Conditional approaches to sums of cubes

Victor Wang

Princeton University Advised by Peter Sarnak

Bristol Linfoot Number Theory Seminar, December 2021

Sec 0: Sums of three cubes (Intro)

Let $g := x^3 + y^3 + z^3$, so that $g(\mathbb{Z}^3)$ consists of sums of three cubes, i.e. integers a represented by g over \mathbb{Z} .

Question (Integral Hasse principle)

Is every *admissible*^{*a*} integer *a* represented by *g* (over \mathbb{Z})?

^ai.e. locally represented; i.e. $\not\equiv \pm 4 \mod 9$

Example

• Booker '19: YES for a = 33, since

 $\begin{array}{l} (8866128975287528)^3 + (-8778405442862239)^3 \\ + (-2736111468807040)^3 = 33. \end{array}$

• Wooley '95+: YES for $\gg A^{0.917}$ ints $a \leq A \ (A \rightarrow \infty)$.

Example (Cont'd)

► Hooley '86+: YES for ≫_ε A^{1-ε} ints a ≤ A, under Hypo HW (≈ modularity + GRH for Hasse–Weil *L*-functions).

Theorem (W.)

Assume standard NT conj's on L-functions (e.g. Hypo HW + "RMT") & "unlikely" divisors (" $p^2 \mid \Delta(c)$ "). Then 100% (resp. > 0%) of admiss. ints lie in $g(\mathbb{Z}^3)$ (resp. $g(\mathbb{Z}^3_{>0})$).

Remark (Re: 100% Hasse)

- ► For $5x^3 + 12y^3 + 9z^3$ (in place of $x^3 + y^3 + z^3$), \exists Hasse failures (Cassels–Guy '66 + ϵ).
- For x² + y² + z² − xyz (Markoff), ∃ uncond. proof of 100% Hasse (Ghosh–Sarnak '17).

Sec ℓ^1 : Zero/Level sets (Counting basics) For $P = x_1^3 + \cdots + x_s^3$ (s = 3, 6), $K \subset \mathbb{R}^s$ nice (cpt, semi-alg), $X \to \infty$, let $N_{P-a,K}(X) := \#\{x \in \mathbb{Z}^s \cap XK : P = a\}$ $(a \in \mathbb{Z})$. Example $K = [-1, 1]^{s} \implies XK = [-X, X]^{s}$ $\mathbb{Z}^{s} \cap XK \xrightarrow{P} \mathbb{Z}$ $\mathbf{x} \mapsto P \ll X^3$

So $N_{P-a,K}(X)$ is $\asymp X^{s-3}$ on avg (in ℓ^1) over $a \ll X^3$.

HL ("randomness") prediction: $N_{P-a,K}(X) \approx X^{s-3} \prod_{v \leq \infty} \sigma_v$. (Here and elsewhere, $\approx \approx$ means I may be lying a bit.)

Sec ℓ^2 : Doubling (Rags to riches)

Let $g := y_1^3 + y_2^3 + y_3^3$. From $\mathbb{Z}^3 \xrightarrow{g} \mathbb{Z}$, get (the 2nd moment map, or "fiber-wise square")

$$\mathbb{Z} \leftarrow \mathbb{Z}^3 \times_g \mathbb{Z}^3 = \{(\boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}^3)^2 : g(\boldsymbol{y}) = g(\boldsymbol{z})\}.$$

Here $g(\mathbf{y}) = g(\mathbf{z}) \iff F(\mathbf{y}, -\mathbf{z}) = 0 \ (F := x_1^3 + \cdots + x_6^3).$

Observation (Classical)

Let $K = [-1, 1]^6$. If $N_{F,K}(X) \ll X^3$ $(X \to \infty)$, then > 0% of \mathbb{Z} lies in $g(\mathbb{Z}^3_{>0})$.

Proof.

C-S ineq (2nd moment method).

Hooley '86a: HL ("randomness") prediction misses triv. sol's (e.g. $x_1 + x_2 = x_3 + x_4 = x_5 + x_6 = 0$); maybe the truth is HLH?

Conjecture (HLH)

For any nice $K \subset \mathbb{R}^6$,

$$N_{F,K}(X) = c_{\mathsf{HL},F,K} \cdot X^3 + \#\{ ext{triv. } oldsymbol{x} \in \mathbb{Z}^6 \cap XK\} + o(X^3)$$

 $(X o \infty).$

Theorem (S. Diaconu '19 + ϵ)

Say, \forall nice $K \subset \mathbb{R}^6$, HLH holds. Then 100% Hasse holds.

Proof.

Something like a variance analysis (cf. Ghosh–Sarnak '17 for "borderline" problems like g = a). The details are subtle.

Sec 3: What's known?

Hua '38: $N_{F,K}(X) \ll X^{7/2+\epsilon}$ (by Cauchy b/w structure and randomness in 4, 8 vars, resp.). Vaughan '86+: "" $\ll X^{7/2}(\log X)^{\epsilon-5/2}$ (by new source of randomness). Hooley '86+: "" $\ll X^{3+\epsilon}$, under Hypo HW (\approx modularity + GRH for Hasse–Weil *L*-functions).

Remark

A large-sieve hypo^a would suffice (W.). (It's open! But) \exists uncond. apps to $x^2 + y^3 + z^3$ (W., via Brüdern '91 + Duke-Kowalski '00 + Wiles et al).

^aa la Bombieri–Vinogradov

Hooley used an "upper-bound precursor" to the δ -method. Proposition (δ -method: Kloosterman '26, Duke–Friedlander–Iwaniec '93, Heath-Brown '96)

$$N_{F,K}(X) \approx \mathbb{E}_{\boldsymbol{c} \ll X^{1/2}} \mathbb{E}_{n \leq X^{3/2}}[n^{-1}S_{\boldsymbol{c}}(n)] = : \star$$

($oldsymbol{c} \in \mathbb{Z}^6$), where

$$S_{\boldsymbol{c}}(n) := \sum_{a \mod n}' \sum_{\boldsymbol{x} \in (\mathbb{Z}/n)^6} e_n(aF(\boldsymbol{x}) + \boldsymbol{c} \cdot \boldsymbol{x}).$$

 $(e_n(t) := e^{2\pi i t/n})$ (Don't worry about the " ℓ "; it means $a \perp n$)

Remark

Here c = 0 captures major arcs (roughly speaking), producing HL but not full HLH. And $c \neq 0$ captures...

"Pf".

Idea ("Kloosterman method") is to treat classical major and minor arcs uniformly (using Poisson summation^{*a*}), and average over $a \mod n$.

$$N_{F,K}(X) \approx \sum_{n \leq X^{3/2}} \frac{1}{nX^{3/2}} \sum_{a \mod n} \sum_{x \ll X} e_n(aF(x)) \quad (\circ\text{-method})$$
$$\approx \sum_{n \leq X^{3/2}} \frac{1}{nX^{3/2}} \mathbb{E}_{c \ll n/X}[S_c(n)] \quad (\text{``complexity''} \ n/X)$$
$$\approx \mathbb{E}_{n \leq X^{3/2}} \mathbb{E}_{c \ll X^{1/2}}[n^{-1}S_c(n)] = \star.$$

Idea': In gen'l (for $n \gg X$ large), $\sum_{a \mod n}' \sum_{x \ll X} e_n(aF(x))$ is incomplete mod n, but still a wt'd avg of the complete sums $S_c(n)$, if we sample over enough c's (Nyquist–Shannon).

^awith $m{c}=0$ "purely probabilistic", and $m{c}
eq 0$ subtler

The $S_c(n)$'s relate to $\mathcal{V}_c := \{ [x] \in \mathbb{P}^5 : F(x) = c \cdot x = 0 \}$. Fact: \exists disc poly $\Delta \in \mathbb{Z}[c]$ measuring singularities of \mathcal{V}_c .

Lemma (Hooley)

If $\Delta(c) \neq 0$, then $\widetilde{S}_{c}(n) := n^{-7/2}S_{c}(n)$ look (to 1st order) like the coeffs $\mu_{c}(n)$ of $1/L(s, V_{c})$ ($V_{c} := (\mathcal{V}_{c})_{\mathbb{Q}}$).

Partial proof sketch.

Here F is homog (& a is summed), so $S_c(n)$ is multiplicative. Locally: If $p \nmid c$, then $\widetilde{S}_c(p) = \widetilde{E}_c(p) + O(p^{-1/2})$, where $\widetilde{E}_c(p) := p^{-3/2} [\# \mathcal{V}_c(\mathbb{F}_p) - \# \mathbb{P}^3(\mathbb{F}_p)]$. Now use LTF.

Exercise (Cf. Hooley, " $\underline{2} \times$ -Kloosterman")

"Assume"
$$\forall \boldsymbol{c}, \boldsymbol{n}, \boldsymbol{N}: \Delta(\boldsymbol{c}) \neq 0, \ \widetilde{S}_{\boldsymbol{c}}(\boldsymbol{n}) = \mu_{\boldsymbol{c}}(\boldsymbol{n}),$$

$$\sum_{\boldsymbol{n} \leq \boldsymbol{N}} \mu_{\boldsymbol{c}}(\boldsymbol{n}) \ll \|\boldsymbol{c}\|^{\epsilon} N^{1/2+\epsilon}. \text{ Then } \star \ll X^{3+\epsilon}.$$

Sec 4: What's new?

Theorem (W.)

Assume standard NT conj's on

► $L(s, V_c), L(s, V_c, \Lambda^2), L(s, V(F))$ (Hypo HW2 + Ratios Conj's + Krasner^a), and

• "unlikely" divisors (Square-free Sieve Conjecture for $\Delta(c)$). Then for any nice $K \subset \mathbb{R}^6$ w/ $K \cap$ hess $F = \emptyset$,^b we have $N_{F,K}(X) \ll X^3$, & in fact HLH Conj. holds. (Actual hypo's for former are cleaner than those for latter.)

^a "effective version of Kisin's thesis (*Local constancy in p-adic families* of Galois representations)"

^bThis could probably be removed with enough work, but is mild enough for our main qualitative needs.

Glossary for hypo's

- 1. Hypo HW2: Similar in spirit to Hooley's Hypo HW.
- Ratios Conj's: Give predictions of Random Matrix Theory (RMT) type for mean values of 1/L(s, V_c) and 1/L(s₁, V_c)L(s₂, V_c) over families of c's.¹
- 3. Krasner: Need $L_p(s, V_c)$ to only depend on $c \mod p\Delta(c)^{1000}$ (cf. Kisin's thesis).
- 4. SFSC: Need (for $Z \ge 1$, $P \le Z^3$)

 $\Pr\left[\boldsymbol{c}\in [-Z,Z]^6: \exists \ \boldsymbol{p}\in [P,2P] \text{ with } \boldsymbol{p}^2\mid \Delta(\boldsymbol{c})
ight]\ll P^{-\delta}.$

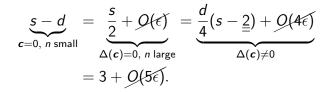
¹How does $c \mapsto L(s, V_c)$ behave on average? RMT predictions originated for *L*-zeros "in the bulk" from Montgomery–Dyson, and "near 1/2" from Katz–Sarnak. CFKRS (2005) developed *full main term* predictions for *L*-powers, and CFZ (2008) for *L*-ratios.

Proof hint.

We want to bound/estimate (via δ -method)

$$N_{F,K}(X) \approx \mathbb{E}_{\boldsymbol{c} \ll X^{1/2}} \mathbb{E}_{n \leq X^{3/2}}[n^{-1}S_{\boldsymbol{c}}(n)].$$

Exponent numerics over various loci (if d = 3, s = 6):



Main terms of HLH: $\Delta(c) = 0$ (key: $S_c(n)$ is biased for special c's). Conditional/hardest part: $\Delta(c) \neq 0$ (which "factors" into certain mean-value and pointwise estimates over c).

A sample mean-value ingredient

Over $\Delta(c) \neq 0$, the reciprocal *L*-functions $1/L(s, V_c)$ are the main players. The Ratios Conjectures imply e.g. the following:

Conjecture (R2', roughly)

For certain holomorphic f(s), e.g. e^{s^2} , we have

$$\mathbb{E}'_{\boldsymbol{c}\ll X^{1/2}} \left| \int_{(\sigma)} ds \, \frac{\zeta(2s)^{-1} L(s+1/2, V(F))^{-1}}{L(s, V_{\boldsymbol{c}})} \cdot f(s) N^{s} \right|^{2} \ll_{f} N$$

(\sigma > 1/2; 1 \le N \le X^{3/2}).

There are no log N or log X factors on the RHS! Such factors are determined by the "symmetry type" of the underlying family of L-functions.

• This is enough "RMT input" for $N_{F,\kappa}(X) \ll X^3$.

More on mean values (Cancellation over c)

Also, for some $\delta >$ 0, one expects the following:

Conjecture (R1, roughly)

$$\mathbb{E}'_{\boldsymbol{c}\ll X^{1/2}}\left[\frac{1}{L(s,V_{\boldsymbol{c}})}-\underbrace{\zeta(2s)L(s+1/2,V(F))}_{\text{polar factors}}A_{F}(s)\right]\ll_{\sigma,t}X^{-\delta}$$

$$(\text{over }\Delta(\boldsymbol{c})\neq 0) \text{ (for } X\geq 1; s=\sigma+it; \sigma>1/2)$$

$$\text{Here }A_{F}(s)\ll 1 \text{ for }\Re(s)\geq 1/2-\delta.$$

Remark

For $N_{F,K}(X) \ll X^3$, we only use (R2'). But for HLH (which requires "cancellation over c"), we use a "slight adelic perturbation" of (R1).

A sample pointwise ingredient

We also use partial results² toward a conjectural dichotomy/ \mathbb{F}_{p} , amusingly parallel to HLH:

Conjecture (Randomness vs. structure over \mathbb{F}_p) If $p \ge 100$ and $\mathbf{c} \in \mathbb{F}_p^6$ with $|\#\mathcal{V}_{\mathbf{c}}(\mathbb{F}_p) - \#\mathbb{P}^3(\mathbb{F}_p)| \ge 10^{10}p^{3/2}$, then $\mathcal{V}_{\mathbf{c}} \mod p$ contains a plane (i.e. $c_i^3 = c_i^3$ in pairs).

Remark (R. Kloosterman)

A char. 0 analog of a stronger conj. (in the nodal case) holds (with a Hodge-theoretic proof).

(Lindner '20 proves partial results towards the "stronger conjecture".)

 $^{^2} proven using "worst-case" results of Skorobogatov '92 (or Katz '91) and "average-case" results of Lindner '20$

A cartoon of today's main players

1. Let
$$g(y) := y_1^3 + y_2^3 + y_3^3$$
 first.
2. Let $F(x) := x_1^3 + \dots + x_6^3$ second

$$\underbrace{\mathbb{A}^3 \xrightarrow{g} \mathbb{A}^1 \xleftarrow{g} \mathbb{A}^3 \times_g \mathbb{A}^3 \cong \{(\mathbf{y}, \mathbf{z}) \in (\mathbb{A}^3)^2 : g(\mathbf{y}) = g(\mathbf{z})\}}_{\text{Cf. Hardy-Littlewood (1925)}}$$

$$\{(\boldsymbol{y},\boldsymbol{z})\in (\mathbb{A}^3)^2: g(\boldsymbol{y})=g(\boldsymbol{z})\}\cong \{F(\boldsymbol{x})=0\}=C(\mathcal{V})$$

$$\underbrace{C(\mathcal{V}) \dashrightarrow \mathcal{V} \xleftarrow{[x]} \{([x], [c]) \in \mathcal{V} \times (\mathbb{P}^5)^{\vee} : c \cdot x = 0\}}_{\text{Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), \dots}} \underbrace{[c]}_{\text{Cf. Kloosterman (1926), Heath-Brown (1983), Hooley (1986), \dots}}$$

Analogs?

• $c^2 + b^4 + a^4 = t$ has some similarity to $c^3 + b^3 + a^3 = t$.

Allowing negative integers, one might go significantly further with "exceptional sets" for non-critical problems, like c² + b³ + a³ = t or c² + b² + a³ = t, than for the critical c³ + b³ + a³ = t. Even conjecturally, the limits of variance analysis are unclear, in view of Brauer–Manin obstructions.

Deformations?

- Let N_(q)(X) := #{x ∈ Z⁶ ∩ [−X, X]⁶ : q | x₁³ + · · · + x₆³}. It is routine to estimate N_(q)(X) if q ≤ X^{1−δ}. The delta method gives a way to estimate N_(q)(X) for q > 6X³. What can be proven in between these extremes?
- (Based on a comment from Wooley.) Let N^(γ)(X) be the number of integral solutions to

$$x_1^3 + x_2^3 + x_3^3 = y_1^3 + y_2^3 + y_3^3$$

with $x_1, y_1 \in [10X^{\gamma}, 20X^{\gamma}]$ and $x_2, y_2, x_3, y_3 \in [X, 2X]$. Then $N^{(3/2)}(X) \simeq X^{7/2}$ unconditionally, while $N^{(1)}(X) \ll X^{7/2}$ unconditionally and $N^{(1)}(X) \simeq X^3$ conditionally. What about for $\gamma \in (1, 3/2)$?