1-color-avoiding paths, special tournaments, and incidence geometry

Jonathan Tidor and Victor Wang

SPUR 2016 Mentor: Ben Yang

August 5, 2016

Background: Ramsey argument of Erdős–Szekeres

Definition

The transitive tournament of size N is the directed graph on N vertices numbered $1, \ldots, N$ with a directed edge $v_i \rightarrow v_j$ for each pair i < j.

► Theorem (Cf. Erdős–Szekeres 1935)

Any 2-coloring of the edges of the transitive tournament of size N contains a monochromatic directed path of length at least \sqrt{N} .

Background: Ramsey argument of Erdős–Szekeres

Definition

The transitive tournament of size N is the directed graph on N vertices numbered $1, \ldots, N$ with a directed edge $v_i \rightarrow v_j$ for each pair i < j.

► Theorem (Cf. Erdős–Szekeres 1935)

Any 2-coloring of the edges of the transitive tournament of size N contains a monochromatic directed path of length at least \sqrt{N} .

Background: Ramsey argument of Erdős–Szekeres

Definition

The transitive tournament of size N is the directed graph on N vertices numbered $1, \ldots, N$ with a directed edge $v_i \rightarrow v_j$ for each pair i < j.

► Theorem (Cf. Erdős–Szekeres 1935)

Any 2-coloring of the edges of the transitive tournament of size N contains a monochromatic directed path of length at least \sqrt{N} .

Proof: Record and pairs problem

Record: assign vertex *i* the pair of positive integers (R_i, B_i) where R_i (resp. B_i) is the length of the longest red (resp. blue) path in the graph that ends at vertex *i*.

Claim

Every vertex is assigned a different ordered pair.

Proof.

Suppose the edge $i \rightarrow j$ is red. Then $R_j > R_i$.

Now since each of the N vertices is assigned a distinct ordered pair, at least one must have a coordinate of size at least \sqrt{N} .

Moving on to three colors

Easy generalization: with k colors, longest monochromatic (1-color-using) path is $N^{1/k}$, with same proof. Harder question:

Question (Loh 2015)

Must any 3-coloring of the edges of the transitive tournament of size N have a 1-color-avoiding directed path of length at least $N^{2/3}$?

- Cannot guarantee longer than $\sim N^{2/3}$.
- "Trivial" lower bound: N^{1/2} from normal Erdős–Szekeres (red-green or blue).

Moving on to three colors

Easy generalization: with k colors, longest monochromatic (1-color-using) path is $N^{1/k}$, with same proof. Harder question:

Question (Loh 2015)

Must any 3-coloring of the edges of the transitive tournament of size N have a 1-color-avoiding directed path of length at least $N^{2/3}$?

- Cannot guarantee longer than $\sim N^{2/3}$.
- "Trivial" lower bound: N^{1/2} from normal Erdős–Szekeres (red-green or blue).
- ► Idea: Record the following lengths: longest blue-avoiding path x_i = RG_i, green-avoiding path y_i = RB_i, and red-avoiding path z_i = GB_i, ending at vertex i.

Triples problem

Record the following lengths: longest blue-avoiding path x_i = RG_i, green-avoiding path y_i = RB_i, and red-avoiding path z_i = GB_i, ending at vertex i.

Proposition-Definition (Ordered set, Loh 2015)

The list of triples $L_1 = (x_1, y_1, z_1), \dots, L_N = (x_N, y_N, z_N)$ is ordered, meaning that for i < j, difference $L_j - L_i$ has at least 2 positive coordinates.

- Suppose all 1-color-avoiding paths have length at most n, so all coordinates are at most n, so L_i ∈ [n]³ for all i.
- Question (Loh 2015)

Must an ordered set of triples $S \subseteq [n]^3$ contain at most $n^{3/2}$ points?

- Would imply $N^{2/3}$ bound for tournaments question.
- Exist examples with $\sim n^{3/2}$ points.
- "Trivial" upper bound: at most n² points.

Triples in grids: slice-increasing observation

- Take an ordered set of triples $L_1 = (x_1, y_1, z_1), \dots, L_N = (x_N, y_N, z_N)$ in $[n]^3$.
- Loh 2015: ordered sets are *slice-increasing*: on a *coordinate-slice* (say x fixed), the points are increasing in the other two coordinates (i.e. y, z).
- ► Corollary: for any x, y, there is at most one triple (x, y, ?). This proves the "trivial bound" of N ≤ n².

Triples in grids: slice-increasing observation

- Take an ordered set of triples $L_1 = (x_1, y_1, z_1), \dots, L_N = (x_N, y_N, z_N)$ in $[n]^3$.
- Loh 2015: ordered sets are *slice-increasing*: on a *coordinate-slice* (say x fixed), the points are increasing in the other two coordinates (i.e. y, z).
- ► Corollary: for any x, y, there is at most one triple (x, y, ?). This proves the "trivial bound" of N ≤ n².
- ▶ n × n grid view: for each i, fill in square (x_i, y_i) ∈ [n]² with the z-coordinate z_i. Leave other squares blank.
- Row and column labels are increasing. The squares containing a fixed label z must be increasing.

(tight example for
$$n = 4$$
; generalizes to large n)

Ordered induced matchings

- Row and column labels are increasing. The squares containing a fixed label z must be increasing.
- Suppose for i ∈ [n], the label z = i appears a_i times. Goal: bound number of labeled squares, a₁ + a₂ + ··· + a_n.
- Since row and column labels are increasing, the labels z = i form the increasing main diagonal of an otherwise "blocked" a_i × a_i grid (Loh 2015: "ordered induced matching").
- Example for n = 3. The x's are "blocked" as part of the grid for z = 1; the y's for z = 3. (The x,y squares must be empty.)

2	у	3	
x		1	
1	3	ху	

Ordered induced matchings

- Row and column labels are increasing. The squares containing a fixed label z must be increasing.
- Suppose for i ∈ [n], the label z = i appears a_i times. Goal: bound number of labeled squares, a₁ + a₂ + ··· + a_n.
- Since row and column labels are increasing, the labels z = i form the increasing main diagonal of an otherwise "blocked" a_i × a_i grid (Loh 2015: "ordered induced matching").
- ► Example for n = 3. The x's are "blocked" as part of the grid for z = 1; the y's for z = 3. (The x,y squares must be empty.)

2	у	3
x		1
1	3	ху

► Loh 2015: the "ordered induced matching" property alone is enough to get a bound of ~ n²/e^{log*(n)}, but cannot alone beat the bound ~ n²/e^{√log(n)} (Behrend construction).

Sum of squares of slice-counts

- Natural to consider a_i^2 "blocked" squares.
- Does $a_1^2 + a_2^2 + \cdots + a_n^2 \le n^2$ always hold?

2	у	3	
х		1	
1	3	ху	

Here $a_1^2 + a_2^2 + a_3^2 = 2^2 + 1^2 + 2^2 = 9 = n^2$.

Sum of squares of slice-counts

- Natural to consider a_i^2 "blocked" squares.
- Does $a_1^2 + a_2^2 + \cdots + a_n^2 \le n^2$ always hold?

2	у	3	
X		1	
1	3	ху	

Here $a_1^2 + a_2^2 + a_3^2 = 2^2 + 1^2 + 2^2 = 9 = n^2$.

If one only remembers the slice-increasing condition, then no:

			2		4
					1
			1	4	
2		4			
		1		3	
1	4				

 This example is slice-increasing, but it turns out not to be an ordered set of triples.

Back to tournaments: Color

- ► Color: given any ordered set of triples L₁ = (x₁, y₁, z₁),..., L_N = (x_N, y_N, z_N), for i < j, the difference L_j - L_i has at least two positive coordinates:
 - (+,+,≤0)
 (+,≤0,+)
 (≤0,+,+)
 (+,+,+)

Back to tournaments: Color

► Color: given any ordered set of triples L₁ = (x₁, y₁, z₁),..., L_N = (x_N, y_N, z_N), for i < j, the difference L_j - L_i has at least two positive coordinates:

•
$$(+,+,\leq 0)$$
 R

•
$$(+, \leq 0, +)$$
 G

RGBK-tournaments

Definition

An RGBK-tournament of size N is a four-coloring of the transitive tournament of size N with colors R, G, B, and K.

- ► We'll think of K as a "wild color" and try to find an RGK-, RBK-, or GBK-path of length at least N^{2/3}.
- It's not to hard to show that this is equivalent to the original RGB-tournament problem.

Back to tournaments: Color

► Color: given any ordered set of triples L₁ = (x₁, y₁, z₁),..., L_N = (x_N, y_N, z_N), for i < j, the difference L_j - L_i has at least two positive coordinates:

•
$$(+, \leq 0, +)$$
 G

$\textbf{Color} \circ \textbf{Record}$

- What we've done so far:
 - Record reduces the RGBK-tournament problem to the triples problem.
 - Color reduces the triples problem to the RGBK-tournament problem.
- ► This means that it is sufficient to prove the result for tournaments in the image of Color ○ Record.

Geometric tournaments

Definition

Call an RGBK-tournament geometric if it is the image of some ordered set under Color.

- ► Take a geometric torunament that comes from some ordered set of triples L₁ = (x₁, y₁, z₁), ..., L_N = (x_N, y_N, z_N).
 - Suppose the edges $v_i \rightarrow v_j$ and $v_j \rightarrow v_k$ are R-colored.
 - This means that $z_i \ge z_j \ge z_k$.
 - This in turn implies that the $v_i \rightarrow v_k$ is R-colored.

Proposition-Definition (2016)

For a set of colors C, a tournament is C-transitive if for every i < j < k with $v_i \rightarrow v_j$ and $v_j \rightarrow v_k$ both C-colored, so is $v_i \rightarrow v_k$. Geometric tournaments are exactly the tournaments that are R-, G-, B-, RGK-, RBK-, and GBK-transitive.

Gallai decomposition

- In the special case where a geometric tournament has no K-colored edges, this constraint becomes much simpler.
- A K-free geometric tournament is exactly one which is R-, G-, and B-transitive and has no trichromatic triangles.

Definition

A Gallai 3-coloring of K_N is a 3-coloring of the edges of K_N such that no triangle is trichromatic.

Theorem (Gallai 1967)

For $N \ge 2$, a Gallai 3-coloring of K_N has a base decomposition, meaning a vertex-partition into $m \ge 2$ strictly smaller nonempty graphs H_1, \ldots, H_m , where the edges between two distinct blocks H_i, H_j use at most one of the colors R, G, B, and the edges between the various blocks H_1, \ldots, H_m in total use at most two of the colors R, G, B.

Gallai decomposition, cont.

Gallai decomposition, cont.

Gallai decomposition, cont.

Proof of special case

► Theorem (2016)

For any K-free geometric tournament on N vertices, there exists an RGK-, RBK-, or GBK-path of length at least $N^{2/3}$.

Proof sketch.

We prove the result by induction on N. Our tournament has a Gallai decomposition into some set of blocks.

To find an RB-colored path, all we have to do is find a set of blocks such that all edges between them are RB-colored and find an RB-colored path in each of these blocks.

We can do the latter by the inductive hypothesis and the former is a problem that only involves two colors, so is easier. $\hfill\square$

Weighted Erdős–Szekeres

Theorem (2016)

Suppose we are given a 2-coloring of the transitive tournament of size N. Assign each vertex a pair of positive reals (R_i, B_i) and let R be the maximum possible sum of R_i over any R-colored path. Define B similarly. Then $R \cdot B \ge \sum_{i=1}^{N} R_i \cdot B_i$.

Proof sketch.

It's sufficient to prove for positive integer weights. We construct a 2-coloring of the transitive tournament on $\sum_{i=1}^{N} R_i \cdot B_i$ vertices by blowing up each vertex of our original 2-coloring by a 2-coloring of the transitive tournament on $R_i \cdot B_i$ vertices...

Bonus: a problem of Erdős documented by Steele

Problem (Erdős 1973)

Given x_1, \ldots, x_n distinct positive real numbers determine $\max_M \sum_{i \in M} x_i$ over all subsets $M \subseteq [n]$ of indices $i_1 < \cdots < i_k$ such that x_{i_1}, \ldots, x_{i_k} is monotone.

Corollary (2016)

The maximum is at least $(\sum x_i^2)^{1/2}$.

Proof.

Construct a transitive RB-tournament on vertices v_1, \ldots, v_n , with $v_i \rightarrow v_j$ colored R if $x_i < x_j$, and B if $x_i > x_j$. Then monochromatic paths correspond to monotone subsequences, so Weighted Erdős–Szekeres, applied with equal weights (x_i, x_i) at vertex v_i , gives the desired result.

Special thanks to:

- Ben Yang
- Profs. David Jerison and Ankur Moitra
- Prof. Po-Shen Loh (CMU)
- Dr. Slava Gerovitch
- SPUR and the MIT Math Department