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Background: Ramsey argument of Erdés—Szekeres

» Definition
The transitive tournament of size N is the directed graph on N
vertices numbered 1,..., N with a directed edge v; — v; for each
pair i < j.

» Theorem (Cf. Erd6s—Szekeres 1935)

Any 2-coloring of the edges of the transitive tournament of size N
contains a monochromatic directed path of length at least v/ N.
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Proof: Record and pairs problem

Record: assign vertex i the pair of positive integers (R;, Bi) where
R;i (resp. Bj) is the length of the longest red (resp. blue) path in
the graph that ends at vertex i.

Claim
Every vertex is assigned a different ordered pair.

Proof.

Suppose the edge i — j is red. Then R; > R;. O

Now since each of the N vertices is assigned a distinct ordered
pair, at least one must have a coordinate of size at least v /.
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Moving on to three colors

Easy generalization: with k colors, longest monochromatic
(1-color-using) path is Nk with same proof. Harder question:

» Question (Loh 2015)

Must any 3-coloring of the edges of the transitive tournament of

size N have a 1-color-avoiding directed path of length at least
N2/37

» Cannot guarantee longer than ~ N2/3.

» “Trivial” lower bound: N'/2 from normal Erdés—Szekeres
(red-green or blue).
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» Question (Loh 2015)

Must any 3-coloring of the edges of the transitive tournament of

size N have a 1-color-avoiding directed path of length at least
N2/37

>

>

Cannot guarantee longer than ~ N2/3.

“Trivial” lower bound: N'/2 from normal Erdés—Szekeres
(red-green or blue).

Idea: Record the following lengths: longest blue-avoiding path
x; = RG;j, green-avoiding path y; = RB;, and red-avoiding
path z; = GB;, ending at vertex i.
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Triples problem
» Record the following lengths: longest blue-avoiding path
x; = RG;, green-avoiding path y; = RB;, and red-avoiding
path z; = GB;, ending at vertex /.
» Proposition-Definition (Ordered set, Loh 2015)
The list of triples L1 = (Xl,yl,Zl), oo Lly = (XN,yN,ZN) is
ordered, meaning that for i < j, difference L; — L; has at least 2
positive coordinates.
» Suppose all 1-color-avoiding paths have length at most n, so
all coordinates are at most n, so L; € [n]3 for all i.

» Question (Loh 2015)

Must an ordered set of triples S C [n]3 contain at most n
points?

3/2

» Would imply N%/3 bound for tournaments question.
» Exist examples with ~ n®/2 points.
» “Trivial” upper bound: at most n? points.
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Triples in grids: slice-increasing observation

» Take an ordered set of triples
Ly = (xi,y1,21), -+ Lv = (xwv, yw, zw) in [n]?.

> Loh 2015: ordered sets are slice-increasing: on a
coordinate-slice (say x fixed), the points are increasing in the
other two coordinates (i.e. y, z).

» Corollary: for any x, y, there is at most one triple (x, y,?).
This proves the “trivial bound” of N < n?.
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Triples in grids: slice-increasing observation

>

Take an ordered set of triples

Ly = (xi,y1,21), -+ Lv = (xwv, yw, zw) in [n]?.

Loh 2015: ordered sets are slice-increasing: on a
coordinate-slice (say x fixed), the points are increasing in the
other two coordinates (i.e. y, z).

Corollary: for any x, y, there is at most one triple (x,y,?).
This proves the “trivial bound” of N < n?.

n x n grid view: for each i, fill in square (x;,y;) € [n]* with
the z-coordinate z;. Leave other squares blank.

Row and column labels are increasing. The squares containing
a fixed label z must be increasing.

3 4

(tight example for n = 4; generalizes to large n)
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Ordered induced matchings

» Row and column labels are increasing. The squares containing
a fixed label z must be increasing.

» Suppose for i € [n], the label z = i appears a; times. Goal:
bound number of labeled squares, a; + a» + - - - + a,.

» Since row and column labels are increasing, the labels z =i
form the increasing main diagonal of an otherwise “blocked”
a; x a; grid (Loh 2015: “ordered induced matching").

> Example for n = 3. The x's are “blocked” as part of the grid
for z =1; the y's for z = 3. (The x,y squares must be empty.)

21y |3
X 1
1|3 | xy




Ordered induced matchings

>

Row and column labels are increasing. The squares containing
a fixed label z must be increasing.

Suppose for i € [n], the label z = i appears a; times. Goal:
bound number of labeled squares, a; + a» + - - - + a,.

Since row and column labels are increasing, the labels z =/
form the increasing main diagonal of an otherwise “blocked”
a; x a; grid (Loh 2015: “ordered induced matching").
Example for n = 3. The x's are “blocked” as part of the grid
for z =1; the y's for z = 3. (The x,y squares must be empty.)

21y |3
X 1
1|3 | xy

Loh 2015: the “ordered induced matching” property alone is
enough to get a bound of ~ n2/e'°g*(”), but cannot alone

beat the bound ~ n?/eV'°8(") (Behrend construction).



Sum of squares of slice-counts

» Natural to consider a,2 “blocked” squares.
» Does a? + a3 + - - + a2 < n? always hold?

2|y |3
X 1
113 xy

Here a2 + a3 + a3 =22+ 12+ 22 =9 = n?.



Sum of squares of slice-counts

» Natural to consider a,2 “blocked” squares.
» Does a? + a3 + - - + a2 < n? always hold?

2|y |3
X 1
113 xy

Here a3 + a3 +a3 =22+ 12 +22 =9 = n.
> If one only remembers the slice-increasing condition, then no:
2 4
1

114
» This example is slice-increasing, but it turns out not to be an
ordered set of triples.




Back to tournaments: Color

» Color: given any ordered set of triples L1 = (x1,y1,21),. ..,
Ly = (X, yn, zn), for i < j, the difference Lj — L; has at least
two positive coordinates:

> (+,+,<0)

v vyy
/-\//7\\A
o
I
=



Back to tournaments: Color

» Color: given any ordered set of triples L1 = (x1,y1,21),. ..,
Ly = (X, yn, zn), for i < j, the difference Lj — L; has at least
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RGBK-tournaments

» Definition
An RGBK-tournament of size N is a four-coloring of the transitive
tournament of size N with colors R, G, B, and K.

» We'll think of K as a "wild color” and try to find an RGK-,
RBK-, or GBK-path of length at least N2/3,

> It's not to hard to show that this is equivalent to the original
RGB-tournament problem.
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Color o Record

» What we've done so far:

» Record reduces the RGBK-tournament problem to the triples

problem.
» Color reduces the triples problem to the RGBK-tournament

problem.

» This means that it is sufficient to prove the result for
tournaments in the image of Color o Record.
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Geometric tournaments

» Definition
Call an RGBK-tournament geometric if it is the image of some
ordered set under Color.
> Take a geometric torunament that comes from some ordered
set of triples L1 = (x1,y1,21), .-+, Ln = (xn, Yn, 2n)-

» Suppose the edges v; — v; and v; — v are R-colored.
» This means that z; > z; > z.
» This in turn implies that the v; — v, is R-colored.

» Proposition-Definition (2016)

For a set of colors C, a tournament is C-transitive if for every

i <j <k with vi — vj and v; — vi both C-colored, so is v; — v.

Geometric tournaments are exactly the tournaments that are R-,
G-, B-, RGK-, RBK-, and GBK-transitive.
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Gallai decomposition

> In the special case where a geometric tournament has no
K-colored edges, this constraint becomes much simpler.

» A K-free geometric tournament is exactly one which is R-, G-,
and B-transitive and has no trichromatic triangles.

» Definition
A Gallai 3-coloring of Ky is a 3-coloring of the edges of Ky such
that no triangle is trichromatic.

» Theorem (Gallai 1967)

For N > 2, a Gallai 3-coloring of Ky has a base decomposition,
meaning a vertex-partition into m > 2 strictly smaller nonempty
graphs Hi, ..., H,, where the edges between two distinct blocks
H;, H; use at most one of the colors R, G, B, and the edges
between the various blocks Hy, ..., H,, in total use at most two of
the colors R, G, B.
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Gallai decomposition, cont.
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Proof of special case

» Theorem (2016)

For any K-free geometric tournament on N vertices, there exists
an RGK-, RBK-, or GBK-path of length at least N%/3.

» Proof sketch.
We prove the result by induction on N. Our tournament has a
Gallai decomposition into some set of blocks.
To find an RB-colored path, all we have to do is find a set of
blocks such that all edges between them are RB-colored and find
an RB-colored path in each of these blocks.
We can do the latter by the inductive hypothesis and the former is
a problem that only involves two colors, so is easier. O
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Weighted Erd6s—Szekeres

» Theorem (2016)

Suppose we are given a 2-coloring of the transitive tournament of
size N. Assign each vertex a pair of positive reals (R;, B;) and let
R be the maximum possible sum of R; over any R-colored path.
Define B similarly. Then R-B >SN R; - B;.

» Proof sketch.
It's sufficient to prove for positive integer weights. We construct a
2-coloring of the transitive tournament on Z,N:1 R; - B; vertices by
blowing up each vertex of our original 2-coloring by a 2-coloring of
the transitive tournament on R; - B; vertices... O
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Bonus: a problem of Erdés documented by Steele

Problem (Erdés 1973)

Given xi,...,X, distinct positive real numbers determine
maxpg Y icp Xi over all subsets M C [n] of indices iy < --- < ik
such that x;,, ..., x; Is monotone.

Corollary (2016)

The maximum is at least (> x?)'/2.

Proof.

Construct a transitive RB-tournament on vertices v, ..., v,, with
vi — vj colored R if x; < xj, and B if x; > x;. Then
monochromatic paths correspond to monotone subsequences, so
Weighted Erdés—Szekeres, applied with equal weights (x;, x;) at
vertex v;, gives the desired result. O
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Thanks for listening!

Special thanks to:
> Ben Yang
Profs. David Jerison and Ankur Moitra
Prof. Po-Shen Loh (CMU)
Dr. Slava Gerovitch
SPUR and the MIT Math Department
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