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Overview

Let F (x) := x3
1 + · · ·+ x3

6 . This talk centers around
Diophantine equations and L-functions, especially

1. F (x) = 0 over Z, as well as

2. F (x) = c · x = 0 over Fp (as c , p vary), and

3. the associated Hasse–Weil L-functions L(s,Vc) (over
∆(c) 6= 0).

Problem (Many authors)

Estimate the number of integral solutions to F (x) = 0 in
expanding boxes or other regions.

Remark (Many authors)

This problem is closely tied to the statistics of sums of 3 cubes.
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The usual randomness heuristic (via level sets)

Let s := 6. For K ⊂ Rs nice (cpt, semi-alg), X →∞, and
a ∈ Z, let NF−a,K (X ) := #{x ∈ Zs ∩ XK : F = a}.

Example

Say K = [−1, 1]s . Then XK = [−X ,X ]s , and

F (Zs ∩ XK )� X 3 (since F = x3
1 + · · ·+ x3

s is cubic).

So NF−a,K (X ) is � X s−3 on avg (in `1) over a� X 3.

Hardy–Littlewood (“randomness”) prediction for F = 0:

NF ,K (X ) ≈ X s−3
∏
v≤∞

σv .
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Randomness and structure (for F := x3
1 + · · ·+ x3

6 )

Hooley ’86a: HL (“randomness”) prediction misses triv. sol’s
(xi + xj = 0 in pairs); maybe the truth is HLH?

Conjecture (HLH)

For any nice K ⊂ R6,

NF ,K (X ) = cHL,F ,K · X 3 + #{triv. x ∈ Z6 ∩ XK}+ o(X 3).

Remark (Around the square-root barrier)

1. The full HLH lies beyond the classical ◦-method (according
to square-root “pointwise” minor arc considerations).

2. But the δ-method opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution
in a “dual” fashion.
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What’s known towards HLH?

1. Hua ’38: NF ,K (X )� X 7/2+ε (by Cauchy b/w structure
and randomness in 4, 8 vars, resp.).

2. Vaughan ’86+: “ ” � X 7/2(logX )ε−5/2 (by new source of
randomness).

3. Hooley ’86+: “ ” � X 3+ε, under Hypo HW (≈ modularity
+ GRH for the Hasse–Weil L-functions L(s,Vc)).

Hooley used an “upper-bound precursor” to the δ-method.
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The δ-method

Proposition (δ-method: Kloosterman ’26,
Duke–Friedlander–Iwaniec ’93, Heath-Brown ’96)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?

(c ∈ Z6), where ≈≈ means I may be lying a bit, and

Sc(n) :=
∑′

a mod n

∑
x∈(Z/n)6

en(aF (x) + c · x).

(en(t) := e2πit/n) (Don’t worry about the “′”; it means a ⊥ n)

Remark
Here c = 0 captures major arcs (roughly speaking), producing
HL but not full HLH. And c 6= 0 captures. . .
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“Pf”.
Idea (“Kloosterman method”) is to treat classical major and
minor arcs uniformly (using Poisson summationa), and average
over a mod n.

NF ,K (X ) ≈≈
∑

n≤X 3/2

1

nX 3/2

∑′

a mod n

∑
x�X

en(aF (x)) (◦-method)

≈≈
∑

n≤X 3/2

1

nX 3/2
Ec�n/X [Sc(n)] (“complexity” n/X )

≈≈ En≤X 3/2Ec�X 1/2[n−1Sc(n)] = ?.

Idea’: In gen’l (for n� X large),
∑′

a mod n

∑
x�X en(aF (x)) is

incomplete mod n, but still a wt’d avg of the complete sums
Sc(n), if we sample over enough c ’s (Nyquist–Shannon).

awith c = 0 “purely probabilistic”, and c 6= 0 subtler

7



The Sc(n)’s relate to Vc := {[x ] ∈ P5 : F (x) = c · x = 0}.
Fact: ∃ disc poly ∆ ∈ Z[c ] measuring singularities of Vc .

Lemma (Hooley)

If ∆(c) 6= 0, then S̃c(n) := n−7/2Sc(n) look (to 1st order) like
the coeffs µc(n) of 1/L(s,Vc) (Vc := (Vc)Q).

Partial proof sketch.

Here F is homog (& a is summed), so Sc(n) is multiplicative.

Locally: If p - c , then S̃c(p) = Ẽc(p) + O(p−1/2), where

Ẽc(p) := p−3/2[#Vc(Fp)−#P3(Fp)]. Now use LTF.

Exercise (Cf. Hooley, “2×-Kloosterman”)

“Assume” ∀c , n,N : ∆(c) 6= 0, S̃c(n) = µc(n),∑
n≤N µc(n)� ‖c‖εN1/2+ε. Then ?� X 3+ε.
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By coincidence, the “double Kloosterman” misses HLH by ε.

Theorem (Hooley ’86+/Heath-Brown ’98)

NF ,K (X )�ε X
3+ε, under Hypo HW (≈ modularity + GRH) for

L(s,Vc)’s (over ∆(c) 6= 0).a

aA large-sieve hypo would suffice (W.). It’s open! But ∃ uncond. apps
to x2 + y3 + z3 (W., via Brüdern ’91 + Duke–Kowalski ’00 + Wiles et al).

Theorem (W.)

Roughly: Assume standard NT conjectures on L-functions
(e.g. Hypo HW + RMT-type predictions) and “unlikely”
divisors (“p2 | ∆(c)”).
Then NF ,K (X )� X 3, and in fact HLH Conj. holds for a large
class of regions K .a

aThis has nice applications to sums of 3 cubes (Diaconu ’19 + ε).
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More precisely:

Theorem (W.)

Assume standard NT conj’s on

I L(s,Vc), L(s,Vc ,
∧2), L(s,V (F )) (Hypo HW2 + Ratios

Conj’s + Krasnera), and

I “unlikely” divisors (Square-free Sieve Conjecture for ∆(c)).

Then for any nice K ⊂ R6 w/ K ∩ hessF = ∅,b we have
NF ,K (X )� X 3, & in fact HLH Conj. holds. (Actual hypo’s for
former are cleaner than those for latter.)

a“effective version of Kisin’s thesis (Local constancy in p-adic families
of Galois representations)”

bThis could probably be removed with enough work, but is mild enough
for our main qualitative needs.
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Glossary for hypo’s

1. Hypo HW2: Similar in spirit to Hooley’s Hypo HW.

2. Ratios Conj’s: Give predictions of Random Matrix Theory
(RMT) type for mean values of 1/L(s,Vc) and
1/L(s1,Vc)L(s2,Vc) over families of c ’s.1

3. Krasner: Need Lp(s,Vc) to only depend on
c mod p∆(c)1000 (cf. Kisin’s thesis).

4. SFSC: Need (for Z ≥ 1, P ≤ Z 3)

Pr
[
c ∈ [−Z ,Z ]6 : ∃ p ∈ [P , 2P] with p2 | ∆(c)

]
� P−δ.

1How does c 7→ L(s,Vc) behave on average? RMT predictions
originated for L-zeros “in the bulk” from Montgomery–Dyson, and “near
1/2” from Katz–Sarnak. CFKRS (2005) developed full main term
predictions for L-powers, and CFZ (2008) for L-ratios.
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Proof hint.
We want to bound/estimate (via δ-method)

NF ,K (X ) ≈≈ Ec�X 1/2En≤X 3/2[n−1Sc(n)] =: ?.

Exponent numerics over various loci (if d = 3, s = 6):

s − d︸ ︷︷ ︸
c=0, n small

=
s

2
+�

��O(ε)︸ ︷︷ ︸
∆(c)=0, n large

=
d

4
(s − 2) +�

���O(4ε)︸ ︷︷ ︸
∆(c) 6=0

= 3 +��
��O(5ε).

Main terms of HLH: ∆(c) = 0 (key: Sc(n) is biased for special
c ’s). Conditional/hardest part: ∆(c) 6= 0 (which “factors” into
certain mean-value and pointwise estimates over c).
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Remark (Some more details)

There are maybe 5 sources of ε in Hooley/Heath-Brown,
incl. what I’ll call “Special”, “Generic”, & “Badp”.
The locus ∆(c) = 0 in ? unconditionally produces the conj’d
main term cHLH · X 3. This resolves “Special”.
The remaining sum (over ∆(c) 6= 0) is conditionally

≈≈
∑

finite set

(typically O(1))a × (RMT-type sum).

I To prove “typical-O(1)” (under SFSC), re: “Badp”, need
partial results towards a conjectural dichotomy/Fp.

I Each “RMT-type sum” is 0 + O(X 3−δ) (under Ratios),
improving on GRH bound Oε(X

3+ε) (cf. “Generic”).

aneeds proof; loosely resembles Sarnak–Xue “density philosophy”

13



A sample pointwise ingredient

Among other things, we need partial results2 toward a
conjectural dichotomy/Fp, amusingly parallel to HLH:

Conjecture (Randomness vs. structure over Fp)

If p ≥ 100 and c ∈ F6
p with |#Vc(Fp)−#P3(Fp)| ≥ 1010p3/2,

then Vc mod p contains a plane (i.e. c3
i = c3

j in pairs).

Remark
R. Kloosterman told me that in the nodal case, a char. 0 analog
of a stronger conj. holds (w/ Hodge-theoretic proof). Lindner
’20 proved partial results towards the “stronger conjecture”.

2proven using “worst-case” results of Skorobogatov ’92 (or Katz ’91)
and “average-case” results of Lindner ’20 (or Debarre–Laface–Roulleau
’17)
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A sample mean-value ingredient

Over ∆(c) 6= 0, the reciprocal L-functions 1/L(s,Vc) are the
main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2’, roughly)

For certain holomorphic f (s), e.g. es
2
, we have

E′c�X 1/2

∣∣∣∣∫
(σ)

ds
ζ(2s)−1L(s + 1/2,V (F ))−1

L(s,Vc)
· f (s)N s

∣∣∣∣2 �f N

(σ > 1/2; 1� N � X 3/2).

I There are no logN or logX factors on the RHS! Such
factors are determined by the “symmetry type” of the
underlying family of L-functions.

I This is enough “RMT input” for NF ,K (X )� X 3.
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More on mean values (Cancellation over c)
Also, for some δ > 0, one expects the following:

Conjecture (R1, roughly)

E′c�X 1/2

 1

L(s,Vc)
− ζ(2s)L(s + 1/2,V (F ))︸ ︷︷ ︸

polar factors

AF (s)

�σ,t X
−δ

(over ∆(c) 6= 0) (for X ≥ 1; s = σ + it; σ > 1/2)
Here AF (s)� 1 for <(s) ≥ 1/2− δ.

Remark
For NF ,K (X )� X 3, we only use (R2’). But for HLH (which
requires “cancellation over c”), we need a “slight adelic
perturbation” of (R1).
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Applications to sums of 3 cubes

Let g := x3 + y 3 + z3.

Question (Integral Hasse principle)

Is every admissiblea integer a represented by g (over Z)?

ai.e. locally represented; i.e. 6≡ ±4 mod 9

Theorem (S. Diaconu ’19 + ε)

Say, ∀ nice K ⊂ R6, HLH holds. Then 100% Hasse holds.

Theorem (W.)

Assume standard NT conj’s on L-functions (e.g. Hypo HW +
“RMT”) & “unlikely” divisors (“p2 | ∆(c)”). Then 100%
(resp. > 0%) of admiss. ints lie in g(Z3) (resp. g(Z3

>0)).
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