [23], [25], [33], [31], [8], [24], and the references therein to get a glimpse
of the results and techniques in this area.

Directly related to our current work are some work on the (potential) blow up
analysis, a priori estimates, and existence of solutions to (5) or (6). It is proved in
[19] and [12] that when K is a positive function on S2, a sequence of blowing up
solutions to (5) has only one point blow up and has a well-defined blow up profile,
and that when K is a positive C2 function on S2 such that ∆gcK(x) 6= 0 at any of its
critical points, no blow up can happen, more precisely, there is an a priori bound on
the set of solutions to (5) which depends on the C2 norm of K, the positive lower
bound of K and |∆gcK(x)| near the critical points of K, and the modulus of continuity
of the second derivatives of K. Similar results for (6) in the case n = 3 were proved in
[40] and [12], and for (6) in the case n ≥ 4 in [29] under a flatness condition of K at
its critical points. When K is a Morse function, say, this flatness condition fails when
n ≥ 4. In fact it is proved in [30] that in such cases on S4, there can be a sequence
of solutions to (6) blowing up at more than one points. Later on [15] constructed
solutions blowing up on Sn, n ≥ 7, with unbounded layers of “energy concentration”
for certain non-degenerate K.

A natural question concerning the σk curvature equations such as (3) is: of the
behaviors for solutions to (5) and (6), which do solutions to (3) exhibit?

In the following we will often transform (3) through a conformal automorphism
ϕ of S4 as follows. Let |dϕ(P)| denote the factor such that |dϕ(P)[X ]|= |dϕ(P)||X |
for any tangent vector X ∈ TP(S4), and

wϕ(P) = w◦ϕ(P)+ ln |dϕ(P)|. (7)

Then w is a solution to (3) iff wϕ is a solution to

σ2(g−1
c ◦

[
Agc −∇

2wϕ +dwϕ ⊗dwϕ −
1
2
|∇wϕ |2gc

]
) = K ◦ϕ(x)e4wϕ (x). (8)

Our first results show that solutions to (3) on S4 exhibits similar behavior as those
to (5) on S2 or (6) on S3.

Theorem 1 Consider a family of admissible conformal metrics g j = e2w j gc on S4

with σ2(g−1
j ◦Ag j) = K(x), where gc denotes the canonical round metric on S4 and
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K(x) denotes a C2 positive function on S4. Then there exists at most one isolated sim-
ple blow up point in the sense that, if maxw j = w j(Pj)→∞, then there exists confor-
mal automorphism ϕ j of S4 such that, if we define v j(P) = w j ◦ϕ j(P)+ ln |dϕ j(P)|,
we have

v j(P)− 1
4

ln
6

K(Pj)
→ 0 in L∞(S4), (9)

and ∫
S4
|∇v j|4 → 0. (10)

In fact, we have the stronger conclusion that the W 2,6 norm of v j stays bounded and
v j − 1

4 ln 6
K(Pj)

→ 0 in C1,α(S4) for any 0 < α < 1/3.

We also have

Theorem 2 Let K(x) be a C2 positive function on S4 satisfying a non-degeneracy
condition

∆K(P) 6= 0 whenever ∇K(P) = 0, (11)

and we consider solutions w(x) to (3), with K(x) replaced by

K[s](x) := (1− s)6+ sK(x),

for 0 < s ≤ 1, namely,

σ2(g−1
c ◦

[
Agc −∇

2w+dw⊗dw− 1
2
|∇w|2gc

]
) = K[s](x)e4w(x). (3′)

Then there exist a priori C2,α estimates on w, uniform in 0 < s ≤ 1, which depend on
the C2 norm of K, the modulus of continuity of ∇2K, positive lower bound of minK
and positive lower bound of |∆K(x)| in a neighborhood of the critical points of K.

Remark 1 There are several recent papers on the study of the behavior of the singular
blow up of solutions to the σk(Ag) curvature equations on a Riemannian manifold
(M,g0), which are analogues of (1) on (M,g0) and for general k. More specifically,
the equation takes the form

σk(g−1
0 ◦

[
Ag0 −∇

2w+dw⊗dw− 1
2
|∇w|2g0

]
) = K(x)e2kw(x). (12)

These papers mostly deal with the case when (M,g0) is assumed to be not confor-
mally equivalent to the round sphere. Compactness and existence of solutions to (12)
is proved in [10] for the case k = 2 and (M,g0) a four-dimensional manifold not con-
formally equivalent to the round sphere; in [26] for the case of a general k, K ≡ 1 and
(M,g0) locally conformally flat, and not conformally equivalent to the round sphere;
in [18] for the case k > n/2 and (M,g0) not conformally equivalent to the round
sphere; and in [35] for the case k = n/2 and (M,g0) not conformally equivalent to the
round sphere.
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Remark 2 Theorems 1 and 2, with the uniform estimates in Theorem 2 for solutions
to (3′) only for 0 < s0 ≤ s ≤ 1 and the estimates possibly depending on 0 < s0 < 1,
were obtained several years ago and were announced in [20]. The details were written
up in [13] and presented by the second author on several occasions, including at the
2006 Banff workshop “Geometric and Nonlinear Analysis”. The current work can be
considered as a completion of [13]. As mentioned above similar statements for (5)
and (6) were obtained earlier in [19], [12], [29], [40], among others. When applying
these estimates to the corresponding equation such as (5) and (6) with K(x) replaced
by K[s](x), all previous work stated and proved that the a priori estimates on the
solutions remain uniform as long as 0 < s0 ≤ s≤ 1, for any fixed s0. This stems from
the dependence of the a priori estimates on a positive lower bound of |∆K(x)| near the
critical points of K, among other things. Since ∆K[s] = s∆K(x) becomes small when
s > 0 is small, previous work in this area assumed that the a priori estimates could
deteriorate as s > 0 becomes small. In these previous work, one has to devise a way to
study the problem when s > 0 becomes small. [12] and [29] used some kind of “center
of mass” analysis via conformal transformations of the round sphere. Technically [12]
and [29] used a constrained variational problem to study the “centered problem”. In
essence the success of these methods was due to the semilinear nature of the relevant
equations, so one could still have control on the “centered solution” in some norm
weaker than C2,α norm, say, W 2,p norm, when s > 0 is small, and used these estimates
to prove existence of solutions under natural geometric/topological assumptions on
K. This approach was problematic for our fully nonlinear equation (3). Due to this
difficulty, until recently we have not been successful in using our preliminary version
of Theorem 2 (for estimates in the range 0 < s0 ≤ s ≤ s which may depend on s0)
and the deformation K[s] above to the equation to establish solutions to (3), under
natural geometric/topological assumptions on K. It was our recent realization that in
our setting, as well as in those of [12] and [29], the a priori estimates of solutions,
under conditions like those in Theorem 2, remain uniform for all 1≥ s > 0! A similar
observation was made by M. Ji in her work on (5) in [22]. This uniform a prioir
estimate for all 1 ≥ s > 0 leads to our next Theorem.

Theorem 3 Suppose K(x) is a C2 positive function on S4 satisfying (11). Then the
map

G(P, t) = |S4|−1
∫

S4
K ◦ϕP,t(x)xdvolgc ∈ R5

does not have a zero for (P, t) ∈ S4× [t1,∞), for t1 large.
Furthermore, consider G as a map defined on (t−1)P/t ∈ Br(O) for r > (t−1)/t

and if
deg(G,Br(O),O) 6= 0, for r ≥ r1 = (t1−1)/t1, (13)

then (3) has a solution.
In particular, if K has only isolated critical points in the region {x∈ S4 : ∆K(x) <

0} and
∑

x∈S4:∆K(x)<0,∇K(x)=0

ind(∇K(x)) 6= 1,

where ind(∇K(x)) stands for the index of the vector field ∇K(x) at its isolated zero
x, then (13) holds, therefore, (3) has a solution.
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A corollary of the proof for the W 2,p estimate in Theorem 1 is a bound on a
functional determinant whose critical points are solutions to (3). We recall that the
relevant functional determinant is defined, similar to [9], through

II[w] = �
∫

S4

(
(∆0w)2 +2|∇0w|2 +12w

)
dvolgc ,

CK [w] = 3log
(

�
∫

S4
Ke4w dvolgc

)
,

and

Y [w] =
1
36

(
�
∫

S4
R2 dvolgc −�

∫
S4

R2
0 dvolgc

)
= �
∫

S4

(
∆0w+ |∇0w|2

)2
dvolgc −4�

∫
S4
|∇0w|2 dvolgc .

F [w] =Y [w]− II[w]+CK [w] is the relevant functional determinant and a critical point
of F [w] is a solution of (3). It is known that, for any conformal transformation ϕ of
(S4,gc), Y [wϕ ] = Y [w], and II[wϕ ] = II[w].

There is a similar functional determinant and a variational characterization for
solutions to the prescribing Gaussian curvature problem on S2. Chang, Gursky and
Yang proved in [12] that this functional is bounded on the set of solutions to the
prescribing Gaussian curvature problem on S2 for any positive function K on S2 to
be prescribed. Our corollary is in the same spirit.

Corollary 1 Let K(x) be a given positive C2 function on S4. Then there is a bound C
depending on K only through the C2 norm of K, a positive upper and lower bound of
K on S4, such that

|F [w]| ≤C

for all admissible solutions w to (3).

Theorem 1 will be established using blow up analysis, Liouville type classification
results of entire solutions, and integral type estimates for such fully nonlinear equa-
tions from [9] and [20]. Theorem 2 will be established using a weaker version of
Theorem 1 and a Kazdan-Warner type identity satisfied by the solutions. The weaker
version of Theorem 1 only needs to establish

v j(P)− 1
4

6
K(Pj)

→ 0 pointwise on S4 \{−Pj}, and bounded in L∞(S4), (9′)

instead of (9), (10) and the W 2,6 norm estimates. A degree argument for a fully non-
linear operator associated with (3) and Theorem 2 will be used to establish Theo-
rem 3. To streamline our presentation, we will first outline the main steps for proving
Theorem 3, assuming Theorem 2 and all the other needed ingredients. In the remain-
ing sections, we will first provide a proof for (9′) in Theorem 1 and for Theorem 2,
before finally providing a proof for the W 2,6 norm estimates in Theorem 1 and for
Corollary 1.
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2 Proof of Theorem 3

The first and third parts of Theorem 3 is contained in [6] and [12]. We will establish
the second part of Theorem 3 by formulating the existence of a solution to (3) as a
degree problem for a nonlinear map and linking the degree of this map to that of G.

By a fibration result from [5], [6], [3] and [29], see also [1], [32] for early genesis
of these ideas, if we define

S0 = {v ∈C2,α(S4) :
∫

S4
e4v(x)xdvolgc = 0},

then the map π : (v,ξ ) ∈S0×B 7→C2,α(S4) defined by

π(v,ξ ) = v◦ϕ
−1
P,t + ln |dϕ

−1
P,t |,

with B denoting the open unit ball in R5 and ξ = rP, P ∈ S4, r = (t − 1)/t, t ≥ 1,
is a C2 diffeomorphism from S0×B onto C2,α(S4). Thus (v,P, t) ∈S0×S4× [1,∞)
provide global coordinates for C2,α(S4) (with a coordinate singularity at t = 1, similar
to the coordinate singularity of polar coordinates at r = 0) through

w = v◦ϕ
−1
P,t + ln |dϕ

−1
P,t |.

w solves (3) with K replaced by K[s] iff v solves

σ2(Av) = K[s] ◦ϕP,te4v. (14)

Then the estimates for w in Theorem 2 turn into the following estimates for v and t.

Proposition 1 Assume that K is a positive C2 function on S4 satisfying the non-
degeneracy condition (11), and let w be a solution to (3) with K replaced by K[s] and
(v,P, t) ∈ S0 ×S4 × [1,∞) be the coordinates of w defined in the paragraph above.
Then there exist t0 and ε(s) > 0 with lims→0 ε(s) = 0, such that

t ≤ t0 and ||v||C2,α (S4) < ε(s). (15)

A proof for Proposition 1 will be postponed to the end of the next section.
We treat (14) as a nonlinear map

F [s][v,ξ ] := e−4v(x)
σ2(g−1

c ◦
[

Agc −∇
2v+dv⊗dv− 1

2
|∇v|2gc

]
)−K[s] ◦ϕP,t ,

from S0 ×B into Cα(S4), for 0 < s ≤ 1, where ξ = (t − 1)P/t ∈ B. Proposition 1
implies that there is a neighborhood N ⊂S0 of 0 ∈S0 and 0 < r0 = (t0−1)/t0 < 1
such that F [s] does not have a zero on ∂ (N ×Br) for all r0 ≤ r < 1 and 0 < s ≤
1. According to [28], there is a well defined degree for F [s] on N ×Br0 and it is
independent of 0 < s≤ 1. We will compute this degree of F [s], for s > 0 small, through
the degree of a finite dimensional map.
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We first use the implicit function theorem to define this map and link the solutions
to (14) to the zeros of this map. Note that F [0][0,(t − 1)P/t] = 0 and DvF [0][0,(t −
1)P/t](η) =−6∆η −24η . If Π denotes the projection from Cα(S4) into

Y := { f ∈Cα(S4) :
∫

S4
f x j dvolgc = 0 for j = 1, · · · ,5}

defined by Π( f ) = f −5|S4|−1
∑

5
j=1 (

∫
S4 f x j dvolgc)x j, then we can apply the implicit

function theorem to Π ◦F [s] at v = 0 to conclude

Proposition 2 There exist some neighborhood Nε ⊂N of 0 ∈S0 and s0 > 0, such
that for all 0 < s < s0, (P, t) ∈ S4× [1, t0], there exists a unique v = v(x;P, t,s) ∈Nε ,
depending differentiably on (P, t,s) such that

Π ◦F [s][v(x;P, t,s),(t−1)P/t] = 0. (16)

Furthermore, there exists some C > 0 such that, for 0 < s ≤ s0, 1 ≤ t ≤ t0,

||v(x;P, t,s)||C2,α (S4) ≤C||K[s] ◦ϕP,t −6||Cα (S4) = Cs||K ◦ϕP,t −6||Cα (S4). (17)

(16) implies that

F [s][v(x;P, t,s),(t−1)P/t] =
5

∑
j=1

Λ j(P, t,s)x j,

for some Lagrange multipliers Λ j(P, t,s), which depend differentiably on (P, t,s). Or,
equivalently,

σ2(Av(x;P,t,s)) =

(
K[s] ◦ϕP,t +

5

∑
j=1

Λ j(P, t,s)x j

)
e4v(x;P,t,s). (18)

A zero of the map Λ [s](P, t) := (Λ1(P, t,s), · · · ,Λ5(P, t,s)) corresponds to a solution
to (14). Propositions 1 and 2 say that, for s0 > 0 small, all solutions v ∈ S0 to (14),
for 0 < s ≤ s0, are in Nε , thus correspond to the zeros of the map Λ [s](P, t).

Remark 3 ||K ◦ϕP,t −6||Cα (S4) could become unbounded when t → ∞; yet thanks to
the bound 1≤ t ≤ t0 from Proposition 1, it remains bounded in terms of ||K||Cα (S4) in
the range 1 ≤ t ≤ t0. Note also that ||K ◦ϕP,t −6||Lp(S4) remains bounded in terms of
||K||L∞(S4) even in the range 1≤ t < ∞. It is essentially this bound and the applicability
of W 2,p estimates in the semilinear setting of [12] and [29] which allowed them to
handle their cases without using the bound 1 ≤ t ≤ t0.

Remark 4 The implicit function theorem procedure here works also in the setting of
[6], [12] and [29] using W 2,p space, as does Proposition 1 in the setting of [12] and
[29], and can be used to simplify the arguments there.

At this point, we need the following Kazdan-Warner type identity for solutions to
(3).
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Proposition 3 Let w be a solution to (3). Then, for 1 ≤ j ≤ 5,∫
S4
〈∇K(x),∇x j〉e4w(x) dvolgc = 0. (19)

Proposition 3 is a special case of the results in [37] and [21]. But in the special case
of S4, it is a direct consequence of the variational characterization of the solution to
(3), as given after the statement of Theorem 1. A solution w to (3) is a critical point
of F [w] = Y [w]− II[w]+CK [w] there, thus satisfies, for any one-parameter family of
conformal diffeomorphisms ϕs of S4 with φ0 =Id,

d
ds

∣∣∣
s=0

F [wϕs ] = 0,

with wϕs = w ◦ϕs + log |dϕs|. Since Y [wϕs ] = Y [w] and II[wϕs ] = II[w], a solution w
of (3) thus satisfies

d
ds

∣∣∣
s=0

CK [wϕs ] =
d
ds

∣∣∣
s=0

(
�
∫

S4
K ◦ϕ

−1
s e4w dvolgc

)
= 0,

which is (19).
Applying (19) to v(x;P, t,s), a solution to (18), we obtain,∫

S4
〈∇

(
K[s] ◦ϕP,t(x)+

5

∑
j=1

Λ j(P, t,s)x j

)
,∇xk〉e4v(x;P,t,s) dvolgc = 0, for 1 ≤ k ≤ 5,

from which we obtain, for 1 ≤ k ≤ 5,

−
5

∑
j=1

Λ j(P, t,s)
∫

S4
〈∇x j,∇xk〉e4v(x;P,t,s) dvolgc

=
∫

S4
〈∇
(

K[s] ◦ϕP,t(x)
)

,∇xk〉e4v(x;P,t,s) dvolgc

=s
∫

S4
〈∇(K ◦ϕP,t(x)) ,∇xk〉e4v(x;P,t,s) dvolgc .

As in [6], [12] and [29], we define

A[s](P, t) = (4|S4|)−1
∫

S4
〈∇(K ◦ϕP,t(x)) ,∇x〉e4v(x;P,t,s) dvolgc ∈ R5.

Since (∫
S4
〈∇x j,∇xk〉e4v(x;P,t,s) dvolgc

)
is positive definite, we conclude that

deg(A[s],Br0 ,O) =−deg(Λ [s],Br0 ,O),

for s0 > s > 0 provided that one of them is well defined.
Using v(x;P, t,s) ∈S0, and ∆x =−4x on S4, we have, as in [6], [12] and [29],

A[s](P, t) = G(P, t)+ I +Π ,



10

where
I = |S4|−1

∫
S4

(K ◦ϕP,t(x)−K(P))x
(

e4v(x;P,t,s)−1
)

dvolgc ,

and
Π =−(4|S4|)−1

∫
S4

(K ◦ϕP,t(x)−K(P))〈∇x,∇e4v(x;P,t,s)〉dvolgc .

We could have fixed t0 ≥ t1 such that G(P, t) 6= 0 for t = t0, and there will be a δ > 0
such that |G(P, t)| ≥ δ for t = t0. Since (17) implies that

||v(x;P, t,s)||C2,α (S4) = O(s), uniformly for (P, t) ∈ S4× [1, t0],

we find that, by fixing s0 > 0 small if necessary,

|I|+ |Π | ≤ 1
2
|G(P, t)|, for 0 < s ≤ s0 and t = t0.

This implies that A[s](P, t) ·G(P, t) > 0 for 0 < s ≤ s0 and t = t0. Therefore

−deg(Λ [s],Br0 ,O) = deg(A[s],Br0 ,O) = deg(G,Br0 ,O) 6= 0,

for 0 < s ≤ s0. Finally, we now prove

deg(F [s],N ×Br0 ,O) =−deg(Λ [s],Br0 ,O), (20)

for 0 < s ≤ s0, from which follows the existence of a solution to (3).
The verification of (20) is routine, but requires several steps. First, we may perturb

K, if necessary, within the class of functions satisfying the conditions in Theorem 3
such that the corresponding G(P, t) has only isolated and non-degenerate zeros in
Br0(O). We will prove momentarily that for s > 0 small, the zeros of Λ [s] for s > 0
small will be close to the zeros of G(P, t) and are isolated, non-degenerate. Therefore
the zeros of F [s] in N ×Br0 are isolated and non-degenerate. This can be argued as
follows. First, it follows from (18) that

Λ
[s](ξ ) · x = (Id−Π)

(
e−4v(x;ξ ,s)

σ2(Av(x;ξ ,s))−K[s] ◦ϕP,t

)
.

Using (17), we can then write

e−4v(x;ξ ,s)
σ2(Av(x;ξ ,s)) = 6−6∆v(x;ξ ,s)−24v(x;ξ ,s)+Q(v(x;ξ ,s)),

with ||Q(v(x;ξ ,s))||Y . ||v(x;ξ ,s)||2X . s2. Therefore, using

(Id−Π)(1) = (Id−Π)(6∆v(x;ξ ,s)+24v(x;ξ ,s)) = 0,

and
Λ

[s](ξ ) = 5|S4|−1
∫

S4

(
Λ

[s](ξ ) · x
)

xdvolgc ,

we have

Λ
[s](ξ ) =−5sG(P, t)+5|S4|−1

∫
S4

[(Id−Π)(Q(v(x;ξ ,s)))]xdvolgc ,

with |(Id−Π)(Q(v(x;ξ ,s))) |. s2, so the zeros of Λ [s](ξ ) for s > 0 small are close
to the zeros of G(P, t). We can further use the implicit function theorem to prove that
for s > 0 small there is a (unique) non-degenerate zero of Λ [s](ξ ) near each zero of
G(P, t).
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Remark 5 This argument shows that, for each non-degenerate zero of G(P, t), if we
associate (P, t) with the center of mass of ϕP,t ,

C.M(ϕP,t) := |S4|−1
∫

S4
ϕP,t(x)dvolgc ∈ B1(O)

as a geometric representation of (P, t), then for s > 0 small, there is a unique solution
w to (3) whose center of mass approaches C.M(ϕP,t), for our argument gives rise to a
solution

w(x) = v(·;P′, t ′)◦ϕ
−1
P′,t ′(x)+ ln |dϕ

−1
P′,t ′(x)|

with (P′, t ′) approaching (P, t), and v(x;P′, t ′) approaching 0 as s→ 0, thus the center
of mass of w is

|S4|−1
∫

S4
e4w(x)xdvolgc = |S4|−1

∫
S4

e4v(y)
ϕP′,t ′(y)dvolgc →C.M(ϕP,t)

as s → 0.

Now deg(F [s],N ×Br0 ,O) is well defined in the manner of [28], and according to
Propositions 2.1–2.4 of [28],

deg(F [s],N ×Br0 ,O) = ∑
ξ∈Br0 (O):Λ [s](ξ )=0

ind(DF [s][v(x;ξ ,s),ξ ]),

where ind(DF [s][v(x;ξ ,s),ξ ]) refers to the index of the linear operator DF [s][v(x;ξ ,s),ξ ],
and is computed as (−1)β , with β denoting the number of negative eigenvalues of
DF [s][v(x;ξ ,s),ξ ]. We also have

deg(Λ [s],Br0 ,O) = ∑
ξ∈Br0 (O):Λ [s](ξ )=0

ind(DΛ
[s](ξ )).

To compute DF [s][v(x;ξ ,s),ξ ], we identify ξ ∈ R5 with ξ · x ∈ span{x1, · · · ,x5},
and write the differential of F [s] in the direction of v̇ as DvF [s][v(x;ξ ,s),ξ ](v̇), or sim-
ply DvF [s](v̇), and the differential of F [s] in the direction of ξ̇ ·x as Dξ F [s][v(x;ξ ,s),ξ ](ξ̇ ).
Then

Dξ F [s][v(x;ξ ,s),ξ ](ξ̇ ) =−sξ̇ ·∇ξ (K ◦ϕP,t) ,
and

DvF [s][v(x;ξ ,s),ξ ](v̇) = Mi j[v(x;ξ ,s)]∇v(x;ξ ,s)
i j v̇−4K[s] ◦ϕP,t v̇,

where Mi j[v(x;ξ ,s)] stands for the Newton tensor associated with σ2(e−2v(x;ξ ,s)Av(x;ξ ,s)),

and ∇
v(x;ξ ,s)
i j stands for the covariant differentiation in the metric e2v(x;ξ ,s)gc. Thus,

DF [s][v(x;ξ ,s),ξ ](v̇+ ξ̇ ·x)= Mi j[v(x;ξ ,s)]∇v(x;ξ ,s)
i j v̇−4K[s]◦ϕP,t v̇−sξ̇ ·∇ξ (K ◦ϕP,t) .

At a fixed zero ξ of Λ [s](ξ ) = 0, we define a family of deformed linear operators Lτ,s
for 0 ≤ τ ≤ 1 by

Lτ,s(v̇+ ξ̇ · x) = Mi j[v[τ]]∇v[τ]

i j v̇−4K[sτ] ◦ϕP,t v̇− sξ̇ ·∇ξ (K ◦ϕP,t) ,

where v[τ] = τv(x;ξ ,s), and v̇ ∈ X := {v̇ ∈ C2,α(S4) :
∫
S4 v̇(x)x j = 0, j = 1, · · · ,5}.

Then Lτ,s defines self-adjoint operators with respect to the metric e2v[τ]
gc, thus its

eigenvalues are all real. We first assume the
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Claim For s > 0 small and 0 ≤ τ ≤ 1, the spectrum of Lτ,s does not contain zero.

Thus ind(L0,s) = ind(L1,s) = ind(DF [s][v(x;ξ ,s),ξ ]). We will next establish

ind(L0,s) = (−1)1+γ , for s > 0 small, (21)

where γ is the number of positive eigenvalues of ∇G(P, t) at ξ , and

γ = the number of negative eigenvalues of Dξ Λ
[s](ξ ) for s > 0 small. (22)

First note that

L0,s(v̇+ ξ̇ · x) =−6∆ v̇−24v̇− sξ̇ ·∇ξ (K ◦ϕP,t) ,

so if v̇ + ξ̇ · x is an eigenfunction corresponding to a negative eigenvalue −λ , with
v̇ ∈ X , then

−6∆ v̇−24v̇− sξ̇ ·∇ξ (K ◦ϕP,t) =−λ (v̇+ ξ̇ · x).

Taking projection in span{x1, · · · ,x5}, we find

−s∇G(P, t)ξ̇ =−λ

5
ξ̇ ,

and taking projection in X , we find

−6∆ v̇−24v̇− sΠ

(
ξ̇ ·∇ξ (K ◦ϕP,t)

)
=−λ v̇. (23)

If ξ̇ 6= 0, then ξ̇ is an eigenvector of ∇G(P, t) with eigenvalue λ

5s > 0; and if ξ̇ = 0,
then v̇ 6= 0 solves−6∆ v̇−24v̇ =−λ v̇, which is possible for some λ > 0 iff−λ =−24
and v̇ = constant. Conversely, for any eigenvector ξ̇ 6= 0 of ∇G(P, t) with eigenvalue
µ > 0, the operator −6∆ −24+5sµ is an isomorphism from X to Y for s > 0 small,
so we can solve (23) as (−6∆−24+5sµ)v̇ = sΠ

(
ξ̇ ·∇ξ (K ◦ϕP,t)

)
for v̇∈X and v̇+

ξ̇ ·x becomes an eigenfunction of L0,s with eigenvalue −5sµ . Therefore we conclude
(21).

We now establish (22) to prove ind(DF [s][v(x;ξ ,s),ξ ]) = −ind(Dξ Λ [s](ξ )) for
s > 0 small. From (18), which can be written as Λ [s](ξ ) · x = F [s][v(x;ξ ,s),ξ ]), we
obtain

DvF [s](Dξ v(x;ξ ,s)(ξ̇ ))+Dξ F [s](ξ̇ ) = Dξ Λ
[s](ξ )(ξ̇ ) · x.

Taking projections in X and span{x1, · · · ,x5}, respectively, and using Dξ F [s](ξ̇ ) =
−sξ̇ ·∇ξ (K ◦ϕP,t), we obtain

Π

(
DvF [s](Dξ v(x;ξ ,s)(ξ̇ ))

)
− sΠ

(
ξ̇ ·∇ξ (K ◦ϕP,t)

)
= 0, (24)

and

�
∫

S4
(Id−Π)

(
DvF [s](Dξ v(x;ξ ,s)(ξ̇ ))

)
xdvolgc − s∇ξ G(P, t)ξ̇ =

1
5

Dξ Λ
[s](ξ )(ξ̇ ).

(25)
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Writing

DvF [s](Dξ v(x;ξ ,s)(ξ̇ )) = (−6∆ −24)(Dξ v(x;ξ ,s)(ξ̇ ))+Θ(Dξ v(x;ξ ,s)(ξ̇ )),

we find, using (17), that ||Θ(Dξ v(x;ξ ,s)(ξ̇ ))||Y . s||Dξ v(x;ξ ,s)(ξ̇ )||X . Thus

Π

(
DvF [s](·)

)
: X 7→ Y

is an isomorphism for s > 0 small and has an inverseΨ , and we can solve Dξ v(x;ξ ,s)(ξ̇ )
in terms of ξ̇ from (24):

Dξ v(x;ξ ,s)(ξ̇ ) = Ψ

(
sΠ

(
ξ̇ ·∇ξ (K ◦ϕP,t)

))
:= sϒ (ξ̇ ).

Using this in (25), we find

1
5

Dξ Λ
[s](ξ ) =−s∇ξ G(P, t)+ s�

∫
S4

[(Id−Π)◦Θ ◦ϒ ]xdvolgc

=−s
(
∇ξ G(P, t)+O(s)

)
.

Thus for s > 0 small, γ matches the number of negative eigenvalues of Dξ Λ [s](ξ ),
and we can conclude that ind(DF [s](v(x;ξ ,s),ξ )) =−ind(Dξ Λ [s](ξ )).

In the remainder of this section, we provide proof for our Claim above, leaving
the proof for Proposition 1 to the end of the next section.

Proof (of Claim) Suppose that for (a sequence of) s > 0 small and some 0 ≤ τ ≤ 1,
Lτ,s has v̇ + ξ̇ · x, with v̇ ∈ X , ξ̇ ∈ R5, as eigenfunction with zero eigenvalue. Then,
taking projections in span{x1, · · · ,x5} and X , respectively, we obtain

Π

[
Mi j[v[τ]]∇v[τ]

i j v̇−4K[sτ] ◦ϕP,t v̇
]
− sΠ

[
ξ̇ ·∇ξ (K ◦ϕP,t)

]
= 0, (26)

and

�
∫

S4
(Id−Π)

[
Mi j[v[τ]]∇v[τ]

i j v̇−4K[sτ] ◦ϕP,t v̇
]

xdvolgc − s∇ξ G(P, t)ξ̇ = 0. (27)

Using (17) again, we find

Mi j[v[τ]]∇v[τ]

i j v̇−4K[sτ] ◦ϕP,t v̇ =−6∆ v̇−24v̇+Θ
τ,s(v̇),

with ||Θ τ,s(v̇)||Y . sτ||v̇||X . Thus, for s > 0 small, we can solve v̇ from (26) to obtain

v̇ = Ψ

(
sΠ

[
ξ̇ ·∇ξ (K ◦ϕP,t)

])
= sϒ (ξ̇ ).

Thus ξ̇ 6= 0 and we can normalize it so that |ξ̇ |= 1. Using this in (27), we find

s(Id−Π)◦Θ
τ,s ◦ϒ (ξ̇ )− s∇ξ G(P, t)ξ̇ = 0.

Using ||Θ τ,s||. sτ , we find this impossible for s > 0 small under our non-degeneracy
assumption on the zeros of G(P, t).
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3 Proof of (9′), (10), Theorem 2 and Proposition 1

Proof (of (9′) and (10)) The full strength of (9) is established as soon as the W 2,3

estimates are established — the latter is a step in proving the W 2,6 estimates.
If there is a sequence of solutions w j to (3) such that maxw j = w j(Pj)→ ∞, then

we choose conformal automorphism φ j = φPj ,t j of S4, such that the rescaled function

v j(P) = w j ◦φ j(P)+ ln |dφ j(P)|, (28)

satisfies the normalization condition

v j(Pj) =
1
4

ln
6

K(Pj)
. (29)

If we use stereographic coordinates for S4, with Pj as the north pole, then

y(φ j(P)) = t jy(P), for P ∈ S4,

and

v j(P) = w j ◦φ j(P)+ ln
t j
(
1+ |y(P)|2

)
1+ t2

j |y(P)|2
.

v j would satisfy
σ2(Av j) = K ◦φ je4v j . (30)

The normalization in (29) amounts to choosing t j such that

w j(Pj)− ln t j =
1
4

ln
6

K(Pj)
.

Thus, t j → ∞, and for any P ∈ S4,

v j(P)≤ 1
4

ln
6

K(Pj)
+ ln

t2
j
(
1+ |y(P)|2

)
1+ t2

j |y(P)|2
. (31)

(31) implies that, away from −Pj, v j has an upper bound independent of j. Together
with (30), the local gradient and higher derivative estimates of [17], there exists a
subsequence, still denoted as {v j}, such that, Pj → P∗, and for any δ > 0,

v j → v∞ in C2,α
(
S4 \Bδ (−P∗)

)
, for some limit v∞. (32)

We also have

σ2(Av∞
) = K(P∗)e4v∞ on S4 \{−P∗}, (33)∫

S4
K(P∗)e4v∞ dvolgc ≤ liminf

j→∞

∫
S4

K ◦φ je4v j dvolgc = 16π
2, (34)

v∞(P∗) =
1
4

ln
6

K(P∗)
, ∇v∞(P∗) = 0, (35)

v∞(P)≤ 1
4

ln
6

K(P∗)
+ ln

1+ |y(P)|2

|y(P)|2
. (36)
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A Liouville type classification result in [10] and [26] says that

v∞−
1
4

ln
6

K(P∗)
= ln |dφ |

for some conformal automorphism φ of S4, which together with (35) implies that

v∞ ≡ 1
4

ln
6

K(P∗)
. (37)

Thus for any δ > 0,

lim
j→∞

∫
S4\Bδ (−P∗)

K ◦φ je4v j dvolgc = 6
∣∣S4 \Bδ (−P∗)

∣∣ .
Together with the Gauss-Bonnet formula∫

S4
K ◦φ je4v j dvolgc = 6

∣∣S4∣∣ ,
we have

lim
j→∞

∫
Bδ (−P∗)

K ◦φ je4v j dvolgc = 6 |Bδ (−P∗)| .

This allows us to apply our Theorem in [20] on Bδ (−P∗) for small δ > 0 to conclude
that ∃C > 0, such that

max
S4

v j ≤C. (38)

Next we declare the

Claim There exists C′ > 0 such that

min
S4

v j ≥−C′. (39)

The Claim can be proved making use of the information that Rv j = Rw j ◦ φ j ≥ 0,
which implies

2−∆v j −|∇v j|2 ≥ 0. (40)

Thus

v j(P)− v̄ j =
∫

S4
(−∆v j(Q))G(P,Q)dvolgc(Q)

≥−2
∫

S4
G(P,Q)dvolgc(Q),

(41)

where G(P,Q) is the Green’s function of −∆ on S4. Integrating (40) over S4 implies
that

2 ≥�
∫

S4
|∇v j|2 ≥ const.

(
�
∫

S4
|v j(P)− v̄ j|4

) 1
2
. (42)

(32), (37), (41), and (42) conclude the Claim and (9′).
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Next we prove the integral estimate (10). This can be seen by looking at the
integral version of the equation∫

S4

[
2|∇v j|2 +2∆v j −6

]
〈∇v j,∇η〉+∆η |∇v j|2 +

(
K ◦φ je4v j −6

)
η = 0.

If we plug in η = v j, we obtain∫
S4

(
6−2|∇v j|2−3∆v j

)
|∇v j|2 =

∫
S4

(
K ◦φ je4v j −6

)
v j.

Using ∆v j ≤ 2−|∇v j|2, we have∫
S4
|∇v j|4 ≤

∫
S4

(
K ◦φ je4v j −6

)
v j, (43)

which converges to 0 by (32), (37), (38), (39) and the Dominated Convergence The-
orem.

Next, we prove Theorem 2. We will first prove that, under our non-degeneracy
conditions on K, there is a bound C > 0 depending on the quantities as in the state-
ments of Theorem 2, but uniform in 0 < s ≤ 1, such that any solution w of (3) with
K[s] satisfies maxS4 w j ≤C. Once we have the bound maxS4 w j ≤C, the C2,α estimates
follow from known theory of fully nonlinear elliptic equations.

Proof (of Theorem 2) Suppose, on the contrary, that maxS4 w j → ∞ (for a sequence
of K’s, which we write as a single K for simplicity, satisfying the bounds in Theorem
2). Then, as proved above, (9′) holds. Let Pj, t j be as defined in the earlier part of the
proof. We will then prove the following estimates:

|∇K(Pj)|=
o(1)

t j
, as j → ∞, (44)

and
∆K(Pj)→ 0, as j → ∞. (45)

(44) and (45) would contradict our hypotheses on K.
The main idea is to examine the Kazdan-Warner identity in the light of the asymp-

totic profile of w j as given in Theorem 1.
For each w j, we choose stereographic coordinates with Pj as the north pole. For

P = (x1, · · · ,x5) ∈ S4, let its stereographic coordinates be y = (y1, · · · ,y4). Also set
x′ = (x1, · · · ,x4). Then 

xi =
2yi

1+ |y|2
, i = 1,2,3,4,

x5 =
|y|2−1
|y|2 +1

.

(46)

For any ε > 0, there exists M > 0 such that for any P with |y(P)|> M, we have
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K(P) = K(Pj)+
4

∑
i=1

aixi +
4

∑
k,h=1

bhkxhxk + r(P), (47)

with

|r(P)| ≤ ε|x′|2, |x′||∇r(P)| ≤ ε|x′|2, |x′|2|∇2r(Q)| ≤ ε|x′|2. (48)

We can identify ai = ∇iK(Pj), bhk = ∇hkK(Pj), and we may assume that bhk is diag-
onalized: bhk = δhkbh. Then, using

∇x1 = (1− x2
1,−x1x2, · · · ,−x1x5), · · · ,∇x5 = (−x5x1, · · · ,−x5x4,1− x2

5),

and

∇xi ·∇xh = δih− xixh,

we have, for 1 ≤ h ≤ 4,

〈∇K,∇xh〉= ah−
4

∑
i=1

aixixh +2bhxh−2
4

∑
i=1

bix2
i xh +∇r ·∇xh.

So we can fix M large such that, when |y|> M,{
〈∇K,∇xh〉= ah +2bhxh + r1(P),

|r1(P)| ≤ ε|x′|.
(49)

From the Kazdan-Warner identity, we have

0 =
∫

S4
〈∇K[s],∇xh〉e4w j dvolgc

= s
∫

S4
〈∇K,∇xh〉e4w j dvolgc

Thus, the deformation parameter s is divided out from the Kazdan-Warner identity to
give

0 =
∫

S4
〈∇K,∇xh〉e4w j dvolgc

=
∫
|y|≤M

〈∇K,∇xh〉e4w j dvolgc +
∫
|y|>M

〈∇K,∇xh〉e4w j dvolgc .

Remark 6 It is this property that K, not K[s], can be used in the Kazdan-Warner iden-
tity that allows us to obtain bounds on w uniform in 0 < s ≤ 1. This also applies to
the settings in [12] and [29] to make the estimates there uniform in 0 < s ≤ 1 in the
respective deformations.



18

We estimate∫
|y|≤M

〈∇K,∇xh〉e4w j dvolgc ≤C
∫
|y|≤M

e4w j

(
2

1+ |y|2

)4

d y

= C
∫
|z|≤M

t j

e4v j

(
2

1+ |z|2

)4

d z

≤C
(

M
t j

)4

, using (38) and (39).∫
|y|>M

〈∇K,∇xh〉e4w j dvolgc

=ah

∫
|y|>M

e4w j dvolgc +2bh

∫
|y|>M

e4w j xh dvolgc +
∫
|y|>M

e4w j r1(P)dvolgc .

The following estimates will complete the proof of (44).

lim
j→∞

∫
|y|>M

e4w j dvolgc =
6

K(P∗)

∣∣S4∣∣ . (50)∫
|y|>M

e4w j xh dvolgc =
o(1)

t j
, as j → ∞ (1 ≤ h ≤ 4). (51)∫

|y|>M
e4w j r1(P)dvolgc =

o(1)
t j

, as j → ∞. (52)

Here are the verifications of the above estimates.

∫
|y|>M

e4w j dvolgc =
∫
|z|> M

t j

e4v j

(
2

1+ |z|2

)4

d z → 6
K(P∗)

∣∣S4∣∣ ,
by (32), (38) and (39).∫

|y|>M
e4w j xh dvolgc =

∫
|z|> M

t j

2t jzh

1+ t2
j |z|2

e4v j

(
2

1+ |z|2

)4

d z

=
∫
|z|> M

t j

2t jzh

1+ t2
j |z|2

(
e4v j − 6

K(P∗)

)(
2

1+ |z|2

)4

d z

=
∫
|z|>δ

+
∫

δ>|z|> M
t j

,

with ∣∣∣∣∣
∫

δ>|z|> M
t j

∣∣∣∣∣≤C
∫

δ>|z|> M
t j

1
t j|z|

d z ≤ Cδ 3

t j
.

For any given ε > 0, we can first fix δ > 0 such that Cδ 3 < ε . Then using the con-
vergence of v j to 1

4 ln 6
K(P∗)

on |z| > δ , we can fix J such that when j ≥ J, we have∣∣∣e4v j − 6
K(P∗)

∣∣∣< ε . Then∣∣∣∣∫|z|>δ

∣∣∣∣≤ ε

∫
|z|>δ

1
t j|z|

(
2

1+ |z|2

)4

d z ≤ Cε

t j
.
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These together prove the second estimate above. (52) follows similarly.
Finally

〈∇K,∇x5〉=−
4

∑
i=1

aixix5−2
4

∑
i=1

bix2
i x5 +∇r ·∇x5.

We may fix M large so that |∇r ·∇x5| ≤ ε|x′|3 when |y|> M. In

0 =
∫

S4
〈∇K,∇x5〉e4w j dvolgc

=
∫
|y|≤M

〈∇K,∇x5〉e4w j dvolgc +
∫
|y|>M

〈∇K,∇x5〉e4w j dvolgc ,
(53)

∣∣∣∣∫|y|≤M
〈∇K,∇x5〉e4w j dvolgc

∣∣∣∣≤C
(

M
t j

)4

, (54)

as before. ∣∣∣∣∫|y|>M
xix5e4w j dvolgc

∣∣∣∣= o(1)
t j

as in the proof of (51). Thus∣∣∣∣∫|y|>M
aixix5e4w j dvolgc

∣∣∣∣= o(1)
t2

j
. (55)

∫
|y|>M

x2
i x5e4w j dvolgc

=
∫
|z|> M

t j

(
2t jzi

1+ t j|z|2

)2 t j|z|2−1
t j|z|2 +1

e4v j

(
2

1+ |z|2

)4

d z

=
∫
|z|> M

t j

(
2t jzi

1+ t j|z|2

)2 t j|z|2−1
t j|z|2 +1

(
e4v j − 6

K(P∗)

)(
2

1+ |z|2

)4

d z

+
6

K(P∗)

∫
|z|> M

t j

(
2t jzi

1+ t j|z|2

)2 t j|z|2−1
t j|z|2 +1

(
2

1+ |z|2

)4

d z

Note that ∫
|z|> M

t j

(
2t jzi

1+ t j|z|2

)2 t j|z|2−1
t j|z|2 +1

(
2

1+ |z|2

)4

d z

� 4
t2

j

∫
|z|> M

t j

z2
i

|z|4

(
2

1+ |z|2

)4

d z

� 1
t2

j

∫
|z|> M

t j

1
|z|2

(
2

1+ |z|2

)4

d z

� 1
t2

j

(∫
∞

0
(

2
1+ r2 )4rd r

)
|S3|

(56)
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Similarly, we can prove∣∣∣∣∣
∫
|z|> M

t j

(
2t jzi

1+ t j|z|2

)2 t j|z|2−1
t j|z|2 +1

(
e4v j − 6

K(P∗)

)(
2

1+ |z|2

)4

d z

∣∣∣∣∣= o(1)
t2

j
, (57)

and ∫
|y|>M

|x′|3e4w j

=
∫
|z|> M

t j

(
2t j|z|

1+ t2
j |z|2

)3

e4v j

(
2

1+ |z|2

)4

d z

=
O(1)

t3
j

.

(58)

To put things together, we multiply (53) by t2
j and use (54), (55), (56), and (58) to see

that

0 = o(1)−2∆K(Pj)
(
|S3|

∫
∞

0
(

2
1+ r2 )4rd r +o(1)

)
+

o(1)
t j

,

which shows (45).

Proof (of Proposition 1) First, by Theorem 2, there is a C > 0 depending on K and
0 < α < 1 such that any solution w to (3) with K substituted by K[s] and 0 < s ≤ 1
satisfies

||w||C2,α (S4) < C. (59)

Since v = w◦ϕP,t + ln |dϕP,t | is chosen such that

�
∫

S4
e4v(y)ydvolgc = 0,

we obtain, in terms of w and (P, t),

0 = �
∫

S4
e4w(x)

ϕ
−1
P,t (x)dvolgc = �

∫
S4

e4w(x)
ϕP,t−1(x)dvolgc , (60)

Due to (59), there is a δ > 0 such that

�
∫

S4
e4w(x) ≥ δ .

If there existed a sequence of solutions w j for which t j →∞, we would have, comput-
ing in stereographic coordinates in which Pj is placed at the north pole, ϕPj ,t−1

j
(x)→

(0, · · · ,0,−1) except at x = Pj, therefore, in view of (59),

�
∫

S4
e4w(x)

ϕP,t−1(x)dvolgc → (0, · · · ,0,−�
∫

S4
e4w(x)) 6= 0,
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contradicting (60) above. This implies the existence of some t0 such that t ≤ t0. Using
this and (59) in the relation between w and v, we find an upper bound for ||v||C2,α (S4).
Finally using the equation for v:

σ2(Av) = K[s] ◦ϕP,te4v,

in which the right hand side has an upper bound in C2,α(S4) due to C2,α(S4) estimates
of v and the bound t ≤ t0, we find higher derivative bounds for v. Then as s → 0, a
subsequence of v would converge to a limit v∞ in C2,α(S4), which satisfies

σ2(Av∞
) = 6e4v∞ and �

∫
S4

e4v∞(x)xdvolgc = 0.

This implies that v∞ ≡ 0. Since this limit v∞ is unique, we obtain that v → 0 in
C2,α(S4) as s → 0, which is the remaining part of (15).

4 Proof of the W 2,6 estimates of Theorem 1 and of Corollary 1

For the W 2,6 bound for v j, we write v for v j and σ2 for σ2(e−2v j g−1
c ◦Av j) = K ◦ϕ j,

and adapt the argument for the W 2,p estimates in [9] of Chang-Gursky-Yang and
push the argument to p = 6. We will first prove a W 2,3 estimate for v j, with the bound
depending on an upper bound of σ2 = K ◦ϕ j, a positive lower bound for σ2, and
an upper bound for

∫
S4 |∇0(K ◦ϕ j)|2dvolgc . Then we will extend the W 2,3 estimate

to W 2,6 estimate for the v j in terms of an upper bound of σ2 = K ◦ϕ j, a positive
lower bound for σ2, and an upper bound for

∫
S4 |∇0(K◦ϕ j)|4dvolgc . Since

∫
S4 |∇0(K◦

ϕ j)|4dvolgc =
∫
S4 |∇0K|4dvolgc , we see that a bound for the W 2,3 norm of v j is given

in terms of an upper bound of K, a positive lower bound for K, and an upper bound
for
∫
S4 |∇0K|4. This will suffice for proving (9).

Proof (of the W 2,6 estimates of Theorem 1) First we list a few key ingredients for
these W 2,p estimates, mostly adapted from [9]. As in [9] we explore two differential
identities, which in the case of S4, are

Si j∇
2
i jR = 6 trE3 +R|E|2 +3∆σ2 +3(|∇E|2− |∇R|2

12
)

≥ 6 trE3 +
R3

12
−2σ2R+3∆σ2−

3|∇σ2|2

2σ2
,

(61)

following (5.10) of [9], with

Si j =
∂σ2(A)

∂Ai j
=−Ri j +

1
2

Rg,

and

Si j∇
2
i j|∇v|2

=
R3

144
− trE3

2
− σ2R

12
− R|∇v|4

2
−2Si j∇i|∇v|2∇ jv+Si j∇lA◦i j∇lv

−2e−2vSi j∇iv∇ jv+2Re−2v|∇v|2 +
Re−4v

2
−〈∇v,∇σ2〉−2σ2e−2v,

(62)
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following (5.44) of [9] and the fact that A0
i j = g0

i j in the case of S4. Here the differen-
tiations are in the metric g.

In (61) and (62) we used |E|2 = R2

12 −2σ2 and

|∇E|2− |∇R|2

12
≥−|∇σ2|2

2σ2
. (63)

(63) can be proven as in (7.26) of [9], but can also be seen to be based on the general
fact that {σk}1/k is concave in its argument as follows: set F(Ai j) = {σk(Ai j)}1/k,
then

Si j =
∂σk

∂Ai j
= kFk−1 ∂F

∂Ai j
, and ∇σk = Si j∇Ai j = kFk−1 ∂F

∂Ai j
∇Ai j. (64)

So

∇lSi j = kFk−1 ∂ 2F
∂Ai j∂AIJ

∇lAIJ + k(k−1)Fk−2 ∂F
∂Ai j

∂F
∂AIJ

∇lAIJ .

Thus

∑
l

∇lSi j∇lAi j

=kFk−1 ∂ 2F
∂Ai j∂AIJ

∇lAIJ∇lAi j + k(k−1)Fk−2 ∂F
∂Ai j

∂F
∂AIJ

∇lAIJ∇lAi j

≤ (k−1)|∇σk|2

kσk
using concavity of F and (64).

(65)

In the case of 2k = n = 4, Ai j = Ei j + R
12 gi j, and Si j = R

4 gi j −Ei j. So

∑
l

∇lSi j∇lAi j = ∑
l
{∇lR

4
gi j −∇lEi j}{∇lEi j +

∇lR
12

gi j}=
|∇R|2

12
−|∇E|2,

and by (65)
|∇R|2

12
−|∇E|2 ≤ |∇σ2|2

2σ2
.

Because of Si j, j = 0, which is a consequence of Bianchi identity, we can use (61) and
(62) to obtain

0 =
∫

S4
Si j∇

2
i j(R+12|∇v|2)

≥
∫

S4

R3

6
−6R|∇v|4−24Si j∇i|∇v|2∇ jv

+12Si j∇lA◦i j∇lv+24Re−2v|∇v|2−24e−2vSi j∇iv∇ jv

−12〈∇v,∇σ2〉+(6e−4v−2σ2)R−24e−2v
σ2−

3|∇σ2|2

2σ2
,
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from which we can estimate
∫
S4 R3 in terms of the other terms:

∫
S4

R3

6
≤
∫

S4
6R|∇v|4 +24Si j∇i|∇v|2∇ jv

−12Si j∇lA◦i j∇lv−24Re−2v|∇v|2 +24e−2vSi j∇iv∇ jv

+12〈∇v,∇σ2〉− (6e−4v−2σ2)R+24σ2e−2v +
3|∇σ2|2

2σ2
.

(66)

The integrations are done in the g metric, but due to the L∞ estimates on v, the inte-
grals in g metric are comparable to those in gc. The terms that require careful treat-
ments are ∫

S4
Si j∇i|∇v|2∇ jv

and ∫
S4

R|∇v|4 ≤
[∫

S4
R3
]1/3 [∫

S4
|∇v|6

]2/3

≤ ε

3

∫
S4

R3 +
2ε−1/2

3

∫
S4
|∇v|6. (67)

The term
∫
S4 Si j∇i|∇v|2∇ jv can be estimated as (5.53) in [9]∫

S4
Si j∇i|∇v|2∇ jv

=−
∫

S4
|∇v|2Si j∇

2
i jv

=−
∫

S4
|∇v|2Si j{−

Ai j

2
+

A0
i j

2
−∇iv∇ jv+

|∇v|2

2
gi j}

=
∫

S4
|∇v|2{σ2 +Si j∇iv∇ jv−

R|∇v|2

2
−

Si jA0
i j

2
}

=
∫

S4
|∇v|2{σ2−Ri j∇iv∇ jv−

Si jA0
i j

2
}

≤
∫

S4
|∇v|2σ2.

(68)

where in the last line we used (Ri j)≥ 0 when g∈Γ
+

2 in dimension 4 and Si jA0
i j ≥ 0 on

S4. The terms in the second line of (66) can be estimated in terms of
∫
S4 Re−2v|∇v|2,

which in turn can be estimated as∫
S4

Re−2v|∇v|2 . {
∫

S4
R3}1/3{

∫
S4
|∇v|3}2/3 ≤ ε

3

∫
S4

R3 +
2ε−1/2

3

∫
S4
|∇v|3. (69)

The terms in the last line of (66) can be estimated in terms of upper bound of σ2, a
lower bound of σ2, and

∫
S4 |∇σ2|2, in a trivial way. The term

∫
S4 |∇v|6 in (67) can be

estimated as ∫
S4
|∇v|6 ≤

[∫
S4
|∇v|4

]3/4 [∫
S4
|∇v|12

]1/4

, (70)
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and, as in (5.73) in [9], [∫
S4
|∇v|12

]1/4

.
∫

S4
|∇2v|3 + |∇v|6 + e−3v|∇v|3

.
∫

S4
R3 + |∇v|6 +1,

(71)

here in the last line we used

Si j = S0
i j +2∇

2
i jv−2(∆v)gi j +2∇iv∇ jv+ |∇v|2gi j, (72)

R = R0e−2v−6∆v+6|∇v|2, (73)
(74)

and
0 ≤ (Si j)≤ (Rgi j).

Using (71) in (70) and noting that
∫
S4 |∇v|4 is small, we obtain

∫
S4
|∇v|6 .

[∫
S4
|∇v|4

]3/4 ∫
S4

R3 +1, (75)

Using (75), together with (68), (69) and (67) in (66), and noting the smallness of∫
S4 |∇v|4, we obtain an upper bound for

∫
R3 in terms of

∫
|∇σ2|2, upper bound

for σ2 and positive lower bound for σ2. Note that
∫
S4 |∇σ2|4 =

∫
S4 |∇0(K ◦ φ j)|4 =∫

S4 |∇0K|4 dvolgc and using a transformation law like (75), we can estimate∫
|∆0v|3 dvolgc .

∫ (
R3 + |∇0v|6

)
dvolgc .

∫
R3 +1,

bounded above in terms of
∫
|∇0K|4 dvolgc , upper bound for K and positive lower

bound for K. Then we can use the W 2,p theory for the Laplace operator to obtain the
full W 2,3 estimates for v.

Remark 7 In fact, for any solution w to (3), one can obtain an upper bound for the
W 2,3 norm of w in terms of a positive upper and lower bound for K, an upper bound
for

∫
|∇0K|2 dvolgc , and an upper bound for |w| and

∫
|∇0w|4 dvolgc . A proof would

proceed as above, instead of using the smallness of
∫
|∇0w|4 dvolgc in proving (75)

and the subsequent bound on
∫

R3 via (66), one uses Proposition 5.20, Proposition
5.22, and Lemma 5.24 in [9] to complete the argument.

To obtain the W 2,6 estimates of v by iteration, we multiply (61) and (62) by Rp

and estimate
∫

Rp+3 in terms of the other terms:

∫
RpSi j∇

2
i jR ≥

∫ Rp+3

12
+6Rp trE3−2σ2Rp+1 +3Rp

∆σ2−
3Rp|∇σ2|2

2σ2
,
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and∫
RpSi j∇

2
i j|∇v|2

=
∫ Rp+3

144
− RptrE3

2
− σ2Rp+1

12
− Rp+1|∇v|4

2
−2RpSi j∇i|∇v|2∇ jv

+RpSi j∇lA◦i j∇lv−2RpSi j∇iv∇ jv+2Rp+1|∇v|2−Rp〈∇v,∇σ2〉−2σ2Rp +
Rp+1

2
.

From these we obtain∫ Rp+3

6

≤
∫

RpSi j∇
2
i j{R+12|∇v|2}−3Rp

∆σ2 +6Rp+1|∇v|4 +24RpSi j∇i|∇v|2∇ jv

+3σ2Rp+1 +
3Rp|∇σ2|2

2σ2
−12RpSi j∇lA◦i j∇lv+24RpSi j∇iv∇ jv−24Rp+1|∇v|2

+12Rp〈∇v,∇σ2〉+24σ2Rp−6Rp+1.

(76)

The most crucial terms are∫
RpSi j∇

2
i jR =−p

∫
Rp−1Si j∇iR∇ jR, (77)∫

RpSi j∇
2
i j|∇v|2

=− p
∫

Rp−1Si j∇iR∇ j|∇v|2

≤p
∫

Rp−1 [Si j∇iR∇ jR]1/2 [Si j∇i|∇v|2∇ j|∇v|2
]1/2

≤p
[∫

Rp−1Si j∇iR∇ jR
]1/2 [∫

Rp−1Si j∇i|∇v|2∇ j|∇v|2
]1/2

≤ p
2

∫
Rp−1Si j∇iR∇ jR+2p

∫
Rp|∇2v|2|∇v|2

≤ p
2

∫
Rp−1Si j∇iR∇ jR+C p

∫
Rp(R2 + |S0

i j|2 + |∇v|2)|∇v|2.

(78)

and ∫
−Rp

∆σ2

=p
∫

Rp−1
∇σ2∇R

≤p
[∫

|∇σ2|4
]1/4 [∫

|∇R|2Rp−2
]1/2 [∫

R2p
]1/4

≤p
[∫

|∇σ2|4
]1/4 [∫ Rp−1Si j∇iR∇ jR

3σ2

]1/2 [∫
R2p
]1/4

≤ε p
2

∫ Rp−1Si j∇iR∇ jR
3σ2

+
p

2ε

[∫
|∇σ2|4

]1/2 [∫
R2p
]1/2

(79)
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Next we claim that the Sobolev inequality in dimension 4 implies[∫
R2p
]1/2

. p2
∫
|∇R|2Rp−2 +

∫
Rp|∇v|2 +

∫
Rpe−2v. (80)

Using (80) in (79), we obtain∫
−Rp

∆σ2

≤ε p
∫ Rp−1Si j∇iR∇ jR

3σ2
+

ε

2p

∫
Rp|∇v|2 +

p3

8ε3

∫
|∇σ2|4.

(81)

Using (77), (78), and (81) in (76) and choosing ε > 0 small, we obtain∫ Rp+3

6
+

p
4

Rp−1Si j∇iR∇ jR

.
∫

Rp+1|∇v|4 +Rp+2|∇v|2 +Rp|∇σ2|2 +Rp|∇v||∇σ2|+Rp+1 +1

.{
∫

Rp+3}
p+1
p+3 {

∫
|∇v|2(p+3)}

2
p+3 +{

∫
Rp+3}

p+2
p+3 {

∫
|∇v|2(p+3)}

1
p+3

+{
∫

R2p}1/2{
∫
|∇σ2|4}1/2 +{

∫
R2p}1/2{

∫
|∇v|4}1/4{

∫
|∇σ2|4}1/4 +

∫
Rp+1 +1

(82)

Now for p ≤ 3, we have 2p ≤ p + 3 and 2(p + 3) ≤ 12. Using the earlier bounds
on

∫
R3 and

∫
|∇v|12 from (71), we obtain an upper bound for

∫
R6 in terms of∫

|∇0K|4 dvolgc , an upper bound and a positive lower bound of K, which again gives
a bound for v in W 2,6.

Proof (of Corollary 1) Let δ > 0 be small such that the argument for (75) and the
subsequent W 2,3 estimate for v via (66) would go through when

∫
S4 |∇v|4 ≤ δ . For

any admissible solution w to (3), Theorem 1 implies that there is a constant B > 0
depending on the C2 norm of K, a positive lower bound of K, and δ > 0, such that if
maxw = w(Q) > B, then the normalized v defined as in Theorem 1: v = w◦ϕ + ln |dϕ|
with v(Q) = 1

4 ln 6
K(Q) , would satisfy∣∣∣∣v− 1

4
ln

6
K(Q)

∣∣∣∣≤ δ , and
∫

S4
|∇v|4 ≤ δ . (83)

v also satisfies (8) and then estimate (66), with σ2 standing for K ◦ϕ , is valid for v.
Then the W 2,3 estimate in Theorem 1 would be valid for v, and one obtains a bound
for the W 2,3 norm of v in terms of an upper bound for K, a positive lower bound
for K, and an upper bound for

∫
S4 |∇0K ◦ϕ|4 dvolgc , and since

∫
S4 |∇0K ◦ϕ|4 dvolgc =∫

S4 |∇0K|4 dvolgc , one can use this estimate to obtain the bound for F [v]. Since II[w] =
II[v] and Y [w] = Y [v], the bound for F [w] now follows. When the solution w satisfies
w ≤ B, then one can use the Harnack type estimate in [20] to obtain a lower bound
for w, and use inequality (43) to obtain an upper bound for

∫
S4 |∇w|4 dvolgc . Then one

can use Remark 7 to obtain the W 2,3 estimate for w in terms of an upper bound for K,
a positive lower bound for K, and an upper bound for

∫
S4 |∇0K|2 dvolgc . Finally these

W 2,3 estimates for w give directly the bound for F [w].
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