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Motivation

Diophantine equations! and L-functions? are central objects in
number theory. Some natural problems and questions about
them are the following:
1. Count/produce/bound solutions to algebraic equations
over the integers (Z) or related rings (e.g. F,[t] or F)).
2. Prove approximations to GRH? for individual L-functions,
or analyze statistics (esp. those of Random Matrix Theory
type) over families.

3. To what extent are (1)—(2) related?

Lin the tradition of e.g. Hardy—Littlewood
2in the tradition of e.g. Riemann
3the Grand Riemann Hypothesis



Example (BSD)

Let C/Q be a smooth cubic curve in P? with a Q-point. (For
example, X3 + x3 + 60x3 = 0, but not 357 + 4x3 + 5x3 = 0.)
Then Birch-Swinnerton-Dyer '65 conjectured

rank J(C)(Q) = ords—1/, L(s, C)

(an equality of integers), where
1. rank J(C)(Q) measures how many integral solutions
x = (x1,%,x3) € [=X, X]? there are as X — 0o, while
2. L(s, C)—the Hasse—Weil L-function associated to
C—encodes the behavior of C mod p as p varies.
In general, the “>" direction, i.e. “producing” points, remains
especially mysterious. But modularity (Wiles et al.) often helps,
via Heegner points (Gross—Zagier '86).2

2Contrast with the use of modularity in Fermat's last theorem.




Example (Quadratic equations)

The most difficult part of the solution of Hilbert's eleventh
problem (up to questions of effectiveness), namely the part
regarding integral representations of integers by ternary
quadratic forms with integral coefficients (due to lwaniec, Duke,
and Schulze-Pillot over QQ), also makes essential use of
automorphic forms, through subconvex L-function bounds
obtained through the study of L-function families.

Remark

Rational representations are much simpler, with a very clean
existence theory (a local-to-global principle with no exceptions)
given by Hasse—Minkowski, quantifiable by the sharpest forms
of the circle method (see e.g. Getz '18 and Tran '20 for a
uniform treatment over number fields and function fields).




Main talk overview
Let F(x) :=x + -+ + x3. This talk centers around
Diophantine equations and L-functions, especially
1. F(x) =0 over Z, as well as
2. F(x)=c-x=0over F, (as ¢, p vary), and

3. the associated Hasse-Weil L-functions L(s, V) (over

A(c) #0).
Problem (Many authors)

Estimate the number of integral solutions to F(x) =0 in
expanding boxes or other regions.

Remark (Many authors)

This problem is closely tied to the statistics of sums of 3 cubes.
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Sec 0: Sums of three cubes (Intro)

Let g := x3 + y3 + Z3, so that g(Z3) consists of sums of three
cubes, i.e. integers a represented by g over Z.

Question (Integral Hasse principle)

Is every admissible® integer a represented by g (over Z)?

%i.e. locally represented; i.e. # £4 mod 9

Example
» Booker '19: YES for a = 33, since

(8866128975287528)° + (—8778405442862230)?
+ (—2736111468807040)% = 33.

> Wooley '95+: YES for > A% ints a < A (A — 00).

V.




Example (Cont'd)

» Hooley '86+: YES for >, A' € ints a < A, under Hypo
HW (=~ modularity + GRH for Hasse-Weil L-functions).

v

Theorem (W.)

Assume standard NT conj's on L-functions (e.g. Hypo HW +
“RMT") & “unlikely” divisors (“p? | A(c)”). Then 100%
(resp. > 0%) of admiss. ints lie in g(Z3) (resp. g(Z3,)).

Remark (Re: 100% Hasse)
» For 5x3 + 12y3 4 923 (in place of x* + y* + z%), 3 Hasse
failures (Cassels—Guy '66 + ¢).

» For x2 + y? + z2 — xyz (Markoff), 3 uncond. proof of
100% Hasse (Ghosh—Sarnak '17).




Sec (': Zero/Level sets (Counting basics)

For P=xi +---+x2 (s =3,6), K C R® nice (cpt, semi-alg),
X — 00, let Np_, (X) =#{x € ZN XK : P = a} (a € Z).

Example

K=[-11F = XK =[-X,X],

72nxKk 27
x— P < X3,

So Np_, k(X) is < X*73 on avg (in () over a < X3.

V.

HL (*“randomness”) prediction: Np_, x(X) =~ X[, 0.
(Here and elsewhere, ~~ means | may be lying a bit.)



Sec ¢2: Doubling (Rags to riches)

Let g == y3 + y3 + y3. From Z3 & 7, get (the 2nd moment
map, or “fiber-wise square”)

LT % 22 ={(y,2) € (Z°) : g(y) = &(2)}.
Here g(y) = £(2) <= F(y,—2) =0 (Fi=x} + - + ).

Observation (Classical)

Let K =[-1,1]°. If Nex(X) < X® (X — o), then > 0% of
Z lies in g(Z3,).

Proof.
C-S ineq (2nd moment method). O




Hooley '86a: HL (“randomness”) prediction misses triv. sol's
(e.g. x1+x = X3+ x4 = x5 + X6 = 0); maybe the truth is HLH?

Conjecture (HLH)
For any nice K C R®,

NF7K(X) = CHL,F,K ° X3 + #{triv. X € Z6 N XK} + O(X3)

(X — 0).

Theorem (S. Diaconu 19 + ¢)
Say, ¥V nice K C R®, HLH holds. Then 100% Hasse holds.

Proof.

Something like a variance analysis (cf. Ghosh—-Sarnak '17 for
“borderline” problems like g = a). The details are subtle.

O

v
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Sec 3: What's known?

Hua '38: Ng k(X) < X7/2+¢ (by Cauchy b/w structure and
randomness in 4,8 vars, resp.).

Vaughan '86+: “" < X7/?(log X)<~°/2 (by new source of
randomness).

Hooley '86+: “" < X3¢, under Hypo HW (=~ modularity +
GRH for Hasse-Weil L-functions).

Remark

A large-sieve hypo? would suffice (W.).

(It's open! But)

J uncond. apps to x? + y3 + z* (W., via Briidern '91 +
Duke—Kowalski '00 + Wiles et al).

?a la Bombieri-Vinogradov
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Hooley used an “upper-bound precursor” to the d-method.

Proposition (§-method: Kloosterman '26,
Duke—Friedlander—lwaniec '93, Heath-Brown '96)

N/:J((X) RS EC<<X1/2E,,§X3/2[H_15C(H)] = %

(c € Z°), where

= Z/ Z en(aF (x) + ¢ - x).

amod n xe(Z/n)®

v

(en(t) := €?/") (Don't worry about the “/"; it means a L n)

Remark

Here ¢ = 0 captures major arcs (roughly speaking), producing
HL but not full HLH. And ¢ # 0 captures. ..
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lle’l )
ldea (“Kloosterman method™) is to treat classical major and

minor arcs uniformly (using Poisson summation?), and average
over a mod n.

Ne k(X) =~ Z # ZI Z e.(aF(x)) (o-method)

n<Xx3/2 amod n x&X
1 . .
A W]EC«,,/X[SC(n)] (“complexity” n/X)

ngx3/2
~a B Eeexie[nSe(n)] = *.
Idea’: In gen'l (for n>> X large), > 0>, o x €n(aF(x)) is

incomplete mod n, but still a wt'd avg of the complete sums
Sc(n), if we sample over enough c's (Nyquist-Shannon). [

awith ¢ = 0 “purely probabilistic”, and ¢ # 0 subtler
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The Sc(n)'s relate to V. := {[x] € P*: F(x) = ¢ - x = 0}.
Fact: 3 disc poly A € Z[c| measuring singularities of V.

Lemma (Hooley)

If A(c) # 0, then Sc(n) := n~7/25.(n) look (to 1st order) like
the coeffs pc(n) of 1/L(s, Ve) (Ve := (Ve)o)-

y

Partial proof sketch.

Here F is homog (& a is summed) so Sc(n) is multiplicative.
Locally: If pt ¢, then S.(p) = Ec(p) + O(p~Y/2), where
E.(p) := p32[#V.(F,) — #P3(F,)]. Now use LTF. O

4

Exercise (Cf. Hooley, “2x-Kloosterman”)

“Assume” Ve, n, N: A(c) # 0, Se(n) = pe(n),
> onen te(n) < [NV Then + < X3t
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Remark (On the square-root barrier)

1. The full HLH lies beyond the classical o-method (according
to square-root “pointwise” minor arc considerations).

2. But the -method opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution
in a “dual” fashion.
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Sec 4: What's new?
Theorem (W. '21)

Assume standard NT conj’s on
> (s, Ve), L(s, Ve, N2), L(s, V(F)) (Hypo HW2 + Ratios
Conj's + Krasner®), and
» “unlikely” divisors (Square-free Sieve Conjecture for A(c)).
Then for any nice K C R® w/ K Nhess F = ,° we have
Nek(X) < X3, & in fact HLH Conj. holds. (Actual hypo's for
former are cleaner than those for latter.)

a“effective version of Kisin's thesis (Local constancy in p-adic families

of Galois representations)”
bThis could probably be removed with enough work, but is mild enough

for our main qualitative needs.

v
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Glossary for hypo's

1. Hypo HW?2: Similar in spirit to Hooley's Hypo HW.

2. Ratios Conj's: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s, V) and
1/L(s1, V¢)L(s2, V) over families of ¢’s.*

3. Krasner: Need L,(s, V¢) to only depend on
¢ mod pA(c)% (cf. Kisin's thesis).
4. SFSC: Need (for Z > 1, P < Z3)

Price[-Z,Z]°: 3 p€[P,2P] with p* | A(c)] < P°.

*How does ¢ + L(s, V) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery—Dyson, and “near
1/2" from Katz—Sarnak. CFKRS (2005) developed full main term
predictions for L-powers, and CFZ (2008) for L-ratios.
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Proof hint.
We want to bound/estimate (via §-method)

Ne(X) A~ BB pexon[n™ Sc(n)].

Exponent numerics over various loci (if d =3, s = 6):

+ 0 = (s - 2) + of4e]

S
s—d = =
S~~~ 2
c=0, n small
A(c)=0, n large A(c)#0

=3+ O(5%).

Main terms of HLH: A(c) = 0 (key: Sc(n) is biased for special
c's). Conditional/hardest part: A(c) # 0 (which “factors” into

certain mean-value and pointwise estimates over c).

O

v
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A sample mean-value ingredient
Over A(c) # 0, the reciprocal L-functions 1/L(s, V) are the

main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2', roughly)

For certain holomorphic f(s), e.g. e, we have

C@s) s +1/2 VE) T Ll
/U)ds s V) f(s)N°| <¢ N

/
C<<Xl/2

(0>1/2; 1< N < X32).

» There are no log N or log X factors on the RHS! Such
factors are determined by the “symmetry type” of the
underlying family of L-functions.

» This is enough “RMT input” for N x(X) < X3.
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More on mean values (Cancellation over c)
Also, for some § > 0, one expects the following:

Conjecture (R1, roughly)

, 1

. J/

e X1/2 m —¢(25)L(s +1/2, V(F)) Ar(s) | <ot X7°

polar factors

(over A(c) #0) (for X > 1, s=0+it; 0 >1/2)
Here Ap(s) < 1 for ®(s) > 1/2 — 4.

Remark

For N x(X) < X3, we only use (R2"). But for HLH (which
requires “cancellation over c¢"), we use a “slight adelic
perturbation” of (R1).
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A sample pointwise ingredient

We also use partial results® toward a conjectural dichotomy/F,,
amusingly parallel to HLH:

Theorem (W. '22)

If p is sufficiently large, and ¢ € JF?, satisfies

[#Ve(F,) — #P3(F,)| > 10°p*2 (“randomness fails”), then
Ve mod p contains a plane (i.e. ¢ = cj3 in pairs;, “some special
structure holds”). This is part of a subtler general dichotomy.

Recall: V. is the hyperplane section F(x) = c-x = 0.

For large p, the planes on V (the zero locus of

F(x) = +---+x3 in P°) are cut out by “x7 + x? = 0 in
pairs” (e.g. x1 +x = x3 + x4 = x5 + x = 0).

®proven using “worst-case” results of Skorobogatov '92 (or Katz '91)
and “average-case” results of Lindner '20
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A cartoon of today's main players

1. Let g(y) == yi +y3 +y3 first.
2. Let F(x):=x3+ -+ x2 second.

A° 5 AT E A < A= {(y,2) € (A°) : g(y) = g(2)}

~
Cf. Hardy-Littlewood (1925)

{(y,2) € (A)? 1 g(y) = (2)} = {F(x) = 0} = C(V)

V) -V {([x).[e]) € V x (B)" 1 c-x = 0} % ()"

J

Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), ...
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Analogs?

» ¢+ b* + a* =t has some similarity to ¢3 + b® + a° = t.

» Allowing negative integers, one might go significantly
further with “exceptional sets” for non-critical problems,
like ¢ + b + &% = t or ¢* + b? + a*> = t, than for the
critical ¢ + b® + a® = t. Even conjecturally, the limits of
variance analysis are unclear, in view of Brauer—Manin
obstructions.
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Deformations?

> Let Npy(X) =#{x € Z°N[-X, X]°: q | 5 + -+ E}.
It is routine to estimate N(g)(X) if ¢ < X*7°. The delta
method gives a way to estimate Ng)(X) for g > 6X3.
What can be proven in between these extremes?

> (Based on a comment from Wooley.) Let N (X) be the
number of integral solutions to

KX+t =y+yn+y

with x1, y1 € [10X7,20X"] and xz, y2, X3, y3 € [X,2X].
Then NG/2)(X) =< X7/2 unconditionally, while
NM(X) < X7/2 unconditionally and NV(X) < X3
conditionally. What about for v € (1,3/2)7
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