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Abstract. We study effective bounds for Brauer groups of Kummer surfaces associated to
Jacobians of genus 2 curves defined over number fields.

1. Introduction

In 1971, Manin observed that failures of Hasse principle and weak approximation can be
explained by Brauer–Manin obstructions for many examples [Man71]. Let X be a smooth
projective variety defined over a number field k. The Brauer group of X is defined as

Br(X) := H2
ét(X,Gm).

Then one can define an intermediate set using class field theory

X(k) ⊂ X(Ak)
Br(X) ⊂ X(Ak),

where Ak is the adèlic ring associated to k. It is possible thatX(Ak) 6= ∅, butX(Ak)
Br(X) = ∅,

whereby the Hasse principle fails for X. When this happens, we say that there is a Brauer–
Manin obstruction to the Hasse principle. When X(Ak)

Br(X) 6= X(Ak), we say that there is a
Brauer–Manin obstruction to weak approximation. There is a large body of work on Brauer–
Manin obstructions to the Hasse principle and weak approximation (see, e.g., [Man74],
[BSD75], [CTCS80], [CTSSD87], [CTKS87], [SD93], [SD99], [KT04], [Bri06], [BBFL07],
[KT08], [Log08], [VA08], [LvL09], [EJ10], [HVAV11], [ISZ11], [EJ12b], [HVA13], [CTS13],
[MSTVA14], [SZ14], [IS15], [Wit16]) and it is an open question if for K3 surfaces, Brauer–
Manin obstructions suffice to explain failures of Hasse principle and weak approximation,
i.e., X(k) is dense in X(Ak)

Br(X) (see [HS15] for some evidence supporting this conjecture.)
The main question discussed in this paper is of computational nature: how can one com-

pute Br(X) explicitly? It is shown by Skorobogatov and Zarhin in [SZ08] that Br(X)/Br(k)
is finite for any K3 surface X defined over a number field k, but they did not provide any
effective bound for this group. Such an effective algorithm is obtained for degree 2 K3 sur-
faces in [HKT13] using explicit constructions of moduli spaces of degree 2 K3 surfaces and
principally polarized abelian varieties. In this paper, we provide an effective algorithm to
compute a bound for the order of Br(X)/Br(k) when X is the Kummer surface associated
to the Jacobian of a curve of genus 2:

Theorem 1.1. There is an effective algorithm that takes as input an equation of a smooth
projective curve C of genus 2 defined over a number field k, and outputs an effective bound
for the order of Br(X)/Br(k) where X is the Kummer surface associated to the Jacobian
Jac(C) of the curve C.
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We obtain the following corollary as a consequence of results in [KT11] and [PTvL15]:

Corollary 1.2. Given a smooth projective curve C of genus 2 defined over a number field
k, there is an effective description of the set

X(Ak)
Br(X)

where X is the Kummer surface associated to the Jacobian Jac(C) of the curve C.

Note that given a curve C of genus 2, the surface Y = Jac(C)/{±1} can be realized as a
quartic surface in P3 (see [FS97] Section 2) and the Kummer surface X associated to Jac(C)
is the minimal resolution of Y , so one can find defining equations for X explicitly.

The quartic surface Y has sixteen nodes, and by considering the projection from one of
these nodes, we may realize Y as a double cover of the plane. Thus X can be realized as a
degree 2 K3 surface and our Theorem 1.1 follows from [HKT13]. However there are a few
difficulties when one tries to implement [HKT13] for Kummer surfaces.

The first is that it is known that if we let X be the Kummer surface associated to an
abelian surface A, then its Kuga–Satake variety is isogeneous to a power of A. However, to
obtain the bound for the Brauer group, it is important to know what the integral lattice of
cohomology and the endomorphism ring of the Kuga–Satake variety are, so being isogeneous
is not enough to implement their ideas. One actually needs to explicitly bound the degree
of an isogeny between the Kuga–Satake variety and the power of A. Another issue is the
field of definition for the Kuga–Satake variety. It is only known that the Kuga–Satake
variety is defined over some finite extension of the ground field, and controlling the degree
of this extension is one of main struggles of [HKT13]. We avoid the use of the Kuga–Satake
construction which makes our algorithm more practical than the method in [HKT13]. In
particular, our algorithm provides a large, but explicit bound for the Brauer group of X.
(See the example we discuss in Section 6.)

The method in this paper combines many results from the literature. The first key obser-
vation is that the Brauer group Br(X) admits the following stratification:

Definition 1.3. Let X denote X ×k Spec k where k is a given separable closure of k. Then
we write Br0(X) = im (Br(k)→ Br(X)) and Br1(X) = ker

(
Br(X)→ Br(X)

)
.

Elements in Br1(X) are called algebraic elements; those in the complement Br(X)\Br1(X)
are called transcendental elements.

Thus to obtain an effective bound for Br(X)/Br0(X), it suffices to study Br1(X)/Br0(X)
and Br(X)/Br1(X). The group Br1(X)/Br0(X) is well-studied, and it admits the following
isomorphism:

Br1(X)/Br0(X) ∼= H1(k,Pic(X)).

Note that for a K3 surface X, we have an isomorphism Pic(X) = NS(X). Thus as soon
as we compute NS(X) as a Galois module, we are able to compute Br1(X)/Br0(X). An
algorithm to compute NS(X) is obtained in [PTvL15], but we consider another algorithm
which is based on [Cha14].

To study Br(X)/Br1(X), we use effective versions of Faltings’ theorem and combine them
with techniques in [SZ08] and [HKT13]. Namely, we have an injection

Br(X)/Br1(X) ↪→ Br(X)Γ
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where Γ is the absolute Galois group of k. As a consequence of [SZ12], we have an isomor-
phism of Galois modules

Br(X) = Br(A),

where A = Jac(C) is the Jacobian of C. Thus it suffice to bound the size of Br(A)Γ. To
bound the cardinal of this group, we consider the following exact sequence as in [SZ08]:

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A, µ`n)Γ → Br(A)Γ

`n →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A, µ`n)),

where ` is any prime and Br(A)`n is the `n-torsion part of the Brauer group of A. Using
effective versions of Faltings’ theorem, we bound the cokernel of fn and the kernel of gn
independently of n.

We emphasize that our algorithm is practical for any genus 2 curve whose Jacobian has
Néron–Severi rank 1, i.e., we can actually implement and compute a bound for such a curve.
For example, consider the following hyperelliptic curve of genus 2 defined over Q:

C : y2 = x6 + x3 + x+ 1.

Let A = Jac(C) and letX = Kum(A) be the Kummer surface associated to A. The geometric
Néron–Severi rank of A is 1. Our algorithm shows that

|Br(X)/Br(Q)| < 210 · 101016107

.

Our effective bound explicitly depends on the Faltings height of the Jacobian of C, so
it does not provide any uniform bound as conjectured in [TVA15], [AVA16], and [VA16].
However, it is an open question whether the Faltings height in Theorem 2.13 is needed. If
there is a uniform bound for Theorem 2.13 which does not depend on the Faltings height,
then our proof provides a uniform bound for the Brauer group. Such a uniform bound is
obtained for elliptic curves in [VAV16].

Even though our method can handle any curve of genus 2 defined over a number field k,
we will focus on the case of curves whose Jacobians have the geometric Picard rank 1. In
other cases (non-simple cases), we can provide better bounds but we will not discuss them
in this paper. The reader who is interested in these cases is encouraged to refer to the arXiv
version of this paper. ([CFTTV16])

The paper is organized as follows. In Section 2 we review effective versions of Faltings’
theorem and consequences that will be useful for our purposes. In Section 3 we review
methods from the literature in order to compute the Néron–Severi lattice as a Galois module.
Section 4 proves our bounds for the size of the transcendental part. Section 5 is devoted to
Magma computations in the lowest rank case and Section 6 explores an example.
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2. Effective version of Faltings’ theorem

One important input of our main theorem is an effective version of Faltings’ isogeny
theorem. Such a theorem was first proved by Masser and Wüstholz in [MW95] and the
computation of the constants involved was made explicit by Bost [Bos96] and Pazuki [Paz12].
The work of Gaudron and Rémond [GR14] gives a sharper bound. Although the general
results are valid for any abelian variety over a number field, we will only focus on abelian
surfaces.

The main result of this section is in Section 2.4. The reader may skip Sections 2.2, 2.3
on a first reading and refer to them later for the proof of the main result. We use the
idea of Masser and Wüstholz to reduce the effective Faltings theorem to bound the minimal
isogeny degree between certain abelian varieties and to bound the volume of the Z-lattice
of the endomorphism ring of the given abelian surface. These two things are bounded by a
constant only depending on the Faltings height and the degree of the field of definition using
the idea of Gaudron and Rémond. To compute a bound of Faltings height, we use a formula
due to Pazuki and Magma.

Let A be an abelian surface defined over a number field k. Without further indication, A
will be the Jacobian of some hyperelliptic curve C, principally polarized by the theta divisor,
and we use L to denote the line bundle on A corresponding to the theta divisor. Throughout
this section, when we say there is an isogeny between abelian varieties A1 and A2 of degree
at most D, it means that there exist isogenies A1 → A2 and A2 → A1 both whose degrees
are at most D.

2.1. Faltings height. The bounds in the effective Faltings theorems discussed in our paper
depend on the stable Faltings height of the given abelian surface. We denote the stable
Faltings height of A by h(A) (with the normalization as in the original work of Faltings
[Fal86]). In order to obtain a bound without Faltings height, we now describe how to obtain
an upper bound of h(Jac(C)) using the work of Pazuki [Paz14] and Magma.

Assume that the hyperelliptic curve C is given by y2 + G(x)y = F (x), where G(x), F (x)
are polynomials in x of degrees at most 3 and 6 respectively.

Proposition 2.1. Given a complex embedding σ of k, we use τσ to denote a period matrix
of the base change CC via σ. Let ∆ be 2−12 Disc6(4F + G2), where Disc6 means taking the
discriminant of a degree 6 polynomial. Then, we have

h(Jac(C)) ≤ − log(2π2) +
1

[k : Q]

( 1

10
log(∆)−

∑
σ

log(2−1/5|J10(τσ)|1/10 det(=τσ)1/2)
)
,

where σ runs through all complex embeddings of k.
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Notice that the functions AnalyticJacobian and Theta in Magma compute period matrices
τσ of Jac(C) and J10(τσ), which is the square of the product of all even theta functions.

Proof. Let k′ be a finite extension of k such that after base change to k′, the variety Jac(C)k′
has semistable reduction everywhere. For example, k′ can be taken to be the field of definition
of all 12-torsion points. Then the stable Faltings height of Jac(C) is given by the Faltings
height of Jac(C) over k′.

The inequality in the proposition follows from Pazuki’s formula [Paz14, Thm. 2.4] once we
bound the non-archimedean local term 1

d

∑
v|∆min

dvfv logNk′/Q(v), where d = [k′ : Q], dv =

[k′v : Qp] if v|p, ∆min is the minimal discriminant of C over k′, and 10fv ≤ ordv(∆min). By
definition of minimal discriminant, we have ∆min|∆ and hence the local term is bounded by
1

d

∑
v|∆

dv
ordv(∆)

10
logNk′/Q(v) =

log(∆)

10[k : Q]
. �

Remark 2.2. Following [Kau99, Sec. 4,5], one can compute the exact local contribution in
Pazuki’s formula at v - 2 by studying the roots of F (x) assuming G = 0.

2.2. Preliminary results. In this subsection, we recall some key facts about Euclidean
lattices and results in transcendence theory that will be used to obtain an effective version
of Faltings’ theorem.

Let B be the abelian variety A×A principally polarized by pr∗1L⊗pr∗2L and B′ an abelian

variety over k isogenous to B over k. Let B̂′ be the dual abelian variety of B′ and let Z(B′)

be the principally polarizable abelian variety (B′)4 × (B̂′)4. We fix a principal polarization
on Z(B′).

Since A,B,Z(B′) are principally polarized, one defines the Rosati involution (−)† on
Endk(A) (resp. from Homk(B,Z(B′)) to Homk(Z(B′), B)). The quadratic form Tr(ϕϕ†)
defines a norm on Endk(A) (resp. Homk(B,Z(B′))).1 We use v(A) to denote vol(Endk(A))
with respect to this norm. Let k1 be a Galois extension of k. We denote by Λ (resp. Λ′, Λ′k1

)
the smallest real number which bounds from above the norms of all elements in some Z-basis
of some sub-lattice (of finite index) of Endk(A) (resp. Homk(B,Z(B′)), Homk1(B,Z(B′)))2.

By definition, v(A) ≤ Λr, where r is the Z-rank of Endk(A). Moreover, Λ′k1
is also the

smallest real number which bounds from above the norms of all elements in some Z-basis of
Homk1(A,Z(B′)).

Lemma 2.3 ([GR14, Lem. 3.3]). We have Λ′ ≤ [k1 : k]Λ′k1
.

The following three results are consequences of Faltings’ isogeny formula and Bost’s lower
bound for Faltings heights.

Lemma 2.4 (Faltings). Let φ : A1 → A2 be an isogeny between abelian varieties. Then

h(A1)− 1

2
log deg(φ) ≤ h(A2) ≤ h(A1) +

1

2
log deg(φ).

Lemma 2.5 (Bost). For any abelian variety A1, one has h(A1) ≥ −3
2

dimA1.

1This quadratic form is positive definite by [Mum70, p. 192] and [GR14, Prop. 2.5].
2This means that if r is the rank of Endk(A), then there exists a free family w1, . . . , wr ∈ Endk(A) such

that the norm of wi is no greater than Λ.
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Lemma 2.6 (See for example [GR14, p. 2096]). Let H be a sub abelian variety of a principally
polarized abelian variety A1 and degH the degree of H with respect to the polarization line
bundle on A1. Then we have

h(H) ≤ h(A1) + log degH +
3

2
(dimA1 − dimH).

The following result is a direct consequence of the Theorem of Periods by Gaudron and
Rémond. See for example [GR14, p. 2095–2096].

Lemma 2.7 (Theorem of Periods). Let H be a polarized abelian variety over k1. Fix an
embedding of k1 into C and let ΩH be the period lattice of H(C) endowed with the norm || · ||
given by the real part of the Riemann form of the polarization. Assume that ω ∈ ΩH is not
contained in the period lattice of any proper sub abelian variety of H. Then we have

(degH)1/ dimH ≤ 50[k1 : Q]h2 dimH+6 max(1, h(H), log degH)||ω||2.

Proof. Gaudron and Rémond’s Theorem of Periods implies that the same inequality holds
by replacing ||ω||2 by δ2, where δ is the supremum among all proper sub abelian varieties
H ′ of H of the minimum distance from ω ∈ ΩH\Ω′H to the tangent space of H ′. By our
assumption on ω, one has δ ≤ ||ω||. �

The following lemma is a direct consequence of Autissier’s Matrix Lemma and it will be
used to bound the norm of elements in period lattices.

Lemma 2.8 (Autissier). Let A1 be a principally polarized abelian variety over k1 and for any
embedding σ : k1 → C, let Ωσ be the period lattice of A1,σ(C). We denote by Λσ the smallest
real number which bounds the norms of all elements in some Z-basis of some sub-lattice (of
finite index) of Ωσ. Then for any ε ∈ (0, 1)∑

σ

Λ2
σ ≤

6[k1 : Q](2 dimA1)2

(1− ε)π

(
h(A1) +

dimA1

2
log
(2π2

ε

))
.

Proof. This follows from [Aut13, Cor. 1.4] and [GR14, Cor. 3.6]. See also the proof of
[GR14, Lem. 8.4]. �

Lemma 2.9 ([Sil92, Thm. 4.1, 4.2, Cor. 3.3]). Given abelian varieties A1, A2 of dimension
g, g′ defined over k, let K be the smallest field where all the k-endomorphisms of A1 × A2

are defined. Then [K : k] ≤ 4(9g)2g(9g′)2g′ .

The following elementary lemma is useful.

Lemma 2.10 ([GR14, Lem. 8.5]). Let u ≥ e1/2 and v ≥ 0 be real numbers. Assume that
x > 0 and x ≤ u(v + log x). Then x ≤ 2u(log u+ v).

2.3. The bound of isogeny degrees. This subsection includes some upper bounds of the
minimal isogeny degree between B and any B′ over k isogenous to B. Here we will obtain
an upper bound depending on h(B′) and in the proof of main theorem in next subsection,
we will use the properties of the Faltings height to obtain a bound only depending on h(A)
and [k : Q]. This upper bound is a key input to obtain our effective Faltings theorem.

An explicit bound of minimal isogeny degrees is given for general abelian varieties in
[GR14, Thm. 1.4] so readers may use their bound and Lemma 2.16 later to finish the proof
of Theorem 2.13 when Endk(A) = Z. However, we give a proof here since the same technique
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is used to bound Λ, which in turn will be used to deduce the effective Faltings theorem from
the upper bound of minimal isogeny degree when Endk(A) 6= Z.

Proposition 2.11. There exists an isogeny B′ → B over k of degree at most 248(Λ′)16Λ16r,
where Λ,Λ′ are defined in Section 2.2 and r is the Z-rank of Endk(A).

Proof. This follows from [GR14, Prop. 6.2] by noticing that the Ŵi term there is not needed
since A is principally polarized and by the fact that v(A) ≤ Λr. �

Lemma 2.12. Let mA and mA,B′ denote max(1, h(A)) and max(1, h(A), h(B′)) respectively.
We have

Λ ≤

{
2 if r̄ = 1,

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4
mA + log[k : Q] + logmA + 60

))8/r̄
if r̄ = 2 or 4.

and

ΛB,B′ ≤ 411 · 912
(
4.4 · 1046[k : Q]mA,B′ (9mA,B′ + 8 logmA,B′ + 8 log[k : Q] + 920)

)16/r̄
.

Proof. Recall that r̄ denotes the Z-rank of Endk̄(A). To deduce the bound of Λ, we first
study the case r̄ = 1. In this case, Endk̄(A) = Z and by definition the norm of the identity

map is
√

Tr(id) =
√

4 = 2. In other words, Λ = 2.
We postpone the discussion of Λ for r̄ = 2, 4, since it is a simplified version of the following

discussion on the bound of Λ′. The estimate of Λ′ is essentially [GR14, Lem. 9.1]. We modify
its proof here to obtain a sharper bound for this special case.

Let k1 be the field where all the k-endomorphisms of A×B′ are defined. Then by Lemma
2.9, we have [k1 : k] ≤ 4 · 184 · 368 = 411 · 912. For any complex embedding σ : k1 → C,
we may view A and Z(B′) as abelian varieties over C and let ΩA,σ and ΩZ(B′),σ be the
period lattices. The principal polarization induces a metric on ΩA,σ (resp. ΩZ(B′),σ). More
precisely, the polarization line bundle gives rise to the Riemann form (a Hermitian form) on
the tangent space of A (resp. Z(B)) and its real part defines a norm on the real tangent
space and hence on ΩA,σ (resp. ΩZ(B′),σ). We use Λ(ΩA,σ) (resp. Λ(ΩZ(B′),σ)) to denote the
smallest real number which bounds from above the norms of all elements in some Z-basis of
some sublattice (of finite index) of ΩA,σ (resp. ΩZ(B′),σ).

Let ω1, . . . , ω4 (resp. χ1, . . . , χ64) be a free family in ΩA,σ (resp. ΩZ(B′),σ) such that
||ωi|| ≤ Λ(ΩA,σ) (resp.||χi|| ≤ Λ(ΩZ(B′),σ)). Let ω be (ω1, χ1, . . . , χ64) ∈ ΩA,σ ⊕ (ΩZ(B′),σ)64

and let H be the smallest abelian subvariety of A × (Z(B′))64 whose Lie algebra (over C)
contains ω. Since χ1, . . . , χ64 generate a sublattice of finite index of ΩZ(B′),σ, then for any
χ ∈ ΩZ(B′),σ, there exist `,m1, . . . ,m64 such that `χ+

∑
miχi = 0 and hence H satisfies the

assumption of [GR14, Prop. 7.1]. Therefore

Λ′k1
≤ (degH)2.

Let h = dimH. By [GR14, Lem. 8.1], we have 2 ≤ h ≤ 8/r̄ ≤ 8 and by Lemma 2.7,

(degH)1/h ≤ 50[k1 : Q]h2h+6 max(1, h(H), log degH)||ω||2.

Now we bound ||ω||. Notice that by definition, ||ω||2 = ||ω1||2 +
∑

i ||χi||2 ≤ Λ(ΩA,σ)2 +
64Λ(ΩZ(B′),σ)2. From now on, we fix a σ such that Λ(ΩA,σ)2 + 64Λ(ΩZ(B′),σ)2 is the smallest.
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Then by Lemma 2.8, we have that, for any ε ∈ (0, 1),

||ω||2 ≤ 6

(1− ε)π

(
16h(A) + 87h(B′) + (16 + 164) log

(
2π2

ε

))
.

By taking ε = 1
40

, we have ||ω||2 ≤ 5 × 106 max(1, h(A), h(B′)). Combining the above in-
equalities, we have the bound

(degH)r̄/8 ≤ 1.85×1028[k1 : Q] max(1, h(A), h(B′)) (9 max(1, h(A), h(B′)) + log degH + 48) ,

where we use Lemma 2.6 to obtain that

hF (H) ≤ 9 max(1, h(A), h(B′)) + log degH + 48.

Then by Lemma 2.10, we have

degH ≤
(

3.7 · 1028[k1 : Q]mA,B′

(
9mA,B′ + 48 +

8

r̄
log

(
1.85 · 1028[k1 : Q]

8mA,B′

r̄

)))8/r̄

.

Then we have (by Lemma 2.3)

Λ′ ≤ [k1 : k]Λ′k1
≤ [k1 : k](degH)2

≤ [k1 : k]

(
3.7 · 1028[k1 : Q]mA,B′

(
9mA,B′ + 48 +

8

r̄
log

(
1.85 · 1028[k1 : Q]

8mA,B′

r̄

)))16/r̄

≤ 411 · 912
(
4.4 · 1046[k : Q]mA,B′ (9mA,B′ + 8 logmA,B′ + 8 log[k : Q] + 920)

)16/r̄
.

Now we assume that r̄ = 2 or 4. In this case we cannot compute Λ so we apply the same
strategy as for the bound on Λ′. The proof is practically identical, but the bounds are
different. In this case we bound the degree [k1 : k] ≤ 4 · 188 and there exists an abelian
subvariety H of A× A4 over k1 such that the bounds

Λ ≤ [k1 : k](degH)2

and

degH ≤
(
100 · 419 · 98 · 1063[k : Q]mA (5mA + 4 log[k : Q] + 4 logmA + 240)

)8/r̄

are satisfied. Combining these two inequalities together, we obtain the bound for Λ. �

2.4. Effective Faltings’ theorem in the geometrically simple case. We assume that
A is geometrically simple. Equivalently, A is not isogenous to a product of two elliptic
curves over k̄. Let Γ be its absolute Galois group. For a positive integer m, let Am be the
Z[Γ]-module of m-torsion points of A(k̄).

Theorem 2.13. For any integer m, there exists a positive integer Mm such that the cokernel
of the map Endk(A)→ EndΓ(Am) is killed by Mm. Furthermore, there exists an upper bound
for Mm depending on h(A) and [k : Q] which is independent of m. Explicitly, when r̄ = 1,

Mm ≤ 24664c16
1 c2(k)256

(
2h(A) + 8

17
log[k : Q] + 8 log c1 + 128 log c2(k) + 1503

)512
,

and when r̄ = 2 or 4,

Mm ≤(r/4)r/2248 · c16
1 c2(k)256c8(A, k)17r

·
(

16 log c1 +
256

r̄
log c2(k) + 16r log c8(A, k) + 4h(A) + 16

17
log[k : Q] + 1400

)512/r

.
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Here r (resp. r̄) is the Z-rank of Endk(A) (resp. Endk̄(A)).
The constants c1 and c2 are c1 = 411 · 912 and c2(k) = 7.5 · 1047[k : Q], and c8(A, k) is

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4
mA + log[k : Q] + logmA + 60

))8/r̄
,

where mA is max(1, h(A)).

Remark 2.14. I need the bullets to be aligned. This is a cheat.

• The ranks r and r̄ take values in {1, 2, 4} and the inequality r ≤ r̄ holds.
• The given explicit bounds in the theorem do indeed not depend on m. For ease of

notation we will write Mm = M .
• If we modify the constants we get the following corollary.

Corollary 2.15. For any integer m, there exists a positive integer Mm such that the cokernel
of the map Endk(A)→ EndΓ(Am) is killed by Mm. Furthermore, there exists an upper bound
for Mm depending on h(A) and [k : Q] which is independent of m. Explicitly, when r̄ = 1,

Mm ≤ d1

(
[k : Q](d2 max(1, h(A), log[k : Q]))2

)256
,

and when r̄ = 2 or 4,

Mm ≤ d′3(r, r̄)
(
[k : Q] max(1, h(A), log[k : Q])2

) 256r̄+135r
r̄ .

The constants in the corollary are the following

d1 = 2167923640512288, d2 =
27769

17
+ log(26064332056144)

and d′3(r, r̄) = d′1(r, r̄)
(
d′2(r, r̄) + 162r

r̄

) 512
r̄

where


d′1(r, r̄) =

(r
4

) r
2

212176+ 17
r

(10+ 176
r̄

)3640+ 272
r 512288+ 3264

rr̄ (253× 5.04)
136
rr̄ ,

d′2(r, r̄) =
(352 + 160r)r̄ + 2816r + 11776

r̄
log(2) +

(384 + 256r)r̄ + 256

r̄
log(3)

+
12288 + 3072r

r̄
log(5) +

128r

r̄
log(253× 5.04) +

23884r̄ + 128r + 256

r̄
.

We denote by b(B) the smallest integer such that for any abelian variety B′ defined over
k, if B′ is isogenous to B over k, then there exists an isogeny φ : B′ → B over k of degree at
most b(B).

Lemma 2.16. With notation as above, integers Mm exist satisfying Mm ≤ (r/4)r/2Λrb(B).

Proof. By [MW95, Lem. 3.2], one bounds Mm by i(A)b(B), where i(A) is the class index of
the order Endk(A). By [MW95, eqn. 2.2], i(A) ≤ d(A)1/2, where d(A) is the discriminant of
Endk(A) as a Z-module. Finally, by definition, d(A)1/2 = (r/4)r/2v(A) ≤ (r/4)r/2Λr. �

Proof of Theorem 2.13. We start by bounding the smallest degree of isogenies from B′ to B,
for which we have used the notation b(B). Let φ : B′ → B be an isogeny of the smallest
degree d. We want to bound d in terms of h(A) and [k : Q]. First, by Lemma 2.4, we have

h(B′) ≤ h(B) + 1
2

log deg(φ) = 2h(A) + 1
2

log deg(φ) = 2h(A) + 1
2

log d.
9



Then mA,B′ = max(1, h(A), h(B′)) ≤ 2h(A) + 1
2

log d + 7, since h(A) ≥ −3 by Lemma 2.5.
Then by Lemma 2.12 and the fact mA,B′ ≥ logmA,B′ , we have

Λ′ ≤ c1

(
c2(k)

(
c3(A, k) + 1

2
log d

)2
) 16

r̄
, (2.1)

where r̄ = 1, 2 or 4 and the constants are defined as
c1 = 411 · 912,

c2(k) = 7.5 · 1047[k : Q],

c3(A, k) = 2h(A) + 8
17

log[k : Q] + 1039
17
.

We furthermore introduce the constants
c4(A, k) =

√
c2(k)c3(A, k),

c5(k) =

√
c2(k)

2
,

c6(A, k) = 248 · c16
1 · Λ16r,

and we rewrite inequality (2.1) as:

Λ′ ≤ c1[c4(A, k) + c5(k) log d]
32
r̄ .

Then by Lemma 2.11, we have

d = deg φ ≤ 248(Λ′)16Λ16r ≤ c6(A, k) [c4(A, k) + c5(k) log d]
32·16

r̄ . (2.2)

We define c7(A, k) = 248 · c16
1 · c8(A, k)16r with c8(A, k) defined as

c8(A, k) =

{
2 if r̄ = 1,

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4
mA + log[k : Q] + logmA + 60

))8/r̄
if r̄ = 2, 4.

Then by Lemma 2.12, c6(A, k) ≤ c7(A, k). We rewrite inequality (2.2) as

d
r̄

32·16 ≤ u(A, k)
(

r̄
32·16

log d+ v(A, k)
)
,

where 
u(A, k) = c7(A, k)

r̄
32·16 c5(A, k) · 32 · 16

r̄
,

v(A, k) =
c4(A, k)r̄

32 · 16c5(A, k)
.

Then by Lemma 2.10, we have

d
r̄

32·16 ≤ 2u(A, k)[log u(A, k) + v(A, k)].

Define
C(A, k) = 2u(A, k)[log u(A, k) + v(A, k)],

which only depends on h(A) and [k : Q]. Then we find

b(B) ≤ C(A, k)
32·16

r̄ .

By Lemmas 2.16, 2.12, we obtain:

M ≤ (r/4)r/2Λrb(B) ≤ (r/4)r/2c8(A, k)rC(A, k)
32·16

r̄ .
10



Using r ≤ r̄, in the case r̄ = 1 we find

M ≤ 24664c16
1 c2(k)256

(
2h(A) + 8

17
log[k : Q] + 8 log c1 + 128 log c2(k) + 1503

)512
,

and in the case r̄ = 2 or 4 we find

M ≤ (r/4)r/2248 · c16
1 c2(k)256

·
(

45 · 98
(
5.04 · 1024[k : Q]mA

(
5
4
mA + log[k : Q] + logmA + 60

))8/r̄
)17r

·
(
16 log c1 + 256

r̄
log c2(k) + 16r log c8(A, k) + 4h(A) + 16

17
log[k : Q] + 1400

)512/r̄
.

The constants c1, c2(k) and c8(A, k) only depend on the Faltings height and the degree of
the field extension [k : Q], justifying Remark 2.14. �

Remark 2.17. Let us remark that as announced in the introduction, the same kind of com-
putations can be done in the case where the abelian surface is not geometrically simple. For
further details we refer the reader to the longer version of this paper on arXiv. ([CFTTV16])

3. Effective computations of the Néron–Severi lattice as a Galois module

Our goal of this section is to prove the following theorem:

Theorem 3.1. There is an explicit algorithm that takes input a smooth projective curve Cof
genus 2 defined over a number field k, and outputs a bound of the algebraic Brauer group
Br1(X)/Br0(X) where X is the Kummer surface associated to the Jacobian Jac(C).

A general algorithm to compute Néron–Severi groups for arbitrary projective varieties is
developed in [PTvL15], so here we consider algorithms specialized to the Kummer surface
X associated to a principally polarized abelian surface A.

3.1. The determination of the Néron–Severi rank of A.

Theorem 3.2. The following is a complete list of possibilities for the rank ρ of NS(A). For
any prime p we denote by ρp the reduction of ρ modulo p.

(1) When A is geometrically simple, we consider D = Endk̄(A) ⊗ Q, which has the
following possibilities:
(a) D = Q and ρ = 1. There exists a density one set of primes p with ρp = 2.
(b) D is a totally real quadratic field. Then ρ = 2 and there exists a density one set

of primes p with ρp = 2.
(c) D is a indefinite quaternion algebra over Q. Then ρ = 3 and there exists a

density one set of primes p with ρp = 4.
(d) D is a degree 4 CM field. Then ρ = 2 and there exists a density one set of

primes p with ρp = 2. In fact this holds for the set of p’s such that A has
ordinary reduction at p.

(2) When A is isogenous over k̄ to E1 × E2 for two elliptic curves. Then
(a) if E1 is isogenous to E2 and CM, then ρ = 4 and ρp = 4 for all ordinary reduction

places.
(b) if E1 is isogenous to E2 but not CM, then ρ = 3 and ρp = 4 for all ordinary

reduction places.
(c) if E1 is not isogenous to E2, then ρ = 2 and there exists a density one set of

primes p such that ρp = 2.
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Notice that for all the above statements, by an abuse of language, being density one means
there exists a finite extension of k such that the primes are of density one with respect to
this finite extension.

Proof. We apply [Mum70, p. 201 Thm. 2 and p.208] (and the remark on p. 203 referring to
the work of Shimura) to obtain the list of the rank ρ. When A is geometrically simple, we
can only have A of type I, II, and IV (in the sense of the Albert’s classification). In the case
of Type I, the totally real field may be Q or quadratic. In this case, the Rosati involution
is trivial. This gives case (1)-(a,b). By [Mum70, p. 196], the Rosati involution of Type II
is the transpose and its invariants are symmetric 2-by-2 matrices, which proves case (1)-(c).
In the case of Type IV, D is a degree 4 CM field. In this case, the Rosati involution is the
complex conjugation and this gives case (1)-(d). When A is not geometrically simple, then
A is isogenous to the product of two elliptic curves and all these cases are easy.

Notice that after a suitable field extension, there exists a density one set of primes such
that A has ordinary reduction (due to Katz, see [Ogu82] Sec. 2). We first pass to such an
extension and only focus on primes where A has ordinary reduction. Then ρp = 2 if A mod
p is geometrically simple and ρp = 4 if A is not. Since ρp ≥ ρ, we see that ρp = 4 in (1)-(c),
(2)-(a,b) for any p where A has ordinary reduction. When ρ = 2 (case (1)-(b,d), (2)-(c)),
the dimension over Q of the orthogonal complement T of NS(A) in the Betti cohomology
H2(A,Q) is 4. By [Cha14, Thm. 1], if ρp were 4 for a density one set of primes, then the
endomorphism algebra E of T as a Hodge structure would have been a totally real field of
degree ρp−ρ = 2 over Q. Then T would have been of dimension 2 over E, which contradicts
the assumption of the second part of Charles’ theorem. Now the remaining case is (1)-
(a). By [Cha14], for a density one set of p, the rank ρp only depends on the degree of the
endomorphism algebra E of the transcendental part T of the H2(A,Q). This degree is the
same for all A in case (1)-(a) since E = End(T ) ⊂ End(H2(A,Q)) is a set of Hodge cycles
of A×A and all A in this case have the same set of Hodge cycles. For more details we refer
the reader to [CF16]. Hence we only need to study a generic abelian surface. For a generic
abelian surface, its ordinary reduction is a (geometrically) simple CM abelian surface and
hence ρp is 2. �

Remark 3.3. In the current paper we focus on the geometrically simple case where NS(A)
has rank ρ = 1. In particular we only prove Theorem 3.1 for this case as Proposition 3.7,
where more than just a bound is achieved. The proof for the other cases is included in the
longer version of this paper to be found on arXiv. ([CFTTV16])

3.1.1. Algorithms to compute the geometric Néron–Severi rank of A. Here we discuss an
algorithm provided by Charles in [Cha14]. Charles’ algorithm is to compute the geometric
Néron–Severi rank of any K3 surface X, and his algorithm relies on the Hodge conjecture
for codimension 2 cycles in X × X. However, the situation where the Hodge conjecture
is needed does not occur for abelian surfaces, so his algorithm is unconditional for abelian
surfaces.

Suppose that A is a principally polarized abelian surface and Θ its principal polarization.
We run the following algorithms simultaneously:

(1) Compute Hilbert schemes of curves on A with respect to Θ for each Hilbert polyno-
mial, and find divisors on A. Compute its intersection matrix using the intersection
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theory, and determine the rank of lattices generated by divisors one finds. This gives
a lower bound η for ρ = rk NS(A).

(2) For each finite place p of good reduction for A, compute the geometric Néron–Severi
rank ρp for Ap using explicit point counting on the curve C combined with the Weil
conjecture and the Tate conjecture. Furthermore compute the square class δ(p) of
the discriminant of NS(Ap) in Q×/(Q×)2 using the Artin–Tate conjecture:

P2(q−s) ∼s→1

(
# Br(Ap) · |Disc(NS(Ap))|

q
(1− q1−s)ρ(Ap)

)
,

where P2 is the characteristic polynomial of the Frobenius endomorphism on

H2
ét(Ap,Q`),

and q is the size of the residue field of p. When the characteristic is not equal to 2,
then the Artin-Tate conjecture follows from the Tate conjecture for divisors ([Mil75]),
and the Tate conjecture for divisors in abelian varieties is known ([Tat66]). Note that
as a result of [LLR05], the size of the Brauer group must be a square. This gives us
an upper bound for ρ.

When ρ is even, there exists a prime p such that ρ = ρp. Thus eventually we obtain ρp = η
and we compute ρ.

When ρ is odd, it is proved in [Cha14, Prop. 18] that there exist p and q such that
ρp = ρq = η + 1, but δ(p) 6= δ(q) in Q×/(Q×)2. If this happens, then we can conclude that
ρ = ρp − 1.

Remark 3.4. The algorithm (1) can be conducted explicitly in the following way: Suppose
that our curve C of genus 2 is given as a subscheme in the weighted projective space P(1, 1, 3).
Let Y = Sym2(C) be the symmetric product of C. Then we have the following morphism

f : C × C → Y → Jac(C), (P,Q) 7→ [P +Q−KC ].

The first morphism C×C → Y is the quotient map of degree 2, and the second morphism is
a birational morphism contracting a smooth rational curve R over the identify of Jac(C). We
denote the diagonal of C×C by ∆ and the image of the morphism C 3 P 7→ (P, ι(P )) ∈ C×C
by ∆′ where ι is the involution associated to the degree 2 canonical linear system. Then we
have

f ∗Θ ≡ 5p∗1{pt}+ 5p∗2{pt} −∆.

Note that f ∗Θ is big and nef, but not ample. If we have a curve D on Jac(C), then its
pullback f ∗D is a connected subscheme of C × C which is invariant under the symmetric
involution and f ∗D.∆′ = 0, and vice verse. Hence instead of doing computations on Jac(C),
we can do computations of Hilbert schemes and the intersection theory on C×C. This may
be a more effective way to find curves on Jac(C) and its intersection matrix.

Remark 3.5. The algorithm (2) is implemented in the paper [EJ12a].

3.2. the computation of the Néron–Severi lattice and its Galois action. Here we
discuss an algorithm to compute the Néron–Severi lattice and its Galois structure. We have
an algorithm to compute the Néron–Severi rank of A, so we may assume it to be given. First
we record the following algorithm:
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Lemma 3.6. Let S be a polarized abelian surface or a polarized K3 surface over k, with
an ample divisor H. Suppose that we have computed a full rank sublattice M ⊂ NS(S)
containing the class of H, i.e., we know its intersection matrix, the Galois structure on
M ⊗ Q, and we know generators for M as divisors in S. Then there is an algorithm to
compute NS(S) as a Galois module.

Proof. We fix a basis B1, · · · , Br for M which are divisors on S. First note that the Néron–
Severi lattice NS(S) is an overlattice of M . By Nikulin [Nik80, Sec. 1-4], there are only
finitely many overlattices, (they correspond to isotropic subgroups in D(M) = M∨/M), and
moreover we can compute all possible overlattices of M explicitly. Let N be an overlattice
of M . We can determine whether N is contained in NS(S) in the following way:

Let D1, · · · , Ds be generators for N/M . The overlattice N is contained in NS(S) if and
only if the classes Di are represented by integral divisors. After replacing Di by Di + mH,
we may assume that D2

i > 0 and (Di.H) > 0. If Di is represented by an integral divisor,
then it follows from Riemann–Roch that Di is actually represented by an effective divisor
Ci. We define k = (Di.H) and c = −1

2
D2
i . The Hilbert polynomial of Ci with respect to H

is Pi(t) = kt+ c. Now we compute the Hilbert scheme HilbPi associated with Pi(t). For each
connected component of HilbPi , we take a member Ei of the universal family and compute
the intersection numbers (B1.E), . . . , (Br.E). If these coincide with the intersection numbers
of Di, then that member Ei is an integral effective divisor representing Di. If we cannot find
such an integral effective divisor for any connected component of HilbPi , then we conclude
that N is not contained in NS(S).

In this way we can compute the maximal overlattice Nmax all whose classes are represented
by integral divisors. This lattice Nmax must be NS(S). Since M is full rank, the Galois
structure on M induces the Galois structure on NS(S). �

From now on we focus on the case where A is simple and has Néron–Severi rank ρ = 1.

Proposition 3.7. Let A be a principally polarized abelian surface defined over a number
field k whose geometric Néron–Severi rank is 1. Let X be the Kummer surface associated
to A. Then there is an explicit algorithm that computes NS(X) as a Galois module and
furthermore computes the group Br1(X)/Br0(X).

The abelian surface A is a principally polarized abelian surface, so the lattice NS(A) is
isomorphic to the lattice 〈2〉 with the trivial Galois action. We denote the blow up of 16

2-torsion points on A by Ã and the 16 exceptional curves on Ã by Ei. There is an isometry

NS(Ãk)
∼= NS(A)⊕

16⊕
i=1

ZEi.

We want to determine the Galois structure of this lattice. To this end, one needs to under-
stand the Galois action on the set of 2-torsion elements on A. This can be done explicitly
in the following way: Suppose that A is given as a Jacobian of a smooth projective curve C
of genus 2. Then C is a hyperelliptic curve whose canonical linear series is a degree 2 mor-
phism. We denote the ramification points (over k) of this degree 2 map by p1, · · · , p6. One
can find the Galois action on these ramification points from the polynomial defining C. All
non-trivial 2-torsion points of A are given by pi− pj where i < j. Note that pi− pj ∼ pj − pi
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as classes in Pic(C). Thus, we can determine the Galois structure on the set of 2-torsion
elements of A.

Let X be the Kummer surface associated to A with the degree 2 finite morphism π : Ã→
X. We take the pushforward of NS(Ãk̄) in NS(X):

NS(X) ⊃ π∗NS(Ãk̄) ∼= π∗NS(A)⊕
16⊕
i=1

Zπ∗Ei.

This is a full rank sublattice. Thus the Galois representation for NS(Ãk̄) tells us the rep-
resentation for NS(X). Hence we need to determine the lattice structure for NS(X). This
is done in [LP80, Sec. 3]. Let us recall the description of the Néron–Severi lattice for any
Kummer surface.

According to [LP80, Prop. 3.4] and [LP80, Prop. 3.5], the sublattice π∗NS(Ãk̄) is primitive

in NS(X), and its intersection pairing is twice the intersection pairing of NS(Ãk̄). In partic-

ular, in our situation, we have π∗NS(Ãk̄) ∼= 〈4〉. Let K be the saturation of the sublattice
generated by the π∗Ei’s. Nodal classes π∗Ei have self intersection −2. We have the following
inclusions:

16⊕
i=1

Zπ∗Ei ⊂ K ⊂ K∨ ⊂

(
16⊕
i=1

Zπ∗Ei

)∨
=

16⊕
i=1

1

2
Zπ∗Ei

where L∨ denotes the dual abelian group of a given lattice L. We denote the set of 2-torsion
elements ofA by V . We can consider V as the 4 dimensional affine space over F2. Then we can
interpret

⊕16
i=1

1
2
Zπ∗Ei/Zπ∗Ei as the space of 1

2
Z/Z-valued functions on V . [LP80, Prop 3.6]

shows that with this identification, the image of K (resp. K∨) in
⊕16

i=1
1
2
Z/Z consists of

polynomial functions V → 1
2
Z/Z of degree ≤ 1 (resp. ≤ 2.) Hence we have[
K :

16⊕
i=1

Zπ∗Ei

]
= 25, [K∨ : K] = 26.

This description allows us to choose an explicit basis for K as well as to find its intersection
matrix. The discriminant group of K is isomorphic to F6

2 whose discriminant form is given
by 

0 0 0 0 0 1
2

0 0 0 0 1
2

0
0 0 0 1

2
0 0

0 0 1
2

0 0 0
0 1

2
0 0 0 0

1
2

0 0 0 0 0

 .

This discriminant form is isometric to the discriminant form of π∗H
2(A,Z) which is isomor-

phic to (
0 2
2 0

)
⊕
(

0 2
2 0

)
⊕
(

0 2
2 0

)
Now we have overlattices:

π∗NS(A)⊕K ⊂ NS(X).
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To identify NS(X), we consider the following overlattices:

π∗H2(A,Z)⊕K ⊂ H2(X,Z).

One can describe H2(X,Z) using techniques in [Nik80, Sec 1.1-1.5]. Since the second coho-
mology of any K3 surface is unimodular, we have the following inclusions:

π∗H2(A,Z)⊕K ⊂ H2(X,Z) = H2(X,Z)∨ ⊂ (π∗H2(A,Z))∨ ⊕K∨

This gives us the following isotropic subgroup in the direct sum of the discriminant forms:

H = H2(X,Z)/π∗H2(A,Z)⊕K ↪→ D(π∗H2(A,Z))⊕D(K)

where D(L) denotes the discriminant group of a given lattice L.
Since π∗H2(A,Z) and K are primitive in H2(X,Z), each projection H → D(π∗H2(A,Z))

and H → D(K) is injective. Moreover, since H2(X,Z) is unimodular, the isotropic subgroup
H must be maximal inside D(π∗H2(A,Z)) ⊕ D(K). This implies that both injections are
in fact isomorphisms. Thus we determine H2(X,Z) as an overlattice corresponding to H in
D(π∗H2(A,Z)) ⊕D(K). Note that we can apply the orthogonal group O(K) to H so that
H is unique up to this action. Namely if we fix an identification qK = −qK ∼= qπ∗ H2(A,Z) and

D(K) ∼= D(π∗H2(A,Z)), then we can think of H as the diagonal in D(K)⊕D(π∗H2(A,Z)).
We succeeded in expressing our embedding π∗H

2(A,Z) ⊕K ↪→ H2(X,Z), hence we can
express NS(X) as

NS(X) = H2(X,Z) ∩ (π∗NS(A)⊕K)⊗Q.
Note that an embedding of NS(A) into H2(A,Z) is unique up to isometries because of
[Nik80, Thm 1.1.23], so we can map a generator of NS(A) to e + f where e, f is a basis for

the hyperbolic plane U =

(
0 1
1 0

)
. Thus we determine the lattice structure of NS(X).

Remark 3.8. In Section 5, we will in fact use a somewhat simpler argument in order to
describe NS(X) as a Galois module. The advantage of the argument given in the current
section is that it can be made applicable for higher rank cases.

4. Effective bounds for the transcendental part of Brauer groups

Let A be a principally polarized abelian surface defined over a number field k. Let X =
Kum(A) be the Kummer surface associated to the abelian surface A. The goal of this section
is to prove the following theorem:

Theorem 4.1. There exists an effectively computable constant N1 depending on the number
field k, the Faltings height h(A), and NS(A) satisfying

#
Br(X)

Br1(X)
≤ N1.

Remark 4.2. In this section we focus on the proof of the method in the general case. In
case that A is not geometrically simple, better bounds can be found based on recent work
of Newton [New16]. Again, we refer to the longer arXiv version of the current paper for this
[CFTTV16].

First we use the following important theorem by Skorobogatov and Zarhin:

3attributed to D.G. James
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Theorem 4.3. [SZ12, Prop. 1.3] Let A be an abelian surface defined over a number field k
and X = Kum(A) the associated Kummer surface. Then there is a natural map

Br(X) ∼= Br(A)

which is an isomorphism of Galois modules.

Hence there is an injection

Br(X)

Br1(X)
↪→ Br(X)Γ = Br(A)Γ,

where Γ = Gal(k̄/k). Thus, to bound Br(X)
Br1(X)

in terms of k, the Faltings height h(A), and

δ = det(NS(A)), we only need to bound Br(Ā)Γ.
Also we would like to recall the following important result about the geometric Brauer

groups:

Theorem 4.4. As abelian groups, we have the following isomorphisms:

Br(X) ∼= Br(A) ∼= (Q/Z)6−ρ,

where ρ = ρ(A) is the geometric Néron–Severi rank of A.

Proof. This follows from the remark before [SZ12, Lem. 1.1]. �

We discuss several lemmas to prove our main Theorem 4.1. Throughout this section, we
denote the constant from Theorem 2.13 by C.

Lemma 4.5. Let N2 = max{C, δ} where δ = disc(NS(A)). Then for any prime number
` > N2 we have

Br(A)Γ
` = {0},

where Br(A)Γ
` denotes the `-torsion group of Br(A)Γ.

Proof. This essentially follows from results in [SZ08] combined with Theorem 2.13. The
following exact sequence occurs as the n = 1 case of [SZ08, p. 486 (5)]:

0→
(
NS(A)/`

)Γ f→ H2
ét(A, µ`)

Γ → Br(A)Γ
` →

→ H1(Γ,NS(A)/`)
g→ H1(Γ,H2

ét(A, µ`)).

The discussion in [SZ08, Prop. 2.5 (a)] shows that NS(A) ⊗ Z` is a direct summand of
H2

ét(A,Z`(1)) for any prime ` - δ. For such `, the homomorphism g in the above exact
sequence is injective.

Next, Theorem 2.13 asserts that there exists an effectively computable integer C > 0
depending on k and h(A) such that for any prime ` > C, we have an isomorphism:

Endk(A)/` ∼= EndΓ(A`, A`).

The discussion in [SZ08, Lem. 3.5] shows that for such `, the homomorphism f is bijective.
Thus our assertion follows. �

Thus, to prove our main theorem, we need to bound Br(A)Γ(`) for each prime number `
where Br(A)Γ(`) denotes the `-primary subgroup of elements whose orders are powers of `.
To achieve this task, we employ techniques from [HKT13] Sections 7 and 8.
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We fix an embedding k ↪→ C and consider the following lattice:

H2(A(C),Z).

It contains NS(A) as a primitive sublattice and we denote its orthogonal complement by
TA = 〈NS(A)〉⊥

H2(A(C),Z)
and call it the transcendental lattice of A. The direct sum NS(A)⊕TA

is a full rank sublattice of H2(A(C),Z) and we can put it into the exact sequence:

0→ NS(A)⊕ TA → H2(A(C),Z)→ K → 0,

where K is a finite abelian group of order δ = det(NS(A)). Tensoring with Z` and using a
comparison theorem for the different cohomologies, we have

0→ NS(A)` ⊕ TA,` → H2
ét(A,Z`(1))→ K` → 0,

where NS(A)` = NS(A) ⊗ Z`, TA,` = TA ⊗ Z`, and K` is the `-primary part of K. The
second étale cohomology H2

ét(A,Z`(1)) comes with a natural pairing which is compatible
with Γ-action, and TS,` is the orthogonal complement of NS(A)`. In particular, TA,` has a
natural structure as a Galois module.

Lemma 4.6. Fix a prime number `. Let N3,` = (6− ρ)log`C. Then for each integer n ≥ 1
the bound

#(TA/`
n)Γ ≤ `N3,`

is satisfied.

Proof. Since A is principally polarized, we have a natural isomorphism of Galois modules:

H1
ét(A,Z`(1)) ∼= (H1

ét(A,Z`(1)))∗ ∼= T`(A),

where T`(A) is the Tate module of A. Hence we have

TA,` ↪→ H2
ét(A,Z`(1)) =∧2

H1
ét(A,Z`(1)) ↪→ H1

ét(A,Z`(1))⊗ H1
ét(A,Z`(1)) ∼= End(T`(A)).

Thus we have

(TA/`
n) = (TA,`/`

n) ↪→ End(T`(A))/`n = End(A[`n]).

Hence we obtain a homomorphism

Φ : (TA/`
n)Γ ↪→ EndΓ(A[`n])→ EndΓ(A[`n])/End(A).

This composite homomorphism Φ must be injective because TA is the transcendental lattice
which does not meet the algebraic part End(A). The order of this quotient is bounded by
Theorem 2.13. �

Taking a finite extension of k only increases the size of Br(A)Gal(k̄/k′), so from now on we
assume that the Galois action on the Néron–Severi space NS(A) is trivial. This is automat-
ically true when the geometric Néron–Severi rank of A is 1.

Lemma 4.7. Suppose that the Galois action on NS(A) is trivial. Write

N4,` = (2v`(δ) + 10 log`C)(6− ρ)

where v` is the valuation at `. Then for each prime `, we have

# Br(A)Γ(`) ≤ `N4,` .
18



Proof. Recall the exact sequence of [SZ08, p. 486 (5)]:

0→
(
NS(A)/`n

)Γ fn→ H2
ét(A, µ`n)Γ → Br(A)Γ

` →

→ H1(Γ,NS(A)/`n)
gn→ H1(Γ,H2

ét(A, µ`n)),

so we need to bound the cokernel of fn and the kernel of gn independent of n. By Theorem 4.4,
it is enough to bound the orders of elements in coker(fn) as well as ker(gn) independently of
n.

Let `m be the order of K` and we assume that n ≥ m. We have the following exact
sequence:

0→ NS(A)` ⊕ TA,` → H2
ét(A,Z`(1))→ K` → 0.

Tensoring by Z/`nZ (as Z`-modules) and using Tor functors, we obtain a four term exact
sequence:

0→ K` → NS(A)/`n ⊕ TA/`n → H2
ét(A, µ`n)→ K` → 0, (4.1)

where we’ve used that the middle term H2
ét(A,Z`(1)) is a free (and hence flat) Z`-module.

Note that the projection
K` → NS(A)/`n

is injective because TA/`
n → H2(A, µ`n) is injective. In particular, the Galois action on K`

is trivial. We split the exact sequence (4.1) as

0→ K` → NS(A)/`n ⊕ TA/`n → D → 0,

and
0→ D → H2

ét(A, µ`n)→ K` → 0.

These gives us the long exact sequences

0→ K` → NS(A)/`n⊕(TA/`
n)Γ → DΓ → Hom(Γ, K`)→ Hom(Γ,NS(A)/`n)⊕H1(Γ, TA/`

n),

and
0→ DΓ → H2

ét(A, µ`n)Γ → K` → H1(Γ, D)→ H1(Γ,H2
ét(A, µ`n)).

The map Hom(Γ, K`)→ Hom(Γ,NS(A)/`n) is injective, so the sequence

0→ K` → NS(A)/`n ⊕ (TA/`
n)Γ → DΓ → 0,

is exact. We conclude that

# coker(fn) =
# H2

ét(A, µ`n)Γ

# NS(A)/`n
≤ #K` ·#DΓ

# NS(A)/`n
= #(TA/`

n)Γ

is bounded independent of n by application of Lemma 4.6.
Next we discuss a uniform bound on the maximum order of elements in ker(gn). The

homomorphism gn is a composition of two homomorphisms:

H1(Γ,NS(A)/`n)→ H1(Γ, D)→ H1(Γ,H2
ét(A, µ`n)).

The kernel of H1(Γ, D)→ H1(Γ,H2
ét(A, µ`n)) is bounded by K`. We have the exact sequence

0→ NS(A)/`n → D → D/NS(A)→ 0,

which gives the long exact sequence

0→ NS(A)/`n → DΓ → (D/NS(A))Γ → H1(Γ,NS(A)/`n)→ H1(Γ, D).
19



Thus to finish the proof we need to find an uniform bound for the maximum order of elements
in (C/NS(A))Γ. To obtain this, we look at the exact sequence

0→ K` → TA/`
n → D/NS(A)→ 0.

This gives us the long exact sequence

0→ K` → (TA/`
n)Γ → (D/NS(A))Γ → Hom(Γ, K`).

Note that the group Hom(Γ, K`) is killed by #K`. Finally, #(TA/`
n)Γ is uniformly bounded

by the result of Lemma 4.6. Therefore the maximum order of elements in (D/NS(A))Γ is
uniformly bounded and our assertion follows. �

Proof of Theorem 4.1. It follows from Lemma 4.5 and 4.7 that we can take N1 as

δ10
∏
`≤N2

C50.

�

5. Computations on rank 1

In this section we discuss some computations in order to determine Br1(X)/Br0(X)
through H1(k,NS(X)) using Magma, where the geometric Néron–Severi rank of X is 1.
Recall that the Néron–Severi lattice of a Kummer surface is determined by the sixteen 2-
torsion points on the associated abelian surface and its Néron–Severi lattice. A principally
polarized abelian surface is the Jacobian of a genus 2 curve C and its 2-torsion points cor-
respond to the classes pi − pj of differences of the six ramification points of C → P1.

First we need to fix some ordering. Let {p1, . . . , p6} be the ramification points of C. Then
on Jac(C)[2] = {0, pi − pj : i < j} the following additive rule holds

pi − pj = pk − pl + pn − pm
where {i, j} and {k, l,m, n} are two complementary subsets of {1, . . . , 6}.

Lemma 5.1. The set {p1− p2 =: v1, p1− p3 =: v2, p1− p4 =: v3, p1− p5 =: v4} forms a basis
of Jac(C)[2] ∼= F4

2.

Proof. In order to write 0 as a linear combination of these elements (over F2), we need to
use an even number. Since any two of these are different, this may only be done using all
four of them. However, the sum of these four elements is p2− p3 + p4− p5 = p1− p6 6= 0. �

We order the 2-torsion elements in terms of pi − pj and in terms of vi in Table 5.1.

e1 = 0 e9 = p1 − p5 = v4

e2 = p1 − p2 = v1 e10 = p2 − p5 = v1 + v4

e3 = p1 − p3 = v2 e11 = p3 − p5 = v2 + v4

e4 = p2 − p3 = v1 + v2 e12 = p4 − p6 = v1 + v2 + v4

e5 = p1 − p4 = v3 e13 = p4 − p5 = v3 + v4

e6 = p2 − p4 = v1 + v3 e14 = p3 − p6 = v1 + v3 + v4

e7 = p3 − p4 = v2 + v3 e15 = p2 − p6 = v2 + v2 + v4

e8 = p5 − p6 = v1 + v2 + v3 e16 = p1 − p6 = v1 + v2 + v3 + v4

Table 5.1.
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The Galois action is defined by a subgroup of S6, acting on the six ramification points pi
and hence on the set of ei. This action defines S6 as a subgroup of S16. We know that S6 is
generated by the two elements (1, 2) and (1, 2, 3, 4, 5, 6), so to determine the map S6 → S16

we need only specify the images of (1, 2) and (1, 2, 3, 4, 5, 6).

Lemma 5.2. Let ρ : S6 → S16 be the map that represents the action of S6 on the sixteen
2-torsion points ei. Then

ρ((1, 2)) = (3, 4)(5, 6)(9, 10)(15, 16)

and
ρ((1, 2, 3, 4, 5, 6)) = (2, 4, 7, 13, 8, 16)(3, 6, 11, 12, 9, 15)(5, 10, 14)

hold.

Proof. Direct computation on the elements in Table 5.1, e.g. ρ((1, 2)) maps e3 = p1 − p3 to
p2 − p3 = e4. �

Using the description from [LP80, Prop. 3.4 and 3.5] as explained in Section 3.2, the
lattice K is generated by

⊕16
i=1 Zπ∗Ei together with lifts from polynomials in four variables

with values in 1
2
Z/Z of degree at most 1. These are generated as an abelian group by

x1, x2, x3, x4, 1, where the set of xi’s is dual to the set of vj’s in the sense xi(vj) = δij. We
identify the set of exceptional curves with the set of 2-torsion points in the natural way by
identifying Ei and ei for each i = 1, . . . , 16.

From a theoretical perspective, one could use the approach as laid out in Section 3.2 in
order to calculate NS(X), but for the case rk NS(A) = 1, it turns out that there is an easier
approach which involves knowing the index of π∗NS(A)⊕K in NS(X).

Lemma 5.3. Let A be an abelian surface of Néron–Severi rank ρ, write X = Kum(A) and
let K be the saturation of

⊕16
i=1 Zπ∗Ei inside NS(X). Then the index of π∗NS(A)⊕K inside

NS(X) is 2ρ.

Proof. Write t = |Disc NS(A)|, then also t = |DiscT (A)| holds, where T (A) is the transcen-
dental lattice of A, since H2(A,Z) is unimodular. We have equality of ranks

rkT (X) = rkT (A) = 6− ρ,
and hence |DiscT (X)| = t · 26−ρ from which follows |Disc NS(X)| = t · 26−ρ since H2(X,Z)
is unimodular.

Let L = π∗NS(A). Then rkL = ρ and |DiscL| = 2ρt hold.
We use the chain of inclusions

L⊕K ⊂ NS(X) ⊂ NS(X)∨ ⊂ L∨ ⊕K∨

The index of L ⊕K ⊂ L∨ ⊕K∨ is 2ρt · 26 (see Section 3.2 for the discriminant of K) and
combining with the discriminants above, we find the statement of the lemma. �

From now on, assume ρ = 1, i.e. the geometric Néron–Severi rank of X is 17. Let l be
the push-forward of the theta-divisor on A. Then l2 = 4 and by Lemma 5.3, the index of
Λ := 〈l〉 ⊕K in NS(X) is 2. It therefore suffices to find a single element D ∈ NS(X) such
that 2D is an element of Λ but D itself is not. Then Λ and D together span NS(X).

Lemma 5.4. Up to isomorphism there is only one index 2 even overlattice of Λ.
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Proof. Even overlattices of index 2 correspond to isotropic subgroups of the discriminant
group D(Λ) = D(π∗NS(A)) ⊕ D(K) of order 2. Since K is saturated, a generating ele-
ment of such a subgroup projects to an element of D(π∗NS(A)) which has order exactly
2. Since D(π∗NS(A)) is isomorphic to 1

4
Z/Z, there is only one such element, which has

square 1 mod 2. We therefore need to consider order 2 elements of square 1 mod 2 in D(K).
Since we remember the intersection form on D(K) from section 3.2, we easily see that
there are four such elements, with coordinates (1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 0)
and (1, 1, 1, 1, 1, 1). By calculating the centralizer of the intersection matrix of D(K) inside
GL6(F2), that is O(D(K)), it is easily found that each of these lie in the same orbit under
the action of O(D(K)). �

It is worthwhile to remark that the Galois action on the 2-torsion points of A induces an
action on D(K) and only one of the four elements in the previous proof is invariant under
the action of the full symmetric group S6, which in our chosen basis is (1, 1, 1, 1, 1, 1).

Lemma 5.5. The element D = 1
2
(π∗E1 +π∗E8 +π∗E12 +π∗E14 +π∗E15 +π∗E16 + l) together

with Λ spans NS(X).

Proof. We already know that the coefficient of l is non-zero since K is saturated in NS(X),
and by adding a suitable element of 2Λ to D, we can write D = 1

2
l + 1

2

∑16
i=1 aiπ∗Ei, where

for each i we take ai ∈ {0, 1
2
, 1, 3

2
}.

By intersecting D with any of the π∗Ei, we find ai ∈ {0, 1} since the intersection needs to
be integral. From D2 ∈ 2Z we deduce

∑16
i=1 ai ≡ 2 mod 4. Furthermore, the projection of

D to D(K) needs to be one of the four elements from the proof of Lemma 5.4. In order to
ensure that the lattice we generate is a Galois module for any subgroup of S6, the element
D from the statement is chosen so that it projects to the unique S6-invariant one. �

Now that we have computed NS(X), we can have Magma take Galois cohomology by
applying the action from Lemma 5.2 and we find

H1(k,NS(X)) = 1.

We can furthermore consider the case where the Galois group is not the full S6. The
Magma computations also yield the following:

Proposition 5.6. Up to conjugation there are only three subgroups H of S6 for which
H1(H,NS(X)) is non-trivial: one of order 4 (isomorphic to Z/2Z × Z/2Z), one of order
12 (isomorphic to A4) and one of order 60 (isomorphic to A5). In each of these cases we
find H1(H,NS(X)) ∼= Z/2Z.

6. An example

In this section we compute a concrete bound as stated in Theorem 2.13. Let us consider
the genus 2 curve defined over Q by:

C : y2 = x6 + x3 + x+ 1.

Let A denote the Jacobian of C. Thanks to the algorithm provided by Elsenhans and
Jahnel in [EJ12a] we compute the Néron–Severi rank of A and we obtain that its geometric
Néron–Severi rank is 1. By Theorem 3.2 we know End(A) = Z.
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Since x6 +x3 +x+ 1 = (x+ 1)(x2 + 1)(x3−x2 + 1), the splitting field F of x6 +x3 +x+ 1
is the composite field of Q(

√
−1) and the splitting field F1 of x3− x2 + 1. The Galois group

Gal(F/Q) has 12 elements and two normal subgroups: Z/2Z and S3. By Proposition 5.6,
the only exceptional subgroup with 12 elements is A4. Since the only nontrivial normal
subgroup of A4 has 4 elements, Gal(F/Q) cannot be one of the exceptional subgroups of S6.
Therefore the algebraic Brauer group is trivial.

To compute the bound of Theorem 2.13 we need to compute the Faltings height of the
abelian surface A. By proposition 2.1, we have

h(A) ≤ − log(2π2)+ 1
10

log
(
2−12 Disc6

(
4(x6 + x3 + x+ 1)

))
− log

(
2−1/5|J10|1/10 det(=τ)1/2

)
,

with 2−12 Disc6 (4(x6 + x3 + x+ 1)) = 212 · 25 · 23, |J10| = 0.001921635 and

τ =

(
−1.49097 + 1.64505i −0.50000 + 0.98058i
−0.50000 + 0.98058i −1.50903 + 1.64505i

)
.

Hence h(A) ≤ −0.79581. In our situation we have k = Q and h(A) ≤ −0.79581, so we can
bound M by plugging these into

M ≤ 24664c16
1 c2(k)256

(
2h(A) + 8

17
log[k : Q] + 8 log c1 + 128 log c2(k) + 1503

)512

with c1 = 411 · 912 and c2(k) = 7.5 · 1047[k : Q].
Using Magma we get

M ≤ C = 8.7× 1016100.

Let X = Kum(A). By Theorem 4.7, we have

|Br(X)Γ| < δ10
∏
`≤C

C50. < 210 · C50C < 210 · 101016107

.

Hence we conclude that
|Br(X)/Br0(X)| < 210 · 101016107

.
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