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Abstract. Let X → C be a non-isotrivial and generically ordinary family of K3 surfaces over
a proper curve C in characteristic p ≥ 5. We prove that the geometric Picard rank jumps at
infinitely many closed points of C. More generally, suppose that we are given the canonical model
of a Shimura variety S of orthogonal type, associated to a lattice of signature (b, 2) that is self-dual
at p. We prove that any generically ordinary proper curve C in SFp intersects special divisors of
SFp at infinitely many points. As an application, we prove the ordinary Hecke orbit conjecture of
Chai–Oort in this setting; that is, we show that ordinary points in SFp have Zariski-dense Hecke
orbits. We also deduce the ordinary Hecke orbit conjecture for certain families of unitary Shimura
varieties.
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1. Introduction

1.1. Families of K3 surfaces. Given a family of complex K3 surfaces, it is a well-known fact that
the Picard ranks of the fibers will jump at infinitely many special points, so long as the family is not
isotrivial. More precisely, let us recall the following Hodge-theoretic result, due to Green [Voi02]
and Oguiso [Ogu03]. Let ∆ be the unit disc in C, and let X → ∆ be a non-isotrivial family of
(compact) K3 surfaces. If ρ denotes the minimal Picard rank of Xs, s ∈ ∆, then the set of points
t ∈ ∆ for which the Picard rank of Xt is greater than ρ is a countable, dense subset of ∆. In
particular, there are infinitely many such points.

In positive characteristic, this question is more subtle. Suppose we are given X → C, where
C/Fp is a curve and X is a non-isotrivial family of K3 surfaces. It is now no longer the case that
the Picard rank has to jump at infinitely many points of C. For example, there exist families where
every fiber Xt is a supersingular K3 surface, in which case the rank is always 22. By studying
families of non-ordinary Kummer surfaces, one can produce families where the Picard rank jumps,
but only at finitely many points (see 1.4 for an example).

In both of these examples, the generic fiber is not ordinary. The first main result of this paper
shows that, under additional hypotheses, if the generic fiber is ordinary, then there will be infinitely
many points where the Picard rank jumps. That is, we show the following:
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Theorem 1.1. Let C/Fp denote a smooth proper curve where p ≥ 5 is a prime number, and
let X → C denote a generically ordinary non-isotrivial family of K3 surfaces. Suppose that the
discriminant1 of the generic Picard lattice is prime to p. Then there exist infinitely many points
c ∈ C(Fp) such that the Picard rank of Xc is greater than the generic Picard rank of X .

Broadly speaking, Theorem 1.1 is proved by studying moduli spaces of K3 surfaces, viewed as
(canonical integral models of) GSpin Shimura varieties S associated to quadratic Z-lattices (L,Q)
having signature (b, 2) with b ≤ 19. These Shimura varieties admit families of “special divisors”,
which are themselves GSpin Shimura varieties associated to sublattices of (L,Q) having signature
(b−1, 2), whose points parameterize K3 surfaces with Picard rank greater than those parameterized
by “generic points” of the ambient Shimura variety.

The notion of special divisors makes sense in the more general setting of GSpin Shimura varieties
S associated to quadratic lattices (L,Q) having signature (b, 2) for all positive integers b. For every
positive integer m, there exists a divisor Z(m) ⊂ S which, if not empty, is also (the integral model
of) a GSpin Shimura variety. We prove the following theorem which directly implies Theorem 1.1.

Theorem 1.2. Let S denote the canonical integral model over Zp of the GSpin Shimura variety
associated to a quadratic Z-lattice (L,Q) of signature (b, 2), such that p does not divide the discrim-
inant of (L,Q). Assume that b ≥ 3, p ≥ 5. Let C be an irreducible smooth proper curve with a finite
morphism C → SF̄p

such that the generic point of C is ordinary and that the image of C does not
lie in any special divisors Z(m) := Z(m)F̄p

,m ∈ Z>0. Then there exist infinitely many F̄p-points on
C which lie in ∪m∈N,p-mZ(m).

In the case of S being a Hilbert modular surface or a Siegel modular threefold (with b = 2, 3
respectively), Theorem 1.2 follows from our earlier paper [MST], but the general setting considered
here requires additional techniques.

1.2. The Hecke orbit conjecture. The second goal of this paper is to apply Theorem 1.2 to
the study of Hecke orbits in characteristic p. In general, Shimura varieties are naturally equipped
with a set of correspondences, known as Hecke correspondences. Roughly speaking, these Hecke
correspondences permute2 the set of special divisors. In characteristic zero, the dynamics of Hecke
correspondences are well-understood. For example, work of Clozel–Oh–Ullmo [COU01] proves that
the Hecke orbit of a point equidistributes in the analytic topology. However, in characteristic p, the
behavior of the Hecke orbit of a point is still far from understood.

The first result along these lines is due to Chai [Cha95], who proved that the prime-to-p Hecke
orbit of an ordinary point is Zariski dense in Ag,Fp , the moduli space of principally polarized abelian
varieties over Fp. Guided by this, Chai and Oort have the following more general conjecture for
arbitrary Shimura varieties.

Conjecture 1.3 (Chai–Oort). Let S denote the canonical integral model of a Shimura variety of
Hodge type (with hyperspecial level) and let SFp

denotes its special fiber.3 Then the prime-to-p Hecke
orbit of a µ-ordinary point is Zariski dense in SFp

.4

There is a further generalization to non-ordinary points, which we do not discuss here. For more
about the Hecke orbit conjecture and generalizations, see [Cha03], [Cha05],[Cha06], [CO06], [CO09]

1Note that the Picard lattice of a K3 surface is equipped with a non-degenerate quadratic form arising from the
intersection pairing. The discriminant of the Picard lattice is defined to be the discriminant of this quadratic form.

2The special divisors Z(d) and Z(m2d) are in the same Hecke orbit.
3The conjecture was made in the PEL case, but is expect to hold for Hodge type Shimura varieties too, which

includes the case of PEL Shimura varieties.
4Being µ-ordinary means that this point lies in the open Newton stratum of SF̄p and it means ordinary if the

ordinary locus in SF̄p is nonempty, which will be the case for us in the rest of the paper.
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and [CO19]. Using Theorem 1.2 as our main input, we establish the ordinary Hecke orbit conjecture
for GSpin Shimura varieties, as well as certain unitary Shimura varieties.

Theorem 1.4. Let SFp denote the mod p (where p ≥ 5) fiber of the canonical integral Shimura
variety associated to one of the following data:

The orthogonal case. A quadratic Z-lattice with signature (b, 2) having discriminant prime to p with the associated
Shimura variety defined in §2.1.

The unitary case. An imaginary quadratic field K split at p, and an OK-Hermitian lattice having signature
(n, 1), with discriminant prime to p with the associated Shimura variety defined in [RSZ20,
§3, §4.1].5

Then the prime-to-p Hecke orbit of an ordinary point is dense in SFp .

As far as we know, this result is the first of its kind towards settling the Hecke orbit conjecture
in the setting of orthogonal Shimura varieties.

1.3. Outline of the proof of Theorem 1.2. There are two broad steps in our proof:
(1) We use Borcherds theory to compute the asymptotic of the intersection numbers (C.Z(m))

as m→∞;
(2) We then prove that given finitely many points P1, · · · , Pn ∈ C(Fp), the local contributions

have the property
∑

p-m, 1≤m≤X
∑n

i=1 iPi(C.Z(m)) <
∑

p-m,1≤m≤X C.Z(m) for large enough
X ∈ Z.

These two steps together prove that as X →∞, more and more points P ∈ C(Fp) must contribute
to the intersection C.(

∑
p-m,1≤m≤X Z(m)), thereby yielding Theorem 1.2.

The second step involves both local and global techniques. We use the moduli interpretation of
the special divisors Z(m) to express the local contribution iP (C.Z(m)) in terms of a lattice point
count in an infinite nested sequence of lattices. This is another way in which the characteristic-p
nature of this work complicates matters – the analogous expression in the characteristic 0 setting
involved a lattice point count in a finite nested sequence of lattices, which makes matters far more
tractable. The most technical part of the paper deals with controlling the main term of iP (C.Z(m))
for supersingular points, which we do over Sections 4,5 and 6. This requires using Ogus’s and Kisin’s
work to explicitly understand the equicharacteristic deformation theory of special endomorphisms
at supersingular points in terms of crystalline theory.

One of the difficulties of this result compared to [MST] is that, for b ≤ 3, it is relatively easy
to bound the error terms of iP (C.Z(m)). However, in general, high levels of tangency between C
and special divisors could in principle cause this term to grow uncontrollably. In order to control
this, we use a global argument which first appeared in [SSTT]. Note that iP (C.Z(m)) is necessarily
bounded above by the global intersection number (C.Z(m)). We use the fact that the global bound
holds for every positive integer m (representable by (L,Q)) in order to obtain a sufficient control
on the error term of the local contribution iP (C.Z(m)) on average, as we average over all positive
integers m. More precisely, we prove that if the error term of iP (C.Z(m)) is too close to the global
intersection number for several values ofm, then there must exist a positive integerm0 for which the
local intersection number iP (C.Z(m0)) is greater than the global intersection number (C.Z(m0)),
which is a contradiction.

It is crucial to our proof of the local bound that the curve C is an algebraic curve. Given a
formal curve having the form Spf Fp[[t]] ⊂ SFp with closed point P , the term iP (Spf Fp[[t]].Z(m))
is well defined. It is easy to construct examples of formal curves that have the property that
iP (Spf Fp[[t]].Z(mi)) grows exponentially fast for appropriate sequences of integersmi, as we discuss

5Here we only work with the special case when the CM field is an imaginary quadratic field; in the special case
when the polarization is principle, see also [KR14, §2] or [SSTT, §9.3].
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in Section 3.5. Indeed, the growth rate of iP (Spf Fp[[t]].Z(m)) can be used as a necessary criterion
to determine whether or not a formal curve contained in S is algebraizable.

1.4. Contributions from supersingular points. As stated in the outline, the most technical
part of our paper is dealing with supersingular points. The main difficulty is caused by the fact
that the local contribution iP (C.Z(m)) from a supersingular point P ∈ C(Fp) has the same order of
magnitude as the global intersection number (C.Z(m)) as m → ∞; Indeed, the global intersection
number (C.Z(m)) can be expressed in terms of them-th Fourier coefficient of a non-cuspidal modular
form of weight 1 + b/2, whose Eisenstein part is well understood (Lemma 7.5 and Theorem 7.4).
The main term of the local contribution iP (C.Z(m)) at a supersingular point P is controlled by
the m-th Fourier coefficients of the theta series associated to a nested sequence of positive definite
lattices each having rank b + 2, and is therefore also asymptotic to the m-th Fourier coefficient of
an Eisenstein series of weight 1 + b/2 (see §7.14).

Therefore, a more refined understanding of the constants involved in the global intersection
number and the supersingular contribution is needed to prove our theorem. In fact, this is precisely
what goes wrong when C is no longer generically ordinary. There are examples when finitely many
supersingular points can indeed conspire to fully make up the entire global intersection number. We
illustrate this with the following example.

Consider the setting of X → C, where C/Fp is a curve and X is a non-isotrivial family of Kummer
surfaces. Indeed, let E → C denote a non-isotrivial family of elliptic curves, and let E0 → C denote
a supersingular elliptic curve pulled back to C. Consider the family K(E ×C E0) → C, where
K(E ×C E0) denotes the Kummer surface associated to the abelian surface E ×C E0. The set of
points c ∈ C(Fp) such that the Picard rank of K(E × E0)c is greater than the generic Picard rank
of K(E × E0) is precisely the set of c ∈ C(Fp) such that the fiber of E at c is supersingular, and
therefore the total global intersection number is made up from the local contributions from these
finitely many supersingular points.

1.5. Outline of proof of Theorem 1.4. We now survey the proof of the Hecke orbit conjecture,
using Theorem 1.2 as input. We will focus on the orthogonal case, since the unitary case follows by
a similar argument.

Let us first observe that Chai’s approach for Ag does not easily extend to this case. Chai’s
argument involves several steps, some of which generalize to the case of all Shimura varieties of
Hodge type, but there are many ideas in Chai’s work which don’t generalize to our setting. Indeed,
a key step in his paper is the so-called Hilbert trick which states that every Fp-valued point of Ag
is contained in a positive-dimensional Shimura subvariety of Ag, namely a Hilbert modular variety.
Unfortunately, this fact does not hold for most Shimura varieties. The case of Hilbert modular vari-
eties is more tractable than Ag because the geometrically simple factors of the associated reductive
groups have rank 1.

Instead, our idea is to use an inductive argument on the dimension of SFp . Our argument consists
of the following steps:

(1) The setting of Shimura varieties associated to quadratic lattices having signature (1, 2)
follows because these Shimura varieties are one-dimensional, and it is well known that the
Hecke orbit of an ordinary point is an infinite set. Now, inductively assume that the Hecke
orbit conjecture has been proved for all Shimura varieties associated to quadratic lattices
having signature (b− 1, 2), with discriminant relatively prime to p, where b > 1.

(2) Let Z ⊂ SFp denote a generically ordinary Hecke stable subvariety, where S is the canonical
integral model of a Shimura variety associated to a quadratic lattice having signature (b, 2)
with discriminant relatively prime to p. Such a subvariety Z necessarily has to be positive
dimensional, as the Hecke orbit of an ordinary point is necessarily infinite.
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(3) Suppose that Z contains a proper curve C that is generically ordinary. Then, Theorem
1.2 implies that C intersects the union of special divisors

⋃
p-m Z(m) at infinitely many

points, and therefore at an ordinary point x ∈ Z(m0). The special divisor Z(m0) is the
special fiber of a Shimura variety in its own right, associated to a quadratic lattice having
signature (b−1, 2) and prime-to-p discriminant (because p - m0), and so the prime-to-p Hecke
orbit of x contains a Zariski-dense subset of Z(m0) by the inductive hypothesis. Therefore,
Z(m0) ⊂ Z, and the result follows from the fact that the Hecke orbit of any special divisor
is Zariski dense in SFp .

(4) To deal with the case when Z might not contain a proper curve, we directly prove that any
generically ordinary Hecke stable subvariety that intersects the boundary of the Baily–Borel
compactification of SFp (constructed in [MP19]) must be all of SFp .

In other words, even though a “generic” Fp-valued point of S may not lie in a smaller positive-
dimensional Shimura variety, we are able to reduce to the case of a smaller Shimura variety using
the intersection-theoretic input of Theorem 1.2.

1.6. Previous work. In addition to the ones mentioned above, we discuss here other related work
in the literature.

Chai and Oort [CO06] proved Theorem 1.1 for Kummer surfaces associated to the product of
two elliptic curves and Theorem 1.2 for S = A1 × A1 without the assumption that C is proper.
The number field analogs of Theorem 1.1 and Theorem 1.2 have been proved in [SSTT], based
on the previous work by Charles [Cha18] and [ST20] for A1 × A1 and Hilbert modular surfaces
respectively. For characteristic zero families, [Tay20] proved an equidistribution result on the the
Noether–Lefschetz locus, which is a refinement of the theorem of Green.

For the results on Hecke orbits, Chai has also proved Conjecture 1.3 in the setting of Hilbert
modular varieties, as well as for some PEL type C Shimura varieties. Building on work of Chai,
the second named author [Sha] proved Conjecture 1.3 for the ordinary locus in Deligne’s modèles
étranges.

There is also a generalization of Conjecture 1.3 to F̄p-points in other Newton strata (see [Cha06,
Conj. 3.2]). In the case of Ag, there is extensive work of Chai and Oort studying the properties
of Newton strata (see their survey paper [CO19] and the references there); in combination with
work of Yu, this gives the full Hecke orbit conjecture for Ag and Hilbert modular varieties (see for
instance [Cha05] for the proofs). More recently, Zhou proved Conjecture 1.3 for (the µ-ordinary
loci of) quaternionic Shimura varieties associated to quaternion algebras over some totally real
fields ([Zho, Thm. 3.1.3, Rmk. 3.1.4]); and Xiao proved the generalized version for certain PEL
Shimura varieties of type A and C and the points in those Newton strata which contain certain
hypersymmetric points ([Xia, Thm. 7.1, Cors. 7.5, 7.6]).

1.7. Organization of paper. In §2, we recall the definitions of GSpin Shimura varieties, special
endomorphisms, and special divisors. In §3, we formulate Theorems 3.2 and 3.3 which describe the
decay of lattices of special endomorphisms at supersingular points. The proof of these statements
occupies the next three sections, which may be skipped on a first reading. In §4, we recall from Ogus’s
work [Ogu79] the explicit description of the lattices of special endomorphisms at supersingular points
and we use Kisin’s work [Kis10] to compute an F -crystal Lcris, which controls the deformation of
special endomorphisms. In sections §§5-6 we use this explicit description to prove the decay results.
In §7, we prove Theorem 1.2 following the outline given above. In §8, we prove Theorem 1.4 using
Theorem 1.2; we only use the statement (not the proof) of Theorem 1.2 and the reader who is
interested in the Hecke orbit conjecture may directly proceed to §8 after §2.

Notation. Throughout the paper, p ≥ 5 is a prime. We write f � g if f = O(g) and g = O(f).
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2. GSpin Shimura varieties and special divisors

In this section, we review basic definitions, terminology, and notation for GSpin Shimura varieties,
special endomorphisms, and special divisors that we need in the rest of the paper.

Let (L,Q) be a quadratic Z-lattice of signature (b, 2), b ≥ 1. We assume that (L,Q) is self-dual at
p. We recall the canonical integral model of the GSpin Shimura variety associated to (L,Q) and the
definition of special divisors. The main references are [MP16, §§3-5] and [AGHMP18, §§4.1-4.3];6
see also [SSTT, §2] for a brief summary.

2.1. Let V := L⊗ZQ and let [−,−] denote the bilinear form on V given by [x, y] = Q(x+y)−Q(x)−
Q(y). Let G := GSpin(L⊗Z(p), Q) be the group of spinor similitudes of L⊗Z(p), which is a reductive
group over Z(p) and naturally a subgroup of C(L⊗Z(p))

×, where C(−) denotes the Clifford algebra.
The group G(R) acts on the Hermitian symmetric domain DL = {z ∈ VC | [z, z] = 0, [z, z̄] < 0}/C×
via GQ → SO(V ). For [z] ∈ DL with z ∈ VC, let h[z] : ResC/RGm → GR denote the unique
homomorphism which induces the Hodge decomposition on VC given by V 1,−1

C = Cz, V 0,0
C = (Cz ⊕

Cz̄)⊥, V −1,1
C = Cz̄. Thus (GQ, DL) is a Shimura datum with reflex field Q.

Let K ⊂ G(Af ) be a compact open subgroup contained in G(Af ) ∩ C(L⊗ Ẑ)×, where C(L⊗ Ẑ)

is the Clifford algebra of (L ⊗ Ẑ, Q) and we assume that Kp = G(Zp). Then we have the GSpin
Shimura variety Sh := Sh(GQ, DL)K over Q with Sh(GQ, DL)K(C) = G(Q)\DL × G(Af )/K and
by [Kis10, Theorem 2.3.8], Sh admits a canonical smooth integral model S := SK over Z(p).

2.2. Let H denote the Clifford algebra C(L) equipped with the right action by itself via right
multiplication, and equip H⊗Z(p) with the action of G by left multiplication. By picking a suitable
symplectic form on H, we have GQ → GSp(H ⊗ Q), which induces a morphism from (GQ, DL)
to a Siegel Shimura datum. Thus there is a Kuga–Satake abelian scheme Auniv → Sh whose first
Z-coefficient Betti cohomology HB is the local system induced by H (and its GQ-action). This
Kuga–Satake abelian scheme Auniv → Sh extends to an abelian scheme Auniv → S equipped with
a left C(L)-action. Let HdR,H`,ét denote the first relative de Rham cohomology and `-adic étale
cohomology with Z`-coefficient of Auniv → S for ` 6= p, and let Hcris denote the first relative
crystalline cohomology of Auniv

Fp
→ SFp .

The action of L on H via left multiplication induces a GQ equivariant map L⊗Q→ EndC(L)(H⊗
Q), and thus we have a Z-local system LB over Sh with a natural embedding LB → EndC(L)(HB).
There are a filtered vector bundle with connection LdR ⊂ EndC(L)(HdR), a Z`-lisse sheaf L`,ét ⊂
EndC(L)(H`,ét) and an F -crystal Lcris ⊂ EndC(L)(Hcris) such that these embeddings along with
LB → EndC(L)(HB) are compatible under Betti-de Rham, Betti-étale, de Rham-crystalline compar-
ison maps (see [MP16, Prop. 3.11, 3.12, Prop. 4.7]). By [AGHMP18, §4.3], L?, ? = B, dR, (`, ét), cris
are equipped with a natural quadratic form Q given by f ◦ f = Q(f) · Id for a section f of L?.

Definition 2.3 ([AGHMP18, Def. 4.3.1]). Let T denote an S-scheme.

6Since we work with the hyperspecial case, all the results listed here are in [MP16] and we follow the convention
of using cohomology as in [MP16].

6



(1) An endomorphism v ∈ EndC(L)(Auniv
T ) is special if all cohomological realizations of v lie in

the image of L? → EndC(L)(H?), where ? = B, dR, cris, (`, ét), for all ` 6= p.7

(2) Assume that T ⊗ Fp 6= ∅. Let Auniv
T [p∞] denote the p-divisible group associated to Auniv

T .
An endomorphism v ∈ EndC(L)(Auniv

T [p∞]) is special if its crystalline realization lies in Lcris.

Remark 2.4. For connected T , an endomorphism v ∈ EndC(L)(Auniv
T ) or EndC(L)(Auniv

T [p∞]) is
special if and only if there exists a geometric point t ∈ T such that vt ∈ EndC(L)(Auniv

t ) or
EndC(L)(Auniv

t [p∞]) is special (see [AGHMP18, Prop. 4.3.4, Lem. 4.3.5] and their proofs). More-
over, if TFp 6= ∅, then we may pick a geometric point t ∈ TFp and for such t, vt ∈ EndC(L)(Auniv

t ) is
special if and only if the crystalline realization of vt lies in Lcris (see [MP16, Cor. 5.22, §5.24]). In
this paper, we will mainly work with T which is an SFp-scheme and thus we will only use Lcris to
verify special endomorphisms.

Remark 2.5. By [MP16, Lem. 5.2], for v ∈ EndC(L)(Auniv
T ) special, we have v ◦ v = [Q(v)] for

some Q(v) ∈ Z≥0 and v 7→ Q(v) is a positive definite quadratic form on the Z-lattice of special
endomorphisms of Auniv

T .

Definition 2.6. For m ∈ Z>0, the special divisor Z(m) is the Deligne–Mumford stack over S with
functor of points Z(m)(T ) = {v ∈ End(Auniv

T ) special |Q(v) = m} for any S-scheme T . We use the
same notation for the image of Z(m) in S. By for instance [AGHMP18, Prop. 4.5.8], Z(m) is an
effective Cartier divisor and is flat over Z(p) and hence Z(m)Fp is still an effective Cartier divisor of
SFp ; we denote Z(m)Fp by Z(m).

3. Lattice decay statements and heuristics

In this section, we formulate local intersection multiplicities in terms of counting points from a
nested sequence of lattices. In the supersingular case, we then state decay estimates for this nested
sequence that will be crucial for controlling the local contributions. Proving these estimates will
occupy §§4, 5, and 6. We give a heuristic explanation for why these decay estimates suffice. Finally,
at the end of the section, we construct a formal family where the local multiplicities behave wildly;
as a consequence, in our argument, it is necessary to use the global geometry to control the local
error terms.

Preliminaries and main statements. Let k denote Fp and recall from Theorem 1.2 that C → Sk
is a smooth proper curve whose generic point maps to the ordinary locus of Sk. Given a perfect field
k′ of characteristic p, and a point P ′ ∈ S(k′), we say P ′ is ordinary if the slopes of the crystalline
Frobenius ϕ on Lcris,P ′(W (k′)) are −1, 1 with multiplicity 1 and 0 with multiplicity b. For P ′ ∈ S(k),
we say P ′ is supersingular if the crystalline Frobenius ϕ on Lcris,P ′(W (k)) is isoclinic of slope 0.8

Let P ∈ C(k), and let t be a local coordinate at P (i.e., ĈP = Spf k[[t]]). Let A/k[[t]] denote the
pullback of the universal abelian scheme Auniv/S. Finally, let Ln denote the Z-module of special
endomorphisms of A mod tn. The moduli-theoretic description of the special divisors yields the
following expression:

(3.1) iP (C.Z(m)) =
∞∑
n=1

#{v ∈ Ln | Q(v) = m}.

7We drop the ones which do not make sense. For instance, if p is invertible in T , we drop cris; if TQ = ∅, we drop
B.

8By [HP17, Lem. 4.2.4], this definition of being supersingular is equivalent to that the corresponding Kuga–Satake
abelian variety is supersingular.

7



As discussed in the introduction, one of the main difficulties in comparing local and global
intersections is the contribution of supersingular and especially superspecial points; these are the
supersingular points for which the lattice of special endomorphisms is as large as possible (see §4.1
for a precise definition). We will therefore assume that the image of P in Sk is contained in the
supersingular locus of Sk.

We now define the Cartier divisor associated to the reduced locus of non-ordinary points of Sk,
as well as the Hasse invariant on Sk which defines this locus. This is implicitly done in [Ogu01] in
the case when Sk parameterizes K3 surfaces – the more general case can also be deduced from loc.
cit., because for the most part, Ogus’ constructions and proofs only require K3 crystals. However,
for completeness, we include a more thorough definition.

Consider the filtered vector bundle with connection LdR on Sk. Define E1 ⊂ LdR to be the
conjugate filtration F 1

conLdR, which in turn is defined as follows9. At any closed point s ∈ Sk, E1,s

can be defined as in [Ogu01, page 327] – Ogus’ definition only requires a K3 crystal (as defined in
[Ogu79, Section 3]). To see that this definition globalizes to all of Sk, we may use the conjugate
filtration on HdR (which is well defined as HdR is the relative deRham cohomology of A/Sk) to
induce a filtration (which we define to be F 1

con ) on LdR, which agrees with E1,s at any closed point
s of Sk. Having defined F 1

con ⊂ LdR and therefore E1, we consider the locus F2 ⊂ Sk defined in
[Ogu01, Proposition 11], with h = 1. By [Ogu01, Proposition 3], F2 is the same as the non-ordinary
locus as defined by the slopes of Lcris. Finally, by [Ogu01, Theorem 15], the equation defining the
locus F2 is a section of Fil1(LdR)⊗(p−1), and hence is a weight p− 1 modular form which we define
to be the Hasse invariant H on Sk.

We now return to the setting of P ∈ C → Sk, with P supersingular. See Lemma 4.9 for the
description ofH in a neighborhood of P ∈ Sk. We have that A is generically ordinary and specializes
to a supersingular point. Therefore, after restriction to k[[t]] the Hasse invariant H vanishes to some
finite order at P .

In order to control the number of points in the nested family of lattices Ln, as n grows, we
will prove that the covolumes of these lattices grow rapidly; note that the covolume of a lattice
determines – to first order – the number of lattice points with bounded norm.

We define hP to be vt(H), namely the t-adic valuation of H restricted to ĈP . Our bounds will
be in terms of the quantity hP , and so we make the following definitions.

Definition 3.1. Let r ≥ 0 denote an integer, and let a = hP
2 . Define hr = [hP (pr+ . . . p+1+1/p)],

h′r = [hP (pr + . . .+ 1) + a/p] and h′−1 = [a/p].

Suppose that the point P is supersingular, but not superspecial. Then we have:

Theorem 3.2. The index |L1/Ln| of Ln inside L1 satisfies the inequality

|L1/Ln| ≥ p2+2r

if hr + 1 ≤ n ≤ hr+1.

We remind the reader that L1 contains the lattices Ln with index a power of p (see [MST,
Rmk. 7.2.2]). The content of the above result is that the for any n that is larger than hP (1 + 1/p),
the abelian scheme A mod tn has fewer special endomorphisms than A mod t, and that the index
of Ln in L1 is at least p2. For n greater than hP (p + 1 + 1/p), A mod tn has still fewer special
endomorphisms than A mod t, and in fact the index of Ln in L1 is at least p4, etc.

As the lattice of special endomorphisms at P is maximal when P is superspecial, we need better
bounds in this case. In §6, we establish the following result:

Theorem 3.3. When P is superspecial, the index |L1/Ln| of Ln inside L1 satisfies one of the
following two inequalities:

9We note that our notation differs from Ogus’ by a Tate twist, so our F 1
con corresponds to Ogus’ F 2

con

8



(1) |L1/Ln| ≥ p1+2r if h′r−1 +apr +1 ≤ n ≤ h′r and |L1/Ln| ≥ p2+2r if h′r +1 ≤ n ≤ h′r +apr+1.
(2) |L1/Ln| ≥ p if h′−1 + a+ 1 ≤ n ≤ h′0 and |L1/Ln| ≥ p3+2r if h′r + 1 ≤ n ≤ h′r+1.

The above results show that there is a dichotomy between the local behavior at superspecial
points, and supersingular points that are not superspecial. This is because the vanishing locus of
the Hasse invariant on Sk is singular precisely at superspecial points (see for instance [Ogu01, the
proof of Cor. 16]). This singularity forces the covolume of Ln to increase faster than it otherwise
would.

3.4. A heuristic.
To motivate our approach, we give a heuristic argument here for the expectation that for p�ε 1,

the sum of local intersection multiplicities iP (C.Z(m)) at supersingular points on C with Z(m) is
at most (1

2 + ε)C.Z(m) as m→∞ using Theorems 3.2 and 3.3. The proof of Theorem 7.18 verifies
this expectation when we average over m. In particular, this heuristic explains why we need a
stronger decay estimate for superspecial points and why such decay should exist. In order to just
convey the basic idea, we will keep the argument presented here brief, even a little vague; more
precise statements and proofs will come later in §7 and the reader may consult there for the precise
statements and proofs.

Theorems 3.2 and 3.3 imply that for p� 1, the major contribution in iP (C.Z(m)) comes from the
intersection of k[t]/thP and Z(m) (as the covolumes of Ln increase). The intersection multiplicity
of k[t]/thP and Z(m) is at most hP times the number b(m,P ) of branches of the formal completion
Ẑ(m)P ⊂ Ŝk,P .

Indeed, b(m,P ) = #{v ∈ L1 | Q(v) = m}. By studying the theta series associated to L1, we
have that b(m,P ) is roughly |qL(m)|/ptP /2, where qL(m) denotes the m-th Fourier coefficient of the
vector-valued Eisenstein series E0 of weight 1+b/2 defined in §7.2 and tP (which is an even positive
integer) is the type of P defined in §4.2. In particular, this bound is the worst when tP = 2, which
by definition means that P is superspecial.

We now consider the extreme case when all non-ordinary points on C are superspecial. Since the
Hasse invariant is a weight p− 1 modular form on Sk, then we have∑

P∈C(k) superspecial

hP = (p− 1)C.ω,

where ω is the line bundle of modular forms of weight one. Then without considering the first
inequalities in each of (1) and (2) of Theorem 3.3, an initial estimate of

∑
P supersingular iP (C.Z(m))

is ∑
P∈C(k) superspecial

hP |qL(m)|/p =
p− 1

p
|qL(m)|(C.ω),

and a priori this should be a lower bound as we have ignored tangencies of order greater than hP .
On the other hand, as we discuss in Lemma 7.5, based on Borcherds theory, this is roughly the

same size as the global intersection C.Z(m). Thus we need some extra input, which is exactly given
by Theorem 3.3; this result lets us replace hP by hP /2 for the major term in iP (C.Z(m)) and then
obtain our expectation.

We can see how this works in the simplest situation, when C intersects all local formal branches
of Ẑ(m)P transversely. Then iP (C.Z(m)) = b(m,P ). On the other hand, since the singular locus
of the non-ordinary locus in Sk consists of the superspecial points, then hP ≥ 2 for all superspecial
points and thus the total number of superspecial points on C is at most p−1

2 C.ω and thus by the
above estimate of b(m,P ), we see that

∑
P supersingular iP (C.Z(m)) ≤ (1

2 + ε)(C.Z(m)).

3.5. An example of a formal curve. We will now construct a formal curve Spf k[[t]] ⊂ Sk with
closed point P where the local multiplicities iP (C.Z(mi)) grows exponentially fast for appropriate
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sequences of integers mi. Our example will in fact be a case in which P is ordinary. For ease of
exposition, we assume that the quadratic lattice has even rank, and consequently let b = 2c. There
exist Sk, P such that L1, the Z-module of special endomorphisms at P , has rank 2c = b, with the
condition that the discriminant of L1 is prime to p (for instance, we may always choose a GSpin
Shimura variety which admits a map from the modular curve in characteristic 0, and then choose
a CM point P̃ in the modular curve, and finally choose p to be a large enough ordinary prime for
P̃ , and P to be P̃ mod p). Suppose that e1, f1, e2, f2, . . . ec, fc is an orthogonal Z-basis of L1. Let
Ln = Ln ⊗ Zp denote the module of (formal) special endomorphisms A[p∞] mod tn.

Serre–Tate theory yields the existence of coordinates {qi, q′i : 1 ≤ i ≤ c} such that the formal
neighborhood of Sk at P is given by Spf k[[qi − 1, q′i − 1]] where the coordinates qi, q′i canonically
endow Spf k[[qi − 1, q′i − 1]] with the structure of a formal torus – this follows by work of Noot
[Noo96, Thm. 2.8, §3]. The locus in the formal deformation space of an ordinary abelian variety
to which a specific endomorphism extends is well known to be a (possibly non-smooth) formal
subgroup. Work of Madapusi Pera [MP16, Cor. 5.17] implies that the deformation space of a formal
special endomorphism is a divisor. Furthermore, Madapusi Pera [MP16, Cor. 5.17, Cor. 5.19] proves
that if a Zp-linearly independent set of special endomorphisms of P spans an n-dimensional self-dual
Zp-submodule of the special endomorphisms of the ordinary point A[p∞] mod t, then the sub-locus
of the formal neighborhood of Sk at P to which all endomorphisms in this module extend is a smooth
formal subscheme of codimension n, and therefore a formal subtorus of codimension n. Therefore,
we may assume that the coordinates qi (respectively q′i) satisfy the property that the local equation
defining the locus where the formal special endomorphisms ei (respectively fi) deform is just qi− 1
(respectively q′i − 1). It now follows that the local equation defining the locus where the formal

special endomorphism
∑c

i=1(λiei + µifi) ∈ L1, λi, µi ∈ Zp deforms is just
c∏
i=1

qλii q
′
i
µi − 1. Note

that this has following consequence: if f is the local equation defining the locus where some special
endomorphism w deforms, then fp is the equation for pw.

We now choose µi to be irrational p-adic integers which are “very well approximated” by actual
integers. Specifically, choose µi = µ =

∑
anp

n where 0 ≤ an ≤ p − 1 and a0 = 1. We will choose
the precise values for an, n ≥ 1 below.

We will now construct our formal curve to satisfy the property that A/ Spf k[[t]] admits no non-
zero special endomorphisms, but A[p∞]/ Spf k[[t]] admits special endomorphisms by SpanZp

{ei +

µfi}ci=1 ⊂ L1. Choosing Spf k[[t]] ⊂ Sk to be defined by the quotient map ρ : k[[qi−1, q′i−1]]→ k[[t]],
with ρ(qi) = (1 + αit)

−µ and ρ(q′i) = (1 + αit), where αi ∈ k are linearly independent over Fp, is
one such example and we will treat this example.

With this setup, we are now prepared to compute the lattices LN , and therefore also LN and
iP (Spf k[[t]].Z(mi)). The assumption that the elements αi ∈ k are Fp-linearly independent and
µ ∈ Z×p implies that the local equation defining the locus in Spf k[[t]] such that any primitive
w ∈ Span{e1 . . . ec} deforms is just t. As the endomorphisms ei + µfi, 1 ≤ i ≤ c extend to the
whole of Spf k[[t]], we have L2, . . . ,Lp = Span{pe1, . . . , pec, e1 +µf1, . . . , ec +µfc}; Lp+1, . . . ,Lp2 =

Span{p2e1, . . . , p
2ec, e1+µf1, . . . , ec+µfc}; and we finally have Lpn−1+a = Span{pne1, . . . , p

nec, e1+

µf1, . . . , ec + µfc}, where a ≥ 1 and pn−1 + a ≤ pn. Finally, we have that LN = L1 ∩ LN (with the
intersection in L1).

The fact that µ =
∑
n≥0

anp
n implies that vi,0 = ei + a0fi ∈ Lp, vi,1 = ei + (a0 + a1p)fi ∈ Lp2 , . . .,

vi,n = ei + (a0 + a1p + . . . anp
n)fi ∈ Lpn+1 , etc. We finally choose our sequence of an – recall that

we have already chosen a0 = 1. To that end, define n0 = 0, and recursively define nj+1 = p2nj .
We define anj = 1 and an = 0 if n 6= nj , ∀j ∈ Z≥0. For any positive integer j0, we see that
vi,nj0+1−1 = ei+(

∑j0
j=0 p

nj )fj ∈ Lpnj+1 . It is easy to see that mj := Q(vi,nj+1−1) � p2nj . Therefore,
10



we have that iP (Spf k[[t]].Z(mj)) ≥ pnj+1 , whose size is clearly exponential inmj ! We have therefore
constructed an example of a formal curve, as well as a sequence of special divisors Z(mj), such
that iP (Spf k[[t]].Z(mj)) is exponential in mj . In fact, Lpnj+1 contains a rank-c sublattice with
discriminant � p2cnj (spanned by {vi,nj+1−1}ci=1). Therefore, when c > 2, by choosing our initial
values Q(ei), Q(fi) carefully, we may even arrange for iP (Spf k[[t]].Z(m)) growing exponentially in
mj (and therefore growing faster than any polynomial in m) for a density one set of m ∈ [mj ,m

N
j ].

In [MST], we are able to get around this difficulty because c ≤ 2, and hence our lattices all
have relatively small rank. Indeed, in that setting, the lattices Lpnj+1 may contain sublattices with
discriminant logarithmic in pnj+1 , but these sublattices necessarily have rank bounded above by 2,
and the set of integers represented by rank two positive definite lattices has density zero.

4. The F -crystal Lcris on local deformation spaces of supersingular points

The goal of this section and §§5 and 6 is to prove Theorems 3.2 and 3.3 by analyzing the defor-
mation behavior of special endomorphisms at supersingular points.

To set up this analysis, in this section, we compute Lcris over the formal neighborhoods of
supersingular points in SF̄p

. As in [MST, §3], we first compute Lcris,P (W ) at a supersingular
point P , which is a quadratic space over W := W (F̄p) with a σ-linear Frobenius action ϕ, and then
we use Kisin’s work [Kis10] to obtain Lcris over the formal neighborhood of P . Here we use the
work of Ogus [Ogu79, §3] to compute Lcris,P (W ) while we follow [HP17] in [MST]; the extra input
is [Ogu79, Thm. 3.21].

In [Ogu79], he uses the notion of supersingular K3 crystals [Ogu79, Def. 3.1], which are isoclinic
of slope 1; these crystals differ by a Tate twist applied to our Lcris,P (W ) (which is isoclinic of slope
0). Our convention is the same as that in [HP17]. In particular, our Frobenius ϕ differs from
the Frobenius in [Ogu79] by a factor of 1/p. For the convenience of the reader, we give references
to [Ogu79] whenever possible in this paper and the reader may check [MST] for the references to
[HP17].

The F -crystal Lcris at a supersingular point.

4.1. Set k = F̄p,W = W (k),K = W [1/p] and let σ denote the usual Frobenius action onK. Given a
supersingular point P , L := Lcris,P (W ) is equipped with a quadratic formQ (see §2.2) and a σ-linear
Frobenius action ϕ. We note that ϕ is not a endomorphism of L, but is a σ-linear map Lcris,P (W )→
1
pLcris,P (W ). Let 〈−,−〉 denote the bilinear form on L given by 〈x, y〉 = Q(x+ y)−Q(x)−Q(y).
By the definition of Q, we have 〈ϕ(x), ϕ(y)〉 = σ(〈x, y〉).

Let L denote the Zp-lattice of special endomorphisms the p-divisible group AP [p∞], where AP :=
Auniv
P . By Dieudonné theory, we have that L = Lϕ=1. Since P is supersingular, we have that

rkZp L = rkW L = rkZ L and L ⊂ L⊗Zp K.
By [Ogu82, Thm. 3.4], there is a decomposition of Zp-quadratic lattices (L, 〈, 〉) = (L0, 〈, 〉0) ⊕

(L1, 〈, 〉1), where p | 〈, 〉0, both 1
p〈, 〉0 and 〈, 〉1 are perfect, and 2 | rkZp L0. Thus p〈, 〉0 induces

a perfect Fp-valued quadratic form on the Fp-vector space 1
pL0/L0; we also denote this quadratic

form by p〈, 〉0. The type of P , denoted by tP , is defined to be rkZp L0;10 by [Ogu79, Cor. 3.11],
2 | tP , 2 ≤ tP ≤ rkL. We say P is superspecial if tP = 2; otherwise, we say P is non-superspecial.

4.2. The above decomposition of L induces a decomposition of L, which allows us to compute L
explicitly. More precisely, by [Ogu79, Thms. 3.5,3.20], the W -quadratic lattice L with Frobenius

10By [Ogu01, p. 327], tP /2 is the Artin invariant if AP is the Kuga–Satake abelian variety associated to a K3
surface.
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action decomposes as L0 ⊕ L1, where

L0 ⊗W ⊂ L0 ⊂
1

p
L0 ⊗W

and L0 mod L0⊗W ⊂ (1
pL0/L0)⊗k is a totally isotropic subspace with respect to 〈, 〉0 of dimension

tP /2 satisfying certain conditions and L1 = L1 ⊗W .

We first provide explicit descriptions of L0 and L0.

Lemma 4.3 (Ogus). Set n = tP /2 and λ ∈ Z×
p2 such that λ2 mod p ∈ Fp is a quadratic non-

residue. There exists a Zp-basis {e1, . . . , en, f1, . . . , fn} of L0 and the quadratic form 〈, 〉0 is given
by 〈ei, fi〉0 = p for i > 1, 〈e1, e1〉0 = 2p, 〈f1, f1〉0 = −2λ2p, and 〈v, w〉0 = 0 for all (v, w) ∈
{e1, . . . , en, f1, . . . , fn}2 such that (v, w) 6= (ei, fi), (fi, ei), i > 1 or (e1, e1), (f1, f1).

Proof. The assertion follows from Theorem 3.4 and the proof of Lemma 3.15 in [Ogu79]. �

Lemma 4.4 (Ogus). Fix the Zp-quadratic space L0 as in Lemma 4.3. For each supersingular point
P with (L0)ϕ=1 = L0, there exists a vector v ∈ 1

p(L0 ⊗Zp W ) such that

L0 = SpanW {v, σ(v), . . . , σn−1(v)}+ L0 ⊗W
and v satisfies the following conditions:

(1) SpanW {v, σ(v), . . . , σ2n−1(v)} = 1
pL0 ⊗Zp W .

(2) SpanW {v, σ(v), . . . , σn−1(v)} is isotropic for 〈, 〉0.
(3) 〈v, σn(v)〉0 = 1/p,

where we use σ to denote the action 1⊗σ on L0⊗ZpK. The quadratic form and ϕ action on L0 are
induced by those on L0⊗Zp K via L0 ⊂ L0⊗Zp K, where ϕ on L0⊗Zp K is given by 1⊗ σ. Finally,
the set of vectors {v, σ(v), . . . , σn−1(v), pσn(v), . . . , pσ2n−1(v)} forms a W -basis for L0.

Proof. Consider the inclusion L0 ⊗W ⊂ L0 ⊂ 1
pL0 ⊗W . Recall from §4.1 that the quadratic form

p−1〈, 〉0 yields a perfect bilinear form on L0 ⊗W . By [Ogu79, Theorem 3.5], the data of L0 is in
bijection with the data of an n-dimensional subspace H ⊂ L0 ⊗ k which is isotropic for p−1〈, 〉0,
where H satisfies conditions 3.5.2 and 3.5.3 of loc. cit..11 Let H ⊂ L0⊗W denote any lift of H and
then the crystal L0 corresponding to H is defined to be 1

pH + L0 ⊗W . Note that L0 only depends
on H and not on H itself, and that H is indeed the kernel of the natural map L0 ⊗ k → L0 ⊗ k.

The discussion in the paragraph above Theorem 3.21 in [Ogu79] implies that there exists a vector
e′ ∈ H such that {e′, . . . , σn−1(e′)} yields a basis of H, and the set {e′, . . . , σ2n−1(e′)} is a basis of
L0⊗k. Note that although the discussion in loc. cit. is in the context of ϕ−1(H) ⊂ L0⊗W and not
H, everything applies to our setting too, by defining e′ to be σ(e), where e is as in [Ogu79, p. 33],
and note that ϕ(L0) = L0.

A straightforward application of Hensel’s lemma yields a specific choice of an isotropic n-dimensional
H0 ⊂ L0 ⊗ W along with a vector ẽ′, with the property that H0 and ẽ′ reduce to H and e′

mod p such that H0 is the W -span of ẽ′, σ(ẽ′), . . . , σn−1(ẽ′). It then follows that the W -span of
ẽ′, σ(ẽ′), . . . , σ2n−1(ẽ′) equals L0⊗W . By replacing ẽ′ by an appropriate W×-multiple, we may also
assume that 1

p〈ẽ
′, σn(ẽ′)〉0 = 1. The the lemma follows by defining v = 1

p ẽ
′. �

Lemma 4.5. Set vi = σi−1(v), i = 1, . . . , 2n for the vector v in Lemma 4.4. Then there exist vectors
w1, . . . , wn ∈ L0 such that

(1) v1, . . . , vn, w1 . . . , wn form a W -basis of L0;

11Ogus proved that the isomorphism classes of so-called K3 crystals ([Ogu79, Def. 3.1]) are in bijection with
the data in [Ogu79, Thm. 3.5] described here; indeed, the isomorphism classes of K3 crystals in Ogus’s sense are
isomorphism classes of L for supersingular points by [HP17].
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(2) The Gram matrix of 〈, 〉0 with respect to this basis is
[

0 I
I 0

]
;

(3) The Frobenius ϕ on L0 with respect to this basis is of form B0σ, where12

B0 =



0 p
1 pb1

. . .
...

1 pbn−1

p−1 −b1 . . . −bn−1 0
1 0

. . .
...

1 0


with bi ∈W.

Proof. By the final claim of Lemma 4.4, {v1, . . . , vn, pvn+1, . . . , pv2n} is a basis of L0 over W . By
Lemma 4.4(2)(3) and the fact that 〈ϕ(x), ϕ(y)〉0 = σ(〈x, y〉0), we have that 〈vi, pvj〉0 = 0 for
j ≤ i+n−1 and 〈vi, pvi+n〉0 = 1; thus by modifying pvn+1, . . . , pv2n by an upper-unipotent matrix,
we obtain w1, . . . , wn satisfying condition (2). Moreover, the left half of B0 in condition (3) also
follows from the definition of vi and that w1 = pvn+1.

We now consider the top-right block of B. To deduce that the first n − 1 columns of this block
vanish, (2) shows that it suffices to prove 〈ϕ(wi), wj〉0 = 0 for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n.
By definition, the wi, 1 ≤ i ≤ n − 1 are W -linear combinations of pvn+1 = pϕn(v), . . . , pv2n−1 =
pϕn−2(v) and thus ϕ(wi) is contained in SpanW {pvn+1, . . . , pv2n} = SpanW {w1, . . . , wn}. Since
SpanW {w1, . . . , wn} is isotropic by Lemma 4.4(2), then 〈ϕ(wi), wj〉0 for 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n
as required. In order to prove that the last column of this block is as claimed in the lemma, it suffices
to prove that 〈ϕ(wn), w1〉0 = σ(〈wn, ϕ−1(w1)〉0) = p and p | 〈ϕ(wn), wj〉0 = σ(〈wn, ϕ−1(wj)〉0) for
j ≤ n. Note that ϕ−1(w1) = pvn and then the first equality follows. For the rest, note that ϕ
gives a σ-linear endomorphism of L0 ⊗W and p | 〈, 〉0 on L0, thus w1 . . . wn, ϕ(wn) ∈ L0 ⊗W and
p | 〈ϕ(wn), wj〉0 for all j ≤ n.

Similarly, for the bottom-right part of B, it suffices to show that 〈ϕ(wi) − wi+1, vj〉0 = 0,
p〈ϕ(wi), v1〉0 = −〈ϕ(wn), wi+1〉0, ∀1 ≤ i ≤ n − 1, 2 ≤ j ≤ n and 〈ϕ(wn), vj〉0 = 0, ∀1 ≤ j ≤ n.
Note that 〈ϕ(wi) − wi+1, vj〉0 = 〈ϕ(wi), vj〉0 − 〈wi+1, vj〉0 = 〈wi, vj−1〉0 − 〈wi+1, vj〉0 = 0 by con-
dition (2). Then ϕ(wi) = wi+1 + aiw1 for some ai ∈ W . Thus wi+1 = ϕ(wi − σ−1(ai)pvn)
and then 〈ϕ(wn), wi+1〉0 = σ(〈wn, wi − σ−1(ai)pvn〉0) = −pai; in other words, p〈ϕ(wi), v1〉0 =
−〈ϕ(wn), wi+1〉0. Moreover, 〈ϕ(wn), vj〉0 = σ(〈wn, vj−1〉0) = 0 for j ≥ 2. For 〈ϕ(wn), v1〉0 =: c, by
the above discussion, ϕ(wn) = pv1 + pb1v2 + · · ·+ pbn−1vn + cw1 and thus 〈ϕ(wn), ϕ(wn)〉0 = 2pc;
on the other hand, 〈ϕ(wn), ϕ(wn)〉0 = σ(〈wn, wn〉0) = 0 and then c = 0, which finishes the proof of
the lemma. �

4.6. Let S0 denote the change-of-basis matrix from {ei, fi}ni=1 to {vi, wi}ni=1 in Lemma 4.5. More
precisely, S0 ∈ M2n(K) whose first (resp. last) n columns are the coordinates of vi (resp. wi)
in terms of the basis {ei, fi}ni=1. For the simplicity of computations in §5, let S′0 the change-of-
basis matrix from {ei, fi}ni=1 to {pvi, wi}ni=1. From the proof of Lemma 4.5, SpanW {ei, fi}ni=1 =

SpanW {pvi, wi}ni=1; thus S
′
0 ∈ GL2n(W ). Moreover, by definition, S0 = S′0

[
p−1I 0

0 I

]
.

4.7. We now describe L1 and L1 defined in §§4.1,4.2. Recall that L1 = L1⊗W , the Frobenius ϕ on
L1 is given by 1⊗σ and the quadratic form on L1 is also induced by the one on L1, so we only need
to classify L1. Unlike L0, which is completely determined by tP (see Lemma 4.3), the Zp-quadratic

12All empty entries in the matrix are 0.
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lattice L1 depends on dimL and discL (see [Ogu79, Thm. 3.4] and [HP17, §4.3.1]). Since L1 is
self-dual, we have the following three cases:13

(1) dimZp L1 = 2m and there is an m-dimensional isotropic subspace of L1 over Zp. We call
this the split case.

(2) dimZp L1 = 2m and there does not exist an m-dimensional isotropic subspace of L1 over Zp.
(3) dimZp L1 is odd.

Note that for cases (2)(3), one may always embed L1 into a split Zp-quadratic lattice of larger
dimension. Therefore, we deal exclusively with the split case and we will remark in the proofs of
the decay lemmas in §§5-6 that by the above embedding trick, the computation in the split case
will also prove the decay lemmas in all other cases. We use {e′i, f ′i}mi=1 to denote a Zp-basis of L1 in

the split case such that the Gram matrix with respect to this basis is
[

0 I
I 0

]
.

Description of Lcris at the formal neighborhood.

4.8. Following [Kis10, §§1.4-1.5], we will describe the formal neighborhood of the Shimura variety
at the supersingular point P , and also compute the F -crystal Lcris over this formal neighborhood
(see also [MST, §3.1.5, §3.2.1]). We first summarize Kisin’s description in abstract terms, before
providing an explicit description of the F -crystal in terms of the coordinates provided earlier in this
section.

Recall from §4.1 that the quadratic form Q on L is compatible with the Frobenius ϕ on L; more-
over, LdR defined in §2.2 carries the Hodge filtration so, by the canonical de Rham-crystalline com-
parison, L⊗W k also carries a filtration which we call the mod p Hodge filtration. Let µ : Gm,W →
SO(L,Q) denote any co-character (which we shall refer to as “the Hodge co-character”) whose mod
p reduction induces the above filtration. Let U denote the opposite unipotent in SO(L,Q) with
respect to µ, and let Spf R = Û denote the completion of U at the identity section. Pick σ : R→ R
to be a lift of the Frobenius endomorphism on R mod p. Let u be the tautological R-point of U .

Then, by [Kis10, §§1.4, 1.5], there exists an isomorphism between the complete local ring of the
Shimura variety at P and Spf R such that the F -crystal Lcris(R) is isomorphic to L ⊗W R as an
R-module, and the Frobenius action on Lcris(R), denoted by Frob, is given by Frob = u ◦ (ϕ ⊗ σ)
on L⊗W R via the isomorphism Lcris(R) ∼= L⊗W R. For the simplicity of notation, we will fix the
above mentioned isomorphisms and write Lcris(R) = L⊗W R. By the canonical de Rham-crystalline
comparison, the Hodge filtration on LdR induces a filtration on Lcris(R ⊗W k) which we also call
the Hodge filtration.

We will now provide an explicit description in terms of coordinates of the above objects. By
Lemma 4.5(3) and Mazur’s theorem on determining the mod p Hodge filtration using ϕ (see for
instance [Ogu82, p. 411]), the mod p Hodge filtration on L⊗W k is given by

Fil1 L⊗Wk = Spank{w̄n},Fil0 L⊗Wk = Spank{v̄i, w̄j , ē′l, f̄ ′l}i=1,...,n−1,j=1,...,n,l=1,...,m,Fil−1 L⊗Wk = L⊗Wk,

where v̄i, w̄j , ē′l, f̄
′
l denote the reduction of vi, wj , e′l, f

′
l mod p. Thus, with respect to the basis

{vi, wi, e′j , f ′j}i=1,...,n,j=1,...,m, we choose the Hodge cocharacter µ : Gm,W → SO(L,Q) in the local
Shimura datum to be

13Comparing to [MST, §3], §3.2.1 in loc. cit. is a special case of the split even dimensional case, §3.2.2 in loc. cit. is
a special case of the non-split even dimensional case, and §3.3 in loc. cit. is a special case of the odd dimensional case.
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µ(t) =



1
. . .

1
t−1

1
. . .

1
t

1
. . .

1



,

where the diagonal blocks have sizes n, n, and 2m.
Moreover, there exist local coordinates {xi, yi, x′j , y′j}i=1,...,n−1,j=1,...,m such that the complete

local ring ÔS,P of S at P is isomorphic to Spf R, where R = W [[xi, yi, x
′
j , y
′
j ]]i=1,...,n−1,j=1,...,m. We

define σ : R→ R, the operator that restricts to the usual Frobenius element onW and which lifts the
Frobenius endomorphism on R mod p, to be σ(xi) = xpi , σ(yi) = ypi , σ(x′j) = (x′j)

p, σ(y′j) = (y′j)
p.

The tautological point of the opposite unipotent in SO(L,Q) with respect to µ has the following
description in terms of our coordinates:

u = I +



−y1
...

−yn−1

x1 . . . xn−1 0 y1 . . . yn−1 Q x′1 . . . x′m y′1 . . . y′m
−x1
...

−xn−1

0
−y′1
...
−y′m
−x′1
...
−x′m



,

where Q = −
n−1∑
i=1

xiyi −
m∑
j=1

x′jy
′
j .

The Frobenius action Frob on Lcris(R) = L ⊗W R is given by Frob = u ◦ (ϕ ⊗ σ). Thus, with
respect to the R-basis {vi ⊗ 1, wi ⊗ 1, e′j ⊗ 1, f ′j ⊗ 1}i=1,...,n,j=1,...,m, we have that Frob = (uB) ◦ σ,

where B =

[
B0 0
0 I

]
, and B0 is given in Lemma 4.5.

Equation of the non-ordinary locus. We now compute the local equation of the non-ordinary
locus in a formal neighborhood of a supersingular point. Recall that we have the Hodge cocharacter
µ, whose mod p reduction induces the mod p Hodge filtration on Lcris,P (k) = L⊗W k. By [Moo98,
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§4.5], the Hodge filtration on Lcris(R⊗W k) = L⊗W (R⊗W k) is given by

Fili(Lcris(R⊗W k)) = Fili(L⊗W k)⊗k (R⊗W k), i = −1, 0, 1.

As in [MST, §3.4], we note that pFrob induces a map gr−1 Lcris(R ⊗W k) → gr−1 Lcris(R ⊗W k).
Ogus proved the following result.

Lemma 4.9 (Ogus). For a supersingular point P , the non-ordinary locus (over k) in the formal
neighborhood of P is given by the equation

pFrob |gr−1 Lcris(R⊗W k) = 0.

See [Ogu01][Prop. 11 and p 333-334] (or [MST][Lemma 3.4.1] which elaborates on [Ogu01]).

Corollary 4.10. For a supersingular point P , the non-ordinary locus (over k) in the formal neigh-
borhood of P is given by the equation Q = 0 if P is superspecial; otherwise, the equation is given by
y1 = 0.

Proof. In what follows, the number n is as in Lemma 4.5, i.e., 2n = tP = dimW L0 and we follow
the notation in §4.8. The space gr−1 Lcris(R ⊗W k) is spanned by v̄n. We use the description of
Frob = (uB) ◦ σ (from Lemma 4.5 and the explicit description of u in §4.8) to see that the map
pFrob : gr−1 Lcris(R⊗W k)→ gr−1 Lcris(R⊗W k) has the explicit description

pFrob(v̄n) = Qv̄n if n = 1; pFrob(v̄n) = y1v̄n if n > 1.

The result now follows from the fact that P is superspecial if and only if tP = 2 if and only if
n = 1. �

4.11. In order to compute the powers of Frob in the proofs of the decay lemmas later, we describe

Frob with respect to the K-basis {ei, fi, e′j , f ′j}i=1,...,n,j=1,...,m of L⊗W K. Let S =

[
S0 0
0 I

]
, S′ =[

S′0 0
0 I

]
, where S0, S

′
0 are defined in §4.6 and thus S′ ∈ GL2n+2m(W ). Then by definition,

B = S−1σ(S).
We view {ei, fi, e′j , f ′j}i=1,...,n,j=1,...,m as an R[1/p]-basis of Lcris(R) ⊗R R[1/p] and then Frob is

given by S(uB)σ(S−1) ◦ σ = SuS−1 ◦ σ = S′u′(S′)−1 ◦ σ, where

u′ = I+



−y1/p
...

−yn−1/p
x1 . . . xn−1 0 y1/p . . . yn−1/p Q/p x′1/p . . . x′m/p y′1/p . . . y′m/p

−x1
...

−xn−1

0
−y′1
...
−y′m
−x′1
...
−x′m



.
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5. Decay for non-superspecial supersingular points

The goal of this and the next section is to prove that, at supersingular points, special endomor-
phisms “decay rapidly” in the sense of [MST, Def. 5.1.1], which we will recall below.

Throughout these sections, k = F̄p, W = W (k), K = W [1/p]. We focus on the behavior of
the curve C in Theorem 1.2 in a formal neighborhood of a supersingular point P , so we may let
C = Spf k[[t]] denote a generically ordinary formal curve in Sk which specializes to P . In this
section, we will focus on the case when P is non-superspecial and we treat the superspecial case in
§6.

Let A/k[[t]] denote the pullback of the universal abelian scheme Auniv over the integral model S
of the GSpin Shimura variety via Spf k[[t]] → Sk and let A denote A mod t, and we will consider
the p-divisible groups A[p∞], A[p∞] associated to A, A. Let h denote the t-adic valuation of the
local equation defining the non-ordinary locus given in Corollary 4.10. Recall from §4.1, L is the
lattice of special endomorphisms of A[p∞].

Definition 5.1 ([MST, Def. 5.1.1]). We say that w ∈ L decays rapidly if for every r ∈ Z≥0,
the special endomorphism prw does not lift to an endomorphism of A[p∞] modulo thr+1, where
hr := [h(pr + · · · + 1 + 1/p)]. We say that a Zp-submodule of L decays rapidly if every primitive
vector in this submodule decays rapidly.

The main theorem of this section is the following:

Theorem 5.2 (The Decay Lemma). There exists a rank 2 saturated Zp-submodule of L which decays
rapidly.

Theorem 3.2 follows directly from the Decay Lemma:

Proof of Theorem 3.2. We first note that Ln, the lattice of special endomorphisms of A[p∞] mod tn,
is precisely Ln⊗Zp. Upon choosing a basis of L that extends a basis of the submodule that decays
rapidly (which we may do, as this submodule is saturated in L), we see that the index |L/Ln| of Ln
in L is at least p2r+2 if n ≥ hr + 1. The corresponding statements for Ln now follow directly. �

5.3. We first give an indication why the reader should expect a statement along these lines to hold.
Note that in the mixed characteristic setting, namely while deforming from k to W (k), applying
Grothendieck–Messing theory yields that if a special endomorphism α lifts mod pn but not mod
pn+1, then the special endomorphism pα would lift mod pn+1 but not pn+2 (see [ST20, Lemma
4.1.2]). However, Grothendieck–Messing theory is inherently limited in the equicharacteristic p
setting, and the bounds it yields are worse than the bounds it yields in the mixed characteristic
setting.

We illustrate this with the following example. Let G denote a p-divisible group over Spec k[t]/(ta),
suppose that α is any endomorphism of G , and suppose that G ′ over Spec k[t]/(tpa) is a p-divisible
group that deforms G . We claim that the endomorphism pα deforms to G ′ regardless of how α be-
haves. Indeed, let D denote the Dieudonné crystal of G / Spec k[t]/(ta). As the map Spec k[t]/(ta)→
Spec k[t]/(tpa) is naturally equipped with a divided powers structure (and this is the key point in
this observation), we may evaluate the Dieudonné crystal D at Spec k[t]/(tpa), and Grothendieck–
Messing theory implies that the choice of deformation G ′ is equivalent to the choice of a filtration
of D(Spec k[t]/(tpa)) which is compatible with the filtration on D(Spec k[t]/(ta)) given by G . This
corresponds to Fil ⊂ D(Spec k[t]/(tpa)), which is a free k[t]/(tpa) sub-module of D(Spec k[t]/(tpa)),
which itself is a free k[t]/(tpa)-module. Moreover, any endomorphism β of G induces an endomor-
phism of the crystal D, and therefore induces an endomorphism of D(Spec k[t]/(tpa)). Finally, β
deforms to an endomorphism of G ′ if and only if β(Fil) ⊂ Fil. Given that α induces an endomor-
phism of D(Spec k[t]/(tpa)) (which need not preserve Fil), it follows that pα induces the zero map
on D(Spec k[t]/(tpa)), and thus tautologically preserves Fil whether or not α does. Therefore, it
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follows that if α is an endomorphism of G over k[t]/(ta), then pα lifts to any deformation of G to
Spec k[t]/(tpa), which suggests that it is not possible to expect a much faster rate of decay than
defined in Definition 5.1.

We now work in the setting of a p-divisible group A[p∞]/k[[t]]. Let α denote an endomorphism
of A[p∞] mod t, that extends to an endomorphism of A[p∞] mod ta, but not ta+1. The example
considered above implies that pα extends to an endomorphism mod tpa. However, Grothendieck–
Messing theory cannot be naively applied to find an effective integer b (in terms of a) which has
the property that pα does not extend to an endomorphism of A[p∞] mod tb. Therefore, in order
to prove Theorem 5.2, we use Kisin’s description of the F -crystal Lcris, which controls the t-adic
deformation of the special endomorphisms of A[p∞] mod t – see §5.4 for a sketch of how we proceed.

On the other hand, we remark that in some special cases when the generic point has extra
endomorphisms (e.g., when the Kuga–Satake family over C is isomorphic to self-product of a family
of elliptic curves), the work of Keating, based on the formal cohomology theory of Lubin–Tate and
Drinfeld, yields the desired decay (see [Kea88, Thm. 1.1])14, which gives another justification on the
shape of hr.

5.4. We give a rough idea of the proof of Theorem 5.2 here (see §§5.5-5.6 for details and references);
we also provide a toy example of the explicit computation in this section. The reader should feel
free to read this description and skip the details of our proof on a first reading. Consider a special
endomorphism w ∈ L. We give a criterion for w to not extend to an endomorphism of A[p∞] mod tr

in terms of the crystal Lcris. To that end, recall that R denotes the ringW [[xi, yi, x
′
j , y
′
j ]] (notation as

in §4.8), and consider w ∈ L ⊂ L as an element of L⊗W R = Lcris(R). Let w̃ ∈ L⊗K[[xi, yi, x
′
j , y
′
j ]]

denote the unique horizontal continuation of w with respect to the connection on Lcris. The entries
of the vector w̃ are power series valued inK[[xi, yi, x

′
j , y
′
j ]], and the p-adic valuation of the coefficients

of these power series go to −∞. Loosely speaking, in order to understand whether w extends to
a k[t]/(tr)-point of R arising from a k[[t]]-point of R, we just need to restrict w̃ to L ⊗W K[[t]].
This yields a vector with entries in the power series ring K[[t]], and it suffices to understand the
p-adic valuations of the coefficients of these power series. An explicit expression for w̃ is given
by limn→∞ Frobn(w), where as in §4.8, Frob is the σ-linear Frobenius action on Lcris (see [Kis10,
§1.5.5]).

We illustrate this computation (which we carry out in full detail in the following pages) with a toy

model. Consider Frob = (I+F )◦σ with respect to a ϕ-invariant basis of L, where F =

[
xy/p x/p
y 0

]
,

R = W [[x, y]], σ(x) = xp, σ(y) = yp and when we restrict ourselves to C, we plug in x, y by certain
power series x(t), y(t) ∈W [[t]], which are chosen based on C → Spf k[[x, y]]. Thus

∏∞
n=1(I+F )◦σ is

an infinite summation of products of F (i) := σi(F ). Consider w = [1, 0]T (with respect to the chosen
basis of L), then a direct computation of matrix products implies that for the first coordinate of w̃,
among all the terms with p-adic valuation −(r+ 1), the unique term with minimal t-adic valuation
is
∏r+1
i=1 σ

i−1(xy/p) = (xy)1+p+···+pr/pr+1. This observation allows us to prove the Decay Lemma.

The setup. The setup and the first reduction steps in the proof of Theorem 5.2 is the same as that
in the proof of [MST, Thm. 5.1.2] in [MST, §5.1]. We briefly introduce the notation for the proof
of Theorem 5.2 here and the reader may see [MST] for more details.

5.5. Recall from §4.8 that ÔS,P = Spf W [[x1, . . . , xn−1, y1, . . . , yn−1, x
′
1, . . . , x

′
m, y

′
1, . . . , y

′
m]] when

L1 is split. Since P is non-superspecial, we have n ≥ 2 through out this section.
The formal curve C gives rise to the tautological ring homomorphism

W [[x1, . . . , xn−1, y1, . . . , yn−1, x
′
1, . . . , x

′
m, y

′
1, . . . , y

′
m]]→ k[[t]],

14We would like to thank the anonymous referee for pointing out this reference to us.
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and we denote by xi(t) (respectively x′i(t), yi(t), y
′
i(t)) the images of xi (respectively x′i, yi, y

′
i) in

k[[t]]. For each xi(t) (respectively x′i(t), yi(t), y
′
i(t)), let Xi(t) (respectively X ′i(t), Yi(t), Y

′
i (t)) denote

the power series in W [[t]] whose coefficients are the Teichmuller lifts of the coefficients of xi(t)

(respectively x′i(t), yi(t), y
′
i(t)). We define Yn(t) = −

n−1∑
i=1

Xi(t)Yi(t) −
m∑
j=1

X ′j(t)Y
′
j (t), and define

Yn+1(t) = −
m∑
i=1

(X ′i(t)(Y
′
i (t))p + (X ′i(t))

pY ′i (t)). Let ai = vt(Yi(t)) for 1 ≤ i ≤ n + 1, where vt

denotes the function of taking t-adic valuation. By Corollary 4.10, since P is a non-superspecial
supersingular point, the local equation of the non-ordinary locus is given by y1(t) = 0 and hence
h = vt(y1(t)) = vt(Y1(t)) = a1.

5.6. We now relate the lift of special endomorphisms to explicit computations of powers of the
Frobenius matrix given in §4.11. For s ∈ Z≥0, let Ds denote the p-adic completion of the PD
enveloping algebra of the ideal (ts, p) inW [[t]] and let ιs denote the map Spec k[t]/(ts)→ Spf k[[t]]→
Spf R⊗W k. By de Jong’s theory [dJ95, §2.3], if w ∈ L lifts to a special endomorphism of A mod ts,
then it gives rise to a horizontal section in the Dieudonné module (ι∗sLcris)(Ds). Thus, in order
to find the largest s such that w lifts to k[t]/(ts), we first compute the horizontal section w̃s ∈
(ι∗sLcris)(Ds)⊗WK whose restriction to the fiber t = 0 equals w and then study the p-adic integrality
of w̃s.

Here we recall the construction of w̃s following [Kis10, §1.5.5] and the rest of this section is
devoted to the study of the p-adic integrality. More precisely, Kisin constructed a Frobenius stable
section w̃ in L ⊗W K[[xi, yi, x

′
j , y
′
j ]] whose restriction to L (the fiber at P ) is a given ϕ-invariant

vector w ∈ L; moreover, since Frob is a horizontal morphism, he concluded that w̃ is horizontal. In
our setting, since the connection on ι∗sLcris is the pullback of the connection on Lcris, the horizontal
section w̃s is the pullback via R→W [[t]]→ Ds of the horizontal section w̃ ∈ L⊗WK[[xi, yi, x

′
j , y
′
j ]].

Let F ′ denote the matrix S′(u′ − I)(S′)−1 in §4.11; with respect to the basis {ei, fi, e′j , f ′j},
Frob = (I+F )◦σ, where σ is defined in §4.8.. Let F ′(i) denote the i-th σ-twist of F ; more precisely,
F ′(i) is given by σi(S′(u′ − I)(S′)−1). Let

F ′∞ =
∞∏
i=0

(I + F ′(i)) ∈M2n+2m(K[[xi, yi, x
′j, y′j ]]).

We define F∞ by substituting Xi(t) (resp. X ′j(t), Yi(t), Y
′
j (t)) for xi (resp. x′j , yi, y

′
j) in F ′∞. More

explicitly, let F (i) be the matrix obtained by substituting Xi(t) (resp. X ′j(t), Yi(t), Y
′
j (t)) for xi

(resp. x′j , yi, y
′
j) in F

′(i). In other words, we first compute the Frobenius twist of F ′, and only then
substitute the power series in t for the variables xi, yi, x′j , y

′
j .

15 So we obtain

F∞ =
∞∏
i=0

(I + F (i)) ∈M2n+2m(K[[t]]).

This product is well-defined and the Qp-span of the columns of F∞ are vectors in L ⊗W K[[t]]
which are Frob-invariant and horizontal. Let ι denote the map Spf k[[t]]→ Spf R⊗W k; thus ι∗w̃ ∈
L⊗WK[[t]] ∼= K[[t]]2m+2n is given by F∞w, where we write w as a column vector with respect to the
basis {ei, fi, e′j , f ′j}. The horizontal section w̃s is F∞w, which indeed lies in (ι∗sLcris)(Ds) ⊗W K ⊂
L ⊗W K[[t]]. One way to see this claim is that by §5.3, for each w ∈ L, there exists N � 1
(depending on s, w) such that pNw extends to an endomorphism of A[p∞] mod ts and thus by de
Jong’s theory, pN w̃s ∈ (ι∗sLcris)(Ds) and thus w̃s ∈ (ι∗sLcris)(Ds)⊗W K.

15For more details, see [MST, Proof of Thm. 5.1.2 assuming Prop. 5.1.3].
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In order to show that w decays rapidly, it suffices to show that for every r, we have that prw̃hr+1

does not lie in Lcris(Dhr+1). More precisely, since for every N < p(hr + 1), we have tN/p /∈ Dhr+1,
it suffices to show that there exists an entry of ι∗w̃ (viewed as a power series in K[[t]]) which has
a term of form ctN/pr+2 with N < p(hr + 1) and c ∈ W×.16 Thus in what follows, we use the
definition of F∞ to expand F∞w into an infinite sum of vectors in K[[t]]2m+2n whose entries are
monomials in Xi(t), Yi(t), X

′
j(t), Y

′
j (t) and will find the vector with minimal t-adic valuation in the

expansion of F∞w among all vectors with p-adic valuation −r. Note that by the t-adic and p-adic
valuations of a vector, we mean the minimal t-adic/p-adic valuation of all entries.

The terms in F∞ with minimal t-adic valuation among ones with fixed p-adic valuation.
In order to prove Theorem 5.2, it suffices to work with F∞(1), the top-left 2n × 2n block of F∞
(see the first paragraph of the proof of Theorem 5.2 right after Lemma 5.13 for details) and in what
follows, we compute F∞(1) explicitly.

5.7. Let A (resp. C, D) denote the top-left 2n×2n (resp. top-right 2n×m and bottom-left m×2n)
block of u′−I in §4.11 with Xi(t) (resp. X ′j(t), Yi(t), Y

′
j (t)) substituted in place of xi (resp. x′j , yi, y

′
j).

Thus

F =

[
S′0AS

′−1
0 S′0C

DS′−1
0 0

]
.

For i < n, we let Ai denote the 2n × 2n matrix with the n, n + i entry equal to p−1Yi(t), the
i, 2n entry equalling −p−1Yi(t) and all other entries equal to 0. We let An denote the matrix with
zeros everywhere except for the n, 2n entry, which equals p−1Yn(t). Let Ki equal S′0Ai(S′0)−1. Let
An+1 = CD(1) and Kn+1 = S′0An+1((S′0)−1)(1). Note that An+1 is a 2n × 2n matrix with zeros
everywhere except for the n, 2n-entry which equals p−1Yn+1(t).

For brevity, let F (1) denote the top-left 2n × 2n block of F . We have F (1) =
n∑
i=1

Ki + B(x),

where B(x) involves only the Xi and has p-adically integral coefficients since S′0 ∈ GL2n(W ). We
further break B(x) into B(x) = B1(x) +B2(x), where the (i, j) entry of S′−1

0 B1(x)S′0 is zero unless
i = n, j < n, in which case the entry is xj , and the (i, j) entry of S′−1

0 B2(x)S′0 is zero unless
j = 2n, n < i < 2n− 1, in which case the entry is −xn−i. Moreover, we observe that F∞(1) is made
up of sums of finite products of σ-twists of B1(x), B2(x) and Ki, i = 1, . . . , n+ 1.

The following two lemmas identify the nonzero products of σ-twists of Ki, i = 1, . . . , n + 1. For
brevity, let R1 . . . R2n denote the rows of the matrix (S′0)−1. Since (S′0)−1 ∈ GL2n(W ), we have
that {Ri}2ni=1 is a basis of k2n, where we use Ri to denote Ri mod p.

Lemma 5.8. We have σ(Ri) = Ri+1 for n + 1 ≤ i ≤ 2n − 1; σ(R2n) = R1, σ(Ri) = Ri+1 − biR1

for 1 ≤ i ≤ n− 1, and σ(Rn) = Rn+1 +
∑n−1

i=1 biRn+i+1, where bi ∈W in Lemma 4.5.

Proof. Recall from §4.11 that B0 = S−1
0 σ(S0) and thus by §4.6, we have σ((S′0)−1) = (B′0)−1(S′0)−1,

where B′0 =

[
p−1I 0

0 I

]
B0

[
pI 0
0 I

]
. We then obtain the assertions by a direct computation

using Lemma 4.5(3). �

Lemma 5.9. Notation as in §§5.5,5.7. All Frobenius twists below are defined in the same way as
F (i): first applying σi to xi, yi, x′j , y

′
j and then substitute Xi(t), Yi(t), X

′
j(t), Y

′(t)j for xi, yi, x′j , y
′
j.

We also view vi, wi in Lemma 4.5 as vectors vi ⊗ 1, wi ⊗ 1 in K[[t]]2n = L0 ⊗W K[[t]], where this
identification uses the ϕ-invariant basis {ei, fi}ni=1 of L0 ⊗W K in Lemma 4.3.

16Here we have pr+2 instead of pr+1 is due to the fact that SpanW {ei, fi, e′j , f ′j} 6= L but we still have
SpanW {ei, fi, e′j , f ′j} ⊃ pL.
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(1) For i, j, l ∈ Z>0 such that i, j, l ≤ n + 1 and l ≤ i, the matrix KiK
(l)
j = 0 unless i = l.

Moreover, the image of KiK
(i)
j is SpanK[[t]]{vn} and KiK

(i)
j = S′0M where M ∈M2n(K[[t]])

is the matrix with its nth row being YiY
(i)
j p−2σi+j−1(Rn+1) and all other rows being 0.

(2) For i1, i2, . . . , il ∈ Z≥1 such that i1, i2, . . . , il ≤ n+1, the image of the matrix
∏l
j=1K

(i1+···+ij−1)
ij

is SpanK[[t]]{vn}. Moreover,
∏l
j=1K

(i1+···+ij−1)
ij

= S′0M where M ∈ M2n(K[[t]]) is the ma-

trix with its nth row being (
∏l
j=1 Y

(i1+···ij−1)
i1

)p−lσi1+i2+···+il−1(Rn+1) and all other rows
being 0.

Proof. (1) By §5.7, kerKi = SpanK[[t]]{v1, . . . , vn, w1, . . . , wi−1, wi+1, · · · , wn−1} for 1 ≤ i < n, and
kerKn = SpanK[[t]]{v1, . . . , vn, w1, . . . , wn−1}, kerKn+1 = SpanK[[t]]{ϕ(v1), . . . , ϕ(vn), ϕ(w1) . . . ϕ(wn−1)}.
Note that if we view vi, wi as vectors in K2n by using the basis {ei, fi}ni=1, then ϕ(vi), ϕ(wi) are
just applying σ to all coordinates. On the other hand, imKj = SpanK[[t]]{vj , vn} for 1 ≤ j ≤ n and
imKn+1 = SpanK[[t]]{vn}; hence by Lemma 4.5(3), for 1 ≤ l ≤ n,

imK
(l)
j = ϕl(imKj) ⊂ SpanK[[t]]{v1, . . . , vn, w1, . . . , wl},

and imK
(n+1)
j ⊂ SpanK[[t]]{ϕ(v1), . . . , ϕ(vn), ϕ(w1), . . . , ϕ(wn)}. Therefore, KiK

(l)
j = 0 if l < i.

Suppose now that l = i. Then imKiK
(i)
j = SpanK[[t]]{Kiwi} = SpanK[[t]]{vn} for i ≤ n and

imKn+1K
(n+1)
j = SpanK[[t]]{Kn+1ϕ(wn)} = SpanK[[t]]{vn}. Thus the matrixM has only its nth row

non-zero. We now compute the nth row ofM . For i, j ≤ n, note thatM = Ai(S
′
0)−1(S′0)(i)A

(i)
j ((S′0)−1)(i);

if i = n + 1 or j = n + 1, the matrix M is given by the same formula once we replace the (S′0)−1

after Ai or Aj by ((S′0)−1)(1). For j ≤ n, the product A(i)
j ((S′0)−1)(i) has only its jth and nth rows

non-zero (if j = n, then only the nth row is non-zero), and these rows equal −Y (i)
j p−1σi(R2n) and

Y
(i)
j p−1σi(Rn+j) respectively (if j = n, the row Y

(i)
n p−1σi(R2n)); and A(i)

n+1((S′0)−1)(i+1) only has

its nth row non-zero and its nth row is Y (i)
n+1p

−1σi+1(R2n). Similarly, for i ≤ n, the nth row in
the product Ai(S′0)−1 equals Yip−1Rn+i; the nth row in An+1((S′0)−1)(1)) equals Yn+1p

−1σ(R2n) =

Yn+1p
−1R1 by Lemma 5.8. For j < n, by the above computation, we write A(i)

j ((S′0)−1)(i) as

(−Y (i)
j p−1)ejσ

i(R2n) + (Y
(i)
j p−1)enσ

i(Rn+j), where ej (resp. en) is the column vector with all
coordinates 0 expect the jth (resp. nth) coordinates being 1. Then

(S′0)(i)A
(i)
j ((S′0)−1)(i) = (−Y (i)

j p−1)ϕi(pvj)σ
i(R2n) + (Y

(i)
j p−1)ϕi(pvn)σi(Rn+j).

By definition of Rn+i, R1, we have Rn+ivj = 0 = R1wj , Rn+iwj = 0 for j 6= i, Rn+iwi = 1, R1vj = 0
for j > 1, and R1(pv1) = 1. For i ≤ n, the coefficient of wi in ϕi(pvj) (resp. ϕi(pvn)) is 0 (resp.
1) by Lemma 4.5(3) and thus the nth row of M is YiY

(i)
j p−2σi(Rn+j) = YiY

(i)
j p−2σi+j−1(Rn+1) by

Lemma 5.8. The cases when i = n+ 1 or j = n, n+ 1 also follow from Lemma 4.5 and Lemma 5.8
by direct computations as above.

(2) We prove by induction on l. Indeed, we only need to verify the expression of M . The base
case is just (1). We assume that i1 ≤ n and the case i1 = n + 1 follows by a similar computation.
Note that

M = Ai1(S′0)−1(
l∏

j=2

K
(i2+···+ij−1)
ij

)(i1) = Ai1(S′0)−1(S′0)(i1)(Y
(i1)
i2
· · ·Y (i1+···+il−1)

il
p1−l)enσ

i1+···+il−1(Rn+1)

by the induction hypothesis. By the computation in (1), we have Ai1(S′0)−1 has only its ith1 and nth

rows non-zero (if i1 = n, then only the nth row is non-zero), and these rows equal −Yi1p−1R2n and
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Yi1p
−1Rn+i1 respectively; moreover, by Lemma 4.5 and the definition of S′0, we have (S′0)(i1)en =

pvn+i1 , which is a linear combination of w1, . . . , wi1 with the coefficient of wn+i1 being 1; then by
the defintion of Rn+i1 and R2n, we have Rn+i1(pvn+i1) = Rn+i1(wi1) = 1 and R2n(pvn+i1) = 0.
Therefore we have Ai1(S′0)−1(S′0)(i1)en = (Yi1p

−1)en and the assertion follows. �

Recall from §5.7 that F∞(1) is an infinite sum of finite products of σ-twists of B(x) and Ki, i =
1, . . . , n+1.17 The following lemma picks out which of these finite products have the minimal t-adic
valuation among those with a fixed p-adic valuation. We observe that σ-twists of B1(x), B2(x) have
non-negative p-adic valuation and positive t-adic valuation; therefore if we have a finite product
of σ-twists of B1(x), B2(x) and Ki which shows up in F∞(1), then by removing all the σ-twists of
B(x) and lowering the twist degrees for Ki, we still obtain a product which shows up in F∞(1) and
have smaller t-adic valuation.

We illustrate this with two examples. Consider the termK1B1(x)(1)K
(2)
2 K

(4)
5 , and suppose that it

is non-zero. Then, the term K1K
(1)
2 K

(3)
5 is non-zero (this follows as the image of B1(x) is contained

in the image of K2, and in fact equals the image of K2K
(2)
5 ), and visibly has smaller t-adic valuation,

while the p-adic valuation is the same. Indeed, this argument works for any sub-product that starts
with a twist of B1(x) and has exactly one occurrence of a twist of Kj , which appears at the end of
this sub-product – the term that replaces this sub-product will be an appropriate twist of Kj .

Similarly, by considering row-spans instead of images, it follows that if a term that looks like
K2B2(x)(i)K

(j)
3 is non-zero, then so is K(i)

2 K
(j)
3 as the row span of K2 (in fact, of every Kj for every

j) contains the row span of B2. And so, in this case, we replace K2B(x)(i)K
(j)
3 with K2K

(j−i)
3 . As

above, this argument works for any sub-product that ends with a twist of B2(x), and has exactly
one occurrence of some twist of some Ki, which appears at the beginning of this sub-product. Thus,
it suffices to exclusively consider products of σ-twists of the Ki.

5.10. We introduce some notation for the lemmas. For r ∈ Z>0, define Ir = {1, 2, . . . , n+ 1}r. For
I = (i1, . . . , ir) ∈ Ir, define PI = Ki1 ·K

(i1)
i2
·K(i1+i2)

i3
· · ·K(i1+i2+···+ir−1)

ir
and define the weight of

I, denoted by µI , to be
∑r

j=1 ij . By Lemma 5.9, we write PI = S′0MI and note that all nonzero
entries in PI have the same t-adic valuation

∑r
j=1 p

i1+···+ij−1aij =: νI (recall that ai = vt(Yi)).
Note that in the expansion of F∞(1) into an infinite sum of finite products of σ-twists of B(x)

and Ki, i = 1, . . . , n + 1, among all such finite products with a p-adic valuation −r, the ones with
the minimal t-adic valuation have to be of the form PI with I ∈ Ir. Let νr denote this minimal
t-adic valuation. Define Imin

r = {I ∈ Ir : vt(PI) = νr}. In other words, among all finite products of
σ-twists of B(x) and Ki with p-adic valuation −r in the expansion of F∞(1), the ones with minimal
t-adic valuations are PI , I ∈ Imin

r . The following lemma provides some information of the set Imin
r .

Lemma 5.11. Notation as in §5.10 and let I = (i1, . . . , ir) ∈ Imin
r . Then:

(1) (i2, . . . , ir) ∈ Imin
r−1. Conversely, if (j2, . . . jr) ∈ Imin

r−1, then there exists j1 ∈ {1, . . . , n + 1}
such that (j1, j2, . . . , jr) ∈ Imin

r .
(2) i1 ≤ i2 ≤ · · · ≤ ir and ai1 ≥ ai2 ≥ · · · ≥ air .
(3) Let J = (j1, . . . jr) ∈ Imin

r . Then all (l1, . . . , lr) ∈ Imin
r must have each lα to be either iα or

jα for 1 ≤ α ≤ r.
(4) Let J be as in (3). Then |µI − µJ | < n+ 1.
(5) Suppose that |Imin

r | > 1. Then there exist two elements in Imin
r with different weights. Fur-

ther, there is a unique I ∈ Imin
r with maximal weight, and a unique J ∈ Imin

r with minimal
weight.

17Note that we also consider B(x) and Ki as the zeroth σ-twist of themselves.
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Proof. (1) By §5.10, we have νI = ai1 + pi1ν(i2,...,ir), and thus ν(i2,...,ir) has to be minimized in
order for νI to be minimal. On the other hand, take j1 = i1 and then we have ν(j1,...,jr) =

ai1 + pi1ν(j2,...,jr) = ai1 + pi1ν(i2,...,ir) = νr.
(2) We prove the assertion by induction on r. By the inductive hypothesis and (1), we may

assume that i2 ≤ i3 ≤ · · · ir and ai2 ≥ ai3 ≥ · · · ≥ air .
Assume for contradiction that i1 > i2. If ai2 ≤ ai1 , then ν(i2,i2,i3,...ir) < νI , which

contradicts with I ∈ Imin
r . Therefore ai1 < ai2 . Let I ′ = (i2, i1, i3, . . . , ir). We have

νI′ − νI = ν(i2,i1) − ν(i1,i2) = ai1(pi2 − 1)− ai2(pi1 − 1) < 0. Thus we must have i1 ≤ i2.
Now assume for contradiction that ai1 < ai2 . Then ν(i1,i1,i3,...ir) < νI . Thus ai1 ≥ ai2 as

required.
(3) Suppose that J = (j1, . . . , jr). By (1), it follows that ν(j2,...,jr) = ν(i2,...,ir) = νr−1, whence

ai1 +pi1νr−1 = aj1 +pj1νr−1. It follows that (i1, j2, j3, . . . , jr), (j1, i2, . . . , ir) ∈ Imin
r . (3) now

follows by induction on r.
(4) µI − µJ = i1 − (

∑r−1
α=1(jα − iα+1)) − jr. By (2) and (3), jα ≤ iα+1; since jr > 0, then

µI − µJ < i1 ≤ n+ 1. Similarly, µJ − µI < n+ 1; thus the result follows.
(5) For 1 ≤ α ≤ r, set Mα = maxJ∈Imin

r
{jα} and mα = minJ∈Imin

r
{jα}. By applying (3) repeat-

edly the set of all J ∈ Imin
r , it follows that (M1, . . . ,Mr), (m1, . . . ,mr) ∈ Imin

r . By definition,
(M1, . . . ,Mr) is the unique element of Imin

r with maximal weight, and (m1, . . . ,mr) ∈ Imin
r

is the unique element with minimal weight. �

Other preparation lemmas. Recall that Ri denote Ri mod p.

Lemma 5.12. For any 0 6= v ∈ F2n
p , we have Rn+1v 6= 0. Consequently, if {z1, . . . , z2n} is a basis

of F2n
p , then Rn+1z1, . . . , Rn+1z2n ∈ k are linearly independent over Fp.

Proof. If Rn+1v = 0, then σi(Rn+1)v = 0 for all i ≥ 0. By Lemma 5.8, SpanW {σi(Rn+1)}2n−1
i=0 =

W 2n; thus Rn+1, σ(Sn+1), . . . , σ2n−1(Rn+1) form a basis of k2n. Therefore, if Rn+1v = 0, then
v = 0; this proves the first assertion.

For the second assertion, suppose there exists a non-trivial linear relation
∑2n

i=1 ai(Rn+1zi) = 0

with ai ∈ Fp. Then, Rn+1(
∑2n

i=1 aizi) = 0, which contradicts the first assertion. �

Lemma 5.13. Let α0, . . . , αn ∈ k such that (α0, . . . , αn) 6= (0, . . . , 0). Consider the linear combi-

nation R =

n∑
i=0

αiσ
i(Rn+1). Then dimFp{v ∈ F2n

p | Rv = 0} ≤ n.

Proof. For any z ∈ F2n
p , note that Rz = ~α~β(z), where

~α = (α0, . . . , αn), ~β(z) =


Rn+1z

(Rn+1z)
(1)

...
(Rn+1z)

(n)

 .
Now assume for contradiction that there exist linearly independent vectors z1, z2, . . . , zn+1 ∈ F2n

p

such that Rzj = 0. This implies that ~α~β(zj) = 0 for every 1 ≤ j ≤ n+ 1. In particular, this implies
that the row vector ~α is in the (left) kernel of the (n+ 1)× (n+ 1) matrix M(z) whose jth column
is ~β(zj). This contradicts the assumption ~α 6= 0 once we show that M(z) is invertible. Indeed, note
that the (i + 1)th row of M(z) is the Frobenius twist of the ith row, and hence M(z) is a Moore
matrix. The determinant of a Moore-matrix vanishes if and only if the entries of the first row are
linearly independent over Fp. However, the first row of M(z) consists of the elements {Rn+1zi}n+1

i=1 ,
and by Lemma 5.12 these elements are linearly independent over Fp. The lemma follows. �
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Decay in the non-superspecial case.

Proof of Theorem 5.2. We follow the argument in §5.6. Let w be a primitive vector (that is, not
a multiple of p) in SpanZp

{e1, . . . , en, f1, . . . , fn} ⊂ L. With respect to the basis {ei, fi, e′j , f ′j}, we
view w as a vector inW 2n+2m, which has the last 2m coordinates being 0. Let w0 denote the vector
in W 2n whose coordinates are the first 2n coordinates of w (indeed, as vectors in L, w = w0).
Then for any r, s ∈ Z≥0, if prF∞(1)w0 is not integral in L0 ⊗W Ds, then neither is prF∞w in
L0 ⊗W Ds ⊕ L1 ⊗W Ds = L⊗W Ds = ι∗s(Lcris)(Ds). Thus to prove the Decay Lemma, it suffices to
work with F∞(1). Thus for a general L1, we may embed it into the split case as described in §4.7 to
reduce the proof to the split case because such an embedding only changes L1 part and the L0 part
remains the same; more precisely, the decay vectors that we choose lie in L0 and the computation
only considers the projection of F∞w into L0 ⊗Ds and thus the same argument applies.

Notation as in §5.10; let Mr+1 denote the matrix in M2n(K) such that∑
I∈Imin

r+1

PI = S′0
∑
I∈Imin

r+1

MI = tνr+1S′0Mr+1 + tνr+1+1Nr+1, for some Nr+1 ∈M2n(K[[t]]).

By definition, pr+1Mr+1 ∈ M2n(W ). First we follow the reduction step as in the last paragraph
of the proof of Thm. 5.1.2 assuming Prop. 5.1.3 in [MST]. Note that, because S′0 ∈ GL2n(W ), we
have that ker(pr+2Mr+2 mod p) = ker(pr+2S′0Mr+2 mod p). If w0 mod p /∈ ker(pr+2Mr+2 mod p) =
ker(pr+2S′0Mr+2 mod p), then the coefficient of tνr+2 in pr+2F∞(1)w0 modulo pL0 ⊗Zp W is given
by pr+2S′0Mr+2w0 mod p 6≡ 0. In other words, the coefficient of tνr+2 in prF∞(1)w0 does not lie in
p−1L0⊗ZpW . Since L0 ⊂ p−1L0⊗ZpW , then the coefficient of tνr+2 in prF∞(1)w0 does not lie in L0.
For s > νr+2/p, by the definition of Ds, we have that p−1tνr+2 /∈ Ds and then prF∞w0 /∈ Lcris(Ds).
Thus the following claim implies the Decay lemma.

Claim. (1) There exists a saturated Zp-submodule Λ ⊂ L of rank at least n such that if v ∈ Λ
is a primitive vector, then v mod p /∈ ker(pr+2Mr+2 mod p) for all r ∈ Z≥0.

(2) For all r ∈ Z≥0, we have νr+2/p < hr + 1, where hr is defined in Definition 5.1.

For (1), by Lemma 5.9(2), each pr+2MI ∈M2n(K[[t]]) with I ∈ Imin
r+2 has only its nth row non-zero

and its nth row has the form

cIt
νr+2σµI−1(Rn+1) + (higher powers of t) ∈ K[[t]]2n,

where cI ∈ W× as it is the product of twists of leading coefficients of Yij (these leading coeff-
cients are all Teichmuller lifts of non-zero elements in k); therefore, summing over all I ∈ Imin

r+2,
we have that pr+2Mr+2 only has its nth row non-zero and its nth row is a W -linear combination of
{σµI−1(Rn+1)}I∈Imin

r+2
. By Lemma 5.11(5), let J, J ′ ∈ Imin

r+2 denote the unique elements such that µJ =

maxI∈Imin
r+2

µI and µJ ′ = minI∈Imin
r+2

µI . Thus the nth row of pr+2Mr+2 mod p is a k-linear combination
of {σµ−1(Rn+1)}µJ′≤µ≤µJ and by Lemma 5.11(4), this set consists at most n+1 elements. Moreover
since J, J ′ are unique, the coefficients of σµJ′−1(Rn+1) and σµJ−1(Rn+1) are

∑
I∈Imin

r+2,µI=µJ′
cI = cJ ′

and
∑

I∈Imin
r+2,µI=µJ

cI = cJ respectively; and both are non-zero in k as cJ , cJ ′ ∈ W×. Then
by Lemma 5.13, dimFp Sr+1 ≤ n, where Sr+1 := {v̄ ∈ F2n

p | v̄ ∈ ker(pr+1Mr+1 mod p)}. By
Lemma 5.11(1)(3), Imin

r+2 = I′ × Imin
r+1, where

I′ = {i | 1 ≤ i ≤ n+ 1, ∃J(i) ∈ Imin
r+1 such that (i, J(i)) ∈ Imin

r+2}.

Then pr+2Mr+2 =
∑

i∈I′ Ai(p
r+1Mr+1)(i), where Ai ∈ M2n(W ). Therefore, Sr+1 ⊂ Sr+2. Thus

S∞ :=
⋃∞
j=1 Sj is a subspace of F2n

p of dimension at most n. Thus there exists a saturated Zp-
submodule Λ ⊂ L or rank at least n such that Λ mod p∩S∞ = {0} and any primitive vector v ∈ Λ
satisfies the desired condition.
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For (2), note that νr+2 ≤ ν(1,...,1) = h(1+· · ·+pr+1) since h = a1; thus hr+1 > h(pr+· · ·+p−1) ≥
νr+2/p. �

5.14. Ogus [Ogu01, Lem. 2, Prop. 11] gives an explicit description of the local equation of Newton
strata of Sk and by using the explicit coordinates in §5.5, in the formal neighborhood of a super-
singular point P of type 2n, the Newton stratum of codimension s is cut out by the single equation
ys = 0 in the Newton stratum of codimension s − 1 for s ≤ n.18 Let C → Sk be a formal curve
which specializes to P . Assume that the generic point of C lies in the open Newton stratum of
codimension s− 1 ≤ n− 1. We say a special endomorphism w of A[p∞] decays rapidly if it satisfies
the condition in Definition 5.1 with h = vt(ys(t)) = as. The only place in the proof of Theorem 5.2
where we used the generic ordinary assumption of C is Claim (2). Once we replace the computation
there by νr+2 ≤ ν(s,...,s) = as(1 + · · · + pr+1), we obtain the following general version of the Decay
Lemma for non-superspecial supersingular points.

Theorem 5.15 (Generalized decay lemma in the generic case). Suppose that C → Sk is a formal
curve which specializes to a non-superspecial supersingular point of type 2n (i.e., Artin invariant n)
and is generically in an open Newton stratum of codimension ≤ n−1. Then there exists a saturated
rank n submodule of special endomorphisms which decays rapidly.

6. Decay for superspecial points

The goal of this section is to prove a Decay Lemma for superspecial points (Theorem 6.2). The
computations in the proof of Theorem 6.2 go along very similar lines to the calculations carried out
in [MST, §5]. We will therefore be brief and will refer to [MST] whenever appropriate.

Throughout this section, we work in the setting of a formal curve C = Spf k[[t]] → Sk which
is generically ordinary, and specializes to a superspecial point P . Recall that A/k[[t]] denotes the
pullback of Auniv, h denotes the t-adic valuation of the local equation of the non-ordinary locus
given in Corollary 4.10, and L is the lattice of special endomorphisms of the p-divisible group at P .

In order to obtain sufficiently strong bounds to prove Theorem 1.2, we require a Decay Lemma
which is slightly stronger than Theorem 5.2. In order to do this, we introduce the notion of very
rapid decay; also the following definition for rapid decay in the superspecial case is stronger than
Definition 5.1.

Definition 6.1. For a superspecial point P ,
(1) We say that w ∈ L decays rapidly (resp. very rapidly) if for every r ∈ Z≥0, the special endo-

morphism prw does not lift to an endomorphism ofA[p∞] modulo th′r+1 (resp.th
′
r−1+apr+1),for

some a ≤ h
2 independent of r; here h′r := [h(pr + · · ·+ 1) + a/p)] and h′−1 := [a/p].

(2) We say that w ∈ L decays rapidly (resp. very rapidly) to first order if w does not extend
to an endomorphism modulo t[h+a/p]+1 (resp. t[a+a/p]+1) for some a ≤ h

2 .
(3) A Zp-submodule of L decays rapidly if every primitive vector in this submodule decays

rapidly. Given a submodule Λ ⊂ L which decays rapidly and a vector w ∈ L such that
w /∈ Λ, we say that the pair (L,w) decays very rapidly to first order if w decays very rapidly
to first order, and every primitive vector in SpanZp

{L,w} decays rapidly to first order.

The main theorem of this section is the following:

18Here and also in the statement of Theorem 5.15, by the Newton stratum associated to ν in Kottwitz’s set, we
mean the closed subscheme in the Shimura variety parametrizing points whose Newton points/polygons ν′ ≤ ν with
respect to the partial order in Kottwitz’s set; equivalently, this closed subscheme is the Zariski closure of the locally
closed subscheme parametrizing points whose Newton points/polygons are exactly ν. We refer to this locally closed
subscheme as the open Newton stratum.
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Theorem 6.2 (Decay Lemma in the superspecial case). There exists a saturated rank 2 Zp-
submodule Λ ⊂ L which decays rapidly. Moreover, the submodule Λ may be chosen so that at
least one of the following statements holds:

(1) there exists a primitive w ∈ Λ which decays very rapidly;
(2) there exists a primitive vector w ∈ L such that w /∈ Λ and the pair (L,w) decays very rapidly

to first order.
We expect that an analogous statement of [MST, Thm. 5.1.2] holds; more precisely, we expect

that there is a rank 3 submodule of L which decays rapidly, and moreover, there exists a vector
in this rank 3 submodule which decays very rapidly. In order to prove Theorem 1.2, the weaker
statement Theorem 6.2 suffices.

Theorem 3.3 follows directly from Theorem 6.2:

Proof of Theorem 3.3. The argument used to deduce Theorem 3.2 from Theorem 5.2 works in this
setting, with Theorem 3.3(1) following from Theorem 6.2(1), and Theorem 3.3(2) following from
Theorem 6.2(2). �

The setup. Here we carry out all the computation for the split case described in §4.7 and we will
explain in the proof how to deduce the general case from the split case.

6.3. Recall from §4.8 that ÔS,P = Spf W [[x1, . . . , xm, y1, . . . , ym]] (note that for P superspecial, we
have n = tP /2 = 1; and xj , yj here were denoted by x′j , y

′
j in §4.8); the formal curve C gives rise to

the tautological map of local rings

W [[x1, . . . , xm, y1, . . . , ym]]→ k[[t]]

and we let xi(t) (respectively yi(t)) denote the images of the xi (respectively yi)) in k[[t]]. For
each of the xi(t) (respectively yi(t)), let Xi(t) ∈ W [[t]] (respectively Yi(t) ∈ W [[t]]) denote the
power series whose coefficients are the Teichmuller lifts of those of xi(t) (respectively yi(t)). Let

Q(t) = −
m∑
i=1

Xi(t)Yi(t) (compare to §4.8, here we use Q to denote the lift of itself), and let

R(t) = −
m∑
i=1

(
Xi(t)(Yi(t))

p + (Xi(t))
pYi(t)

)
. By Corollary 4.10, Q(t) mod p = 0 is the local

equation for the non-ordinary locus, so h = vt(Q(t)). Let h′ = vt(R(t)). Without loss of generality,
we may assume that vt(X1(t)) ≤ vt(Xi(t)) and vt(X1(t)) ≤ vt(Yi(t)) as everything is symmetric in
the xi, yi, and let a denote vt(X1(t)). By definition, we have that 2a ≤ h and (p+ 1)a ≤ h′.
6.4. Following the notation of Lemma 4.3 for n = 1, the vector v1 in Lemma 4.5 must be
1
2p(e1 + f1/λ) and w1 = 1

2(e1 − f1/λ).19 By §§4.8,4.11, we have that with respect to the basis
{e1, f1, e

′
i, f
′
i}mi=1, the Frobenius on Lcris(W [[xi, yi]]) is given by

Frob = (I + F ) ◦ σ, where F =



Q
2p

−λQ
2p

x1
2p . . . xm

2p
y1

2p . . . ym
2p

Q
2pλ

−Q
2p

x1
2pλ . . . xm

2pλ
y1

2pλ . . . ym
2pλ

−y1 λy1
...

...
−ym λym
−x1 λx1
...

...
−xm λxm


.

19There is another possible choice with λ replaced by −λ; given the computation is the same for both cases, we
will just work with the first case.

26



Let Ft, Fr and Fl denote the top-left 2 × 2 block, the top-right 2 × 2m block and the bottom-left
2m×2 block of F respectively. Let Fr,i, Fl,i denote the ith column of Fr and ith row of Fl respectively.

As in §5.6, in order to prove the Decay Lemma, we study the expansion of F∞ =
∏∞
i=0(I +F (i)).

Let F∞(1), F∞(2) and F∞(1, 3) denote the top-left 2 × 2 block, the top-right 2 × 2m block, and
the (m + 1)th row of the bottom-left 2m × 2 block of F∞ respectively. We denote by F∞(2)i the
ith column of F∞(2) and F∞(2, 3)i the ith entry of the (m+ 1)th row of the bottom-right 2m× 2m
block of F∞.

Let

M =
1

2

[
1 −λ
1
λ −1

]
, N =

1

2

[
1 λ
1
λ 1

]
.

Preliminary lemmas. As in [MST, §5.2], we expand the blocks F∞(1, 3), F∞(2, 3) in F∞ as an
infinite sum of finite products of σ-twists of Ft, Fr and Fl. The following lemma follows directly
from the shape of F and an elementary analysis on t-adic valuations.

Lemma 6.5. Fix r ∈ Z≥0

(1) Among all finite products of σ-twists of Ft, Fr and Fl in the expansion of F∞(1, 3) with p-
adic valuation −(r+ 1), the terms which have the smallest t-adic valuation are contained in
the set

S1,r+1 = {Fl,m+1

α∏
i=1

F
(i)
t

β∏
j=1

F (α+2j−1)
r F

(α+2j)
l | α, β ∈ Z≥0, α+ β = r + 1}.

(2) Among all finite products of σ-twists of Ft, Fr and Fl in the expansion of F∞(2, 3)s with
p-adic valuation −(r + 1), the terms with the smallest t-adic valuation are contained in the
set

S2,s,r+1 = {Fl,m+1

α∏
i=1

F
(i)
t

β∏
j=1

F (α+2j−1)
r F

(α+2j)
l F (α+2β+1)

r,s | α, β ∈ Z≥0, α+ β = r}.

The following lemma follows from a direct computation similar to [MST, Lem. 5.2.1, Lem. 5.2.3].

Lemma 6.6. Consider the product Pα,β =
α∏
i=1

F
(i)
t ·

β∏
j=1

F (α+2j−1)
r F

(α+2j)
l .

(1) If α is odd, the product equals p−(α+β)
∏α
i=1Q

(i) ·
∏β
j=1R

(α+2j−1)M (1).
(2) If α is even, the product equals p−(α+β)

∏α
i=1Q

(i) ·
∏β
j=1R

(α+2j−1)N (1).

In either case, the kernel of Fl,m+1p
α+βPα+β mod p does not contain any non-zero Fp-rational vec-

tors or any k×-multiple of ([1, λ−1](α+1))T .

Decay in the superspecial case.

Proof of Theorem 6.2. We first prove the theorem in the split case. We continue the argument in
§5.6.
Case 1: h < h′. It follows from Lemmas 6.5 and 6.6 that there is a unique element of S1,r+1 (respec-
tively S2,1,r+1) with minimal t-adic valuation. This term is Fl,m+1Pr+1,0 (respectively Fl,m+1Pk,0F

(r+1)
r,1 ),

and has t-adic valuation a+h(p+ · · ·+ pr+1) (respectively a+h(p+ · · ·+ pr) + apr+1). By the last
assertion of Lemma 6.6, we conclude that for any primitive vector w ∈ SpanZp

{e1, f1}, in the entry
of the vector prF∞w corresponding to its f ′1-coordinate in K[[t]], the coefficient of ta+h(p+···+pr+1)

does not lie in W . Since γ0e1 + δ0f1 +
∑m

i=1 γie
′
i + f ′1 +

∑m
i=2 δif

′
i is primitive in L = Lcris,P (W )

for any γi, δi ∈ W , we conclude that the horizontal section prF∞w is not integral in ι∗sLcris(Ds) if
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s > (a+ h(p+ · · ·+ pr+1))/p as for any N < sp, we have tN/p /∈ Ds. Thus SpanW {e1, f1} decays
rapidly. Similarly by Lemma 6.6, the special endomorphism e′1 decays very rapidly. The fact that
SpanZp

{e1, f1, e
′
1} decays rapidly follows from an argument identical to that outlined in the last

paragraph of [MST, Proof of Prop. 5.1.3 Case 1 in §5.2]. For the convenience of the reader, we give
a brief sketch of this argument. Let w be a primitive vector in SpanZp

{e1, f1}. As in loc. cit., it
suffices to prove that the t-adic valuation of the term of F∞w with denominator pr1 is different from
the t-adic valuation of the term of F∞e′1 with denominator pr2 for any r1, r2 ∈ Z>0. The former
quantity equals a+ h(p+ · · ·+ pr1), and the latter quantity equals a+ h(p+ . . . pr2−1) + apr2 . As
1 ≤ a ≤ h/2, it follows that these quantities can never be the same and the result follows.

Note that in this case, we have proved that a rank 3 submodule of L must decay.

Case 2: h′(1 + p2e−1) < h(1 + p) < h′(1 + p2e+1), for some e ∈ Z≥1. As in Case 1, by Lemma 6.5,
Fl,m+1Pr−e+1,e is the unique element of S1,r+1 with minimal t-adic valuation (the argument is sim-
ilar to that of [MST, Lem. 5.2.6]); moreover vt(Fl,m+1Pr−e+1,e) < vt(Fl,m+1Pr+1,0) < p(h′r + 1).
Thus, by Lemma 6.6 and the same argument as in Case 1, SpanZp

{e1, f1} decays rapidly. On the
other hand, |S2,1,1| = 1 and the unique element has t-adic valuation a+ pa and thus e′1 decays very
rapidly to first order. The fact that the pair (SpanZp

{e1, f1}, e′1) decays very rapidly to first order
follows from an argument identical to the one outlined at the end of Case 1.

Case 3: h′(1+p2e−1) = h(1+p) for some e ∈ Z≥1. In this case, by Lemma 6.5 and a computation
similar to [MST, Lem. 5.2.7], we have that Fl,m+1Pr−e+1,e−1 · F (r+e)

r,1 is a unique element of S2,1,r+1

with the smallest t-adic valuation and

vt(Fl,m+1Pr−e+1,e−1 · F (r−e)
r,1 ) ≤ vt(Fl,m+1Pr,0 · F

(r+1)
r,1 ) < p(h′r−1 + apr + 1).

Then the last assertion of Lemma 6.6 implies that e′1 decays very rapidly.
Claim. At least one of e1, f1 decays rapidly.
Proof. When r < e− 1, there is a unique element of S1,r+1 with minimal t-adic valuation, and thus
the argument as in Case 1 shows that for any primitive vector w ∈ SpanZp

{e1, f1}, we have that
prw does not lift to an endomorphism modth

′
r+1.

When r ≥ e− 1, there are exactly two distinct elements of S1,r+1 with minimal t-adic valuation,
and they are Pr−e+1,e and Pr−e+2,e−1. We first prove that at least one of pe−1e1, p

e−1f1 does not
extend to an endomorphism modulo th

′
e−1+1. Indeed, by Lemma 6.6, we have that Fl,m+1(P0,e +

P1,e−1)) equals p−e(AFl,m+1M
(1) +BFl,m+1N

(1)), where A =
∏e
i=1R

(2i−1), B = Q(1) ·
∏(e−1)
i=1 R(2i).

Let γ, δ ∈ W×) denote the leading coefficients of A,B ∈ W [[t]]. As p > 2, we have that at
most one of γ − δ and γ + δ lie in pW . Suppose that γ + δ /∈ pW , then [1, 0]T does not lie in
ker(γ[−1, λ]N (1) + δ[−1, λ]M (1)) and thus the e′1-coordinate of the horizontal section ẽ1, up to a
scalar multiple in W×, is p−eta+h′(p+p3+···+p2e−1)+ other powers of t. Therefore, pe−1e1 does not lift
to modth

′
e−1+1 because h′e−1 + 1 > h(pe−1 + pe−2 + · · · 1) + a/p ≥ (a+ h′(p+ p3 + · · ·+ p2e−1))/p.

On the other hand, if γ − δ /∈ pW , then [0, 1]T does not lie in ker γ[−1, λ]M (1) + δ[−1, λ]N (1) and
the same argument as above implies that pe−1f1 does not lift to modth

′
e−1+1.

Now we show that if γ + δ /∈ pW , then e1 decays rapidly. A similar computation as above shows
that for r ≥ e, we have that Fl,m+1(Pr−e+1,e+Pr−e+2,e−1) = p−(r+1)X1

∏r−e+1
i=1 Q(i)(A(r−e+1)M (1)+

B(r−e+1)N (1)) when r−e is even and Fl,m+1(Pr−e+1,e+Pr−e+2,e−1) = p−(r+1)X1
∏r−e+1
i=1 Q(i)(A(r−e+1)N (1)+

B(r−e+1)M (1)) when r − e is odd. Since γ + δ /∈ pW , then γ(r−e+1) + δ(r−e+1) /∈ pW . Thus
[1, 0]T does not lie in ker(γ(r−e+1)[−1, λ]N (1) + δ(r−e+1)[−1, λ]M (1)) and ker(γ(r−e+1)[−1, λ]M (1) +

δ(r−e+1)[−1, λ]N (1)). Therefore, we conclude that e1 decays rapidly by a direct computation of the
t-adic valuation of Fl,m+1Pr−e+1,e as the r = e− 1 case.
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If γ − δ /∈ pW , then an identical argument as above implies that f1 decays rapidly. �

To finish the proof of Case 3, we notice that an argument identical to the one outlined at the
end of Case 1 goes through to show that if e1 (resp. f1) decays rapidly, then SpanZp

{e1, e
′
1} (resp.

SpanZp
{f1, e

′
1}) decays rapidly.

�

6.7. It follows from [HP17, Prop. 4.2.5] that the lattice L1 is split if and only if the global lattice
defining the Shimura variety (with signature (b, 2), and which is self-dual at p by assumption) is
not split mod p. Therefore, we have established the required decay whenever the Shimura variety is
defined by an even-dimensional orthogonal Z-lattice (with signature (b, 2), and which is self-dual at
p by assumption) which is not split mod p. Therefore, suppose that the global lattice is either odd-
dimensional, or is even-dimensional but is split mod p. We embed this lattice inside a higher-rank
lattice, which is even-dimensional (and has signature (b′, 2), and is self-dual at p), and which is not
split mod p – after choosing level structure away from p appropriately, this induces an embedding
of Shimura varieties, and we abuse notation by letting P (resp. Spf k[[t]]) denote the image of our
original supersingular point (resp. of the formal curve) in the larger Shimura variety. Let L′ denote
the Zp-module of special endomorphisms of the p-divisible group of P when we view it as in the
bigger variety. That Spf k[[t]] actually lies in our original orthogonal Shimura variety implies that
L′ = L⊕L′′, with every special endomorphism in L′′ extending to Spf k[[t]] (in fact, L′′ necessarily
arises from actual endomorphisms of the abelian variety at P , not just endomorphisms of the p-
divisible group at P ). Our computation applies to yield a Zp-sublattice of L′ that decays rapidly.
Adding any special endomorphism contained in L′′ to a special endomorphism that decays rapidly
doesn’t affect the rapidity of decay, because of the above remark. Therefore, we may assume that
the lattice of special endomorphisms that decays rapidly is contained in L, thereby establishing the
necessary decay even when L1 is odd-dimensional, or non-split.

7. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. As sketched in the introduction, our approach is to combine
global bounds from Borcherds theory with bounds on the average local intersection multiplicities.
At supersingular points, these are obtained using section 3 (Theorem 3.2 and Theorem 3.3).

Note that Theorem 1.2 is independent of the choice of level structure of S and is equivalent for
different S with the same quadratic space (L ⊗ Q, Q) over Q; thus without loss of generality, we
may assume that L ⊂ V = L ⊗ Q is maximal among all lattices over which Q is Z-valued. Recall
from Theorem 1.2 that we assume that C is not contained in any special divisors Z(m).

The global intersection number and its decomposition.

7.1. Let S ⊂ Z>0 be a set of positive density (i.e., limX→∞
1
X |{m ∈ S | m ≤ X}| exists and

> 0) and we also assume that each m ∈ S is representable by (L,Q) and for any m ∈ S, we have
p - m. By the theory of quadratic forms, such S exists.20 For X ∈ Z>0, we use SX to denote
{m ∈ S | X ≤ m ≤ 2X}.
7.2. We use vector-valued modular forms to control the asymptotic of C.Z(m) as m→∞. Let L∨
denote the dual of L in V with respect to the bilinear form [−,−] induced by Q and let {eµ}µ∈L∨/L
denote the standard basis of C[L∨/L]. Let ρL denote the Weil representation on C[L∨/L] of the
metaplectic group Mp2(Z). As in [MST, §4.1.4], we consider the Eisenstein series E0(τ), τ ∈ H
defined by E0(τ) =

∑
(g,σ)∈Γ′∞\Mp2(Z)

σ(τ)−(2+b)(ρL(g, σ)−1e0), where Γ′∞ ⊂ Mp2(Z) is the stabilizer

20Indeed, by [SSTT, Lem. 4.7], every m� 1 is representable since L is maximal.
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of ∞. Note that the constant term of E0 is e0 and E0(τ) is a weight 1 + b
2 modular form with

respect to ρL.

The following theorem of Bruinier–Kuss [BK01] gives explicit formulae of the Fourier coefficients
of E0. As we are using different convention of the signature of (V,Q) as in [BK01], we refer the
reader to the formulae in [Bru17, Thms. 2.3, 2.4].

7.3. We first introduce some notation for an arbitrary quadratic lattice (L,Q) over Z. We write
det(L) for the determinant of its Gram matrix. For a rational prime `, we use δ(`, L,m) to denote
the local density of L representing m over Z`. More precisely, δ(`, L,m) = lima→∞ `

a(1−rkL)#{v ∈
L/`aL | Q(v) ≡ m mod `a}. If m is representable by (L ⊗ Z`, Q), then δ(`, L,m) > 0; moreover,
when rkL ≥ 5 (this is the case for our application), by for instance [Iwa97, pp. 198-199], for a fixed
`, we have that δ(`, L,m) � 1 for all m representable by (L⊗ Z`, Q).

Given 0 6= D ∈ Z such that D ≡ 0, 1 mod 4, we use χD to denote the Dirichlet character
χD(a) =

(
D
a

)
, where

( ·
·
)
is the Kronecker symbol. For a Dirichlet character χ, we set σs(m,χ) =∑

d|m χ(d)ds.

Theorem 7.4 ([BK01, Thm. 11]). Recall that (L,Q) is a quadratic lattice over Z of signature (b, 2)
with b ≥ 3. Let qL(m) denote the coefficient of qme0 in the q-expansion of E0.

(1) For b even, the Fourier coefficient qL(m) is

−
21+b/2π1+b/2mb/2σ−b/2(m,χ(−1)1+b/24 detL)√
|L∨/L|Γ(1 + b/2)L(1 + b/2, χ(−1)1+b/24 detL)

∏
`|2 det(L)

δ(`, L,m).

(2) For b odd, write m = m0f
2, where gcd(f, 2 detL) = 1 and v`(m0) ∈ {0, 1} for all ` - 2 detL.

Then the Fourier coefficient qL(m) is

−21+b/2π1+b/2mb/2L((b+ 1)/2, χD)

Γ(1 + b/2)
√
|L∨/L|ζ(b+ 1)

∑
d|f

µ(d)χD(d)d−(b+1)/2σ−b(f/d)

 ∏
`|2 detL

(
δ(`, L,m)/(1−`−1−b)

)
,

where µ is the Mobius function and D = (−1)(b−1)/22m0 detL.
In particular, |qL(m)| � mb/2 for all m representable by (L,Q).

Here the last assertion is a direct consequence of the above explicit formulae and the fact
δ(`, L,m) � 1 (see also [MST, §4.3.1]).

Recall that C → Sk is a smooth proper curve such that the generic point of C maps into the
ordinary locus of Sk.

Lemma 7.5. Let ω denote the tautological line bundle on Sk corresponding to Fil1 V ⊂ V (i.e., ω
is the line bundle of modular forms on Sk of weight 1). Then the intersection number Z(m).C =

|qL(m)|(ω.C) +O(m(b+2)/4). In particular,
∑

m∈SX
Z(m).C � (ω.C)

∑
m∈SX

|qL(m)| � X1+b/2 for
SX defined in §7.1.

Proof. By the modularity theorem of Borcherds [Bor99] or its arithmetic version by Howard and
Madapusi Pera [HP20], we have that −(ω.C)+

∑∞
m=1 Z(m).C is the e0-component of a vector-valued

modular form with respect to ρL of weight (1 + b/2) and its Eisenstein part is given by the e0-
component of −(ω.C)E0 (see [MST, Thm. 4.1.1, §4.1.4]). The difference of −(ω.C)+

∑∞
m=1 Z(m).C

and the e0-component of −(ω.C)E0 is a cusp form, and thus the first assertion follows from the
trivial bound on Fourier coefficients of cusp forms (see [Sar90, Prop. 1.3.5]). We then obtain the
last assertion by Theorem 7.4. �

In order to compare C.Z(m) with the local intersection number iP (C.Z(m)) for a point P ∈
(C ∩ Z(m))(k), we introduce the notion of global intersection number gP (m) as follows.

30



Definition 7.6 ([MST, Def. 7.1.3]). Let H denote the Hasse-invariant on Sk (i.e., H = 0 cuts out
the non-ordinary locus). Let t be the local coordinate at P (i.e., ĈP = Spf k[[t]]) and let hP = vt(H),
the t-adic valuation of H restricted to ĈP . We define

gP (m) =
hP
p− 1

|qL(m)|.

In particular, gP (m) = 0 for P ordinary and∑
P∈(C∩Z(m))(k)

gP (m) = |qL(m)|(ω.C)

since H is a section of ωp−1.

Local intersection number: preparation and non-supersingular points. We first introduce
some notation and reformulate the calculation of local intersection number as a lattice counting
problem.

7.7. Recall that P ∈ (C ∩ Z(m))(k) for some m. Let A/k[[t]] denote the pullback of the universal
abelian scheme Auniv via Spf k[[t]] = ĈP → Sk. Let Ln denote the Z-lattice of special endomor-
phisms of A mod tn. By definition, Ln+1 ⊂ Ln for every n ≥ 1, and our assumption that C is not
contained in any special divisor yields that ∩nLn = {0}. By [MST, Rmk. 7.2.2], all Ln have the
same rank. Moreover, by [HP17, Lem. 4.2.4], P is supersingular if and only if rkZ L1 = b+ 2. Since
the quadratic form 〈−,−〉 on Lcris,P (W ) satisfies that 〈ϕ(x), ϕ(y)〉 = σ(〈x, y〉), then the slope s
part of Lcris,P (W ) has the same dimension as the slope −s part and hence the slope non-zero part
cannot have rank b+ 1; thus if P is not supersingular, then rkZ L1 ≤ b.

On the other hand, by Remark 2.4, we have a positive definite quadratic form Q on Ln given by
v ◦ v = [Q(v)] for v ∈ Ln. By the moduli-theoretic description of the special divisors and the fact
that C intersects Z(m) properly (due to the assumption that the image of C does not lie in any
Z(m)), we have

(7.1) iP (C.Z(m)) =

∞∑
n=1

#{v ∈ Ln | Q(v) = m}.

Note that although for a fixed m, the set {v ∈ Ln | Q(v) = m} is empty for n� 1, but this bound
on n is in general dependent on m. In the work of Chai and Oort [CO06], they use the canonical
product structure in the setting S = A1 × A1 and work with a sequence of divisors for which the
local contributions from any one fixed point is absolutely bounded, independent of the special divisor.

By Lemma 7.5 and the last assertion of Theorem 7.4, there exists an absolute constant c1 (which
depends only on the curve C) such that

(7.2) iP (C.Z(m)) ≤ (C.Z(m)) < c1m
b/2.

We now recall the definitions of the successive minima of the Ln from [EK95].

Definition 7.8. (1) For i ∈ {1, . . . , r = rkZ Ln}, the successive minima µi(n) of Ln is defined
as inf{y ∈ R>0 | ∃v1, . . . , vi ∈ Ln linearly independent, and Q(vj) ≤ y2, 1 ≤ j ≤ i}.

(2) For n ∈ Z≥1, 1 ≤ i ≤ r, define ai(n) =
∏i
j=1 µj(n); define a0(n) = 1.

The determinant of a quadratic lattice (which is approximately the product of all the successive
minima) gives first order control on the number of lattice points with bounded norm – however, the
error term does depend on the lattice in question. In our setting, we must count lattice points of
bounded norm in an infinite family of lattices, and so considering the determinants alone doesn’t
allow us sufficient control across this family of lattices. Indeed, in the example of a formal curve

31



constructed in §3.5, the error terms involved can get very large, even on average. As seen in [EK95],
the data of each individual successive-minima controls the error term in a way that is uniform across
all lattices of a fixed rank, and hence we keep track of this more refined data in our setting of a
nested family of lattices.

We have the following result establishing lower bounds for the ai(n), which is similar to [SSTT,
Lem. 7.6].

Lemma 7.9. We have that ai(n)� ni/b for 1 ≤ i ≤ rkZ Ln.

Proof. Let 0 6= v ∈ Ln be a vector that minimizes the quantityQ(v), and thus a1(n) = Q(v)1/2. Note
that v ∈ Ln implies v ∈ Li for every i ≤ n. Takem = Q(v). Eqn. (7.1) yields that iP (C ·Z(m)) ≥ n,
and then by Eqn. (7.2), n < c1m

b/2. As a1(n)2 = m, it follows that c1a1(n)b > n, whence
a1(n)� n1/b. The bounds for the other ai(n) follow from the observation that µi(n) ≥ a1(n), and
hence ai(n) ≥ a1(n)i. �

Corollary 7.10. For SX defined in §7.1, there exists a constant c2 depending only on C such that

∑
m∈SX

iP (C.Z(m)) =

c2Xb/2∑
n=1

∑
m∈SX

#{v ∈ Ln | Q(v) = m}.

Proof. Lemma 7.9 implies that there exists a constant c2 only depending on C such that for n >
c2X

b/2, we have a1(n) > (2X)1/2. In other words, min0 6=v∈Ln Q(v) > 2X. Then the corollary
follows from Eqn. (7.1). �

We are now ready to bound the local intersection number iP (C.Z(m)) on average over m for P
not supersingular, which is the analogue of [SSTT, Prop. 7.7].

Proposition 7.11. For P not supersingular, we have that

2X∑
m=1

iP (C.Z(m)) = O(Xb/2 logX),

where the implicit constant only depends on C. In particular,
∑
m∈SX

iP (C.Z(m)) = O(Xb/2 logX).

Proof. By §7.7, we have that r := rkZ Ln ≤ b. By [EK95, Lem. 2.4, Eqns (5)(6)] and Lemma 7.9,
we have

c2Xb/2∑
n=1

2X∑
m=1

#{v ∈ Ln | Q(v) = m} �
c2Xb/2∑
n=1

r∑
i=0

(2X)i/2

ai(n)
�

c2Xb/2∑
n=1

r∑
i=1

(2X)i/2

ni/b
,

where the implicit constant in the first inequality is absolute and the implicit constant in the second
inequality only depends on C. For any 1 ≤ i < b, we see that

c2Xb/2∑
n=1

(2X)i/2

ni/b
= (2X)i/2

c2Xb/2∑
n=1

1

ni/b
= O(Xb/2),

as required. If i = b, the identical calculation yields a bound of O(Xb/2 logX). The result then
follows directly by Corollary 7.10. �
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Local intersection number at supersingular points.

7.12. For a supersingular point P ∈ C, we break the local intersection number into two parts for a
fixed T ∈ Z>0, to be chosen later, as follows:

∑
m∈SX

iP (C.Z(m)) = iP (X,T )err + iP (X,T )mt, where

iP (X,T )err =

c2Xb/2∑
n=T

∑
m∈SX

#{v ∈ Ln | Q(v) = m}, iP (X,T )mt =

T−1∑
n=1

∑
m∈SX

#{v ∈ Ln | Q(v) = m}

and the equality holds due to Corollary 7.10.

We first bound the error term iP (X,T )err.

Proposition 7.13. There exists an absolute constant c3 > 0 (independent of X,T ) such that

iP (X,T )err ≤
c3

T 2/b
X

b+2
2 +O(X(b+1)/2).

Proof. As in the proof of Proposition 7.11, by Lemma 7.9, we have

iP (X,T )err ≤
c2Xb/2∑
n=T

2X∑
m=1

#{v ∈ Ln | Q(v) = m} �
c2Xb/2∑
n=T

b+2∑
i=0

(2X)i/2

ni/b
.

As in the proof of Proposition 7.11, we have that
c2Xb/2∑
n=T

(2X)i/2

ni/b
= O(X

b+1
2 ) for all 1 ≤ i ≤ b + 1.

For i = b+ 2, we have
c2Xb/2∑
n=T

(2X)
b+2

2

n(b+2)/b
<

∞∑
n=T

(2X)
b+2

2

n(b+2)/b
≤ c3

T 2/(b+2)
X

b+2
2 for some absolute constant

c3 > 0 by a direct computation. �

In order to bound iP (X,T )mt, we study the theta series attached to (certain lattices containing)
L′n.

7.14. Let L′n ⊂ Ln ⊗Q be a Z-lattice such that L′n ⊃ Ln, L′n is maximal at all primes ` 6= p, and
L′n ⊗ Zp = Ln ⊗ Zp; we may choose L′n ⊂ L′1 and we will assume this for the rest of this section;
the quadratic form Q restricts to a positive definite quadratic form on L′n. Let θn denote the
theta series attached to L′n and we write its q-expansion as θn(q) =

∑∞
m=0 rn(m)qm. By definition,

rn(m) ≥ #{v ∈ Ln | Q(v) = m} and hence iP (X,T )mt ≤
∑T

n=1

∑
m∈SX

rn(m).
The theta series θn is a weight 1 + b/2 modular form and we decompose θn(q) = EL′n(q) +Gn(q),

where EL′n is an Eisenstein series and Gn is a cusp form. Let qL′n(m) and a(m) denote the m-th
Fourier coefficients of EL′n and

∑T
n=1Gn respectively. By [Sar90, Prop. 1.3.5], we have a(m) =

OT (m(b+2)/4) and thus

iP (X,T )mt ≤
T∑
n=1

∑
m∈SX

qL′n(m) +
∑
m∈SX

a(m) =
T∑
n=1

∑
m∈SX

qL′n(m) +OT (X1+(b+2)/4).

The following theorem gives explicit formulae of qL′n(m).

Theorem 7.15 (Siegel mass formula). Given any L′ ⊂ L′1 sublattice such that L′ ⊗ Z` = L′1 ⊗ Z`
for all ` 6= p, let qL′(m) be the m-th Fourier coefficient of the Eisenstein part of the theta series
attached to L′.
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(1) For b even,

qL′(m) =
21+b/2π1+b/2mb/2σ−b/2(m,χ(−1)1+b/24 detL′1

)√
|L′∨/L′|Γ(1 + b/2)L(1 + b/2, χ(−1)1+b/24 detL′1

)

∏
`|2detL′1

δ(`, L′,m).

(2) For b odd, qL′(m) equals

21+b/2π1+b/2mb/2L((b+ 1)/2, χD′)

Γ(1 + b/2)
√
|L′∨/L′|ζ(b+ 1)

∑
d|f

µ(d)χD(d)d−(b+1)/2σ−b(f/d)

 ∏
`|2 detL′1

(
δ(`, L′,m)/(1−`−1−b)

)
,

where we write m = m0f
2, where gcd(f, 2 detL′1) = 1 and v`(m0) ∈ {0, 1} for all ` - 2 detL′1,

µ is the Mobius function, and D′ = (−1)(b−1)/22m0 detL′1.

Proof. This theorem is a direct consequence of the Siegel mass formula by the same proof in [MST,
Thm. 4.2.2]. �

We may apply this theorem to L′ = L′n in §7.14 because all L′n are maximal at ` 6= p and thus
L′n ⊗ Z` = L′1 ⊗ Z`.

Lemma 7.16. For p - m, we have that
qL′n(m)

|qL(m)|
≤ 2√

|(L′n ⊗ Zp)∨/L′n ⊗ Zp|(1− p−[(b+2)/2])
.

Moreover, if P is superspecial, then
qL′1(m)

|qL(m)|
≤ 1 + p−1

p(1− p−[(b+2)/2])
.

Proof. By [HP17, Rmk. 7.2.5], L⊗Q`
∼= L′n ⊗Q` as quadratic spaces for all ` 6= p; since L,L′n are

both maximal at ` 6= p, then L⊗Z` ∼= L′n⊗Z` as Z`-quadratic lattices for all ` 6= p (see for instance
[HP17, Thm. A.1.2]). Moreover, since p - m, then by Theorems 7.4 and 7.15, we have that

qL′n(m)

|qL(m)|
=

δ(p, L′n,m)√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp|(1− χ(−1)1+b/24 detL(p)p−1−b/2)

if 2 | b;

qL′n(m)

|qL(m)|
=

δ(p, L′,m)(1− χD(p)p−(b+1)/2)√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp|(1− p−1−b)

if 2 - b.

Therefore,
qL′n(m)

|qL(m)|
≤ δ(p, L′n,m)√

|(L′n ⊗ Zp)∨/L′n ⊗ Zp|(1− p−[(b+2)/2])
.

For the first assertion, it remains to show that δ(p, L′n,m) ≤ 2. Write the quadratic form Q on
L′n ⊗ Zp into the diagonal form

∑b+2
i=1 aix

2
i with ai ∈ Zp and we may assume that there exists ai

such that p - ai; otherwise δ(p, L′n,m) = 0 then we are done. Now let L̃′n denote the quadratic
lattice over Zp with the quadratic form Q̃ given by

∑
1≤i≤b+2,p-ai aix

2
i . By [Han04, Rmk. 3.4.1(a),

Lem. 3.2], we have that

δ(p, L′n,m) = p−b−1#{v ∈ L′n/pL′n | Q(v) ≡ m mod p} = p1−rk L̃′n#{v ∈ L̃′n/pL̃′n | Q̃(v) ≡ m mod p},

where the last equality follows from definition. If rk L̃′n ≥ 3, the Fp-quadratic form Q̃ mod p is
isotropic, then we may write Q̃ mod p = xy+Q′(z). For x ∈ F×p , for any value of z, there is at most
one y ∈ Fp such that Q̃ ≡ m mod p, this yields (p − 1)prk L̃′n−2 solutions; for x = 0, there are at
most prk L̃′n−1 solutions. Therefore p1−rk L̃′n#{v ∈ L̃′n/pL̃′n | Q(v) ≡ m mod p} < 2. If rk L̃′n = 1, 2,
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[Han04, Table 1] implies that p1−rk L̃′n#{v ∈ L̃′n/pL̃′n | Q(v) ≡ m mod p} ≤ 2. Thus we conclude
that δ(p, L′n,m) ≤ 2.

For the second assertion, by definition, for a superspecial point, we have
√
|(L′1 ⊗ Zp)∨/L′1 ⊗ Zp| =

ptP /2 = p and thus it remains to show that δ(p, L′1,m) ≤ 1 + p−1. As in the discussion for the first
assertion, we have δ(p, L′1,m) = p1−rk L̃′1#{v ∈ L̃′1/pL̃

′
1 | Q̃(v) ≡ m mod p}, where L̃′1/pL̃′n is

a Fp-vector space equipped with a non-degenerate quadratic form. We will prove that for any
non-degenerate Fp-quadratic space (M,QM ) with dimM ≥ 3, we have

p1−dimM#{v ∈M | QM (v) ≡ m mod p} ≤ 1 + p−1

by induction on dimM . This is enough to prove the second assertion because p2||discL′1 and
rkL′1 = b + 2 ≥ 5, which implies rk L̃′1 ≥ 3. If dimM = 3, 4, then the desired bound follows from
[Han04, Table 1]. For dimM ≥ 5, we note that M is isotropic and thus can be decomposed into an
orthogonal direct sum of a hyperbolic plane and a non-degenerate Fp-quadratic space (M ′, QM ′);
as in the discussion for the first assertion in the previous paragraph, we have

p1−dimM#{v ∈M | QM (v) ≡ m mod p} = (1− p−1) + p− dimM ′#{v ∈M ′ | QM ′(v) ≡ m mod p}.

Since dimM ′ = dimM − 2, then by the inductive hypothesis, we have

p1−dimM ′#{v ∈M ′ | QM ′(v) ≡ m mod p} ≤ 1 + p−1

and p1−dimM#{v ∈M | QM (v) ≡ m mod p} = (1− p−1) + p− dimM ′(1 + p−1) ≤ 1 + p−1. �

Proposition 7.17. There exists an absolute constant 0 < α < 1 such that

iP (X,T )mt = α
∑
m∈SX

gP (m) +OT (X1+(b+2)/4).

Proof. For brevity, we set h = hP in Definition 7.6; by §7.14, it suffices to show that
T∑
n=1

qL′n(m)

|qL(m)|
≤ α h

p− 1

for some constant 0 < α < 1 (recall from Definition 7.6 that gP (m) = h
p−1 |qL(m)|). We will prove

this claim using the decay statements from Section 3 by a similar computation as in [MST, Cor. 7.2.4,
Lem. 8.2.2]. We will apply these here using the fact that Ln ⊗ Zp = L′n ⊗ Zp and the identity√

|(L′n ⊗ Zp)∨/L′n ⊗ Zp| =
√
|(L′1 ⊗ Zp)∨/L′1 ⊗ Zp| · |L′1/L′n|.

If P is a nonsuperspecial supersingular point, then by definition,
√
|(L′1 ⊗ Zp)∨/L′1 ⊗ Zp| ≥ p2.

Moreover, by the above identity and Theorem 3.2, for hr + 1 ≤ n ≤ hr+1, r ∈ Z≥0, we have√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp| ≥ p4+2r. Thus by Lemma 7.16 (recall from §7.1 that p - m for all m ∈ SX),

∞∑
n=1

qL′n(m)

|qL(m)|
=

h0∑
n=1

qL′n(m)

|qL(m)|
+

∞∑
r=0

hr+1∑
n=hr+1

qL′n(m)

|qL(m)|
≤

h0∑
n=1

2

p2(1− p−[(b+2)/2])
+

∞∑
r=0

hr+1∑
n=hr+1

2

p4+2r(1− p−[(b+2)/2])

≤ 2

1− p−2

(
h(p−1 + 1)

p2
+
hp

p4
+
hp2

p6
+ · · ·

)
≤ h

p− 1
· 2(p2 − p+ 1)

p(p2 − 1)
≤ 11

12
· h

p− 1

for all p ≥ 3.
If P is superspecial and statement (1) in Theorem 3.3 holds for P , then for h′r−1 + apr + 1 ≤

n ≤ h′r, r ∈ Z≥0 where a = h/2, we have
√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp| ≥ p2+2r, and for h′r + 1 ≤
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n ≤ h′r + apr+1, r ∈ Z≥0, we have
√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp| ≥ p3+2r. Thus for b ≥ 4, we have

1− p−[(b+2)/2] ≥ 1− p−3 and by Lemma 7.16,
∞∑
n=1

qL′n(m)

|qL(m)|
≤ 1 + p−1

p(1− p−3)
(a(1 + p−1)) +

2(h− a)

p2(1− p−3)
+

2ap

p3(1− p−3)
+

2(h− a)p

p4(1− p−3)
+ · · ·

≤ h

p− 1

(
(p+ 1)2

2(p2 + p+ 1)
+

2p

p2 + p+ 1
(1 + p−1 + p−2 + · · · )

)
≤ 61

62

h

p− 1

for all p ≥ 5. For b = 3, we remark that the proof of [MST, Thm. 5.1.2] applies to all (L,Q) with
b = 3 and L self-dual at p, not just the one associated to principally polarized abelian surfaces.
Thus in this case, there is a rank 3 submodule which decays rapidly in the sense of Definition 5.1.

Thus the computation in [MST, §9.2 small n’s] proves that
∞∑
n=1

qL′n(m)

|qL(m)|
≤ 11

12

h

p− 1
for all p ≥ 5.

If P is superspecial and statement (2) in Theorem 3.3 holds for P , then there exists a constant
a ≤ h/2 such that for ap−1 + a+ 1 ≤ n ≤ ap−1 + h, we have

√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp| ≥ p2, and for

h′r + 1 ≤ n ≤ h′r+1, r ∈ Z≥0, we have
√
|(L′n ⊗ Zp)∨/L′n ⊗ Zp| ≥ p4+2r. Thus by Lemma 7.16

∞∑
n=1

qL′n(m)

|qL(m)|
≤ 1 + p−1

p(1− p−2)
(a(1 + p−1)) +

2(h− a)

p2(1− p−2)
+

2hp

p4(1− p−2)
+

2hp2

p6(1− p−2)
+ · · ·

≤ h

p− 1

(
1 + p−1

2
+ (p+ 1)−1 +

2

p+ 1
(p−1 + p−2 + p−3 + · · · )

)
≤ 17

20

h

p− 1

for all p ≥ 5. �

Theorem 7.18. There is an absolute constant 0 < α′ < 1 such that for SX defined in §7.1 and for
any P ∈ C(k) supersingular, we have that∑

m∈SX

iP (C.Z(m)) = α′
∑
m∈SX

gP (m) +O(X(b+1)/2).

Indeed, we may state this theorem without assuming P is supersingular since the statement here
for non-supersingular P is a weaker version of Proposition 7.11.

Proof. We may take α′ to be any absolute constant such that 1 > α′ > α, where α is given in
Proposition 7.17. Then we choose T ∈ Z>0 such that c3

T 2/bX
1+b/2 ≤ (α′ − α)

∑
m∈SX

gP (m); such
T exists since

∑
m∈SX

gP (m) � X1+b/2 by Lemma 7.5. Once we fix such a T , which may be chosen
only depending on α, α′, S (not SX), the desired bound follows from Propositions 7.13 and 7.17. �

Now we combine the previous results in this section to prove Theorem 1.2.

Proof of Theorem 1.2. If there were only finitely many points P in C ∩ (∪p-mZ(m))(k), then by
Proposition 7.11, Theorem 7.18, and Definition 7.6, we have that∑

m∈SX

C.Z(m) =
∑
m∈SX

∑
P∈C∩(∪m∈SX

Z(m))(k)

iP (C.Z(m)) = α′(ω.C)
∑
m∈SX

|qL(m)|+O(X(b+1)/2),

which contradicts Lemma 7.5. �

8. Application to the Hecke orbit problem

We prove Theorem 1.4 using Theorem 1.2 in this section. For x ∈ SFp(k), where k = Fp, we use
Tx to denote the set of all prime-to-p Hecke translates of x and let Tx denote the Zariski closure
of Tx in Sk. We will prove that for x ordinary, Tx = Sk. Our proof will be by induction on b, the
dimension of SFp – we will use Theorem 1.2 to reduce to the case of a smaller dimensional Shimura
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variety in the case that Tx contains a proper generically ordinary curve, with the observation that
the theorem is trivial when b = 1. In the case where we do not have this a priori knowledge, we
will deduce our result by studying compactifications of Sk. We will prove the GSpin case first and
in the end of this section, we will remark on how to adapt the same line of ideas to the unitary case
(see Remark 8.12).

8.1. Recall from §2.1 that the quadratic lattice (L,Q) is self-dual at p and the level we pick is
hyperspecial at p. By [MP19, Thm 3], the canonical integral model S of the Hodge type Shimura
variety Sh admits a projective normal compactification SBB over Z(p) such that SBB

Q is the Bailey–
Borel/minimal compactification ShBB of Sh; moreover, the classical stratification of ShBB by quo-
tients by finite groups of Shimura varieties of Hodge type extends to a stratification of SBB by
quotients by finite groups of integral models of these Shimura varieties; in particular, the strat-
ification on SBB is flat. We use Tx

BB to denote the Zariski closure of Tx in SBB
k . In addition,

the Hecke correspondences on S associated to G(Apf ) extend naturally to correspondences on SBB.

Since these are algebraic correspondences, we have that Tx and Tx
BB are stable under the Hecke

correspondences associated to G(Apf ).
Once we choose an admissible complete smooth cone decomposition, by [MP19, Thms 1, 2, 4.1.5],

the canonical integral model S admits a smooth toroidal compactification Stor such that Stor
Q is the

toroidal compactification of Sh constructed in [AMRT10, Pin90]. Moreover, the stratification of
Stor
Q by quotients by finite groups of mixed Shimura varieties extends to a stratification of Stor with

all boundary components being flat divisors and the formal completions of Stor along the boundary
components of the same shape as that of Stor

Q . There is also a natural map π : Stor → SBB which
extends the identity map on S and this map is compatible with the stratifications.

Thus for the rest of this section, we follow [BZ21, §§3.2, 3.3] and [Zem20, §4] for the explicit
descriptions of Stor

C ,SBB
C and use it for Stor

Fp
and SBB

Fp
by the work of Madapusi Pera summarized

above. In particular, the boundary components (cusps) in SBB
Fp

are either 0-dimensional or 1-
dimensional.

0-dimensional cusps. We first prove Theorem 1.4 assuming that Tx
BB contains a 0-dimensional

cusp in SBB
Fp

. The argument for this is essentially the same as in [Cha95, §2], and we will follow
the approach there closely, indicating the places where modifications are necessary. The idea of the
argument in [Cha95] is as follows. Given a 0-dimensional cusp, we study the Hecke-stabilizer of the
cusp and its action on the formal neighborhood to argue that any invariant subscheme which is not
SBB
Fp

is contained in the boundary.

8.2. Coordinates. To describe the action in coordinates, we follow the notation in [MP19] and
refer to section 2 there for more details. Fix a prime ` 6= p. We will work with level structure
Kn given by embedding into GSp and restricting the full level `n structure there;21 let Sn,k denote
the corresponding special fiber over k of the canonical model of the Shimura variety. Given a zero-
dimensional cusp xn, we fix a cusp label representative Φ describing the cusp, which includes the
data of an admissible parabolic subgroup P ⊂ GQ which in this case is the stabilizer of an isotropic
line in LQ. As n varies, Φ defines a compatible system of cusps {xn} in the inverse system {SBB

n,k}
and a point x ∈ lim← SBB

n,k .
Let UP denote the unipotent radical of P and W ⊂ UP denote the center of UP . By [MP19,

§2.1.11, §2.1.16], we can associate to Kn a lattice BKn ⊂W (Q) with dual lattice SKn ⊂W (Q)∨ and
an arithmetic group ∆Kn acting on BKn . We also have an open self-adjoint convex cone H ⊂W (R)

21Here we follow the convention in [MP19, §3.1] that we use an embedding into the group of symplectic similitudes
of a symplectic space over Q which admits a self-dual Z-lattice; this embedding may be different from the one in §2.2,
but can be constructed from the one in §2.2 using Zarhin’s trick as explained in [MP19, p. 442].
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preserved by ∆K by [MP19, §2.1.6, §2.1.16].22 In terms of this data, by [MP19, Cor. 5.1.8, Cor. 5.2.8],
the complete local ring of SBB

n,k at xn is given by the ring of invariants

R`n = k[[qλ]]
∆Kn
λ≥0

where λ ≥ 0 denotes elements of SKn which have non-negative pairing with H. If we pass to the
inverse limit, we get the ring

R` = ∪nR`n .
The Hecke correspondences at finite level are induced by an action of the group G(Q`) on the

inverse limit lim← SBB
n,k . In order to study Hecke-stable subvarieties, rather than study the full

G(Q`)-action, it suffices to study the action of B` := BKn ⊗ Z[1/`] ⊂W (Q`) which fixes the point
x in the inverse limit lim← SBB

n,k and therefore acts on the ring R`.23 Given T ∈ B`, its action on
f ∈ R` is given by the formula

f =
∑
λ

aλq
λ 7→ T (f) =

∑
λ

e((T, λ))aλq
λ.

Here, (T, λ) ∈ Z[1/`] is the pairing of T ∈ W (Q) and λ ∈ W (Q)∨ and e : Z[1/`] → µ`∞(k) is the
group homomorphism defined in [Cha95, p. 452] as follows. The choice of cusp and the full level
structure determines a compatible system (ζ`n) of primitive `n-th roots of unity; given this, the map
e( a`n ) = (ζ`n)a is a well-defined homomorphism.

Invariant ideals of the complete local ring. In terms of the above coordinates, the main proposition
is the following, based on Proposition 2 of [Cha95].

Proposition 8.3. Let I`n ⊂ R`n be a nonzero ideal such that I = I`nR` is stable under the action
of B`. Then Spf R`n/I`n is contained in the formal completion of the boundary of SBB

n,k .

Again, we merely summarize the argument from [Cha95]. Rather than work directly with R`n ,
it is more convenient to pass to a toroidal compactification Stor

n,k. The choice of compactification
in particular specifies a smooth cone decomposition of the rational closure of the cone H.24 By
[MP19, §§5.1.5, 2.1.17, 2.1.18], the formal completion of Stor

n,k along the preimage of xn is covered by
affine formal subschemes Sα parametrized by cones σα ⊂ H. For each such cone σ, the corresponding
formal scheme has coordinate ring given by the completion Rσ,`n of the algebra

⊕λ∈SK∩σ∨k · q
λ

along the ideal generated by the monomials qλ with λ a non-invertible element in the monoid
SK ∩ σ∨. Let Iσ denote the ideal of Rσ,`n generated by monomials qλ where λ is strictly positive
on σ. This ideal is principal, and corresponds to the reduced formal subscheme associated to the
toroidal boundary.

Following Chai, let Jσ ⊂ Iσ denote the ideal generated by qλ where λ > 0 on σ ∩ H. Given
f ∈ Rσ,`n , we say that f has a leading term with respect to Jσ if there exists λ ∈ SK ∩ σ∨ and
a ∈ k× such that f ∈ aqλ(1 + Jσ). This implies that the ideal generated by f is a monomial
ideal, and contains a power of Iσ, so the subscheme cut out by f is contained in the toroidal
boundary. The main claim to be proven is that, given I as in Proposition 8.3, for each cone σ in
the decomposition of H, there exists fσ ∈ I which has a leading term with respect to Jσ. The
proof of this in [Cha95, pp. 455-456] is purely cone-theoretic, so applies identically in our setting.
The key step ([Cha95, Lem. 1]) is a cancellation algorithm: given f ∈ I, and a finite collection
S = {λ0, . . . , λr} for which f has nonzero coefficients, there exists g ∈ I given by a finite linear

22In [MP19] there is a twist by 2πi which we are suppressing.
23Note that by definition in [MP19, §2.1.11], BKn ⊗ Z[1/`] is independent of n for our Kn.
24Here we call H∗ in [MP19, §2.1.22] the rational closure of the cone H.
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combination of translates T (f) for which the corresponding coefficients are all zero except for λ0.
This is proven using the explicit formula for T (f).

1-dimensional cusps. We now treat the case when Tx
BB contains at least one k-point in a 1-

dimensional cusp. We choose an admissible complete smooth cone decomposition and let Tx
tor

denote the Zariski closure of Tx in Stor
k . We will show that either Tx

tor
= Stor

k or dimk Tx
BB \Tx = 0

and dimTx
BB ≥ 2.

8.4. By the first paragraph in [BZ21, §3.3], there is a unique cone decomposition for a given 1-
dimensional cusp and the boundary strata in Stor over 1-dimensional cusps in SBB are canonical.
Thus by [MP19, Prop. 2.1.19, §4.1.12, Prop. 4.1.13], the Hecke correspondences associated to G(Apf )

on Sh extend uniquely to π−1(SBB \ {0-dim cusps}) satisfying certain explicit description of these
correspondences on formal completion along boundary components given in [MP19, §4.1.12]. Set
Tx

tor,1
:= Tx

tor∩π−1(SBB \{0-dim cusps}). Then for any g ∈ G(Apf ), we have g.Tx
tor,1 ⊃ g.Tx = Tx

and thus g.Tx
tor,1

= Tx
tor,1. In particular, for any y ∈ Tx

tor,1
(k), the Zariski closure of all prime-to-p

Hecke orbits of y in Stor
k is contained in Tx

tor. In particular, we will study the Hecke correspondences
on a boundary point y ∈ (Tx

tor,1 \ Tx)(k) in order to deduce certain properties for Tx.

8.5. Let Υ be a 1-dimensional cusp in SBB. We first follow [Zem20, §4] to give an explicit description
of π−1(Υ(C)). By [Zem20, Prop. 4.3, Thm. 4.5] (see also [BZ21, Lem. 3.18, Prop. 3.19]), up to
quotient by a finite group, π−1(Υ(C)) is a torsor under an abelian scheme over the modular curve
(with suitable level); moreover, let I ⊂ L be a (saturated) isotropic plane corresponding to Υ
(thus the admissible parabolic in this case is the stabilizer of I) and set Λ = I⊥/I, then the above
mentioned abelian scheme is given by E ⊗Z Λ, where E is the universal family of elliptic curves over
the modular curve. Therefore, by [MP19, Thm. 4.1.5], π−1(Υ) is a quotient by a finite group of a
E ⊗ Λ-torsor over the modular curve.

Since the prime-to-p Hecke correspondences on π−1(Υ) are the extensions of the Hecke correspon-
dences on π−1(Υ(C)) obtained by taking the normalizations of the Zariski closures of the graphs of
these correspondences in characteristic 0, we first study the Hecke orbits of y ∈ π−1(Υ(C)).

Proposition 8.6. Notation as in §8.5. For y ∈ π−1(Υ(C)), let Ty,` denote the set of all `-power
Hecke translates of y. Then Ty,` contains all the translates of y by `-power torsion points in Eπ(y)⊗Λ,
where Eπ(y) denotes the fiber of E at π(y) (in the modular curve) and recall that π−1(π(y)) is an
Eπ(y) ⊗ Λ-torsor.

Proof. Recall that I ⊂ L denotes the (saturated) isotropic subspace corresponding to Υ; let P ⊂
GQ = GSpin(L ⊗ Q) denote the maximal parabolic which is the stabilizer of I, let U denote the
unipotent radical of P , and let W denote the center of U ; set V := U/W . By [MP19, §2.1.10], V(Q)
acts on the on the E ⊗ Λ-torsor π−1(Υ(C)) over Υ(C) and the explicit form of this action is given
by [BZ21, Lem. 3.11].

More precisely, following [Zem20, §4], we pick a Z-basis {z, w} of I; Using the bilinear form [−,−]
induced by the quadratic form Q, we naturally identify the dual L∨ ⊂ V = L⊗Q. Let ζ, ω ∈ L∨ be
a basis dual to (z, w).25 Recall that Υ is the modular curve with suitable level and let τ be a lift of
π(y) ∈ Υ(C) to the upper half plane. Then by [Zem20, Thm. 4.5, proof of Prop. 4.3, Eqns (25)(26)],
π−1(π(y)) is isomorphic to the quotient of W 1,τ

C := {ζ ′+ τω′+ e | e ∈ Λ⊗Z C} ⊂ VC/I ⊗Z C by the
translation action of (Λ⊕ τΛ). By [BZ21, Lem. 3.11], a+ bτ ∈ V(Z[1/`]) ∼= Λ⊗Z[1/`]⊕ τΛ⊗Z[1/`]
acts by sending ζ + τω + e to ζ + τω + (e+ a+ bτ). Since U is the Heisenberg group described in

25This means that [−,−] induces an isomorphism between SpanZ{ζ, ω} and Hom(I,Z) with ζ, ω mapping to the
basis dual to {z, w}; the existence of such a basis is given by [Zem20, Def. 2.1, Lem. 2.2].
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[Zem20, §1, Prop. 1.6, Cor. 1.9], then all elements in V(Z[1/`]) lift to elements in U(Z[1/`]); thus
the Hecke translates of y by elements in U(Z[1/`]) contains all translates of y by `-power torsion
points in Eπ(y) ⊗ Λ. �

Corollary 8.7. Let y ∈ π−1(Υ(k)), where Υ is a 1-dimensional cusp of SBB, and let Ty,` denote
the set of all `-power Hecke translates of y. Then Ty,` ∩ π−1(π(y)) is Zariski dense in π−1(π(y)).

Proof. We first argue the Hecke action of U(Z[1/`]) on y is given by translates of y by `-power torsion
points Eπ(y) ⊗ Λ. Following the description in [MP19, §4.1.12, 4.1.1 - 4.1.3], the extension of Hecke
correspondences from characteristic 0 to characteristic p is obtained by taking the normalizations in
the sense of footnote (2) in [MP19]. In particular, if one picks a lift ỹ of y to characteristic 0, then
the Hecke translates of y are the mod p reductions of Hecke translates of ỹ. By Proposition 8.6 and
its proof, the action on ỹ is given by torsion translates, so the same holds for the reduction mod p.

Note that π−1(π(y)) ' Eπ(y)⊗Λ as varieties over k (this isomorphism is non-canonical) and thus
the union of the translates of `-power torsion points is Zariski dense in π−1(π(y)) since the set of
`-power torsion points of an abelian variety over k is Zariski dense. �

Corollary 8.8. Recall that x ∈ SFp(k) ordinary and assume that b ≥ 3. If Tx
BB contains a k-point

which lies on a 1-dimensional cusp of SBB
Fp

. Then either (1) Tx = Sk or (2) dimk Tx
BB \Tx = 0 and

dimTx
BB ≥ 2.

Proof. Since Tx
BB is stable under Hecke correspondences, then for any 1-dimensional cusp Υ, we

have that Tx
BB∩Υk is stable under the Hecke correspondences associated to GL2(Apf ) on Υk. Thus

Tx
BB ∩Υk = Υk or dimk Tx

BB ∩Υk = 0.
If there exists an Υ such that Tx

BB∩Υk = Υk, then π(Tx
tor

) = Tx
BB ⊃ Υk. By Corollary 8.7 and

§8.4, we have that Tx
tor ⊃ π−1(Υk) and thus dimk Tx ≥ dimk π

−1(Υk)+1 = dimSk. Moreover, since
G(Apf ) acts transitively on the π0 of the inverse limit of the canonical models of Sh with varying
levels away from p by [Kis10, Lem. 2.2.5], then by the definition of canonical integral models, the
only Hecke-stable subvariety of Sk of dimension dimSk must be the entire Sk and thus Tx = Sk.

If for any 1-dimensional cusp Υ, we have dimk Tx
BB ∩ Υk = 0, then dimk Tx

BB \ Tx = 0. On
the other hand, by the assumption, there exists y′ ∈ Υ(k) for some Υ such that y′ ∈ Tx

BB;
then there exists y ∈ π−1(Υ)(k) such that y ∈ Tx

tor and π(y) = y′. By Corollary 8.7, we have
dimk Tx ≥ 1 + dimTy,` = b− 1 ≥ 2. Thus we conclude that (2) holds. �

Proposition 8.9 (Existence of a proper curve). Let x ∈ SFp(k) be ordinary. Then, either Tx = Sk
or Tx contains a proper curve which is generically ordinary.

Proof. The prime-to-p Hecke orbit of an ordinary point is always infinite, and so Tx has dimension
at least 1. The case where Sk is one-dimensional follows.

Suppose that b = 2, i.e., Sk is two-dimensional. Then, SBB
k contains 1-dimensional cusps if and

only if the reductive group defining S is Q-split if and only if S is a product of two modular curves.
In this case, the density of ordinary Hecke orbits follows from the product structure of S and thus
Tx = Sk. Therefore, suppose that SBB does not contain any 1-dimensional cusps. Then, Tx either
equals Sk or Tx is a proper curve (in which cases the lemma follows), or Tx

BB intersects the boundary
of SBB

k non-trivially. We now have Tx
BB

= SBB
k by Proposition 8.3 and the lemma follows.

Therefore, we may assume that b ≥ 3. If Tx is proper, the lemma follows. Otherwise, Tx
BB

intersects the boundary non-trivially. Suppose that Tx
BB contains a zero-dimensional cusp. Then,

the lemma follows from Proposition 8.3. Therefore, suppose that Tx
BB in SBB

k contains a point
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in a 1-dimensional cusp. Then either (1) or (2) of Corollary 8.8 must hold. The lemma follows
directly if Case (1) holds so we assume that we are in Case (2). But in this case, we have that
dimk Tx

BB \Tx = 0 and dimTx
BB ≥ 2 – the lemma follows in this case, because it is always possible

to find a proper curve in the two dimensional projective26 variety Tx
BB passing through an ordinary

point which avoids the finitely many boundary points Tx
BB \ Tx. �

Proof of the Hecke orbit conjecture. We first recall some results on Hecke orbits which we will
need. As the results and their proofs are standard, we will content ourselves with only a sketch of
their proofs.

Lemma 8.10. Let f : Sh1 → Sh2 be a morphism of Shimura varieties of Hodge type with hyper-
special level at p and let Gi, i = 1, 2 denote the reductive group of Shi. Let Si denote the canonical
integral model of Shi and we still use f to denote the unique extension f : S1 → S2 (such an
extension exists by the theory of canonical models; see [Kis10, Thm. 2.3.8]). Let X ⊂ S2,k be a
subvariety that intersects the ordinary locus (here we assume that the ordinary locus in S2,k is not
empty), and let TX denote the Zariski closure of the Hecke orbit TX of X with respect to the Hecke
correspondences associated to G2(Apf ). Then

(1) for any Shimura subvariety Z ⊂ Sh2, we have that TX ⊂ S2,k is not contained in Zk, where
Z denotes the Zariski closure of Z in S2;

(2) f−1(TX) is stable under the Hecke correspondences associated to G1(Apf ) on S1,k.

Proof. (1) In order to discuss `-adic monodromy, we fix a geometric point x ∈ TX and let Ax
denote the fiber of the universal abelian variety over S2 at x; although in the statement of
the lemma, we consider TX over k, in the proof here, we choose a finite extension of Fp over
which TX is defined as we will use the full arithmetic étale fundamental group (not just the
geometric part). By [Kis10, §2.2] (see also [MP16, Prop. 3.11]) and [AGHMP18, Remark
4.2.3], the `-adic lisse sheaf given by the relative H1

`,ét of the universal abelian variety is
endowed with tensors (as global sections of the suitable tensor products of the sheaf and
its dual) and these tensors restricted to the fiber H1

`,ét(Ax) cut out a subgroup G2(Q`) ⊂
GL(H1

`,ét(Ax)). Moreover, at each point in TX , the Galois group at the point fixes these
tensors, by combining [Kis10, Lemma 2.2.1] with the comparison map of étale cohomology
groups between characteristic 0 and characteristic p. Therefore, the `-adic monodromy
representation ρ`,x : πét

1 (TX , x)→ GL(H1
`,ét(Ax)) factors through G2(Q`) ⊂ GL(H1

`,ét(Ax)).
(The same conclusion holds for any subvariety of S2,k in place of TX .)

The image of the `-adic monodromy of the `-adic lisse sheaf given by the relative H1
`,ét

of the universal abelian variety restricted to any Hecke-stable subvariety in S2,k must be
Zariski dense in Gad

2,Q`
via the quotient map G2 → Gad

2 . Indeed, the Hecke correspondences
associated to G2(Q`) on the Hecke-stable subvariety induce the conjugation action of G2(Q`)
on End(H1

`,ét) and thus the `-adic monodromy must be stable under the conjugation action
and thus a normal subgroup of G2(Q`).

Moreover, if we pick any ordinary point in the Hecke-stable subvariety, the Frobenius at
this point must have non-identity component in each Q`-simple factor of Gad

2,Q`
. Indeed,

since the Hodge cocharacter is non-trivial on each Q-simple factor of Gad
2 , the Frobenius

is non-trivial on each Q-simple factor of Gad
2 ; the claim on Q`-simple factor then follows

from the fact [Kis17, Cor. 2.3.1] that the Frobenius is conjugate to an element in Gad
2 (Q).

Consequently, the image of the `-adic monodromy in Gad
2 (Q`) is a normal subgroup which

26because SBB
Fp is projective by [MP19, Thm. 3]
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has nontrivial projection onto every Q`-simple factor of Gad
2,Q`

, and so must be Zariski dense
in Gad

2,Q`
.

Note that since TX is Hecke-stable, then TX is Hecke-stable as all Hecke correspondences
are algebraic. It then follows that TX is not contained in any Zk since the `-adic monodromy
of the family of abelian varieties over Z is contained in the reductive group associated to Z,
whose image is a proper algebraic subgroup of Gad

2,Q`
.

(2) Note that TX is stable under G2(Apf ), then it suffices to prove that for any x ∈ S1(k) and
for any g ∈ G1(Apf ), if x′ ∈ g.x, then there exists g′ ∈ G2(Apf ) such that f(x′) ∈ g′.f(x).
Indeed, we may take g′ = f(g), where we view f : G1 → G2, and the desired property
follows from the definition of Hecke correspondences via the extension property of canonical
integral models given in [Kis10, Thm. 2.3.8]. �

Lemma 8.11. Notation as in Proposition 8.9; the proper curve in Tx can be chosen such that it is
not contained in any special divisor Z(m).

Proof. By the proof of Lemma 8.10(1), there exists at least one irreducible component of Tx whose
`-adic monodromy group is Zariski dense in Gad

Q`
and we only need to show that there exists a curve

C ′ ⊂ Tx which has the same `-adic monodromy as this irreducible component of Tx. (As we will not
use any other property of Tx other than having large monodromy group, by abuse of notation, we
will still use Tx to denote this irreducible component with large monodromy group so for the rest
of the proof, Tx is irreducible.) More precisely, fix a geometric point y ∈ C ′ and let Ay denote the
Kuga–Satake abelian variety at y, then the image of the `-adic monodromy representation ρ`,C′,y :

πét
1 (C ′, y)→ πét

1 (Tx, y)→ GL(H1
`,ét(Ay)) coincides with the image of πét

1 (Tx, y) (and indeed, we will
see from the proof below that this restriction can be combined with the proof of Proposition 8.9 to
construct a generically ordinary and proper curve C ′).

Since Tx is positive dimensional, we may pick a Zariski local coordinate and view an open part
of Tx as a variety T of dimension dimk Tx − 1 over k(t). To find a curve C ′ in Tx, it suffices to
find a k′-point in T , where k′ is some finite extension of k(t). If we replace k(t) by a number field,
then the desired assertion (the existence of points in T over number fields with the same `-adic
monodromy group as the generic point) is exactly [And96, Thm. 5.2 (3)], which not only proves the
existence, but also shows that the set of points not having the largest possible monodromy is thin
(mince in French) in the sense of [Ser89, §9.1 Definition]; see for instance [Ser89, p. 149] for a proof
which reduces the claim to the Hilbert irreducibility theorem. Serre’s proof holds word-by-word
in the global function field case once we replace the classical Hilbert irreducibility theorem by the
analogous statement for global function fields, which is [BSE21, Thm. 1.1]. Since [BSE21, Cor. 3.5]
gives a quantitative version of the comparison of Galois group which is more directly related to
what we need, we will finish the proof using this corollary following Serre’s argument.

More precisely, the `-adic monodromy map over T defines a Galois extension over the function
field of T , i.e., the Galois group is isomorphic to the `-adic monodromy group G` of Tx. We
start from the simplified case: assume that this extension were finite and that there exists a non-
empty Zariski open subset U ⊂ T contained in Adimk(t) T

k(t) . In this case, we refer the reader to
[Ser89, p. 123, first paragraph] or [BSE21, paragraph after Rmk. 3.1] for the concrete definition
of how to specialize the Galois extension from the generic point to k′-points. In our case, with
the `-adic Galois representation associated to T , the Galois group Gy of the specialization of the
extension at a k′-point y is the image of Gal(k′/k′) in the monodromy representation (well-defined
up to conjugation). As the Galois extension of the function field of U , which is also the function
field of T , is assumed to be finite, we may find a monic, irreducible, and separable polynomial with
coefficients in regular functions on Adimk(t) T

k(t) such that this Galois extension is the splitting field of
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this polynomial. By [BSE21, Cor. 3.5] and the proof of [BSE21, Thm. 3.6], the set {y ∈ U(k(t)) |
Gy 6' G`} is of density 0.

In order to treat the profinite group G`, Serre proved that the Frattini subgroup Φ(G`) of G`,
which is defined to be the intersection of all maximal subgroups of G`, is open in G` (see [Ser89,
pp. 148-149]) and thus we reduce the question to study the finite Galois extension associated to
G`/Φ(G`). More precisely, we conclude as above that there exists a density 1 set of y such that
GyΦ(G`)/Φ(G`) = G`/Φ(G`) and hence Gy = G` by the definition of the Frattini group. In general,
there exists a non-empty Zariski open subset U ⊂ T which admits a finite étale map to a Zariski open
subset of Adimk(t) T

k(t) ; we may apply the above argument to the monodromy group of the pushforward
of the local system H1

`,ét on U and the preimages in U of any k(t)-point not in the bad density 0 set

in Adimk(t) T

k(t) give rise to k′-points with maximal possible monodromy group for some finite extension
k′ of k(t). �

Proof of Theorem 1.4 orthogonal case. We will induct on dimk Sk = b. When b = 1, Sk is a curve;
since the prime-to-p Hecke orbit of an ordinary point is infinite, its Zariski closure must be positive
dimensional and thus the base case is verified.

Now assume that b ≥ 2 and that Theorem 1.4 holds for all ordinary points in the special fiber of
the canonical integral model of GSpin Shimura varieties of dimension b− 1 with hyperspecial level.
Consider x ∈ S(k) ordinary and Tx, the Zariski closure of the prime-to-p Hecke orbit of x.

By Proposition 8.9, Tx is either equal to Sk (in which case we are done), or Tx contains a proper
curve C ′ that is generically ordinary and we may assume that C ′ is not contained in any special
divisor Z(m) by Lemma 8.11. We now apply Theorem 1.2 to the normalization C of C ′ with the
natural map C → C ′ → Sk; in the case of b = 2, we apply the proof of [MST, Thm. 1(2)] instead.
As a result, there exists an ordinary point x′ on C ′ ⊂ Tx such that x′ ∈ Z(m)(k) for some p - m
representable by (L,Q), as there are only finitely many non-ordinary points on C ′.

Let S ′ ⊂ Z(m) denote the canonical integral model of the Shimura subvariety of S which consists
some irreducible components of Z(m) and x′ ∈ S ′(k). Note that since p - m, S ′ has hyperspecial
level at p and dimk S ′k = b− 1.27 By Lemma 8.10(2), Tx ∩ S ′k is a generically ordinary Hecke-stable
subvariety of S ′k. Then by the inductive hypothesis, we have that Tx ∩ S ′k = S ′k, and thus S ′k ⊂ Tx.
In fact, an identical argument yields that Z ′(m) ⊂ Tx for infinitely many m, where Z ′(m) is some
irreducible component of Z(m); indeed, if there were only finitely many such Z ′(m), they only
intersect C at finitely many k-points and we may always pick x′ different from these finitely many
points when we apply Theorem 1.2. Since the Zariski closure of infinitely many distinct subvarieties
of dimension b − 1 must be at least b-dimensional, we conclude that Tx must contain at least one
irreducible component of Sk. Moreover, since the Hecke action G(Apf ) on the inverse limit of Sk
with varying levels away from p permutes all its irreducible/connected components, we conclude
that Tx = Sk. �

Remark 8.12. Let Sk denote the mod p special fiber of the canonical integral model S over SpecOK,(p)

of the PEL type unitary Shimura variety considered in [RSZ20, §3, §4.1] and [RSZ21, §3.4, §4.1]
where p | p and p splits in K/Q and p does not divide the discriminant of the Hermitian form (we
work with the special case of [RSZ20,RSZ21] that the CM field is imaginary quadratic; if we further

27More precisely, as explained on [AGHMP18, p. 434] that Z(m)Q is a finite disjoint union of GSpin Shimura
varieties associated to quadratic spaces isomorphic to (v⊥, Q|v⊥) ⊂ (V,Q), where v ∈ L with Q(v) = m; since p - m,
then (v⊥, Q|v⊥) is self-dual at p and the embedding v⊥ ⊂ V also induces a hyperspecial level for the Shimura variety
associated to v⊥. By [AGHMP18, Prop. 4.4.2] (or [MP16, Cor. 6.23]), Z(m) is normal and flat and thus is the
disjoint union of canonical integral models of the GSpin Shimura varieties associated to isomorphism classes of v⊥

with Q(v) = m.
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restrict ourselves to the principally polarized case, see also [BHK+20, §2.1] and [KR14, §2.1, Nota-
tion 2.6]). The assumption that p is not ramified in K/Q and p does not divide the discriminant
implies that we can work with the hyperspecial level and the PEL Shimura variety has good reduc-
tion at p and the assumption that p splits in K/Q implies that the ordinary locus in Sk is nonempty.
More concretely, following [RSZ21, Def. 3.9, Def. 4.1], given a Hermitian lattice L self-dual at p, S
is the moduli space of the moduli problem which associates to a locally noetherian OK,(p)-scheme
T the groupoid of (A0, A, ι0, ι, λ), where28

• A0 is an elliptic curve over T ,
• ι0 : OK → End(A0) such that OK acts on LieA0 via the structure map OK → OK,(p) → OT ;
• A is an abelian scheme over T of relative dimension (n+ 1),
• ι : OK → End(A) satisfies the Kottwitz determinant condition det(t − ι(α)|LieA) = (t −
α)n(t− α) ∈ OT [t],
• λ : A→ A∨ is a quasi-polarization such that

– its Rosati involution satisfies ι(α)† = ι(α) for all α ∈ OK ,
– λ induces a principal polarization on the p-divisible group A[p∞],
– HomÔK

p(T̂ p(A0), T̂ p(A)) is isomorphic to L ⊗OK
ÔK

p
as Hermitian spaces, where

T̂ p(A0), T̂ p(A)) denote the product of prime-to-p Tate modules and ÔK
p
denotes the

product of completionsOK,` away from p and the Hermitian form on HomÔK
p(T̂ p(A0), T̂ p(A))

is given by x 7→ x∨ ◦ x ∈ HomÔK
p(T̂ p(A0), T̂ p(A0))⊗ ApK,f ∼= ApK,f , where (−)∨ is the

dual map induced by the polarizations on A0 and A.
There are special divisors in S described in [RSZ20, §3.5] (see also [BHK+20, §2.5] and[KR14, §2.2,
Def. 2.8]), parametrizing (A0, A, ι0, ι, λ, x) with (A0, A, ι0, ι, λ) as above and x ∈ HomOK

(A0, A).
By [SSTT, §9.3], given C → Sk such that the image of the generic point of C is ordinary, we can

construct a morphism from (a finite étale cover of) C to the special fiber of the canonical integral
model of a GSpin Shimura variety associated to a quadratic space of signature (2n, 2) such that
the image of generic point of C is ordinary; moreover, the construction also has the property that
if P ∈ C(k) maps to a point in a special divisor in the GSpin special fiber, then P also maps to a
point in a special divisor in the unitary special fiber. Thus, as a direct consequence of Theorem 1.2,
we prove that there are infinitely many k-points on C which lie in the union of special divisors in
Sk; moreover, we may further assume that the special morphisms x ∈ HomOK

(A0, A) corresponding
to points on the special divisors have the property that x∨ ◦ x ∈ HomOK

(A0, A0) ∼= OK is coprime
to p. This is the analogue of Theorem 1.2 in the unitary case. Note that similar to the orthogonal
case, the smaller unitary Shimura varieties associated to the prime-to-p special divisors still have
discriminants of the Hermitian spaces prime to p.

In order to prove Theorem 1.4 unitary case, we use the above analogue of Theorem 1.2 in the
unitary case and adapt the above inductive proof for the orthogonal case to the unitary case if Tx is
proper; thus to finish the proof, it remains to treat the case when Tx

BB hits the boundary of SBB
k .

The arithmetic compactifications of S are described in [BHK+20, §3].29 More precisely, by
[BHK+20, Thm. 3.7.1, Prop. 3.4.4], the boundary components of SBB are 0-dimensional (relative to
SpecOK,p); the toroidal compactification Stor is canonical and the fibers over the cusps of Stor →
SBB are abelian schemes and each of these abelian schemes, up to quotient by a finite group, is
isomorphic (over some finite extension of OK,(p)) to E ⊗OK

Λ0, where E is an elliptic curve CM

28Here we work with isomorphism classes of abelian varieties; one may also describe the moduli problem in the
prime-to-p isogeny category of abelian varieties; see for instance [LZ21, §11.2] for a short summary of the discussion
in [RSZ20,RSZ21].

29Even though [BHK+20] works with principal polarization case, since we work with hyperspecial level at p, the
description also applies to our case here.
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by OK and Λ0 is an OK-lattice of rank n − 1. Since Stor is canonical, the Hecke correspondences
associated to G(Apf ) (here G denotes the reductive group associated to S) extend to Stor. For each
cusp in SBB, we may choose an isotropic line J ⊂ W , where W is the Hermitian space over K of
signature (n, 1) used to define S. The admissible parabolic associated to the cusp is the stabilizer
of J and by [How15, §3.3, p. 673], the Z[1/`]-points of the unipotent part of this parabolic acts on
E ⊗OK

Λ0 by translations of `-power torsion points and thus we prove the analogous statement of
Proposition 8.6 for the unitary case. Therefore we prove the unitary case of Theorem 1.4 by the
proof of Corollary 8.8.
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