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Background: Ramsey argument of Erdős–Szekeres

I Definition
The transitive tournament of size N is the directed graph on N
vertices numbered 1, . . . ,N with a directed edge vi → vj for each
pair i < j .

I Theorem (Cf. Erdős–Szekeres 1935)

Any 2-coloring of the edges of the transitive tournament of size N
contains a monochromatic directed path of length at least

√
N.
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Proof: Record and pairs problem

Record: assign vertex i the pair of positive integers (Ri ,Bi ) where
Ri (resp. Bi ) is the length of the longest red (resp. blue) path in
the graph that ends at vertex i .

(1, 1) (2, 1) (3, 2) (2, 3) (4, 2)
Claim
Every vertex is assigned a different ordered pair.

Proof.
Suppose the edge i → j is red. Then Rj > Ri .

Now since each of the N vertices is assigned a distinct ordered
pair, at least one must have a coordinate of size at least

√
N.
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Moving on to three colors

Easy generalization: with k colors, longest monochromatic
(1-color-using) path is N1/k , with same proof. Harder question:

I Question (Loh 2015)

Must any 3-coloring of the edges of the transitive tournament of
size N have a 1-color-avoiding directed path of length at least
N2/3?

I Cannot guarantee longer than ∼ N2/3.

I “Trivial” lower bound: N1/2 from normal Erdős–Szekeres
(red-green or blue).

I Idea: Record the following lengths: longest blue-avoiding path
xi = RGi , green-avoiding path yi = RBi , and red-avoiding
path zi = GBi , ending at vertex i .
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Triples problem
I Record the following lengths: longest blue-avoiding path

xi = RGi , green-avoiding path yi = RBi , and red-avoiding
path zi = GBi , ending at vertex i .

I Proposition-Definition (Ordered set, Loh 2015)

The list of triples L1 = (x1, y1, z1), . . . , LN = (xN , yN , zN) is
ordered, meaning that for i < j , difference Lj − Li has at least 2
positive coordinates.

I Suppose all 1-color-avoiding paths have length at most n, so
all coordinates are at most n, so Li ∈ [n]3 for all i .

I Question (Loh 2015)

Must an ordered set of triples S ⊆ [n]3 contain at most n3/2

points?

I Would imply N2/3 bound for tournaments question.
I Exist examples with ∼ n3/2 points.
I “Trivial” upper bound: at most n2 points.

5 / 19



Triples in grids: slice-increasing observation

I Take an ordered set of triples
L1 = (x1, y1, z1), . . . , LN = (xN , yN , zN) in [n]3.

I Loh 2015: ordered sets are slice-increasing: on a
coordinate-slice (say x fixed), the points are increasing in the
other two coordinates (i.e. y , z).

I Corollary: for any x , y , there is at most one triple (x , y , ?).
This proves the “trivial bound” of N ≤ n2.

I n × n grid view: for each i , fill in square (xi , yi ) ∈ [n]2 with
the z-coordinate zi . Leave other squares blank.

I Row and column labels are increasing. The squares containing
a fixed label z must be increasing.

3 4

3 4

1 2

1 2

(tight example for n = 4; generalizes to large n)
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Ordered induced matchings

I Row and column labels are increasing. The squares containing
a fixed label z must be increasing.

I Suppose for i ∈ [n], the label z = i appears ai times. Goal:
bound number of labeled squares, a1 + a2 + · · ·+ an.

I Since row and column labels are increasing, the labels z = i
form the increasing main diagonal of an otherwise “blocked”
ai × ai grid (Loh 2015: “ordered induced matching”).

I Example for n = 3. The x’s are “blocked” as part of the grid
for z = 1; the y’s for z = 3. (The x,y squares must be empty.)

2 y 3

x 1

1 3 xy

I Loh 2015: the “ordered induced matching” property alone is
enough to get a bound of ∼ n2/e log

∗(n), but cannot alone

beat the bound ∼ n2/e
√

log(n) (Behrend construction).
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Sum of squares of slice-counts

I Natural to consider a2i “blocked” squares.

I Does a21 + a22 + · · ·+ a2n ≤ n2 always hold?

2 y 3

x 1

1 3 xy

Here a21 + a22 + a23 = 22 + 12 + 22 = 9 = n2.

I If one only remembers the slice-increasing condition, then no:

2 4

1

1 4

2 4

1 3

1 4

I This example is slice-increasing, but it turns out not to be an
ordered set of triples.
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Back to tournaments: Color

I Color: given any ordered set of triples L1 = (x1, y1, z1), . . . ,
LN = (xN , yN , zN), for i < j , the difference Lj − Li has at least
two positive coordinates:

I (+,+,60)
I (+,60,+)
I (60,+,+)
I (+,+,+)
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RGBK-tournaments

I Definition
An RGBK-tournament of size N is a four-coloring of the transitive
tournament of size N with colors R, G, B, and K.

I We’ll think of K as a “wild color” and try to find an RGK-,
RBK-, or GBK-path of length at least N2/3.

I It’s not to hard to show that this is equivalent to the original
RGB-tournament problem.
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Color ◦Record

I What we’ve done so far:

I Record reduces the RGBK-tournament problem to the triples
problem.

I Color reduces the triples problem to the RGBK-tournament
problem.

I This means that it is sufficient to prove the result for
tournaments in the image of Color ◦Record.
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Geometric tournaments

I Definition
Call an RGBK-tournament geometric if it is the image of some
ordered set under Color.

I Take a geometric torunament that comes from some ordered
set of triples L1 = (x1, y1, z1), . . . , LN = (xN , yN , zN).

I Suppose the edges vi → vj and vj → vk are R-colored.
I This means that zi ≥ zj ≥ zk .
I This in turn implies that the vi → vk is R-colored.

I Proposition-Definition (2016)

For a set of colors C, a tournament is C-transitive if for every
i < j < k with vi → vj and vj → vk both C-colored, so is vi → vk .
Geometric tournaments are exactly the tournaments that are R-,
G-, B-, RGK-, RBK-, and GBK-transitive.
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Gallai decomposition

I In the special case where a geometric tournament has no
K-colored edges, this constraint becomes much simpler.

I A K-free geometric tournament is exactly one which is R-, G-,
and B-transitive and has no trichromatic triangles.

I Definition
A Gallai 3-coloring of KN is a 3-coloring of the edges of KN such
that no triangle is trichromatic.

I Theorem (Gallai 1967)

For N ≥ 2, a Gallai 3-coloring of KN has a base decomposition,
meaning a vertex-partition into m ≥ 2 strictly smaller nonempty
graphs H1, . . . ,Hm, where the edges between two distinct blocks
Hi ,Hj use at most one of the colors R, G, B, and the edges
between the various blocks H1, . . . ,Hm in total use at most two of
the colors R, G, B.
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Gallai decomposition, cont.
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Gallai decomposition, cont.
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Proof of special case

I Theorem (2016)

For any K-free geometric tournament on N vertices, there exists
an RGK-, RBK-, or GBK-path of length at least N2/3.

I Proof sketch.
We prove the result by induction on N. Our tournament has a
Gallai decomposition into some set of blocks.
To find an RB-colored path, all we have to do is find a set of
blocks such that all edges between them are RB-colored and find
an RB-colored path in each of these blocks.
We can do the latter by the inductive hypothesis and the former is
a problem that only involves two colors, so is easier.
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Weighted Erdős–Szekeres

I Theorem (2016)

Suppose we are given a 2-coloring of the transitive tournament of
size N. Assign each vertex a pair of positive reals (Ri ,Bi ) and let
R be the maximum possible sum of Ri over any R-colored path.
Define B similarly. Then R · B ≥

∑N
i=1 Ri · Bi .

I Proof sketch.
It’s sufficient to prove for positive integer weights. We construct a
2-coloring of the transitive tournament on

∑N
i=1 Ri · Bi vertices by

blowing up each vertex of our original 2-coloring by a 2-coloring of
the transitive tournament on Ri · Bi vertices...
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Bonus: a problem of Erdős documented by Steele

Problem (Erdős 1973)

Given x1, . . . , xn distinct positive real numbers determine
maxM

∑
i∈M xi over all subsets M ⊆ [n] of indices i1 < · · · < ik

such that xi1 , . . . , xik is monotone.

Corollary (2016)

The maximum is at least (
∑

x2i )1/2.

Proof.
Construct a transitive RB-tournament on vertices v1, . . . , vn, with
vi → vj colored R if xi < xj , and B if xi > xj . Then
monochromatic paths correspond to monotone subsequences, so
Weighted Erdős–Szekeres, applied with equal weights (xi , xi ) at
vertex vi , gives the desired result.
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Thanks for listening!

Special thanks to:

I Ben Yang

I Profs. David Jerison and Ankur Moitra

I Prof. Po-Shen Loh (CMU)

I Dr. Slava Gerovitch

I SPUR and the MIT Math Department
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