MOP 2018: LINEAR ALGEBRA (06/04, K)

VICTOR WANG

1. LINEAR SPACES, RELATIONSHIPS, BUILDING BLOCKS, AND SIZE

Definition 1.1 (Scalars: field, ring, noncommutative versions). Common notation: F or k for field (k from German), R for ring, A for algebra, and D for division ring.

Definition 1.2 (Linear spaces: vector space, module, vectors, subspaces, quotients). *Linearity* is relative: it means *linear over* given scalars or coefficients.

Definition 1.3 (Functions: linear maps, kernel, image, *jections, isomorphisms).

Definition 1.4 (Internal relationships: span, generation, dependence, independence).

Definition 1.5 (Building blocks: direct sums, internal vs. abstract, complementary subspace, free module, basis). The symbol for direct sum is \oplus .

Theorem 1.6 (Gaussian elimination). Let V be a finitely-generated vector space. Then every subspace has a complement; hence V is free by induction. Furthermore, we can define the size, i.e. dimension, of V, and show that it's well-defined, independent of any choices.

Problem 1.7 (Earthquake). Slightly *perturb* ("move" or "change") the standard basis e_1, \ldots, e_n of \mathbb{R}^n . Prove that the *n* perturbed vectors are still linearly independent.

Problem 1.8 (Radon's theorem). Prove that any set of d+2 points in \mathbb{R}^d can be split into two disjoint sets with intersecting convex hulls. Is d+2 sharp?

Problem 1.9 (Polynomial Thue: USA TSTST 2014/4). Let F be a field, $M \in F[x]$ a nonzero polynomial of degree $d \ge 0$, and $C \in F[x]$ a polynomial relatively prime to M. Prove that there exist $A, B \in F[x]$ of degree at most $\frac{d}{2}$ such that $\frac{A(x)-C(x)B(x)}{M(x)} \in F[x]$.

Problem 1.10 (Implicitization problem). Prove that two univariate polynomials f(T), g(T) over a field k are algebraically dependent. What if f, g are replaced with rational maps?

Problem 1.11. Let $L: V \to W$ be a k-linear map of finite-dimensional k-vector spaces. Identify L with a $\dim_k W \times \dim_k V$ matrix over k. What choices does it depend on?

Theorem 1.12 (Fundamental theorem of linear algebra). With L as above, find the sum of rank $L := \dim \operatorname{im} L$ and $\operatorname{null} L := \dim \ker L$. Can you classify linear maps $V \to W$?

Question 1.13. Should the fundamental theorem of linear algebra really be earlier above?

Problem 1.14 (Heard from Allen Liu). Let A be a (rectangular) matrix with all entries 0 or 1. If p is a prime such that $p > 4(\operatorname{rank}_{\mathbb{F}_p} A)^2$, then show that $\operatorname{rank}_{\mathbb{Q}} A < 2\operatorname{rank}_{\mathbb{F}_p} A$.

VICTOR WANG

2. LINEAR OPERATORS: SELF-MAPS OF A SPACE

A k-linear endomorphism (self-map) $T: V \to V$ of a single given k-vector space V is often called a linear operator. The *identity* operator $\mathbf{1}: V \to V$ (or I) is defined by $\mathbf{1}v = v$.

An operator T acts or operates on V, making V a discrete dynamical system. People love to iterate and study $T^{n,1}$ For n = 0, the correct polynomial definition is $T^0 = \mathbf{1}$.

Theorem 2.1. Assume $\dim_k V < \infty$. Prove that T is algebraic over k, meaning p(T) = 0 for some polynomial $p \in k[x]$.

Definition 2.2 (Building blocks: invariant direct sums, indecomposable subspaces).

Theorem 2.3 (Rational canonical form). Let T act on a finite-dimensional vector space V over k. Any indecomposable T-invariant space V is "T-isomorphic" to k[X]/(f) for some prime power $f \in k[X]$, where T acts on k[X]/(f) as multiplication by X. What does this imply if V is decomposable? What if k is algebraically closed, like \mathbb{C} ?

Problem 2.4 (Real orthogonal representations of $\mathbb{Z}/4$). Let T denote multiplication by $i = \sqrt{-1}$ on $V = \mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$, with $F = \mathbb{R}$. Work out the rational canonical form for V. Turn all this on its head to *define* \mathbb{C} using 2×2 matrices over \mathbb{R} .

Problem 2.5 (Complex unitary representations of Q_8). Let $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$ be viewed as a *right* \mathbb{C} -vector space. Let I, J, K denote *left* multiplication by i, j, k, respectively. Extend the previous problem to define \mathbb{H} using 2×2 matrices over \mathbb{C}^2 .

Definition 2.6 (Volume elements, coordinate-free determinant). Assume $\dim_k V < \infty$.

Theorem 2.7. *T* is invertible if and only if *T* is \star -jective; if and only if det(*T*) \neq 0. For $\lambda \in k$ a constant, $Tv = \lambda v$ has a nonzero solution $v \in V \setminus \{0\}$ if and only if det($\lambda I - T$) \neq 0.

Problem 2.8. Let $A = \mathbb{Z}[\sqrt{-5}]$ and $I = (2, 1 + \sqrt{-5})$ be the *ideal* consisting of A-linear combinations of $2, 1 + \sqrt{-5}$. Prove that I is not free over A, but $I \oplus I$ is.

Theorem 2.9 (Cayley–Hamilton theorem). Assume dim $V < \infty$. Then T is a "root" of the polynomial $p(x) = \det(xI - T)$, meaning p(T) = 0.

Problem 2.10 (Observed by Noam Elkies). Use the Cayley–Hamilton theorem, when $\dim V = 2$, to compute the inverse of a 2×2 matrix.

3. Projectivization

Problem 3.1 (MOP 2010, first (and only) problem set). Let f(x) = (ax+b)/(cx+d) where c, d are not both zero. If f(x) = x has no real solutions but $f^{2010}(x) = x$ has at least one real solution, show that $f^{2010}(x) = x$ for all real x where $f^{2010}(x)$ is defined.

4. BILINEAR FORMS AND INNER PRODUCTS: GEOMETRIES ON A SPACE

Problem 4.1 (Robi Bhattacharjee, inspired by sphere packing?). Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . Let V be a subspace of \mathbb{R}^n , and for each i, choose $v_i \in V$ such that the distance between v_i and e_i is as small as possible. Must v_1, v_2, \ldots, v_n span all of V?

¹For example, average behavior over time might "equidistribute" as in Weyl's equidistribution theorem.

²But while $\mathbb{H} = \langle I, J, K \rangle \mathbb{C}$ on the right, we only have $\mathbb{H} = \mathbb{R} \langle I, J, K \rangle$ on the left.

Problem 4.2 (Asked on MathOverflow). Fix $\mathbf{a} \in \mathbb{Z}^n$ with $gcd(a_1, \ldots, a_n) = 1$, and let v_1, \ldots, v_{n-1} be an integer basis for the lattice $L = \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{a} \cdot \mathbf{x} = 0\}$. Show that the fundamental parallelotope $P = \{t_1v_1 + \cdots + t_{n-1}v_{n-1} : t_i \in [0,1)\}$ has volume equal to $\|\mathbf{a}\|$.

Theorem 4.3 (Euler's rotation theorem). If T acts linearly on \mathbb{R}^3 with $\langle Tv, Tw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^3$, then det T is an eigenvalue of T.

Theorem 4.4 (Frobenius). Up to isomorphism over \mathbb{R} , the only finite-dimensional associative \mathbb{R} -algebras with division are \mathbb{R} , \mathbb{C} , and \mathbb{H} .