Conditionally around the square-root barrier for cubes

Victor Wang
Princeton University
Advised by Peter Sarnak

Copenhagen Number Theory Seminar, December 2021

Overview

Let $F(x):=x_{1}^{3}+\cdots+x_{6}^{3}$. This talk centers around
Diophantine equations and L-functions, especially

1. $F(x)=0$ over \mathbb{Z}, as well as
2. $F(\boldsymbol{x})=\boldsymbol{c} \cdot \boldsymbol{x}=0$ over \mathbb{F}_{p} (as \boldsymbol{c}, p vary), and
3. the associated Hasse-Weil L-functions $L\left(s, V_{c}\right)$ (over $\Delta(c) \neq 0)$.

Problem (Many authors)

Estimate the number of integral solutions to $F(x)=0$ in expanding boxes or other regions.

Remark (Many authors)
This problem is closely tied to the statistics of sums of 3 cubes.

The usual randomness heuristic (via level sets)

Let $s:=6$. For $K \subset \mathbb{R}^{s}$ nice (cpt, semi-alg), $X \rightarrow \infty$, and $a \in \mathbb{Z}$, let $N_{F-a, K}(X):=\#\left\{x \in \mathbb{Z}^{s} \cap X K: F=a\right\}$.
Example
Say $K=[-1,1]^{s}$. Then $X K=[-X, X]^{s}$, and

$$
F\left(\mathbb{Z}^{s} \cap X K\right) \ll X^{3} \quad \text { (since } F=x_{1}^{3}+\cdots+x_{s}^{3} \text { is cubic). }
$$

So $N_{F-a, K}(X)$ is $\asymp X^{s-3}$ on avg (in ℓ^{1}) over $a \ll X^{3}$.
Hardy-Littlewood ("randomness") prediction for $F=0$:

$$
N_{F, K}(X) \approx X^{s-3} \prod_{v \leq \infty} \sigma_{v} .
$$

Randomness and structure (for $F:=x_{1}^{3}+\cdots+x_{6}^{3}$)

Hooley '86a: HL ("randomness") prediction misses triv. sol's ($x_{i}+x_{j}=0$ in pairs); maybe the truth is HLH?

Conjecture (HLH)
For any nice $K \subset \mathbb{R}^{6}$,

$$
N_{F, K}(X)=c_{H L, F, K} \cdot X^{3}+\#\left\{\text { triv. } x \in \mathbb{Z}^{6} \cap X K\right\}+o\left(X^{3}\right) .
$$

Remark (Around the square-root barrier)

1. The full HLH lies beyond the classical o-method (according to square-root "pointwise" minor arc considerations).
2. But the δ-method opens the door to progress on HLH, by harmonically decomposing the true minor arc contribution in a "dual" fashion.

What's known towards HLH?

1. Hua '38: $N_{F, K}(X) \ll X^{7 / 2+\epsilon}$ (by Cauchy b/w structure and randomness in 4, 8 vars, resp.).
2. Vaughan ' $86+$: " " $\ll X^{7 / 2}(\log X)^{\epsilon-5 / 2}$ (by new source of randomness).
3. Hooley '86+: " " $\ll X^{3+\epsilon}$, under Hypo HW (\approx modularity + GRH for the Hasse-Weil L-functions $L\left(s, V_{c}\right)$).
Hooley used an "upper-bound precursor" to the δ-method.

The δ-method

Proposition (δ-method: Kloosterman '26,
Duke-Friedlander-Iwaniec '93, Heath-Brown '96)

$$
N_{F, K}(X) \approx \approx \mathbb{E}_{c \ll X^{1 / 2}} \mathbb{E}_{n \leq X^{3 / 2}}\left[n^{-1} S_{c}(n)\right]=: \star
$$

($c \in \mathbb{Z}^{6}$), where $\approx \approx$ means I may be lying a bit, and

$$
S_{c}(n):=\sum_{a \bmod n}^{\prime} \sum_{x \in(\mathbb{Z} / n)^{6}} e_{n}(a F(x)+c \cdot x) .
$$

$\left(e_{n}(t):=e^{2 \pi i t / n}\right)($ Don't worry about the " r "; it means a $\perp n$)
Remark
Here $\boldsymbol{c}=0$ captures major arcs (roughly speaking), producing HL but not full HLH. And $c \neq 0$ captures...

Idea ("Kloosterman method") is to treat classical major and minor arcs uniformly (using Poisson summation ${ }^{\text {a }}$), and average over a $\bmod n$.

$$
\begin{aligned}
& N_{F, K}(X) \approx \approx \sum_{n \leq X^{3 / 2}} \frac{1}{n X^{3 / 2}} \sum_{\text {amod } n x \ll X}^{\prime} \sum_{n} e_{n}(a F(x)) \quad \text { (o-method) } \\
& \approx \approx \sum_{n \leq X^{3 / 2}} \frac{1}{n X^{3 / 2}} \mathbb{E}_{c \ll n / X}\left[S_{c}(n)\right] \quad(\text { "complexity" } n / X) \\
& \approx \approx \mathbb{E}_{n \leq X^{3 / 2}} \mathbb{E}_{c \ll X^{1 / 2}}\left[n^{-1} S_{c}(n)\right]=\star .
\end{aligned}
$$

Idea': In gen'l (for $n \gg X$ large), $\sum_{a \bmod n}^{\prime} \sum_{x \ll x} e_{n}(a F(x))$ is incomplete $\bmod n$, but still a wt'd avg of the complete sums $S_{c}(n)$, if we sample over enough c 's (Nyquist-Shannon).

[^0]The $S_{c}(n)$'s relate to $\mathcal{V}_{\boldsymbol{c}}:=\left\{[\boldsymbol{x}] \in \mathbb{P}^{5}: F(\boldsymbol{x})=\boldsymbol{c} \cdot \boldsymbol{x}=0\right\}$. Fact: \exists disc poly $\Delta \in \mathbb{Z}[\boldsymbol{c}]$ measuring singularities of $\mathcal{V}_{\boldsymbol{c}}$.

Lemma (Hooley)
If $\Delta(c) \neq 0$, then $\widetilde{S}_{c}(n):=n^{-7 / 2} S_{c}(n)$ look (to 1st order) like the coeffs $\mu_{c}(n)$ of $1 / L\left(s, V_{c}\right)\left(V_{c}:=\left(\mathcal{V}_{c}\right)_{\mathbb{Q}}\right)$.

Partial proof sketch.
Here F is homog ($\& a$ is summed), so $S_{c}(n)$ is multiplicative.
Locally: If $p \nmid c$, then $\widetilde{S}_{c}(p)=\widetilde{E}_{c}(p)+O\left(p^{-1 / 2}\right)$, where $\widetilde{E}_{c}(p):=p^{-3 / 2}\left[\# \mathcal{V}_{c}\left(\mathbb{F}_{p}\right)-\# \mathbb{P}^{3}\left(\mathbb{F}_{p}\right)\right]$. Now use LTF.

Exercise (Cf. Hooley, " ${ }_{\underline{2}} \times$-Kloosterman")
"Assume" $\forall c, n, N: \Delta(c) \neq 0, \widetilde{S}_{c}(n)=\mu_{c}(n)$,
$\sum_{n \leq N} \mu_{c}(n) \ll\|c\|^{\epsilon} N^{1 / 2+\epsilon}$. Then $\star \ll X^{3+\epsilon}$.

By coincidence, the "double Kloosterman" misses HLH by ϵ.

Theorem (Hooley '86+/Heath-Brown '98)

$N_{F, K}(X)<_{\epsilon} X^{3+\epsilon}$, under Hypo HW (\approx modularity $+G R H$) for $L\left(s, V_{c}\right)$'s (over $\left.\Delta(c) \neq 0\right)$. ${ }^{\text {a }}$

[^1]
Theorem (W.)

Roughly: Assume standard NT conjectures on L-functions (e.g. Hypo HW + RMT-type predictions) and "unlikely" divisors (" $p^{2} \mid \Delta(c)$ ").
Then $N_{F, K}(X) \ll X^{3}$, and in fact HLH Conj. holds for a large class of regions K. ${ }^{\text {a }}$

[^2]
More precisely:

Theorem (W.)

Assume standard NT conj's on

- $L\left(s, V_{c}\right), L\left(s, V_{c}, \Lambda^{2}\right), L(s, V(F))$ (Hypo HW2 + Ratios Conj's + Krasner ${ }^{a}$), and
- "unlikely" divisors (Square-free Sieve Conjecture for $\Delta(\boldsymbol{c})$). Then for any nice $K \subset \mathbb{R}^{6} w / K \cap$ hess $F=\emptyset$, ${ }^{b}$ we have $N_{F, K}(X) \ll X^{3}$, \& in fact HLH Conj. holds. (Actual hypo's for former are cleaner than those for latter.)
a "effective version of Kisin's thesis (Local constancy in p-adic families of Galois representations)"
${ }^{b}$ This could probably be removed with enough work, but is mild enough for our main qualitative needs.

Glossary for hypo's

1. Hypo HW2: Similar in spirit to Hooley's Hypo HW.
2. Ratios Conj's: Give predictions of Random Matrix Theory (RMT) type for mean values of $1 / L\left(s, V_{c}\right)$ and $1 / L\left(s_{1}, V_{c}\right) L\left(s_{2}, V_{c}\right)$ over families of c 's. ${ }^{1}$
3. Krasner: Need $L_{p}\left(s, V_{c}\right)$ to only depend on
$c \bmod p \Delta(c)^{1000}$ (cf. Kisin's thesis).
4. SFSC: Need (for $Z \geq 1, P \leq Z^{3}$)

$$
\operatorname{Pr}\left[c \in[-Z, Z]^{6}: \exists p \in[P, 2 P] \text { with } p^{2} \mid \Delta(c)\right] \ll P^{-\delta} .
$$

[^3]
Proof hint.

We want to bound/estimate (via δ-method)

$$
N_{F, K}(X) \approx \approx \mathbb{E}_{c \ll X^{1 / 2}} \mathbb{E}_{n \leq X^{3 / 2}}\left[n^{-1} S_{c}(n)\right]=: \star
$$

Exponent numerics over various loci (if $d=3, s=6$):

$$
\begin{aligned}
\underbrace{s-d}_{c=0, n \text { small }} & =\underbrace{\frac{s}{2}+O(\epsilon)}_{\Delta(c)=0, n \text { large }}=\underbrace{\frac{d}{4}(s-\underline{2})+O(4 \epsilon)}_{\Delta(c) \neq 0} \\
& =3+O(5 \epsilon) .
\end{aligned}
$$

Main terms of HLH: $\Delta(c)=0$ (key: $S_{c}(n)$ is biased for special \boldsymbol{c} 's). Conditional/hardest part: $\Delta(c) \neq 0$ (which "factors" into certain mean-value and pointwise estimates over \boldsymbol{c}).

Remark (Some more details)

There are maybe 5 sources of ϵ in Hooley/Heath-Brown, incl. what I'll call "Special", "Generic", \& "Badp".
The locus $\Delta(c)=0$ in \star unconditionally produces the conj'd main term $c_{\text {HLH }} \cdot X^{3}$. This resolves "Special". The remaining sum (over $\Delta(c) \neq 0$) is conditionally

$$
\approx \approx \sum_{\text {finite set }}(\text { typically } O(1))^{a} \times(\text { RMT-type sum })
$$

- To prove "typical-O(1)" (under SFSC), re: "Badp", need partial results towards a conjectural dichotomy $/ \mathbb{F}_{p}$.
- Each "RMT-type sum" is $0+O\left(X^{3-\delta}\right)$ (under Ratios), improving on GRH bound $O_{\epsilon}\left(X^{3+\epsilon}\right)$ (cf. "Generic").

[^4]
A sample pointwise ingredient

Among other things, we need partial results ${ }^{2}$ toward a conjectural dichotomy $/ \mathbb{F}_{p}$, amusingly parallel to HLH:

Conjecture (Randomness vs. structure over \mathbb{F}_{p})
If $p \geq 100$ and $c \in \mathbb{F}_{p}^{6}$ with $\left|\# \mathcal{V}_{c}\left(\mathbb{F}_{p}\right)-\# \mathbb{P}^{3}\left(\mathbb{F}_{p}\right)\right| \geq 10^{10} p^{3 / 2}$, then $\mathcal{V}_{c} \bmod p$ contains a plane (i.e. $c_{i}^{3}=c_{j}^{3}$ in pairs).

Remark

R. Kloosterman told me that in the nodal case, a char. 0 analog of a stronger conj. holds (w/ Hodge-theoretic proof). Lindner '20 proved partial results towards the "stronger conjecture".

[^5]
A sample mean-value ingredient

Over $\Delta(c) \neq 0$, the reciprocal L-functions $1 / L\left(s, V_{c}\right)$ are the main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2', roughly)
For certain holomorphic $f(s)$, e.g. $e^{s^{2}}$, we have

$$
\begin{aligned}
& \mathbb{E}_{c \ll X^{1 / 2}}^{\prime}\left|\int_{(\sigma)} d s \frac{\zeta(2 s)^{-1} L(s+1 / 2, V(F))^{-1}}{L\left(s, V_{c}\right)} \cdot f(s) N^{s}\right|^{2}<_{f} N \\
& \left(\sigma>1 / 2 ; 1 \ll N \ll X^{3 / 2}\right) .
\end{aligned}
$$

- There are no $\log N$ or $\log X$ factors on the RHS! Such factors are determined by the "symmetry type" of the underlying family of L-functions.
- This is enough "RMT input" for $N_{F, K}(X) \ll X^{3}$.

More on mean values (Cancellation over \boldsymbol{c})

Also, for some $\delta>0$, one expects the following:
Conjecture (R1, roughly)
$\mathbb{E}_{c \ll X^{1 / 2}}^{\prime}[\frac{1}{L\left(s, V_{c}\right)}-\underbrace{\zeta(2 s) L(s+1 / 2, V(F))}_{\text {polar factors }} A_{F}(s)]<_{\sigma, t} X^{-\delta}$
(over $\Delta(c) \neq 0)($ for $X \geq 1 ; s=\sigma+i t ; \sigma>1 / 2)$
Here $A_{F}(s) \ll 1$ for $\Re(s) \geq 1 / 2-\delta$.
Remark
For $N_{F, K}(X) \ll X^{3}$, we only use (R2'). But for HLH (which requires "cancellation over c "), we need a "slight adelic perturbation" of (R1).

Applications to sums of 3 cubes

Let $g:=x^{3}+y^{3}+z^{3}$.
Question (Integral Hasse principle)
Is every admissiblea integer a represented by $g($ over $\mathbb{Z})$?
ai.e. locally represented; i.e. $\not \equiv \pm 4 \bmod 9$
Theorem (S. Diaconu '19 $+\epsilon$)
Say, \forall nice $K \subset \mathbb{R}^{6}$, HLH holds. Then 100% Hasse holds.
Theorem (W.)
Assume standard NT conj's on L-functions (e.g. Hypo HW + "RMT") \& "unlikely" divisors (" p " $\Delta(c)$ "). Then 100% (resp. $>0 \%$) of admiss. ints lie in $g\left(\mathbb{Z}^{3}\right)\left(\right.$ resp. $g\left(\mathbb{Z}_{>0}^{3}\right)$).

[^0]: ${ }^{a}$ with $\boldsymbol{c}=0$ "purely probabilistic", and $\boldsymbol{c} \neq 0$ subtler

[^1]: ${ }^{a}$ A large-sieve hypo would suffice (W.). It's open! But \exists uncond. apps to $x^{2}+y^{3}+z^{3}$ (W., via Brüdern ' $91+$ Duke-Kowalski '00 + Wiles et al).

[^2]: ${ }^{a}$ This has nice applications to sums of 3 cubes (Diaconu ' $19+\epsilon$).

[^3]: ${ }^{1}$ How does $\boldsymbol{c} \mapsto L\left(s, V_{c}\right)$ behave on average? RMT predictions originated for L-zeros "in the bulk" from Montgomery-Dyson, and "near 1/2" from Katz-Sarnak. CFKRS (2005) developed full main term predictions for L-powers, and CFZ (2008) for L-ratios.

[^4]: ${ }^{a}$ needs proof; loosely resembles Sarnak-Xue "density philosophy"

[^5]: ${ }^{2}$ proven using "worst-case" results of Skorobogatov '92 (or Katz '91) and "average-case" results of Lindner '20 (or Debarre-Laface-Roulleau '17)

