
COHEN–LENSTRA HEURISTICS: INFORMAL NOTES

VICTOR WANG

Abstract. Following Smith [8], except in some of the definitions, details, and appendices.
I’m not sure yet where things break down for real quadratic fields.
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1. Introduction

Roughly speaking, the algebraic input relies on three principles:

(1) Linear algebra and combinatorics over F2, including (but not limited to) the torsion
class pairing below, and the notion of minimality (Definition 4.12 and Appendix D).1

(2) Class field theory, including (but not limited to) representing class group characters
of K using Galois subextensions of HK/K, which are actually Galois over Q; and
also calculating local Artin symbols. (See Propositions 2.1 and 2.5.)

(3) “Dihedral-like” Galois extensions (with restricted ramification) over Q can be “pa-
rameterized” using suitable Q-cocycles. (See Propositions 3.3 and 3.7.)

Date: April 1, 2018.
1As Bjorn Poonen once said, “Your success in life is determined by how much linear algebra you know.”
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The third might be the most significant, because Q-cocycles can be easily manipulated as
we vary the quadratic field data encoded in “dihedral-like” groups. It can be motivated in
at least two ways: extending characters over K to cocycles over Q (surjectivity of inflation-
restriction map), or the class-Selmer analogy (where Selmer groups are already defined over
Q). The challenge is then finding nontrivial relations in families: Theorems 4.15 and TBD.

2. Computing the torsion class pairing

The first principle extracts 2k+1-ranks from the torsion class pairing. The left kernel of

Cl[2]× Ĉl[2]
(x,ψ)7→ψ(x)−−−−−−→ µ2 = ±1

is 2 Cl[4] (giving the 4-rank of Cl), because ψ(x)2 = ψ(x2) (left kernel detects whether x is
a square). Generally, to find the 2k+1-rank using F2-linear algebra, consider the pairing

2k−1 Cl[2k]× 2k−1Ĉl[2k]
(2k−1x,2k−1ψ)7→2k−1ψ(x)−−−−−−−−−−−−−−−→ ±1

(easily check well-defined) with left kernel 2k Cl[2k+1]. This should all be classical.

2.1. Global computation: general case. Fix k ≥ 1 and let K/Q be any number field.

Proposition 2.1. For u ∈ 2k−1ĈlK [2k] and v ∈ 2k−1 ClK [2k], the above natural pairing

2k−1ĈlK [2k]× 2k−1 ClK [2k]→ µ2 is given by the Artin symbol formula

〈u, v〉 := ψk(v) = recL/K(v) ∈ Gal(L/K)[2] ↪→µ2,

where we have chosen ψk ∈ ĈlK [2k] with u = 2k−1ψk, and where L = L(ψk) := H
rec(kerψk)
K is

the fixed field of kerψk ≤ ClK acting on the Hilbert class field HK/K.

Remark 2.2. Implicit in the identification Gal(L/K)[2] ↪→F2 (usually an isomorphism, unless
ψk is the trivial character) is the fact that L/K is cyclic of order # imψk | 2k.

Proof. Use global Hilbert class field theory. The composite map

φk : Gal(HK/K)
rec−1 : ∼=−−−−−→ ClK

ψk−→ µ2k

has kernel Gal(HK/L) (by definition of L/K), so it induces an injection of quotients:

φk : Gal(L/K)
rec−1

L/K
: ∼=

−−−−−−→ ClK / kerψk ↪→µ2k .

In particular, L/K is cyclic, and φk(recL/K(v)) = ψk(v) ∈ 2k−1µ2k = µ2, so 〈u, v〉 := ψk(v) ∈
µ2 has the same order as recL/K(v) ∈ Gal(L/K)[2] ↪→µ2. Now Aut(µ2

∼= Z/2) = 1 allows
the desired identification ψk(v) = recL/K(v) ∈ µ2. �

Remark 2.3. The permissible fields L/K are precisely the degree 2≤k cyclic unramified ex-
tensions over K containing Hkeru

K (an unramified quadratic extension of K; these have been
studied more explicitly in classical genus theory and subsequent work).

Proposition 2.4. Every unramified2 abelian extension of a quadratic field K/Q is Galois.

Proof. H+
K/Q is Galois by maximality. To prove that every subgroup of Gal(H+

K/K) is
normal in Gal(H+

K/Q), use Artin reciprocity and the fact that σ(I)I ∈ P+
K for I ∈ IK . �

2unramified at finite places (allowing ramification at ∞)

https://math.stackexchange.com/questions/2373480/unramified-cyclic-extension-of-a-quadratic-field
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2.2. Local computation: quadratic case. Now specialize and simplify locally.

Proposition 2.5. In the notation of Proposition 2.1, if K/Q is quadratic, then

(1) L/Q is dihedral Galois, and
(2) for any prime p | ∆K with pOK = p2, every decomposition field over Qp is abelian

with Galois group C2 or C2
2 . The character

ψk rec−1
L/K : Gal(L/K)→ µ2k

restricts on the abelian decomposition group Dp to

χ|GKp
: Dp → µ2

for some local unramified quadratic or trivial character χ : GQp → µ2 over Qp.

Furthermore, recL/K(p) = (χ, b)p = invp(χ ∪ χb) for any uniformizer b of Qp.

Remark 2.6. Here (χ, b)p is understood to mean (DiscQp
kerχ

/Qp, b)p, where Qp
kerχ

= F
below is at most quadratic over Qp, and DiscF is defined up to a square in Qp.

Proof that L/Q is dihedral Galois. Since L/K is a cyclic unramified extension of K, it is
Galois over Q by Proposition 2.4. To prove L/Q dihedral, use Artin reciprocity together
with the fact that Gal(K/Q) inverts ideal classes in ClK . �

Proof of local restriction. Given L/K/Q, choose primes q/p/p with p | ∆K (i.e. p ramified
in K, so pOK = p2). Note that Lq/Kp is (cyclic and) unramified. On the other hand, if
F denotes the maximal unramified sub-extension of Lq over Qp (so F/Qp is cyclic) then
Lq/F is totally ramified by local structure theory. So Lq/FKp is both unramified and
totally ramified, hence trivial. Furthermore, F and Kp must be linearly disjoint over Qp,
so Lq/Qp is abelian with Galois group Gal(F/Qp) × Gal(Kp/Qp). But F must then be at
most quadratic, because C2

2 (Klein four group) is the only non-cyclic abelian subgroup of
Gal(L/Q), the dihedral group of size 2[L : K].3 Now

Dp := Gal(Lq/Kp)
res : ∼=−−−→ Gal(F/Qp)

is at most order two. Yet F/Qp is unramified by definition, so ψk rec−1
L/K indeed restricts on

Dp to a local character χ|GKp
, with χ defined over F/Qp with the desired properties. �

Proof of Artin symbol calculation. Fix b ∈ Qp with vp(b) = 1, so b/p, a unit, must be a norm
in F/Qp (an unramified local extension). Then recL/K(p) is trivial if and only if Lq = Kp if
and only if F = Qp if and only if p ∈ NF/Qp(F×) if and only if b ∈ NF/Qp(F×) if and only if
invp(χ ∪ χb) = 0. But recL/K(p) (killed by squaring) and invp(χ ∪ χb) = (χ, b)p (a quadratic
Hilbert symbol4) are both Z/2-valued, so they must coincide. �

3. Relating characters and cocycles

Definition 3.1. Let K/Q be quadratic with character

δK : GQ → Gal(K/Q) = ±1 ∈ EndZ(Q2/Z2),

and set MK := Q2/Z2 with Galois action gn := δK(g)n for g ∈ GQ. Let ιK : MK → Q2/Z2

be the forgetful map (an identity of abelian groups).

3Better proof of [Lq : Kp] ≤ 2 using Artin reciprocity: p must split into at most [L : K]/2 primes (so
each/the decomposition group has size at most 2) because it has order at most 2 in IK/PKNL/K(L×).

4see Serre, Local Fields, p. 207, Proposition 5, for the invariant map interpretation

https://math.stackexchange.com/questions/2373480/unramified-cyclic-extension-of-a-quadratic-field
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Remark 3.2. Why define ιK? When K varies later on, we will want to think of the underlying
abelian group Q2/Z2 as being fixed, with only the action δK : GQ → EndZ(Q2/Z2) varying.

3.1. Global extension of characters. We now use additive notation for characters.

Proposition 3.3 ([8, Cf. Proposition 2.7]). Define M = MK as above. The cocycle group

Cl
∨
K [2k] := Z1

cts(Gal(Kur/Q),M [2k])

surjects onto ĈlK [2k] = Homcts(Gal(Kur/K), 2−kZ/Z), via restriction of cocycles. Conse-

quently, for k ≥ 1, the image of 2k−1Cl
∨
K [2k] under Cl

∨
K [2]→ ĈlK [2] is 2k−1ĈlK [2k].

Remark 3.4. Smith explicitly extends K-characters to Q-objects. It may be instructive to
work this out later. See crossed homomorphism or MSE: motivating inhomogeneous cochains
(esp. Mariano answer about section interpretation) for inspiration.

Here is another perspective.

Proof. For 1 ≤ k ≤ ∞, consider the inflation-restriction exact sequence

0→ H1(G/N,M [2k]N)
inf−→ H1(G,M [2k])

res−→ H1(N,M [2k])G/N

→ H2(G/N,M [2k]N)
inf−→ H2(G,M [2k])

with G = Gal(HK/Q) and N = Gal(HK/K) ∼= ClK . Since N and G/N act trivially on M
and H1(N,M [2k]), resp., and G/N = Gal(K/Q) = ±1 is cyclic, the sequence simplifies to

0→M [2k]/2M [2k]→ H1(G,M [2k])→ Hom(N,M [2k])→M [2]→ H2(G,M [2k]).

One can abstractly conclude 2k−1H1(G,M [2k])
∼−→ 2k−1 Hom(N,M [2k]) for k ≥ 2 (this is

also true for k = 1: any quadratic character on N lifts to a Klein four character on G), but
in fact, Smith explicitly proves that the restriction map is surjective for M [2k].5 �

Remark 3.5. To see why G/N acts trivially on H1(N,M [2k]), recall that G acts on Z1(N,−)
by sending n 7→ an to gng−1 7→ gan. For a ∈ H1(N,M [2k]) = Hom(N,M [2k]), Artin
reciprocity over K gives agng−1 = gan, since an−1 = −an, and g acts on ClK by δK(g). Of
course, Smith’s proof crucially relies on this “dihedral-like” structure as well.

Remark 3.6. Consider the class-Selmer analogy (which Smith says Fouvry–Klüners used
earlier): the Selmer groups involve H1(GQ,−) by definition, perhaps motivating the above
H1(GQ,−) extension of the dual class group. Alternative motivation: Q-cocycles can be
added over varying ground fields K/Q, while K-characters maybe cannot (I’m not sure yet).

3.2. Local restriction of cocycles. We want to express Proposition 2.5 using cocycles.

Proposition 3.7. In Proposition 2.5, suppose the character ψk : Gal(L/K) → 2−kZ/Z ex-
tends to a cocycle φk : Gal(L/Q)→MK [2k]. Then the local restriction φk|Gal(Lq/Qp) is

(1) a quadratic character extending ψk|Dp = χ|GKp
, where Dp = Gal(Lq/Kp);

(2) the sum of χ with one of the two characters of Gal(Kp/Qp), say χ′.

Furthermore, (χ′, b)p = 0 and

recL/K(p) = (χ, b)p = (φk, b)p = invp(φk ∪ χb)
for any uniformizer b of Qp, as long as b ∈ NKp/Qp(K×p ).

5It should also be possible to show (through a computation likely boiling down to Smith’s argument) that
the transgression (boundary) map [6, Proposition 1.6.6, p. 65] is zero.

https://www.encyclopediaofmath.org/index.php/Crossed_homomorphism
https://math.stackexchange.com/q/65531/43100
https://math.stackexchange.com/a/66797/43100
https://mathoverflow.net/questions/212636/the-term-h1n-ag-n-in-the-inflation-restriction-exact-sequence
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Remark 3.8. The appearance of quadratic “η” in (η, b)p is shorthand for the discriminant of
the at most quadratic field of definition of η. In particular, (φk, b)p = (χ, b)p + (χ′, b)p.

Remark 3.9. Later on, b will be the norm of an ideal w(K) depending on K, such that
w(K) ∈ 2 ClK [4]. In particular, w(K) = βI2 for some element β ∈ K× and fractional
ideal I. But N(I2) = N(I)2 is the norm of N(I) ∈ K×, so b is the norm of the element
βN(I) ∈ K×. So w(K) ∈ 2 ClK [4] will give us b ∈ NK/Q(K×) for free, even as K varies.

Proof. The global inflation-restriction sequence (see Proposition 3.3) restricts down to

0→ H1(Gal(Kp/Qp),M [2k])
inf−→ H1(Gal(Lq/Qp),M [2k])

res−→ H1(Gal(Lq/Kp),M [2k])

→ H2(Gal(Kp/Qp),M [2k]).

Claim: everything is defined over M [2], i.e. the inclusion M [2] → M [2k] defines an isomor-
phism of inflation-restriction sequences. Proof: compute for the left and right H1 terms and
the H2 term, perhaps using cyclic Tate cohomology. Then use the 5-lemma.

Now, over M [2] = 2−1Z/Z, all Galois actions are trivial, so H1 = Z1 = Hom. By
Proposition 2.5, Gal(Lq/Qp) = Gal(F/Qp) × Gal(Kp/Qp), so the H1’s must form a split
short exact sequence of character groups. The splitting expresses φk|Gal(Lq/Qp) as the desired
sum χ+ χ′. Finally, b ∈ NKp/Qp(K×p ) implies (χ′, b)p = 0, even if χ′ is nontrivial. �

4. Relating different ground fields

4.1. Defining families of objects.

Definition 4.1. Fix a quadratic field K/Q of discriminant ∆K < 0. Let X1, . . . , Xd be
pairwise disjoint sets of odd primes p - ∆K . Let X = X[d](K) denote the product X1× · · ·×
Xd, with ith projection πi to Xi. As x = x[d] ∈ X varies, define the family of quadratic fields

K(x) := Q(
√

∆Kπ1(x) . . . πd(x)).

Call this family simple if p (mod 4) is constant for p ∈ Xi.

Remark 4.2. Simplicity requires the sign of the prime discriminant p∗ = (−1)(p−1)/2p to be
constant on each set Xi. This is natural when applying genus theory in families.

Definition 4.3. Let X represent a simple family. Call wb a constant family of 2-torsion
elements if there exists a constant discriminant ∆b | ∆K such that wb(x) is the image of

(∆b)
1
2 :=

∏
℘∈SpecOK(x)

℘
1
2
v℘(∆b) ∈ IδK(x) ≤ IK(x)

in ClK(x)[2] := IδK(x)/IQ, for all x ∈ X. Let the level be the largest integer k ≥ 1 such that

wb(x) ∈ 2k−1ClK(x)[2
k] for all x ∈ X.

Remark 4.4. Appendix A relates ClK(x)[2] to the actual 2-torsion group ClK(x)[2].

Definition 4.5. Let X represent a family. Call wa a constant family of characters if there
exists a constant discriminant ∆a | ∆K such that wa(x) is the image of

χ∆a : GQ → 2−1Z/Z = MK [2] = MK(x)[2]

in Cl
∨
K(x)[2] = Homcts(Gal(K(x)ur/Q),MK(x)[2]), for all x ∈ X. Let the level be the largest

integer k ≥ 1 such that wa(x) ∈ 2k−1Cl
∨
K(x)[2

k] for all x ∈ X.
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Remark 4.6. Proposition 3.3 relates Cl
∨
K(x)[2] to the actual dual 2-torsion group ĈlK(x)[2].

To use Proposition 2.1, we need to witness the level of wa using elements of Cl
∨
K(x)[2

k].

Definition 4.7. Call
R(X) = (ψ1(x), . . . , ψk(x)(x))x∈X

a set of raw cocycles (resp. cochains) if ψj(x) is a GQ-cocycle in Z1
cts(GQ,MK(x)[2

j]) (resp.
GQ-cochain in C1

cts(GQ,MK(x)[2
j])) for each j ∈ [k(x)] and x ∈ X, such that ψj(x) =

2ψj+1(x) for j = 1, . . . , k(x) − 1. Let the level be the largest integer k ≥ 1 such that
k(x) ≥ k for all x ∈ X. If wa is a family of characters, say that R(X) witnesses wa to level
` if it is a set of raw cocycles such that ψ1(x) = wa(x) and k ≥ `.6

Remark 4.8. We do not require ψj(x) to be defined over Gal(K(x)ur/Q). That is OK for
Proposition D.3, a key combinatorial result. But ramification considerations will play a big
role in the setup and proof of Theorem 4.15, due to the use of Proposition 3.3.

Definition 4.9. Call a GQ-cocycle unramified over L if it is defined over Gal(Lur/Q).

Remark 4.10. A cocycle in Z1
cts(GQ,MK [2k]) is unramified over K if and only if it lies in

Cl
∨
K [2k]. See Proposition C.1 for how to think about fields of definition more precisely.

4.2. Raw cocycles: consistency and minimality.

Definition 4.11. If R(X) is a set of raw cochains of level k ≥ d, define the set map

ψd(X) :=
∑
x∈X

ιxψd(x) : GQ → Q2/Z2,

where ιx is the forgetful map ιK(x) : MK(x) → Q2/Z2.

Definition 4.12. Let X = X[d](K) represent a family. Call R(X) minimal or oscillatory if
it is a set of raw cocycles of level k ≥ d, and the set map ψd(X) is 0.

Remark 4.13. The subtlest part of the definition is k ≥ d. Cf. Smith’s notion of consistency,
which makes sense at level k = 1 for any d. When k = d = 1, the notions agree.

To appreciate minimality, and to formulate Theorem 4.15 below, we need to understand
the combinatorics of restricted variation.

Definition 4.14. Let X = X[d](K) represent a family, S ⊆ [d] a set of variation indices,
and T = [d]−S the complementary set of fixed indices, with a choice of primes y = (qi)i∈T ∈∏

i∈T Xi. Let ∆y denote the discriminant of the quadratic Ky := Q(
√

∆K

∏
i∈T qi) = K(y),

and XS the product set
∏

i∈S Xi, representing the restricted family of fields

Ky(xS) := Q(∆1/2
y

∏
i∈S

p
1/2
i ) = K(y t xS)

for xS = (pi)i∈S ∈
∏

i∈S Xi. One can then define constant families, restricted levels, mini-
mality, and so on with respect to the data y, S.

Constancy of families is stable under restriction, while level is nondecreasing, witnessing
(of wa by raw cocycles) is stable, and minimality is stable (see Appendix D for details).

6This means wa has level at least `, but possibly greater.
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4.3. First half of main theorem. Let X = X[d](K) represent a simple family of fields. Let
wb denote a constant family of 2-torsion elements, and wa a constant family of characters.
Assume the following conditions:

(1) wb is of level at least d, where d ≥ 2.
(2) |Xi| = 2 for all i ∈ [d], with a distinguished point x0 = (pi)i∈[d].
(3) R(X) is a set of raw cocycles with k(x) ≥ d and ψ1(x) = wa(x) for all x 6= x0, such

that ψj(x) is unramified over K(x) for all j ∈ [d]. (No condition at x0.)
(4) For every index i ∈ [d] and complementary variation set S = [d]− i, the set R(X) is

minimal with respect to the data qi, S for all qi ∈ Xi \ pi.

Theorem 4.15 ([8, Theorem 2.8(1)]). Above, R(X) can be modified at x0 so that

(1) R(X) witnesses wa to level d;
(2) ψj(x0) is unramified over K(x0) for all j ∈ [d]; and
(3) ψd(X) is a quadratic GQ-character defined over

∏
x∈XK(x)ur.

Furthermore, ∑
x∈X[d]

〈wa(x), wb(x)〉 = 0,

where the pairing 〈−,−〉 is induced by the torsion class pairing computed in Proposition 2.1.

Remark 4.16. The sum is independent of the witness R(X). Can the theorem be strength-
ened (e.g. smaller sums)? Or can it be weakened (e.g. larger sums) with an easier proof?

Proof. Whenever k(x) ≥ d, Proposition 2.1 says

〈wa(x), wb(x)〉 = ψd(x)(wb(x)) = recL(ψd(x))/K(x)(wb(x)) ∈ 2−1Z/Z,
where L(ψd(x)) is the fixed field of kerψd(x)|GK(x)

acting on the Hilbert class fieldHK(x)/K(x).
Since wb is a constant family of 2-torsion elements, there is a constant discriminant

∆b | ∆K such that wb(x) = (∆b)
1
2 (mod IQ), the ideal square root taking place in IK(x). As

the relevant Artin symbol at wb(x) is F2-valued, we can ignore any squares in ∆b. In other
words, let b = ∆b if ∆b is odd, and b = ∆b/4 otherwise. Then b is squarefree, and equal to
the norm of wb(x), up to a rational square. Since wb is of level d ≥ 2, the ideal class
of wb(x) is a square, so b ∈ NK(x)/Q(K(x)×) by the remark following Proposition 3.7. By
Propositions 2.5 and 3.7 applied to primes p | b of the form pOK(x) = p(x)2, we find

〈wa(x), wb(x)〉 = recL(ψd(x))/K(x)(wb(x)) =
∑
p|b

recL(ψd(x))/K(x)(p(x)) =
∑
p|b

(ψd(x), b)p.

We can at last modify R(X) at x0. Provisionally define a 1-cochain

ψd(x0) = −ι−1
x0

∑
x 6=x0

ιxψd(x) : GQ →MK(x0),

which is in fact a cocycle by Proposition D.3(2). Although this is a continuous 1-cocycle
GQ → MK(x0)[2

d], it may be ramified. For now, multiplying by 2d−1 gives ψ1(x0) = wa(x0)
by constancy of wa and oddness of the number of summation indices x 6= x0.

We now study ramification. Minimality with respect to qi, [d]− i for qi 6= pi implies

ψd−1(x0) = 2ψd(x0) =
∑

x 6=x0:πi(x)=pi

ι−1
x0
ιx ψd−1(x)︸ ︷︷ ︸

defined over K(x)ur

,
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for each index i ∈ [d]. If qi ∈ Xi\pi, then ψd−1(x0) is unramified at7 qi, since K(x)ur/K(x)/Q
is unramified at qi for x ∈ X such that πi(x) = pi. By Lemma B.3, it follows that ψd−1(x0)
is defined over K(x0)ur. Let L0/K(x0)/Q be the smallest Galois extension E/Q containing
K(x0) such that ψd−1(x0) can be defined over Gal(E/Q) (see Proposition C.1).

Letting ψ denote the provisional choice of ψd(x0), Lemma C.3 furnishes c ∈ Q× such that
the cocycle ψ + χc is defined over a Galois tower L/L0/K(x0)/Q with L/L0 quadratic and

L/K(x0) unramified. Redefine ψd(x0) := ψ+χc, now inside Cl
∨
K(x0)[2

d]; since 2χc = 0, this
definition preserves ψd−1(x0) and lower, including ψ1(x0) = wa(x0).

With this new definition, ∑
x∈X

ψd(x) = χc + 0 = χc.

So ∑
x∈X[d]

〈wa(x), wb(x)〉 =
∑

x∈X[d]

∑
p|b

(ψd(x), b)p =
∑
p|b

(χc, b)p =
∑
p|b

(c, b)p.

By Hilbert reciprocity,
∑

p∈SpecZ(c, b)p = 0, so the previous sum vanishes if and only if∑
p-b

(c, b)p = 0.

In fact, each term vanishes! Fix p - b. For convenience, replace c with the discriminant
of Q(

√
c)/Q. If p - c, then b, a unit, must be a norm in the unramified local extension

Qp(
√
c)/Qp, so (c, b)p = 0.

Now suppose p | c; we will uniformly treat odd and even p. Recall from earlier that
b ∈ NK(x)/Q(K(x)×) for all x ∈ X, so (∆K(x), b)p = 0. Since X is a simple family, the
2-part ∆2 ∈ {−4,±8} of the discriminant of K(x) is constant as x ∈ X varies. Since χc is
defined over

∏
K(x)ur, Proposition B.2 says the prime discriminant ∆p of c must lie in the

prime discriminant factorization of K(x) for some x ∈ X, even if p = 2. So Q(
√
c∆K(x)) is

unramified at p, even if p = 2!8 As in the p - c case, we get (c∆K(x), b)p = 0. Finally,

(c, b)p = (∆K(x), b)p + (c∆K(x), b)p = 0 + 0 = 0

by bilinearity of the quadratic Hilbert symbol, as desired. �

Remark 4.17. On the Selmer side, Smith’s proof of [8, Theorem 2.9] seems easier, without
need for anything like Lemma C.3. If we weakened Theorem 4.15 by doubling the sizes of
the sums, I imagine we would have a correspondingly easier proof here, but I may be missing
the bigger picture (either in terms of analytic input, or class-Selmer analogy).

Remark 4.18. We can say more about L0 ≤ K(x0)ur. Since ψd−1(x0) kills GL0 , the restricted
character kernel GF0

:= kerψd−1(x0)|GK(x0)
contains GL0 , so F0 ≤ L0, so F0 ≤ K(x0)ur. But

MK(x0)[2
d−1] cyclic implies F0/K(x0) cyclic Galois, so F0 ≤ H+

K(x0). By Proposition 2.4,

F0/Q is Galois. Now Corollary C.2 says ψd−1(x0) is defined over F0, so F0 = L0.

Remark 4.19. We can say more about L as well. Tracing through Lemma C.3, one sees
GL := kerψd(x0)|GL0

. On the other hand, the character kernel GF := kerψd(x0)|GK(x0)
lies

in GF0 , so GF = kerψd(x0)|GF0
. But GF0 = GL0 from the previous remark, so GF = GL and

F = L. As before, MK(x0)[2
d] cyclic implies F ≤ H+

K(x0), so L = F ≤ H+
K(x0).

7i.e. “defined over a field unramified at”
8For p = 2, the point is that c∆K(x) is ∆2

2 times a product of odd prime discriminants.
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Appendix A. Genus theory and the 2-class group

For K/Q quadratic, let ClK [2] be the F2-vector subspace of IK/IQ generated by the
finite primes of K ramified over Q. An easy computation gives a short exact sequence
IQ ↪→ IσK �ClK [2], so ClK [2] can also be described as IσK/IQ. Define the map ι : ClK [2] →
Cl+K [2], where Cl+K := IK/P

+
K denotes the narrow class group.9 For convenience, let K×∞

denote the group of totally positive elements of K×. Write 2k−1ClK [2k] := ι−1(2k−1 Cl+K [2k]).

Proposition A.1. The map ι is surjective. Its kernel is isomorphic to Z/2, generated by
(x)IQ, where x is given uniquely up to unique O×KQ×-scalar by

•
√

∆K if K/Q is imaginary;
• ε+ ε−1 ∈ Q×

√
∆K if K/Q is real with fundamental unit ε of norm −1; and

• 1 + ε otherwise, if K/Q is real with Nε = +1, where ε is chosen to lie in K×∞.

Remark A.2. For a “dual” perspective, see Milovic’s (master?) thesis on (and slightly gener-
alizing) the work of Fouvry–Klüners. Early on it has a description mapping out of Cl+ /2 Cl+

(instead of mapping into Cl+[2]) using Hilbert symbols and reciprocity.

Proof. The ideal norm N = 1 + σ maps into IQ ≤ P+
K , so an ideal I ∈ IK satisfies I2 ∼ (1)

if and only if (1 − σ)I = (x) for some x ∈ K×∞. In this case, (Nx) = N(1 − σ)I = (1),
so Nx = ±1; total positivity forces Nx = +1. By Hilbert 90, x = (1 − σ)y for some
y ∈ K×, so (1 − σ)(Iy−1) = (1), i.e. Iy−1 ∈ IσK . Since x = y/σy is totally positive, y
must be either totally positive or negative, so (y) admits a totally positive generator. Hence
[I] = [Iy−1] ∈ [IσK ] = im ι, establishing surjectivity of ι. �

Remark A.3. We started with the equivalence I2 ∼ (1) ⇐⇒ σ(I) ∼ I. The latter is natural
for generalization to cyclic extensions K/Q: see Klys [5] or Emerton’s notes.

Remark A.4. For examples of 1+ε in the third case, see fundamental unit tables. For d = 21,
we have ε = (5 +

√
21)/2, so 1 + ε = (7 +

√
21)/2. For d = 33, we have ε = 23 + 4

√
33, so

1 + ε = 24 + 4
√

33. In general, N(1 + ε) = 2 + a if 2ε = a+ b
√
d (where a2 − db2 = 4).

Appendix B. Results on ramification

Proposition B.1. Suppose M/K is generated by two subextensions E,F . If K = E ∩ F
and either E or F is finite Galois over K, then E,F are linearly disjoint over K.

Proof. Say E = K(α) is finite Galois over K. The minimal polynomial f of α over K remains
irreducible over F , because K = E ∩ F . See MSE for further discussion. �

The following results are used to control the ramification of fields and objects of interest.

Proposition B.2. For X a family,
∏

x∈XK(x)ur/E is unramified, where E :=
∏
K(x)/Q.

If F/Q is a quadratic subfield of
∏
K(x)ur, then ∆F is, up to a square, a product of prime

discriminants in P (X), the union of the prime discriminants of ∆K(x) for x ∈ X.

Proof. C/A and D/B unramified implies CD/AB unramified, so
∏
K(x)ur/E is unramified.

Now use the structure of multiquadratic fields: E lies in a linearly disjoint compositum (see
Proposition B.1) of “prime discriminant fields” Q(

√
∆p)/Q, where ∆2 ∈ {−4,±8} (any two

of which disjointly generate the third), and ∆p = (−1)(p−1)/2p if p is odd.

9For all imaginary quadratics, and most real quadratics, these coincide. For the purposes of Cohen–
Lenstra, see Gerth [4, p. 490–491].

http://algant.eu/documents/theses/milovic.pdf
http://www.math.uchicago.edu/~emerton/number-theory/genus.pdf
http://mathworld.wolfram.com/FundamentalUnit.html
https://math.stackexchange.com/questions/381775/when-are-nonintersecting-finite-degree-field-extensions-linearly-disjoint
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• Let Egen be the smallest compositum of prime discriminant fields such that E ≤ Egen.
Then the odd ∆p’s all lie in P (X), while the ∆2’s in Egen either arise from P (X) or
a product of ∆2’s from P (X), up to a square (e.g. −4 is (+8)(−8) up to a square).
• E is ramified precisely at primes dividing

∏
∆K(x), i.e. the underlying primes of

P (X). Easily check that Egen ≤
∏
K(x)ur.

The quadratic F/Q lies in
∏
K(x)ur, so every prime discriminant ∆q of ∆F must either be

in P (X) or a product of ∆2’s from P (X), up to a square. Otherwise, F and E would be
linearly disjoint over Q (again, see Proposition B.1), and FE/E would be ramified at q. �

Lemma B.3. For X a simple family with x0 ∈ X distinguished,
∏
K(x)ur/K(x0) is unram-

ified outside of R :=
⋃
i∈[d](Xi \ πi(x0)). Consequently, K(x0)ur is the maximal subextension

of
∏

x∈XK(x)ur/Q unramified at every prime in R.

Proof. The first part of Proposition B.2 says
∏
K(x)ur/E is unramified. Since X is a

simple family, the 2-part ∆2 ∈ {−4,±8} of ∆K(x) is constant as x ∈ X varies. Thus
K(x)K(x0)/K(x0) can only be ramified over odd primes p | ∆K(x) with p - ∆K(x0). This
automatically excludes the primes p | ∆K . We are left with precisely the primes p ∈ R as
possibilities. In other words, E/K(x0) is unramified outside of R. Thus the whole tower
K(x)ur/E/K(x0) is unramified outside of R, proving the first part of the lemma.

We then immediately get that
∏
K(x)ur/K(x0)ur is unramified outside of R. Yet by

definition of K(x0)ur, every subextension E/K(x0)ur of
∏
K(x)ur/K(x0)ur is ramified, hence

ramified somewhere over R. So K(x0)ur has the desired maximality property. �

Remark B.4. Similarly, if p∗ ∈ P (X), then
∏
K(x)ur/E/Q(

√
p∗) is unramified at p.

Lemma B.5. Let K = F (
√
a) and L = F (

√
b) be two ramified quadratic extensions of local

fields over Qp. If KL/L is unramified, then so is F (
√
ab)/F .

Proof. KL/F has e = 2 ≥ f , so F (
√
ab)/F must be the maximal unramified extension. �

Appendix C. Fields of definition of cocycles

Proposition C.1. Let N be a GQ-module, and let ψ : GQ → N be a continuous 1-cocycle.
Let GL be a normal open subgroup in the kernel of set map ψ. Then ψ is defined over L.

Proof. Take h ∈ GL in ψ(gh) = gψ(h) + ψ(g) to get ψ(gh) = ψ(g) for all g ∈ GQ. Since
GL is normal, ψ induces a set map ψ : Gal(L/Q) = GQ/GL → N . Now ψ(gh) = gψ(h) +
ψ(g) for any g, h ∈ GQ, so gψ(h) is independent of the coset representative g ∈ g. Thus
ψ : Gal(L/Q)→ NGL is a finite cocycle with GQ-inflation ψ, as desired. �

Corollary C.2. Take K/Q Galois, and take N on which GK acts trivially. Let GL be the
kernel of the homomorphism ψ|GK

: GK → N . If L/Q is Galois, then ψ is defined over L.

The following “quadratic twist” result is used in proving Theorem 4.15. For X a simple
family with x0 ∈ X distinguished, let ψ be a cocycle GQ →MK(x0) such that

(1) ψ is defined over
∏

x∈XK(x)ur, and
(2) 2ψ is defined over L0, where K(x0) ≤ L0 ≤ K(x0)ur and L0/Q is finite Galois.

Lemma C.3. In the setting above, if χc denotes the quadratic character of Q(
√
c)/Q, then

for any c ∈ Q×, the twist ψ + χc is a cocycle defined over a Galois tower Lc/L0/Q, with
Lc/L0 at most quadratic. Furthermore, there exists c such that Lc/K(x0) is unramified, i.e.

ψ + χc ∈ Cl
∨
K(x0).
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Proof of field of definition. Take g ∈ GQ and n ∈ GL0 . Then 2ψ(n) = 0 by definition of L0,
so g acts trivially on ψ(n) ∈ 2−1Z/Z. Also, n ∈ GL0 ≤ GK(x0), so δK(x0)(n) = +1. Thus

ψ(gng−1) = ψ(g) + gψ(n) + gnψ(g−1)

= ψ(g) + ψ(n) + gψ(g−1) = ψ(n) + ψ(gg−1) = ψ(n).

In particular, GL, the subgroup of GL0 killed by ψ, is normal in GQ, so L/Q is Galois ψ is
defined over L by Proposition C.1. The group GL is actually the kernel of ψ|GL0

: GL0 →
MK(x0)[2] = 2−1Z/Z (a character), so L/L0 is at most quadratic.

With the twist, ψ + χc is still a cocycle with 2(ψ + χc) = 2ψ. The previous paragraph,
applied to ψ + χc instead of ψ, yields a Galois tower Lc/L0/Q with Lc/L0 quadratic. �

Proof of existence of twist. Suppose L/K(x0) is ramified along a tower of primes Q/q/p/p,
with q/p unramified but Q/q ramified. Assumption (1) on ψ says L ≤

∏
K(x)ur, so

• Lemma B.3 implies p ∈
⋃
i∈[d](Xi \πi(x0)), because L/K(x0) is ramified over p; while

• if we choose xp ∈ X with p ramified in K(xp), say πi(x
p) = p, and πj(x

p) = πj(x0)
for j ∈ [d]− i, then Lemma B.3 implies that LK(xp)/K(xp) is unramified over p.

By the first point, p/p, hence q/p, is unramified. Let p0 = πi(x0) and c = p∗p∗0, so
L(
√
c) = LK(xp) by simplicity of X. Clearly no new primes of Z can ramify in Lc. If we

show that Lc/L0 is unramified over p, then the desired twist will exist by induction.
Now, ψ|GL0

and χc|GL0
are both quadratic characters, with kernels GL and GL0(

√
c),

respectively. If L = L0(
√
α), then the kernel of ψ|GL0

+ χc|GL0
is GL0(

√
αc), so Lc =

L0(
√
αc), which is Galois over Q by the first half of the lemma. By the second point

above, LK(xp)/K(xp) is unramified over p, so ep(LK(xp)/Q) = 2. Yet ep(L/L0) = 2 in the
Galois tower L(

√
c)/L/L0/Q, so L(

√
c)/L = LK(xp)/L must be unramified over p. Now

restrict attention to the biquadratic extension L(
√
c)/L0, all of which is Galois over Q. Since

q/p is unramified, q must ramify in L0(
√
c). In the local Galois picture, L(

√
c)/L0 satisfies

Lemma B.5, so L0(
√
αc)/L0 = Lc/L0 is unramified over p. �

Remark C.4. I got stuck trying to prove this lemma while reading [8]; thanks to Alex for ex-
plaining the details to me, especially for the field of definition. Below is what Alex suggested
for the twist proof; it differs a little from the proof above.

Once we have q/p unramified, the normal subgroup Gal(L/L0) ∼= Z/2 of Gal(L/Q)
must be the inertia group of every prime Q/p of L. Since ep(LK(xp)/Q) = 2, the iner-
tia group of every prime of L(

√
c) over Q is also of size two. It also always lies in the

pullback Gal(L(
√
c)/L0) of Ip(L/Q) = Gal(L/L0) under Gal(L(

√
c)/Q)�Gal(L/Q). But

Gal(L(
√
c)/Q)�Gal(L/Q) induces a surjection, hence isomorphism, of the equally-sized

inertia groups, with target Ip(L/Q). Consequently, if σ is a nontrivial inertia element in
Gal(L(

√
c)/Q), then ψ(σ) = ψ(σ|L) is nonzero, or else L would be equal to L0 by definition

of L/L0. Similarly, χc(σ) = χc(σ|K(xp)) 6= 0. Thus (ψ + χc)(σ) = 2−1 + 2−1 = 0, and ψ + χc
kills the twisted inertia group Ip(L

c/Q). So Lc/K(x0) must be unramified over p.

Appendix D. Results on minimality

First, minimality is stable under restriction. There might be a conceptual reason (dihedral
intuition?). For now, see the formal argument below (downwards induction on d).
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View the target of ψd(X) as a trivial GQ-module, so dψd(X) measures how far ψd(X) is
from being a group homomorphism. Compute the coboundary:

dψd(X)(g, h) =
∑
x∈X

dιxψd(x)(g, h)

=
∑
x∈X

gιxψd(x)h− ιxψd(x)gh+ ιxψd(x)g

=
∑
x∈X

gιxψd(x)h− ιxgψd(x)h =
∑
x∈X

ψd(x)h− gψd(x)h =
∑

x:δK(x)(g)=−1

ψd−1(x)h,

where the last step uses the GQ-action g 7→ δK(x)(g) = ±1, and 2ψd = ψd−1.

Remark D.1. If d = 1, we automatically get 0 coboundary with no hypotheses on ψd(X),
because the ψ1(x) cocycles are actually characters (homomorphisms).

What does {x : δK(x)(g) = −1} look like? Let E/Q be the Galois extension defined by

GE := ker(g 7→ (δK(x)(g))x∈X) =
⋂
x∈X

GK(x).

Observation D.2. Fix i ∈ [d] and pi ∈ Xi, odd by definition. There exists g = gi,pi ∈ GQ,
unique modulo GE, such that δK(x)(g) = −1 if and only if the ith component of x is pi. As
i, pi vary, these elements generate GQ/GE = Gal(E/Q).

Proof. See Proposition B.2 and its proof, which places E =
∏
K(x)/Q in Egen. Adjoin

√
−4

for simplicity, and let L/Q be the resulting multiquadratic field of dimension t.
Choose g ∈ Gal(L/Q) = Ft2 acting nontrivially on Q(

√
∆pi)/Q, but trivially on the

remaining t − 1 pieces Q(
√

∆p)/Q of L, including Q(
√
−4)/Q for p = 2. Since ∆pi = ±pi,

the element g acts nontrivially on
√
pi but trivially on

√
q if q | ∆K or q ∈ X1 ∪ · · · ∪Xd \ pi.

Thus δK(x)(g) = −1 if and only if πi(x) = pi. So g induces the desired gi,pi ∈ GQ.
Two different gi,pi ’s in GQ agree under the map g 7→ (δK(x)(g))x∈X, so their ratio lies in

GE by definition. Thus gi,pi mod GE is unique.
Clearly GL ≤ GE, so E ≤ L. Take the explicit representatives gi,pi = g ∈ Gal(L/Q)

defined earlier. To show generation, pick σ ∈ Gal(L/Q). Modulo the images of gi,pi in
Gal(E/Q), we may assume σ acts trivially on Q(

√
∆pi) for all primes pi ∈ X1 ∪ · · · ∪ Xd.

Then σ acts uniformly on the fields K(x) as x ∈ X varies. If the action is +1, then σ ≡ 1
mod Gal(L/E) as desired. Otherwise, if the action is −1, then

σ ≡
∏
p1∈X1

g1,p1 mod Gal(L/E),

because
∏

p1∈X1
δK(x)(g1,p1) = −1 for all x ∈ X, by construction of the g1,p1 ’s. �

If ψd(X[d](K)) = 0, then dψd(X) = 0, so ψd−1(XS(Ky)) = 0 for any index i ∈ [d] with
complementary variation set S = [d] − i, and any singleton y of Xi. In other words, R(X)
is minimal with respect to y, S. By induction, minimality is stable under restriction. In
fact, we only needed that ψd(X) was a cocycle (or homomorphism) to conclude that R(X)
is minimal with respect to all proper subsets. What is the best converse statement?

Proposition D.3 ([8, Cf. Proposition 2.5]). Let X = X[d](K) represent a family.
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(1) Assume R(X) is a set of raw cocycles of level k ≥ d, such that R(X) is minimal with
respect to pi, [d]− i for all i ∈ [d] and pi ∈ Xi. Then ψd(X) is a quadratic character.

(2) Assume R(X) is a set of raw cochains of level k ≥ d, such that ψd(x) is a cocycle
for all x 6= x0. Assume R(X) is minimal with respect to pi, [d]− i for all i ∈ [d] and
pi ∈ Xi \ πi(x0). If ψd(X) is a quadratic character, then ψd(x0) is in fact a cocycle.

Remark D.4. Smith does not explicitly state the second version, but at least when ψd(X) = 0
(trivial character), it is used in proving Theorem 4.15.

Smith gives a binomial theorem proof. Here is another perspective.

Proof. In the first case, 2ψd(X) breaks up (in any number of ways) into sums of ψd−1 terms,
where each sum vanishes by the minimality assumptions. So 2ψd(X) = 0 and ψd(X) is a set
map GQ → 2−1Z/Z. In the second case this is assumed.

Earlier, we computed the coboundary of ψd(X) at (g, h) ∈ G2
Q to be

dψd(X)(g, h) =
∑
x∈X

ψd(x)h− gψd(x)h =
∑

x:δK(x)(g)=−1

ψd−1(x)h

in the first case. In the second case, a similar coboundary calculation shows that

0 = dψd(X)(g, h) =
∑
x∈X

ψd(x)h− ψd(x)gh+ ψd(x)g

= dψd(x0)(g, h) +
∑
x∈X

ψd(x)h− gψd(x)h

= dψd(x0)(g, h) +
∑

x:δK(x)(g)=−1

ψd−1(x)h.

In both cases, we wish to show that∑
x:δK(x)(g)=−1

ψd−1(x) = 0

for all g ∈ GQ, or equivalently that∑
x∈X

ψd(x) =
∑
x∈X

gψd(x).

Certainly, the first equality holds for any gi,pi from the previous observation. In the first
case, that’s just minimality of R(X) with respect to pi, [d] − i. In the second case, if pi is
exceptional for i, then bundling up minimality with respect to qi, [d]− i for qi 6= pi, together
with 2ψd(X) = 0, still recovers the desired first equality.

Now, let U be the subset of GQ for which either equality holds. Clearly U contains GE,
and we have just shown gi,pi ∈ U . But if g, g′ ∈ U , then∑

x∈X

(gg′ − 1)ψd(x) =
∑
x∈X

(gg′ − g − g′ + 1)ψd(x)

=
∑
x∈X

(1− g)(1− g′)ψd(x) =
∑

x:δK(x)(g
′)=−1

(1− g)ψd−1(x).
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If g′ is one of the gi,pi , then the sum vanishes under the first hypothesis by minimality of
R(X) with respect to pi, [d] − i;10 and still under the second hypothesis by a minimality
bundling argument, at least if the technical assumption∑

x∈X

ψd−1(x) =
∑
x∈X

gψd−1(x)

holds. Assuming this, g, g′ ∈ U implies gg′ ∈ U whenever g′ ∈ {gi,pi}. So U = GQ, since
GQ/GE is a finite group generated by the gi,pi .

Under the second hypothesis, it remains to verify the technical assumption. Set

L := {` ≥ 0 :
∑
x∈X

2`ψd(x) =
∑
x∈X

g2`ψd(x) ∀g ∈ GQ}.

Above, we proved 0 ∈ L as long as 1 ∈ L. The same argument with ψ1, . . . , ψd doubled
shows that 1 ∈ L as long as 2 ∈ L. Generally, ` ∈ L as long as ` + 1 ∈ L. But certainly
d ∈ L, so d− 1 ∈ L, etc. and finally 0 ∈ L. �

Appendix E. Class group heuristics

For any set S of finite primes of K, we have ISK = Z|S| canonically, while rank(US
K) =

|S| + rank(UK) (easiest proof uses finiteness of class group: ℘h is principal for ℘ ∈ S). If S

is large enough (i.e. generates the class group), Cl(K)
∼←− coker(US

K �P S
K ↪→ ISK).

As K varies in a natural family (of global fields), want to understand distribution of Cl(K);
for simplicity, let’s restrict attention to Clp∞(K) := Cl(K)[p∞] separately for each prime p.

E.1. Random matrix formulation. Fix u := rank(UK) and let n := |S| → ∞. For any
K,S, consider the map ι = ιSK : US

K ⊗ Zp → ISK ⊗ Zp: choosing bases on the left11 and right,
we get a matrix A = ASK : Zn+u

p → Znp . By Smith normal form theory, the set of possible
resulting matrices is precisely {A : cokerA ∼= coker ι}. We want to know the resulting
distribution on cokerA ∼= coker ι, at least as n→∞.

The safest form of the Cohen–Lenstra heuristics roughly states:

Conjecture E.1. Let K/Q vary among, say, degree d number fields with a given unit rank
u := rankUK, containing no pth roots of unity. Then

P(Clp∞(K) ∼= P ) = lim
n→∞

P(cokerAn ∼= P ) = |P |−u|Aut(P )|−1
∏
k≥1

(1− p−k−u)

for any finite abelian p-group P , where An : Zn+u
p → Znp is a random matrix drawn with

respect to Haar measure on Mn,n+u(Zp).

Remark E.2. The µp assumption might be unnecessary sometimes, especially if p = 2?

Remark E.3. To understand the second equality, note that for large n and e with peP = 0,
almost all maps (Z/pe)n → P are surjective, so there are around |Aut(P )|−1|P |n subgroups
of (Z/pe)n, say—or better, open subgroups of Znp—with cokernel isomorphic to P . But there

are Haar measure ∼ |P |−n−u matrices Zn+u
p → Znp with a prescribed image of index |P |.12 So

there should be Haar measure ∼ |P |−u|Aut(P )|−1 matrices with cokernel isomorphic to P .

10Minimality implies coboundary zero, which implies
∑
ψd−1(xS) =

∑
gψd−1(xS).

11mod torsion (if K contains pth roots of unity)
12First show this for image contained in that prescribed subgroup, a la Ellenberg–Venkatesh–Westerland

surjections perspective [2, 3], and then use inclusion-exclusion.
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See Wood [10] for more details on the random matrix train of thought.

Remark E.4. If A has full rank, then cokerA is unaffected up to isomorphism by small
perturbations. For example, we can play around with Gaussian elimination on the perturbed
Smith normal form of A. Alternatively, we can even show that imA = imA′ by noting that
imA is finite-index, hence open (contains prZnp for large r), in Znp , so A′ei ≈ Aei lies in imA
for all i means imA′ ≤ imA, and vice versa.

Remark E.5. Why expect Cohen–Lenstra? Can we choose A = ASK equidistributed (or
weaker, see [10])? Perhaps one can choose canonical bases on the left and right for which we
have no known structure obstructing equidistribution. For example, the “canonical” choice
ISK⊗Zp = Znp is justified precisely because the matrices A should automatically equidistribute
in GLn(Zp)A as K varies. Similarly, even though there might not be a nice identification
US
K ⊗ Zp = Zn+u

p , the ultimate distribution of A should be dense in AGLn+u(Zp).13

Remark E.6. What if instead, we modeled the inclusions ι′ : P S
K ⊗Zp ↪→ ISK ⊗Zp by random

matrices A′ : Znp → Znp? (Requiring A′ to be injective or not shouldn’t matter: almost all
matrices Znp → Znp are injective.) The resulting distribution cokerA′ (independent of u)
would not match cokerA (dependent on u) chosen above, except when u = 0. How do we
rule out this alternative heuristic for u > 0?
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