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Background: Class group and Hilbert class field

I A number field K has a (finite abelian) ideal class group
Cl(K ) measuring the failure of unique factorization.

I Class field theory distinguishes the Hilbert class field K 1

(Galois, abelian over K ) with Gal(K 1/K ) ' Cl(K ) (theme:
extrinsic vs. intrinsic).

I Example: K = Q(
√

3) = Q(
√

(−4)(−3)) is a UFD, so
K 1 = K .

I One definition of K 1: the maximal abelian extension L of K
unramified at not just the usual (nonzero) finite primes
℘ ∈ SpecOK , but also. . .

I “unramified at the infinite primes”, i.e. no real embedding
K ↪→R extends to an embedding L ↪→C with nonreal image.
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Background: Hilbert class field towers and p∞ version

I Can iterate K i+1 := (K i )1 to get Hilbert class field tower

K ⊆ K 1 ⊆ K 2 ⊆ · · · ⊆ K∞

(infinite tower of extensions), with top K∞ :=
⋃

n≥0 K
n.

I We call the tower finite iff [K∞ : K ] <∞ (tower stabilizes);
otherwise infinite. (Aside: the tower is finite iff K can be
embedded in a UFD.)

I Our focus: analogous p-tower built from Hilbert p-class fields.

I Fix a prime p. Let K 1
(p) ≤ K 1 be the Hilbert p-class field of

K , i.e. the maximal p-power-degree Galois sub-extension of
K 1/K .
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Background: History of towers

I History: Artin et al. (1920s) thought a refinement of
Minkowski discriminant bound might prove uniform finiteness
of towers (c.f. familiar Q case), despite

Theorem (Scholz (1929))

For any prime p and every integer n ≥ 1, there exists a
Cp-extension K/Q such that Kn+1

(p) 6= Kn
(p).

I But Artin, Furtwängler, and Scholz at least suspected the
“group-theoretical method” would not prove uniform
finiteness.

I In fact, it more or less proves the opposite. . .
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Golod–Shafarevich criterion for infinitude of towers

I But Artin, Furtwängler, and Scholz at least suspected the
“group-theoretical method” would not prove uniform
finiteness.

I In fact, it more or less proves the opposite. . .

Theorem (Vinberg/Gaschütz refinement of Golod–Shafarevich
(1960s))

Fix a number field K (with unit group O×K ) and a prime p. Then
K has infinite p-tower if

rankp Cl(K ) ≥ 2 + 2
√

1 + rankp(O×K/(O×K )p).

I rankp(O×K/(O×K )p) is easily computed using Dirichlet’s unit
theorem.

I rankp Cl(K ) is easy in special cases (esp. using genus theory).

5 / 14



Golod–Shafarevich criterion for infinitude of towers

I But Artin, Furtwängler, and Scholz at least suspected the
“group-theoretical method” would not prove uniform
finiteness.

I In fact, it more or less proves the opposite. . .
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Martinet’s question (specialize to imaginary quadratics)

I Recap: Golod–Shafarevich criterion in terms of class group
and unit group of K .

I Let’s specialize Golod–Shafarevich to K an imaginary
quadratic number field.

Corollary

An imaginary quadratic K has infinite 2-tower if rank2 Cl(K ) ≥ 5,
i.e. if the discriminant ∆K has 6 prime factors (genus theory).

Question (Martinet (1978))

What if rank2 Cl(K ) = 4, i.e. if ∆K has 5 prime factors? Must K
still always have infinite 2-tower?

Remark
No known counterexamples. Martinet was inspired also by Odlyzko
(1976) “root discriminant” bounds, as root discriminant
|∆K |1/[K :Q] is constant in unramified towers.
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Background: Prime discriminants and genus theory

I Extrapolating from Q(
√

3) = Q(
√

(−4)(−3)) earlier: for any
quadratic number field K with t (finite) ramified primes, we
have a unique discriminant factorization

∆K = p∗1 · · · p∗t

into t pairwise coprime prime (power) discriminants p∗i , . . .

I . . . defined so that 2∗ ∈ {+8,−8,−4} and

p∗ = (−1)(p−1)/2p ≡ 1 (mod 4)

for odd primes p.

I Classical genus theory (dating back to Euler and Gauss) gives
rank2 Cl(K ) ∈ {t − 1, t − 2}, and more.

I Relative genus theory relates 2-rank with ramification in
general, even over base fields other than Q. . .
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Main idea in literature for Martinet’s question

I Let K/Q be an imaginary quadratic with ∆K = p∗1 · · · p∗5 < 0
(as in Martinet’s question on infinitude of K∞(2)/K ).

I Take L/Q a finite subfield of K∞(2)/Q (the 2-tower of K ).

I Golod–Shafarevich says that field KL = L(
√

∆K ), hence K ,
has an infinite 2-tower if rank2 Cl(KL) ≥ 2 + 2

√
1 + [L : Q].

Q

K = Q(
√

∆K ) L

KL = L(
√

∆K )
unramified genus theory: rank2 Cl(KL) & ram(KL/L)

Say L/Q is unramified at m ≥ 1 primes p1, . . . , pm dividing ∆K .
Then the main (i.e. non-archimedean) contribution to ram(KL/L)
is splitting #{℘ ∈ SpecOL : ℘ | p1 · · · pm} in L/Q.
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Previous progress on Martinet’s question, in terms of ∆K

I Recap: For Martinet’s question, suffices to find suitable L
with large splitting count #{℘ ∈ SpecOL : ℘ | p1 · · · pm}.

I Mouhib (2010), improving on Sueyoshi (2004), proved infinite
2-towers when ∆K = p∗1 · · · p∗5 has exactly 1 negative prime
discriminant, say p∗5 , using L ≈ Q(

√
p∗1 , . . . ,

√
p∗4) (totally

real, so hard to extend method).

The other best results mimic Martinet (1978), by taking L inside
the (narrow) genus field Q(

√
p∗1 , . . . ,

√
p∗5) of K = Q(

√
∆K ).

I Hajir (1996, 2000), Benjamin (2001, 2002), and Sueyoshi
(2004, 2009, 2010) systematically established infinite 2-towers
in many Rédei matrix (1930s) cases, i.e. by casework on

pairwise Kronecker symbols (
p∗i
pj

).

I However, many cases remain open, especially for small
rank4 Cl(K ).
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Schmithals’ 2-class field idea for Martinet’s question
I Goal (recap): find L/Q ⊆ K∞(2)/Q with lots of splitting.

I Schmithals’ idea (1980): take L = F 1
(2) (Hilbert 2-class field)

for a (quadratic) field F .
I Motivation: decomposition law, e.g. if a rational prime p is

inert in F/Q, then the prime ideal pOF is principal, hence
totally split in F 1/F , so also totally split in L/F .

I (In fact, it is harder to guarantee lots of splitting in L/Q when
p splits in F/Q. . . )

Theorem (W. (2015))

For distinct primes `1, `2 ≡ 1 (mod 4), let F = Q(
√
`1`2). If p is

prime with ( `1p ) = ( `2p ) = −1, then (p) splits into exactly 2 primes
in the extension L/Q.

Remark
Dominguez, Miller, and Wong (2013) used a similar result to prove
infinitude of imaginary quadratic fields with #Cl(F ) of any given
2-adic valuation.
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Progress on Martinet’s question from Schmithals’ 2-class
field idea

I Goal (recap): find suitable L/Q ⊆ K∞(2)/Q with lots of

splitting, i.e. #{℘ ∈ SpecOL : ℘ | p1 · · · pm} should be large.

I Recap: Schmithals’ idea (1980) of looking at L = F 1
(2) for a

choice of quadratic field F .

I Choosing among F ⊆ K∞(2) with 4 prime discriminants,

Benjamin (2015) partially addressed several open cases with
rank4 Cl(K ) ∈ {1, 2}.

I Choosing among F ⊆ K∞(2) with 3 or 2 prime discriminants, we

(2015) do the same when rank4 Cl(K ) ∈ {0, 2}, using tools of
the following flavor.

Lemma (W. (2015))

Say p∗4 , p
∗
5 > 0, and let F := Q(

√
p∗4p
∗
5). If 8 | #Cl(F ) and at least

1 of p1, p2, p3 is inert in F/Q, then K has infinite 2-tower.
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Example for Martinet’s question

Lemma (W. (2015))

Say p∗4 , p
∗
5 > 0, and let F := Q(

√
p∗4p
∗
5). If 8 | #Cl(F ) and at least

1 of p1, p2, p3 is inert in F/Q, then K has infinite 2-tower.

I When the Lemma fails, it is natural to ask (assuming K has
infinite 2-tower) where the failure comes from:
Golod–Shafarevich, or the genus theory input?

Example (W. (2015))

Take K = Q(
√

(−7)(−3)(−8)(+29)(+5)), with (+29
7 ) = +1 and

(+5
7 ) = −1, so 7 is inert in F := Q(

√
(+29)(+5)). Here F has

class number 4, so its Hilbert 2-class field L := F 1
(2) coincides with

its Hilbert class field F 1, which can be computed in SageMath.
(The Lemma fails here since #Cl(F ) = 4.)
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Example (cont’d) for Martinet’s question
Take K = Q(

√
(−7)(−3)(−8)(+29)(+5)), with (+29

7 ) = +1 and

(+5
7 ) = −1, so 7 is inert in F := Q(

√
(+29)(+5)). Here F has

class number 4, so its Hilbert 2-class field L := F 1
(2) coincides with

its Hilbert class field F 1.

I The genus theory input gives an a priori lower bound on
rank2 Cl(KL) from the splitting of 7, 3, 2 in L/Q:

rank2 Cl(KL) ≥ #{℘ ∈ SpecOL : ℘ | (−7)(−3)(−8)} − 1

≥ 4 + 2 + 2− 1 = 7.

I In fact, here the bound is tight: the class group Cl(KL) has
cyclic direct sum decomposition (336, 336, 4, 4, 2, 2, 2)
(assuming the generalized Riemann hypothesis for a
reasonable SageMath run-time), so 2-rank exactly 7—just
shy of the 2 + 2

√
8 + 1 = 8 needed for Golod–Shafarevich.

I But Golod–Shafarevich does not take into account the
4-rank of 4, or the 8- and 16- ranks of 2, so it would be nice
to have a strengthening incorporating such data.
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Thanks for listening!
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